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Abstract. This work is devoted to a class of stochastic approximation problems with regime
switching modulated by a discrete-time Markov chain. Our motivation stems from using stochastic
recursive algorithms for tracking Markovian parameters such as those in spreading code optimization
in CDMA (code division multiple access) wireless communication. The algorithm uses constant step
size to update the increments of a sequence of occupation measures. It is proved that least squares
estimates of the tracking errors can be developed. Assume that the adaptation rate is of the same
order of magnitude as that of the time-varying parameter, which is more difficult to deal with than
that of slower parameter variations. Due to the time-varying characteristics and Markovian jumps,
the usual stochastic approximation (SA) techniques cannot be carried over in the analysis. By a
combined use of the SA method and two-time-scale Markov chains, asymptotic properties of the
algorithm are obtained, which are distinct from the usual SA results. In this paper, it is shown for
the first time that, under simple conditions, a continuous-time interpolation of the iterates converges
weakly not to an ODE, as is widely known in the literature, but to a system of ODEs with regime
switching, and that a suitably scaled sequence of the tracking errors converges not to a diffusion but
to a system of switching diffusion. As an application of these results, the performance of an adaptive
discrete stochastic optimization algorithm is analyzed.
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1. Introduction. In this paper, we consider a class of stochastic approximation
(SA) algorithms for tracking the invariant distribution of a conditional Markov chain
(conditioned on another Markov chain whose transition probability matrix is “near”
identity). Here and henceforth, we refer to such a Markov chain with infrequent
jumps as a slow Markov chain, for simplicity. It is well known that if the parameter
changes too drastically, there is no chance one can track the time-varying properties
using an SA algorithm. Such a phenomenon is known as tracking capability; see [4]
for related discussions. Our objectives include evaluating the tracking capability of
the SA algorithm in terms of mean squares tracking error, characterizing the dynamic
behavior of the iterates, revealing the structure of a scaled sequence of tracking errors,
and obtaining the asymptotic covariance of the associated limit process.

Motivation. While there are several papers that analyze tracking properties of
SA algorithms when the underlying parameter varies according to a slow random
walk [4, 19], fewer papers consider the case when the underlying parameter evolves
according to a slow Markov chain. Yet such slow Markov chain models arise in several
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applications. The main motivation for our work stems from applications in discrete
stochastic optimization. Such problems appeared in [21] and were subsequently con-
sidered in [2, 3, 10] among others; we refer the reader to [20] for a recent survey of
several methods for discrete stochastic optimization including selection and multi-
ple comparison methods, multi-armed bandits, the stochastic ruler, nested partition
methods, and discrete stochastic optimization algorithms based on simulated anneal-
ing [1, 2, 3, 9].

The discrete stochastic optimization algorithms in [2, 3] can be thought of as
random search procedures, in which there is a feasible set S that contains the minima
together with other potential search candidates. One devises a strategy so that the
optimal parameter (minimum) is estimated with minimal effort. An important varia-
tion of this is to devise and analyze the performance of an adaptive discrete stochastic
optimization algorithm when the underlying parameter (minimum) is slowly time-
varying. Such tracking problems lie at the heart of applications of SA algorithms.
In such cases, because the parameter set is finite, it is often reasonable to assume
that the underlying parameter (termed “hypermodel” in [4]) evolves according to a
slow finite state Markov chain. As will be shown in section 6, the general tracking
analysis presented in this paper for a slow Markov chain parameter readily applies to
analyzing the tracking performance of such adaptive discrete stochastic optimization
algorithms. To the best of our knowledge, this is the first time a tracking analysis has
been presented for a discrete stochastic optimization algorithm.

Applications. Discrete stochastic optimization problems arise in emerging appli-
cations such as adaptive coding in wireless CDMA (code division multiple access)
communication networks. In our recent work [11], we considered optimizing the
spreading code of the CDMA system at the transmitter. This was formulated as a dis-
crete stochastic optimization problem (since the spreading codes are finite-length and
finite-state sequences), and the random-search–based discrete stochastic optimization
algorithm of [2] was used to compute the optimal spreading code. In addition to the
random-search–type algorithms, we also designed adaptive SA algorithms with both
fixed step size and adaptive step sizes to track slowly time-varying optimal spread-
ing codes caused by fading characteristics of the wireless channel. The numerical
results in [11, 12] have shown remarkable improvement compared with that of several
heuristic algorithms. Section 6 explicitly derives performance bounds in terms of error
probabilities for the adaptive discrete stochastic optimization algorithm.

Outline. This paper considers an algorithm with constant step size and updates
that are essentially of the form of occupation measures. We are interested in the
analysis of tracking errors. First, using perturbed Lyapunov function methods [16],
we derive mean squares–type error bounds. The argument is mainly based on sta-
bility analysis. Naturally, one then asks whether an associated limit ODE (ordinary
differential equation) can be derived via ODE methods as in the usual analysis of SA
and stochastic optimization–type algorithms. The standard ODE method cannot be
carried over due to the fact that the system is now time-varying, and the adaptation
rate is the same as that of the parameter variation. By a combined use of the updated
treatment on SA [16] and two-time-scale Markov chains [22, 23], we demonstrate that
a limit system can still be obtained. However, very different from the usual stochas-
tic approximation methods in the existing literature, the limit system is no longer a
single ODE, but a system of ODEs modulated by a continuous-time Markov chain.
Thus, the limit is not deterministic but stochastic. Such systems are referred to as
ODEs with regime switching. Based on the system of switching ODEs obtained, we
further examine a sequence of suitably normalized errors aiming at understanding the
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rate of variation (rate of convergence) of the scaled sequence of tracking errors. It
is well known that for an SA algorithm, if the true parameter is a fixed constant,
then a suitably scaled sequence of estimation errors has a Gaussian diffusion limit. In
contrast, somewhat remarkably, the scaled tracking error sequence generated by the
SA algorithm in this paper does not have a diffusion limit. Instead, the limit is a sys-
tem of diffusions with regime switching. In the limit system, the diffusion coefficient
depends on the modulating Markov chain, which reveals the distinctive time-varying
nature of the underlying system and provides new insight on Markov modulated SA
problems.

Context. The main weak convergence results in this paper in sections 4 and 5
assume that the dynamics of the true parameter (modeled as a slow Markov chain
with transition probability matrix I + εQ) evolves on the same time scale as the
adaptive SA algorithm with step size µ, i.e., ε = O(µ). We note that the case
ε = O(µ) addressed in this paper is much more difficult to handle than ε = o(µ)
(e.g., ε = O(µ2)), which is widely used in the analysis of tracking algorithms [4].
The meaning of ε = o(µ) is that the true parameter evolves much more slowly than
the adaptation speed of the stochastic optimization algorithm and is more restrictive
than ε = O(µ). Furthermore, with ε = o(µ) one obtains a standard ODE and linear
diffusion limit, whereas with ε = O(µ) we show for the first time in this paper that one
obtains a randomly switching system of ODEs and switching diffusion limit. Finally,
in several applications arising in wireless telecommunication network optimization,
e.g., signature code optimization in spread spectrum systems over fading channels
[11, 12], the optimal signature sequence (true parameter) changes as quickly as the
adaptation of the algorithm, i.e., ε = O(µ).

The rest of the paper is organized as follows. Section 2 contains the formulation
of the problem. Section 3 is devoted to obtaining mean squares error bounds. In sec-
tion 4, we obtain a weak convergence result of an interpolated sequence of the iterates.
Section 5 further examines a suitably scaled tracking error sequence of the iterates
and derives a switching diffusion limit. Section 6 presents an example of an adaptive
discrete stochastic optimization algorithm, which is motivated by [11], where such al-
gorithms have been used to perform adaptive spreading code optimization in wireless
CDMA systems. The analysis of section 3 and section 5 is used to derive bounds on
the error probability of this adaptive discrete stochastic optimization algorithm.

Before proceeding, a bit of notation is in order. Throughout the paper, z′ denotes
the transpose of z ∈ R

�×r for some �, r ≥ 1; unless otherwise noted, all vectors are
column vectors; |z| denotes the norm of z; K denotes a generic positive constant
whose values may vary for different usage (the conventions K+K = K and KK = K
will be used without notice).

2. Formulation of the problem. We will use the following conditions through-
out the paper. Condition (M) characterizes the time-varying underlying parameter
as a Markov chain with infrequent transitions, while condition (S) characterizes the
observed signal.

(M) Let {θn} be a discrete-time Markov chain with finite state space

M = {θ1, . . . , θm0
}(2.1)

and transition probability matrix

P ε = I + εQ,(2.2)
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where ε > 0 is a small parameter, I is an m0 ×m0 identity matrix, and
Q = (qij) ∈ R

m0×m0 is a generator of a continuous-time Markov chain (i.e.,
Q satisfies qij ≥ 0 for i �= j and

∑m0

j=1 qij = 0 for each i = 1, . . . ,m0).

For simplicity, suppose that the initial distribution P (θ0 = θi) = p0,i is
independent of ε for each i = 1, . . . ,m0, where p0,i ≥ 0 and

∑m0

i=1 p0,i = 1. Q
is irreducible.

(S) Let {Xn} be an S-state conditional Markov chain (conditioned on the pa-
rameter process). The state space of {Xn} is S = {e1, . . . , eS}, where ei
for i = 1, . . . , S denotes the ith standard unit vectors, with the ith com-
ponent being 1 and the rest of the components being 0. For each θ ∈ M,
A(θ) = (aij(θ)) ∈ R

S×S , the transition probability matrix of Xn is defined
by

aij(θ) = P (Xn+1 = ej |Xn = ei, θn = θ) = P (X1 = ej |X0 = ei, θ0 = θ),

where i, j ∈ {1, . . . , S}. For θ ∈ M, A(θ) is irreducible and aperiodic.
Remark 2.1. Note that the underlying Markov chain {θn} is in fact ε-dependent.

We suppress the ε-dependence for notational simplicity. The small parameter ε in
(2.2) ensures that the entries of the transition probability matrix are nonnegative,
since pεij = δij + εqij ≥ 0 for ε > 0 small enough, where δij denotes the Kronecker δ
satisfying δij = 1 if i = j and 0 otherwise. The use of the generator Q makes the
row sum of the matrix P be one. The main idea is that, although the true parameter
is time-varying, it is piecewise constant. Moreover, due to the dominating identity
matrix in (2.2), {θn} varies slowly in time. The time-varying parameter takes a
constant value θi for a random duration and jumps to another state θj with j �= i at
a random time.

The assumptions on irreducibility and aperiodicity of A(θ) imply that for each
θ ∈ M there exists a unique stationary distribution π(θ) ∈ R

S×1 satisfying

π′(θ) = π′(θ)A(θ) and π′(θ)1lS = 1,

where 1l� ∈ R
�×1 with all entries being equal to 1. We aim to use an SA algorithm

to track the time-varying distribution π(θn) that depends on the underlying Markov
chain θn.

2.1. Adaptive algorithm. We use the following adaptive algorithm of least
mean squares (LMS) type with constant step size in order to construct a sequence of
estimates {π̂n} of the time-varying distribution π(θn),

π̂n+1 = π̂n + µ(Xn+1 − π̂n),(2.3)

where µ denotes the step size. Define π̃n = π̂n−Eπ(θn). Then (2.3) can be rewritten
as

π̃n+1 = π̃n − µπ̃n + µ(Xn+1 − Eπ(θn)) + E(π(θn) − π(θn+1)).(2.4)

Note that π̂n, π(θn), and hence π̃n are column vectors (i.e., they take values in R
S×1).

The underlying parameter θn is called a hypermodel in [4]. Note that while the
dynamics of the hypermodel θn is used in our analysis, it does not explicitly enter the
implementation of the LMS algorithm (2.3).

To accomplish our goal, we derive a mean squares error bound, proceed with the
examination of an interpolated sequence of the iterates, and derive a limit result for
a scaled sequence. These three steps are realized in the following three sections.



REGIME SWITCHING STOCHASTIC APPROXIMATION 1191

3. Mean square error. This section establishes a mean square estimate for
E|π̃n|2 = E|π̂n − Eπ(θn)|2. Analyzing SA algorithms often requires the use of
Lyapunov-type functions for proving stability; see [7, 16]. In what follows, we obtain
the desired estimate via a stability argument using the perturbed Lyapunov function
method [16]. Use En to denote the conditional expectation with respect to Fn, the
σ-algebra generated by {Xk, θk : k ≤ n}.

Theorem 3.1. Assume (M) and (S). In addition, suppose that ε2 � µ. Then
for sufficiently large n,

E|π̃n|2 = O

(
µ + ε +

ε2

µ

)
.(3.1)

Proof. Define V (x) = (x′x)/2. Direct calculations lead to

EnV (π̃n+1) − V (π̃n) = En{π̃′
n[−µπ̃n + µ(Xn+1 − Eπ(θn)) + E[π(θn) − π(θn+1)]]}

+ En|−µπ̃n + µ(Xn+1 − Eπ(θn)) + E[π(θn) − π(θn+1)]|2.(3.2)

In view of the Markovian assumption and the structure of the transition probability
matrix given by (2.2),

En[π(θn) − π(θn+1)] = E[π(θn) − π(θn+1)|θn]

=

m0∑
i=1

E[π(θi) − π(θn+1)|θn = θi]I{θn=θi}

=

m0∑
i=1

⎡⎣π(θi) −
m0∑
j=1

π(θj)p
ε
ij

⎤⎦ I{θn=θi}

= −ε

m0∑
i=1

m0∑
j=1

π(θj)qijI{θn=θi}

= O(ε),

(3.3)

and likewise, detailed computation also shows that

En|π(θn) − π(θn+1)|2 = O(ε).(3.4)

Owing to (2.2), the transition probability matrix P ε is independent of time n. As
a result, the k-step transition probability depends only on the time lags and can be
denoted by (P ε)k. By an elementary inequality, we have |π̃n| = |π̃n|·1 ≤ (|π̃n|2+1)/2.
Thus,

O(ε)|π̃n| ≤ O(ε)(V (π̃n) + 1).

Noting that the sequence of signals {Xn} is bounded, the boundedness of {π̂n},
and O(εµ) = O(µ2 + ε2) via the elementary inequality ab ≤ (a2 + b2)/2 for any real
numbers a and b, the estimate (3.4) yields

En|−µπ̃n + µ(Xn+1 − Eπ(θn)) + E[π(θn) − π(θn+1)]|2

≤ KEn

[
µ2|π̃n|2 + µ2|Xn+1 − Eπ(θn)|2 + µ2|π̃′

nE(Xn+1 − Eπ(θn))|

+ µ|π̃′
nE(π(θn) − π(θn+1))| + µ|(Xn+1 − Eπ(θn))′E(π(θn) − π(θn+1))|

]
+ |E(π(θn) − π(θn+1))|2

= O(µ2 + ε2)(V (π̃n) + 1) + |E(π(θn) − π(θn+1))|2

(3.5)

and
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En{π̃′
n[−µπ̃n + µ(Xn+1 − Eπ(θn)) + E(π(θn) − π(θn+1))]}

= −2µV (π̃n) + µEnπ̃
′
n(Xn+1 − Eπ(θn)) + Enπ̃

′
nE(π(θn) − π(θn+1)).

(3.6)

Using (3.5) and (3.6) in (3.2) together with (3.3), we obtain

EnV (π̃n+1) − V (π̃n)

= −2µV (π̃n) + µEnπ̃
′
n(Xn+1 − Eπ(θn)) + Enπ̃

′
nE(π(θn) − π(θn+1))

+ O(µ2 + ε2)(V (π̃n) + 1).

(3.7)

To obtain the desired estimate, we need to “average out” the second to the fourth
terms on the right-hand side of (3.7). To do so, for any 0 < T < ∞, we define the
following perturbations:

V ε
1 (π̃, n) = µ

T/ε∑
j=n

π̃′En(Xj+1 − Eπ(θj)),

V ε
2 (π̃, n) =

T/ε∑
j=n

π̃′E(π(θj) − π(θj+1)).

(3.8)

In the above and hereafter, T/ε is understood to be �T/ε�, i.e., the integer part of T/ε.
Throughout the rest of the paper, we often need to use the notion of fixed-θ

processes. For example, by Xj(θ) for n ≤ j ≤ O(1/ε), we mean a process in which
θj = θ is fixed for all j with n ≤ j ≤ O(1/ε).

For V ε
1 (π̃, n) defined in (3.8),∣∣∣∣∣∣

T/ε∑
j=n

En[Xj+1 − π(θj)]

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
T/ε∑
j=n

En[Xj+1 − EXj+1]

∣∣∣∣∣∣
+

∣∣∣∣∣∣
T/ε∑
j=n

[EXj+1 − Eπ(θj)]

∣∣∣∣∣∣ .
(3.9)

Using the φ-mixing property of {Xj} (see [5, p. 166]),∣∣∣∣∣∣
T/ε∑
j=n

En[Xj+1 − EXj+1]

∣∣∣∣∣∣ ≤ K < ∞ uniformly in n.(3.10)

We can also show ∣∣∣∣∣∣
T/ε∑
j=n

[EXj+1 − Eπ(θj)]

∣∣∣∣∣∣ < ∞.(3.11)

Thus, using (3.9)–(3.11), for each π̃,

|V ε
1 (π̃, n)| ≤ O(µ)(V (π̃) + 1).(3.12)

By virtue of the definition of V ε
2 (·) and (2.2), it follows that there exists an Nε

for all n ≥ Nε such that

|V ε
2 (π̃, n)| =

∣∣∣∣∣∣
T/ε∑
j=n

π̃′[E(π(θj) − π(θj+1))]

∣∣∣∣∣∣
=
∣∣π̃′E[π(θn) − π(θT/ε)]

∣∣
≤ |π̃|O(ε)

≤ O(ε)(V (π̃) + 1).

(3.13)
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We next show that they result in the desired cancellation in the error estimate.
Note that

EnV
ε
1 (π̃n+1, n + 1) − V ε

1 (π̃n, n)

= En[V ε
1 (π̃n+1, n + 1) − V ε

1 (π̃n, n + 1)] + EnV
ε
1 (π̃n, n + 1) − V ε

1 (π̃n, n).
(3.14)

It can be seen that

EnV
ε
1 (π̃n, n + 1) − V ε

1 (π̃n, n) = −µEnπ̃
′
n(Xn+1 − Eπ(θn))(3.15)

and

EnV
ε
1 (π̃n+1, n + 1) − EnV

ε
1 (π̃n, n + 1)

= µ

T/ε∑
j=n+1

Enπ̃
′
n+1En+1(Xj+1 − Eπ(θj)) − µ

T/ε∑
j=n+1

Enπ̃
′
nEn+1(Xj+1 − Eπ(θj))

= µ

T/ε∑
j=n+1

En(π̃n+1 − π̃n)′En+1(Xj+1 − Eπ(θj))

= µ

T/ε∑
j=n+1

En[−µπ̃n + µ(Xn+1 − Eπ(θn)) + E(π(θn) − π(θn+1))]
′En+1[Xj+1 − Eπ(θj)]

= O(µ2)(V (π̃n) + 1) + O(µε) = O(µ2)(V (π̃n) + 1) + O(ε2).

(3.16)

In the above, we have used O(µε) = O(µ2 + ε2), (2.4), and (3.2) to obtain

|En[π̃n+1 − π̃n]| ≤ µEn|π̃n| + µEn|Xn+1 − Eπ(θn)| + O(ε)

= O(µ)(V (π̃n) + 1) + O(ε).
(3.17)

Thus

EnV
ε
1 (π̃n+1, n + 1) − V ε

1 (π̃n, n)

= −µEnπ̃
′
n(Xn+1 − Eπ(θn)) + O(µ2)(V (π̃n) + 1) + O(ε2).

(3.18)

Analogous estimates yield that

EnV
ε
2 (π̃n+1, n + 1) − EnV

ε
2 (π̃n, n + 1)

=

T/ε∑
j=n+1

En(π̃n+1 − π̃n)′E(π(θj) − π(θj+1))

= O(µε)(V (π̃n) + 1) + O(ε2) = O(ε2 + µ2)(V (π̃n) + 1),

(3.19)

and that

EnV
ε
2 (π̃n, n + 1) − V ε

2 (π̃n, n) = −π̃′
nE(π(θn) − π(θn+1)).(3.20)

Thus,

EnV
ε
2 (π̃n+1, n + 1) − V ε

2 (π̃n, n)

= −π̃′
nE(π(θn) − π(θn+1)) + O(µ2 + ε2)(V (π̃n) + 1).

(3.21)
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Redefine V ε
1 and V ε

2 with T/ε replaced by ∞. Estimates (3.9)–(3.21) still hold.
Define

W (π̃, n) = V (π̃) + V ε
1 (π̃, n) + V ε

2 (π̃, n).

Then, using the above estimates, we have

EnW (π̃n+1, n + 1) −W (π̃n, n)

= EnV (π̃n+1) − V (π̃n) + En[V ε
1 (π̃n+1, n + 1) − V ε

1 (π̃n, n)]

+ En[V ε
2 (π̃n+1, n + 1) − V ε

2 (π̃n, n)]

= −2µV (π̃n) + O(µ2 + ε2)(V (π̃n) + 1).

(3.22)

This, together with (3.12) and (3.13) and T/ε replaced by ∞, implies

EnW (π̃n+1, n + 1) −W (π̃n, n)

≤ −2µW (π̃n, n) + O(µ2 + ε2)(W (π̃n, n) + 1).
(3.23)

Choose µ and ε small enough so that there is a λ > 0 satisfying

−2µ + O(ε2) + O(µ2) ≤ −λµ.

Then, we get

EnW (π̃n+1, n + 1) ≤ (1 − λµ)W (π̃n, n) + O(µ2 + ε2).(3.24)

Taking the expectation and iterating on the resulting inequality yields

EW (π̃n+1, n + 1) ≤ (1 − λµ)n−NεEW (π̃0, 0) +

n∑
j=Nε

(1 − λµ)j−NεO(µ2 + ε2)

≤ (1 − λµ)n−NεEW (π̃0, 0) + O

(
µ +

ε2

µ

)
.

(3.25)

By taking n large enough, we can make (1 − λµ)n−Nε = O(µ). Then

EW (π̃n+1, n + 1) ≤ O

(
µ +

ε2

µ

)
.(3.26)

Finally, applying (3.12) and (3.13) again, replacing W (π̃, n) by V (π̃) adds another
O(ε) term. Thus we obtain

EV (π̃n+1) ≤ O

(
µ + ε +

ε2

µ

)
.(3.27)

This concludes the proof.
Remark 3.2. In view of Theorem 3.1, in order that our adaptive algorithm can

track the time-varying parameter, the ratio ε/µ must not be large. Given the order-
of-magnitude estimate O(µ+ε+ε2/µ), to balance the two terms µ and ε2/µ, we need
to choose ε = O(µ). Therefore, we obtain the following result.

Corollary 3.3. Under the conditions of Theorem 3.1, if ε = O(µ), then for
sufficiently large n, E|π̃n|2 = O(µ).
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4. Limit system of regime switching ODEs. Our objective in this section
is to derive a limit system for an interpolated sequence of the iterates. Different
from the usual approach of stochastic approximation [4], where ε = o(µ), here and
henceforth, we take ε = O(µ). For notational simplicity, however, we use ε = µ.
For 0 < T < ∞, we construct a sequence of piecewise constant interpolation of the
stochastic approximation iterates π̂n as

π̂µ(t) = π̂n, t ∈ [µn, µn + µ).(4.1)

The process π̂µ(·) so defined is in D([0, T ]; RS), which is the space of functions defined
on [0, T ] taking values in R

S that are right continuous, have left limits, and are
endowed with the Skorohod topology. We use weak convergence methods to carry
out the analysis. The application of weak convergence ideas usually requires proof
of tightness and the characterization of the limit processes. Different from the usual
approach of stochastic approximation, the limit is not a deterministic ODE but rather
a system of ODEs modulated by a continuous-time Markov chain.

Lemma 4.1. Under conditions (M) and (S), {πµ(·)} is tight in D([0, T ]; RS).
Proof. By using the tightness criteria [14, p. 47], it suffices to verify that for any

δ > 0 and 0 < s ≤ δ,

lim
δ→0

lim sup
µ→0

E|π̂µ(t + s) − π̂µ(t)|2 = 0.(4.2)

To begin, note that

π̂µ(t + s) − π̂µ(t) = π̂(t+s)/µ − π̂t/µ

= µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 − π̂k).
(4.3)

Note also that both the iterates and the observations are bounded uniformly. Then
the boundedness of {Xk} and {π̂k} implies that

E|π̂µ(t + s) − π̂µ(t)|2

= E

⎡⎣µ (t+s)/µ−1∑
k=t/µ

(Xk+1 − π̂k)
′

⎤⎦⎡⎣µ (t+s)/µ−1∑
j=t/µ

(Xj+1 − π̂j)

⎤⎦
= µ2

(t+s)/µ−1∑
k=t/µ

(t+s)/µ−1∑
j=t/µ

E(Xk+1 − π̂k)
′(Xj+1 − π̂j)

≤ Kµ2

(
t + s

µ
− t

µ

)2

= K((t + s) − t)2 = O(s2).

(4.4)

Taking lim supµ→0 and then limδ→0 in (4.4), equation (4.2) is verified, and so the
desired tightness follows.

4.1. Limit of the modulating Markov chain. Consider the Markov chain θn.
Regarding the probability vector and the n-step transition probability matrix, we have
the following approximation results.
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Lemma 4.2. Suppose that αη
n is a Markov chain with a finite state space M =

M1 ∪M2 ∪ · · · ∪Ml and transition probability matrix

P η = diag(P 1, . . . , P l) + ηQ,(4.5)

where for each i, P i is a transition probability matrix that is irreducible and aperiodic,
and Q is a generator of a continuous-time Markov chain. For simplicity, denote M =
{1, . . . ,m0}, pηn = (P (αη

n = 1), . . . , P (αη
n = m0)) with pη0 = p0, and the stationary

distribution of P i by νi (a row vector) for i = 1, . . . , l. Then for some k0 > 0,

pηn = diag(ν1, . . . , νl)z(t) + O

(
η + exp

(
−k0t

η

))
,(4.6)

where z(t) ∈ R
1×l (with t = ηn) satisfies

dz(t)

dt
= z(t)Q, z(0) = p0 diag(1lm1 , . . . , 1lml

),

with

Q = diag(ν1, . . . , νl)Qdiag(1lm1 , . . . , 1lml
).(4.7)

In addition, for n ≤ O(1/η), the n-step transition probability matrix satisfies (with
t = ηn),

(P η)n = Ξ(t) + O

(
η + exp

(
−k0t

η

))
,(4.8)

where

Ξ(t) = diag(1lm1 , . . . , 1lml
)Θ(t) diag(ν1, . . . , νl),

dΘ(t)

dt
= Θ(t)Q, Θ(0) = I.

(4.9)

Proof. The proof is that of Theorems 3.5 and 4.3 of [23].
Lemma 4.3. Suppose that αη

n is the Markov chain given in Lemma 4.2. Define
an aggregated process αη

n = i if αη
n ∈ Mi, and define an interpolated process αη(·)

by αη(t) = αη
n if t ∈ [nη, nη + η). Then αη(·) converges weakly to α(·), which is a

continuous-time Markov chain generated by Q given in (4.7).
Proof. The proof of this result can be found in [24].
With the above two lemmas, we can now derive a result that will be used in the

subsequent analysis. The proof is essentially an application of the above lemmas.
Proposition 4.4. Assume (M). Choose ε = µ and consider the Markov chain

θn. Then the following assertions hold:
• Denote pµn = (P (θn = θ1), . . . , P (θn = θm0)). Then

pµn = z(t) + O

(
µ + exp

(
−k0t

µ

))
, z(t) ∈ R

1×m0 ,

dz(t)

dt
= z(t)Q, z(0) = p0,

(Pµ)n = Z(t) + O

(
µ + exp

(
−k0t

µ

))
,

dZ(t)

dt
= Z(t)Q, Z(0) = I.

(4.10)
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• Define the continuous-time interpolation of θµn by θµ(t) = θn if t ∈ [nµ,
nµ + µ). Then θµ(·) converges weakly to θ(·), which is a continuous-time
Markov chain generated by Q.

Proof. Observe that the identity matrix in (2.2) can be written as

I = diag(1, . . . , 1) ∈ R
m0×m0 .

Each of the 1’s can be thought of as a 1 × 1 “transition matrix.” Note that under
the conditions for the Markov chain θn, the diag(ν1, . . . , νl) defined in (4.7) becomes
I ∈ R

m0×m0 , and diag(1lm1
, . . . , 1lml

) in (4.7) is also I. Moreover, the Q defined in
(4.7) is now simply Q. Straightforward applications of Lemmas 4.2 and 4.3 then yield
the desired results.

4.2. Characterization of the limit. Consider the pair (π̂µ(·), θµ(·)). Then
{π̂µ(·), θµ(·)} is tight in D([0, T ]; RS × M) for T > 0 by virtue of Proposition 4.4
and Lemma 4.1 together with the Cramér–Wold device [5, p. 48]. By virtue of Pro-
horov’s theorem, we can extract convergent subsequences. Do that, and still index
the subsequence by µ for notational simplicity. Denote the limit by π̂(·). By virtue
of the Skorohod representation, π̂µ(·) converges to π̂(·) w.p.1, and the convergence is
uniform on any compact set. We proceed to characterize the limit π̂(·). The result is
stated in the following theorem.

Theorem 4.5. Under conditions (M) and (S), (π̂µ(·), θµ(·)) converges weakly to
(π̂(·), θ(·)), which is a solution of the following switching ODE:

d

dt
π̂(t) = π(θ(t)) − π̂(t), π̂(0) = π̂0.(4.11)

Remark 4.6. The above switching ODE displays a very different behavior than
the trajectories of systems derived from the classical ODE approach for SA. It involves
a random element since θ(t) is a continuous-time Markov chain with generator Q. Be-
cause of the regime switching, the system is qualitatively different from the existing
literature on SA methods. To analyze SA algorithms, the ODE methods (see [15, 16]
and [17]) are now standard and widely used in various applications. The rationale
is that the discrete iterations are compared with the continuous dynamics given by
a limit ODE. The ODE is then used to analyze the asymptotic properties of the
recursive algorithms. Dealing with tracking algorithms having time-varying features,
sometimes, one may obtain a nonautonomous differential equation [16, section 8.2.6],
but the systems are still purely deterministic. Unlike those mentioned above, the limit
dynamic system in Theorem 4.5 is only piecewise deterministic due to the underly-
ing Markov chain. In lieu of one ODE, we have a number of ODEs modulated by
a continuous-time Markov chain. At any given instance, the Markov chain dictates
which regime the system belongs to, and the corresponding system then follows one
of the ODEs until the modulating Markov chain jumps into a new location, which
explains the time-varying and regime switching nature of the systems under consid-
eration.

Proof. To obtain the desired limit, we prove that the limit (π̂(·), θ(·)) is the
solution of the martingale problem with operator L1 given by

L1f(x, θi) = ∇f ′(x, θi)(π(θi) − x) + Qf(x, ·)(θi) for each θi ∈ M,(4.12)

where

Qf(x, ·)(θi) =
∑
j∈M

qijf(x, θj) =
∑
j �=i

qij [f(x, θj) − f(x, θi)] for each θi ∈ M,
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and for each θi ∈ M, f(·, θi) is twice continuously differentiable with compact support.
In the above, ∇f(x, θi) denotes the gradient of f(x, θi) with respect to x. Using
an argument as in [22, Lemma 7.18], it can be shown that the martingale problem
associated with the operator L1 has a unique solution. Thus, it remains to show that
the limit (π̂(·), θ(·)) is the solution of the martingale problem. To this end, we need
only show that for any positive integer �0, any t > 0, s > 0, and 0 < tj ≤ t, and any
bounded and continuous function hj(·, θi) for each θi ∈ M with j ≤ �0,

E

�0∏
j=1

hj(π̂(tj), θ(tj))

×
[
f(π̂(t + s), θ(t + s)) − f(π̂(t), θ(t)) −

∫ t+s

t

L1f(π̂(u), θ(u))du

]
= 0.

(4.13)

To verify (4.13), we work with the processes indexed by µ and prove that the above
equation holds as µ → 0.

First by the weak convergence of (π̂µ(·), θµ(·)) to (π̂(·), θ(·)) and the Skorohod
representation,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj)) [f(π̂µ(t + s), θµ(t + s)) − f(π̂µ(t), θµ(t))]

= E

�0∏
j=1

hj(π̂(tj), θ(tj)) [f(π̂(t + s), θ(t + s)) − f(π̂(t), θ(t))] .

(4.14)

On the other hand, choose a sequence nµ such that nµ → ∞ as µ → 0, but µnµ → 0.
Divide [t, t + s] into intervals of width δµ = µnµ. We have

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj)) [f(π̂µ(t + s), θµ(t + s)) − f(π̂µ(t), θµ(t))]

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ
, θlnµ+nµ

) − f(π̂lnµ+nµ
, θlnµ

)]

+

(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ) − f(π̂lnµ , θlnµ)]

⎤⎦ .

(4.15)

By virtue of the smoothness and boundedness of f(·, θ), it can be seen that

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ+nµ) − f(π̂lnµ+nµ , θlnµ)]

⎤⎦
= lim

µ→0
E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ , θlnµ+nµ) − f(π̂lnµ , θlnµ)]

⎤⎦ .

(4.16)



REGIME SWITCHING STOCHASTIC APPROXIMATION 1199

Thus we need only work with the latter term. Moreover, letting µ → 0 and lδµ =
µlnµ → u and using nested expectation, we can insert Ek and obtain

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ
, θlnµ+nµ

) − f(π̂lnµ
, θlnµ

)]

⎤⎦
= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

m0∑
j=1

m0∑
i=1

lnµ+nµ−1∑
k=lnµ

[f(π̂lnµ
, θi)

× P (θk+1 = θi
∣∣θk = θj) − f(π̂lnµ

, θj)]I{θk=θj)}

⎤⎦
= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

⎡⎣ δµ
nµ

m0∑
j=1

lnµ+nµ−1∑
k=lnµ

Qf(π̂lnµ
, ·)(θk)I{θk=θj}

⎤⎦⎤⎦
→ E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

Qf(π̂(u), θ(u))du

]
as µ → 0.

(4.17)

Since π̂µ
lnµ

and θlnµ are Flnµ -measurable, by virtue of the continuity and bound-

edness of ∇f(·, θ),

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

(t+s)/µ−1∑
lnµ=t/µ

[f(π̂lnµ+nµ , θlnµ) − f(π̂lnµ , θlnµ)]

= E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

(t+s)/µ−1∑
lnµ=t/µ

⎡⎣µ∇f ′(π̂lnµ
, θlnµ

)

lnµ+nµ−1∑
k=lnµ

Elnµ
(Xk+1 − π̂k)

⎤⎦
+ o(1),

where o(1) → 0 as µ → 0. Next, consider the term

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

δµ

⎡⎣ 1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1

⎤⎦⎤⎦ .(4.18)

Consider a fixed-θ process Xk(θ), which is a process with θk fixed at θk = θ for
lnµ ≤ k ≤ O(1/µ). Close scrutiny of the inner summation shows that

1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1 can be approximated by
1

nµ

lnµ+nµ−1∑
k=lnµ

ElnµXk+1(θ)(4.19)

with an approximation error going to 0, since, Elnµ
[Xk+1 −Xk+1(θ)] = O(ε) = O(µ)
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by use of the transition matrix (2.2). Thus we have

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1

=

m0∑
j=1

1

nµ

lnµ+nµ−1∑
k=lnµ

E
(
Xk+1(θj)I{θlnµ=θj}

∣∣θlnµ = θj

)
+ o(1)

=

m0∑
j=1

1

nµ

lnµ+nµ−1∑
k=lnµ

S∑
j1=1

ej1 [A(θj)]
k+1−lnµI{θlnµ=θj} + o(1),

where o(1) → 0 in probability as µ → 0. Henceforth, we write 1l in lieu of 1lS . Note
that for each j = 1, . . . , S, as nµ → ∞ (recall that δµ = µnµ),

1

nµ

lnµ+nµ−1∑
k=lnµ

[A(θj)]
k+1−lnµ → 1lπ′(θj).

Note that I{θlnµ=θj} can be written as I{θµ(lδµ)=θj}. As µ → 0 and lδµ → u, by the

weak convergence of θµ(·) to θ(·) and the Skorohod representation, I{θµ(µlnµ)=θj} →
I{θ(u)=θj} w.p.1. Consequently, since 1lπ′(θj) has identical rows,

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1 →

m0∑
j=1

π(θj)I{θ(u)=θj}

= π(θ(u)).

(4.20)

That is, the limit does not depend on the value of initial state, a salient feature of
Markov chains. As a result,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

1

nµ

lnµ+nµ−1∑
k=lnµ

Elnµ
Xk+1

⎤⎦
= E

�0∏
j=1

hj(π̂(tj), θ(tj))

⎡⎣m0∑
j=1

∫ t+s

t

π(θj)I{θ(u)=θj}du

⎤⎦
= E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

π(θ(u))du

]
.

(4.21)

Likewise, it can be shown that, as µ → 0,

lim
µ→0

E

�0∏
j=1

hj(π̂
µ(tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

δµ
1

nµ

lnµ+nµ−1∑
k=lnµ

π̂k

⎤⎦
= E

�0∏
j=1

hj(π̂(tj), θ(tj))

[∫ t+s

t

π̂(u)du

]
.

(4.22)

Combining (4.14), (4.17), (4.21), and (4.22), the desired result follows.
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5. Switching diffusion limit. By Theorem 3.1,
{ π̂n−Eπ(θn)√

µ

}
is tight for n ≥

n0, for some positive integer n0. In an effort to evaluate the rate of variation of the
tracking error sequence, we define a scaled sequence of the tracking errors {vn} and
its continuous-time interpolation vµ(·) by

vn =
π̂n − E{π(θn)}

√
µ

, n ≥ n0, vµ(t) = vn for t ∈ [nµ, nµ + µ).(5.1)

We will derive a limit process for vµ(·) as µ → 0. Similarly to the rate of convergence
study when θ is a fixed parameter (see [16, Chapter 10]), the scaling factor

√
µ,

together with the asymptotic covariance of the limit process, gives us a “rate of
convergence” result.

Note that from Proposition 4.4

E{π(θn)} = π̄(µn) + O(µ + exp(−k0n)), where π̄(µn)
def
=

S∑
i=1

zi(µn)π(θi),(5.2)

where zi(t) is the ith component of z(t) given in Proposition 4.4. By (M), {θn} is a
Markov chain with stationary (time-invariant) transition probabilities, so in view of
(2.3),

vn+1 = vn − µvn +
√
µ(Xn+1 − E{π(θn)}) +

E[π(θn) − π(θn+1)]√
µ

.(5.3)

Our task in what follows is to figure out the asymptotic properties of vµ(·). We aim to
show that the limit is a switching diffusion using a martingale problem formulation.

5.1. Truncation and tightness. Owing to the definition (5.1), {vn} is not
a priori bounded. A convenient way to circumvent this difficulty is to use a truncation
device [16]. Let N > 0 be a fixed but otherwise arbitrary real number, SN (z) =
{z ∈ R

S : |z| ≤ N} be the sphere with radius N , and τN (z) be a smooth function
satisfying

τN (z) =

{
1 if |z| ≤ N,

0 if |z| ≥ N + 1.

Note that τN (z) is “smoothly” connected between the sphere SN and SN+1. Now
define

vNn+1 = vNn − µvNn τN (vNn ) +
√
µ(Xn+1 − Eπ(θn)) +

E[π(θn) − π(θn+1)]√
µ

,(5.4)

and define vµ,N (·) to be the continuous-time interpolation of vNn . It then follows that

lim
k0→∞

lim sup
µ→0

P

(
sup

0≤t≤T
|vµ,N (t)| ≥ k0

)
= 0 for each T < ∞

and that vµ,N (·) is a process that is equal to vµ(·) up until the first exit from SN ,
and hence an N -truncation process of vµ(·) [16, p. 284]. To proceed, we work with
{vµ,N (·)} and derive its tightness and weak convergence first. Finally, we let N → ∞
to conclude the proof.
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Lemma 5.1. Under conditions (M) and (S), {vµ,N (·)} is tight in D(S[0, T ]; RS),
and the process {vµ,N (·), θµ(·)} is tight in D([0, T ]; RS ×M).

Proof. In fact, only the first assertion needs to be verified. In view of (5.4), for
any δ > 0 and t, s ≥ 0 with s ≤ δ,

vµ,N (t + s) − vµ,N (t) = −µ

(t+s)/µ−1∑
k=t/µ

vNk τN (vNk ) +
√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 − Eπ(θk))

+
1
√
µ

(t+s)/µ−1∑
k=t/µ

E(π(θk) − π(θk+1)).

(5.5)

Owing to the N -truncation used,∣∣∣∣∣∣µ
(t+s)/µ−1∑

k=t/µ

vNk τN (vNk )

∣∣∣∣∣∣ ≤ Ks,

and as a result,

lim
δ→0

lim sup
µ→0

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑

k=t/µ

vNk τN (vNk )

∣∣∣∣∣∣
2

= 0.(5.6)

Next, by virtue of (M), the irreducibility of the conditional Markov chain {Xn} implies
that it is φ-mixing with exponential mixing rate [5, p. 167], Eπ(θk) − EXk+1 → 0
exponentially fast, and consequently

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑

k=t/µ

(Xk+1 − Eπ(θk))

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣µ
(t+s)/µ−1∑

k=t/µ

[(Xk+1 − EXk+1) − (Eπ(θk) − EXk+1)]

∣∣∣∣∣∣
2

= O(s).

This yields that

lim
δ→0

lim sup
µ→0

E

∣∣∣∣∣∣µ
(t+s)/µ−1∑

k=t/µ

(Xk+1 − Eπ(θk))

∣∣∣∣∣∣
2

= 0.(5.7)

In addition,

1
√
µ

(t+s)/µ−1∑
k=t/µ

E(π(θk) − π(θk+1)) =
1
√
µ

[Eπ(θt/µ) − Eπ(θ(t+s)/µ)] = O(
√
µ).(5.8)

Combining (5.5)–(5.8), we have

lim
δ→0

lim sup
µ→0

E
∣∣vµ,N (t + s) − vµ,N (t)

∣∣2 = 0,

and hence the criterion [14, p. 47] implies that {vµ,N (·)} is tight.
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5.2. Representation of covariance. The main results to follow, Lemma 5.4
and Corollary 5.5 for the diffusion limit in section 5.3, require representation of the
covariance of the conditional Markov chain {Xk}. This is again worked out via the
use of fixed-θ process Xk(θ) similar in spirit to (4.19). For any integer m ≥ 0, for
m ≤ k ≤ O(1/µ), with θk fixed at θ, Xk+1(θ) is a finite-state Markov chain with
1-step irreducible transition matrix A(θ) and stationary distribution π(θ). Thus [5,
p. 167] implies that {Xk+1(θ) − EXk+1(θ)} is a φ-mixing sequence with zero mean
and exponential mixing rate, and hence it is strongly ergodic. Similarly to (4.19),
Xk+1−EXk+1 can be approximated by a fixed θ process Xk+1(θ)−EXk+1(θ). Taking
n = nµ ≤ O(1/µ) as µ → 0, n → ∞, and

lim
µ→0

1

n

n+m−1∑
k1=m

n+m−1∑
k=m

(Xk+1(θ) − EXk+1(θ))(Xk1+1(θ) − EXk1+1(θ))
′ = Σ(θ) w.p.1,

(5.9)

where Σ(θ) is an S × S deterministic matrix and

lim
µ→0

1

n

n+m−1∑
k1=m

n+m−1∑
k=m

E {(Xk+1(θ) − EXk+1(θ))(Xk1+1(θ) − EXk1+1(θ))
′} = Σ(θ).

(5.10)

Note that (5.9) is a consequence of φ-mixing and strong ergodicity, and (5.10) follows
from (5.9) by means of the dominated convergence theorem. Clearly, Σ(θ) is symmet-
ric and nonnegative definite. The following lemma gives an explicit formula for Σ(θ)
in terms of π(θ) and A(θ) and is useful for computational purposes.

Lemma 5.2. The covariance matrix Σ(θ) in (5.10) can be explicitly computed as

Σ(θ) = Z ′(θ)D(θ) + D(θ)Z(θ) −D(θ) − π(θ)π′(θ),(5.11)

where D(θ) = diag(π1(θ), . . . , πm0
(θ)) and Z(θ) is given by

Z(θ) = (I −A(θ) + 1lπ′(θ))
−1

.

Remark 5.3. The Z(θ) is termed the “fundamental” matrix [6, p. 226]. As shown
in the aforementioned reference, because A(θ) is irreducible, Z(θ) is nonsingular.

Proof. Note that Σ(θ) = limµ→0 Σµ(θ), where Σµ(θ) can be expressed in terms of
π(θ) as

Σµ(θ) = Eξ0(θ)ξ
′
0(θ) +

−1∑
k=−
1/µ�

Eξk(θ)ξ
′
0(θ) +


1/µ�∑
k=1

Eξk(θ)ξ
′
0(θ),

ξk(θ)
def
= Xk(θ) − π(θ),

(5.12)

and {Xk(θ)} is a fixed-θ Markov chain with θ−
1/µ� = θ and θk = θ for all integer
k ≤ O(1/µ). Consider the terms in the above equation. For 0 < k ≤ O(1/µ),

Eξk(θ)ξ
′
0(θ) = EXk(θ)X

′
0(θ) − π(θ)π′(θ) = (Ak(θ))′E{X0(θ)X

′
0(θ)} − π(θ)π′(θ).

Since {Xk(θ)} is geometrically ergodic and starts at k = −�1/µ�, X0(θ) has distri-
bution π(θ), so E{X0(θ)X

′
0(θ)} = D(θ). Then using the fact that π(θ) = D(θ)1l, it
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follows that Eξk(θ)ξ
′
0(θ) = (Ak(θ) − 1lπ′(θ))′D(θ). Thus it is easily checked that

lim
µ→0


1/µ�∑
k=1

Eξk(θ)ξ
′
0(θ) = lim

µ→0


1/µ�∑
k=1

(
Ak(θ) − 1lπ′(θ)

)′
D(θ) = (Z(θ) − I)′D(θ);(5.13)

see also [6, p. 226], where it was shown that limµ→0

∑
1/µ�
k=1 (Ak(θ)(θ) − 1lπ′(θ)) =

Z(θ) − I. Similarly,

lim
µ→0

−1∑
k=−
1/µ�

Eξk(θ)ξ
′
0(θ) = D(θ)(Z(θ) − I),

Eξ0(θ)ξ
′
0(θ) = D(θ) − π(θ)π′(θ).

(5.14)

The expression (5.12) and the limits in (5.13) and (5.14) yield (5.11).

5.3. Weak limit via a martingale problem solution. To obtain the desired
weak convergence result, we work with the pair (vµ,N (·), θµ(·)). By virtue of the
tightness and Prohorov’s theorem, we can extract a weakly convergent subsequence
(still denoted by (vµ,N (·), θµ(·)) for simplicity) with limit (vN (·), θ(·)). We will show
that the limit is a switching diffusion.

To proceed with the diffusion approximation, similarly as in the proof of Theo-
rem 4.5, we will use the martingale problem formulation to derive the desired result.
For v ∈ R

S , θ ∈ M, and any twice continuously differentiable function f(·, θ) with
compact support, consider the operator L defined by

Lf(v, θ) = −∇f ′(v, θ)v +
1

2
tr[∇2f(v, θ)Σ(θ)] + Qf(v, ·)(θ),(5.15)

where Σ(θ) is given by (5.10) and ∇2f(v, θ) denotes (∂2/∂vi∂vj)f(v, θ), the mixed
second-order partial derivatives. For any positive integer �0, any t > 0, s > 0, any
0 < tj ≤ t with j ≤ �0, and any bounded and continuous function hj(·, θ) for each
θ ∈ M, we aim to derive an equation similar to (4.13) with the operator L1 replaced
by L. As in the proof of Theorem 4.5, we work with the sequence indexed by µ.
Choose nµ such that nµ → ∞ but δµ = µnµ → 0. The tightness of {vµ,N (·), θµ(·)}
and the Skorohod representation yield that (4.14)–(4.16) hold with π̂µ(·) and π̂(·)
replaced by vµ,N (·) and vN (·), respectively.

Lemma 5.4. Assume the conditions of Lemma 5.1 and that (vµ,N (0), θµ(0)) con-
verges weakly to (vN (0), θ(0)). Then (vµ,N (·), θµ(·)) converges weakly to (vN (·), θ(·)),
which is a solution of the martingale problem with operator LN given by

LNf(v, θ) = −∇f ′(vN , θ)vNτN (vN ) +
1

2
tr[∇2f(vN , θ)Σ(θ)] + Qf(vN , ·)(θ),(5.16)

or equivalently vN (·) satisfies

dvN (t) = −vN (t)τN (vN (t)) + Σ1/2(θ(t))dw,(5.17)

where w(·) is a standard S-dimensional Brownian motion and Σ(θ) is given by (5.10).

Proof. In view of (5.8), the term
∑(t+s)/µ−1

k=t/µ [Eπ(θk) − Eπ(θk+1)]/
√
µ = O(

√
µ)
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can be ignored in the characterization of the limit process. Moreover,

√
µ

(t+s)/µ−1∑
k=t/µ

[Xk+1 − Eπ(θk)]

=
√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 − EXk+1) +
√
µ

(t+s)/µ−1∑
k=t/µ

(EXk+1 − Eπ(θk)).

Since EXk+1 − Eπ(θk) → 0 exponentially fast owing to the elementary properties of
a Markov chain, the last term above is o(1) that goes to 0 as µ → 0. Thus,

vµ,N (t + s) − vµ,N (t) = −µ

(t+s)/µ−1∑
k=t/µ

vNk τN (vNk ) +
√
µ

(t+s)/µ−1∑
k=t/µ

(Xk+1 − EXk+1) + o(1).

(5.18)

Similarly to the argument in the proof of Theorem 4.5,

lim
µ→0

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

[f(vNlnµ
, θlnµ+nµ

) − f(vNlnµ
, θlnµ

)]

⎤⎦
= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[∫ t+s

t

Qf(vN (u), θ(u))du

]
.

(5.19)

In addition,

lim
µ→0

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣− (t+s)/µ−1∑
lnµ=t/µ

δµ
nµ

lnµ+nµ−1∑
k=lnµ

∇f ′(vNlnµ
, θlnµ)vNk τN (vNk )

⎤⎦
= lim

µ→0
E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣− (t+s)/µ−1∑
lnµ=t/µ

δµ∇f ′(vNlnµ
, θlnµ)vNlnµ

τN (vNlnµ
)

⎤⎦
= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[
−
∫ t+s

t

∇f ′(vN (u), θ(u))vN (u)τN (vN (u))du

]
.

(5.20)

Next we note that

∣∣∣∣∣∣E
�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣√µ

(t+s)/µ−1∑
lnµ=t/µ

∇f ′(vNlnµ
, θlnµ)

lnµ+nµ−1∑
k=lnµ

[Xk+1 − EXk+1]

⎤⎦∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣√µ

(t+s)/µ−1∑
lnµ=t/µ

|∇f ′(vNlnµ
, θlnµ

)|

×
lnµ+nµ−1∑

k=lnµ

|Elnµ [Xk+1 − EXk+1]|

⎤⎦∣∣∣∣∣∣
→ 0 as µ → 0

(5.21)
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owing to the mixing property.
Finally, define

glnµg
′
lnµ

=
1

nµ

lnµ+nµ−1∑
k=lnµ

lnµ+nµ−1∑
k1=lnµ

Elnµ [Xk+1 − EXk+1][Xk1+1 − EXk1+1]
′.

It follows that

E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

tr[∇2f(vNlnµ
, θlnµ)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′]

⎤⎦

= E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣m0∑
j=1

(t+s)/µ−1∑
lnµ=t/µ

tr[∇2f(vNlnµ
, θlnµ)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′]I{θlnµ=θj}

⎤⎦

= E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣m0∑
j=1

(t+s)/µ−1∑
lnµ=t/µ

δµtr[∇2f(vNlnµ
, θlnµ)Elnµglnµg

′
lnµ

]

× I{θlnµ=θj}

⎤⎦+ ρµ,

where ρµ → 0 as µ → 0. Since it is conditioned on θlnµ
= θj , Xk+1 − EXk+1 can

be approximated by a fixed-θj process Xk+1(θj)−EXk+1(θj), and since Xk+1(θj)−
EXk+1(θj) is a finite-state Markov chain with irreducible transition matrix A(θj), it is
φ-mixing, and the argument in (5.10) implies that for each θj ∈ M with j = 1, . . . ,m0,

1

nµ

lnµ+nµ−1∑
k=lnµ

lnµ+nµ−1∑
k1=lnµ

Elnµ(Xk+1(θj) − EXk+1(θj))(Xk1+1(θj) − EXk1+1(θj))
′

→ Σ(θj) w.p.1 as µ → 0,

(5.22)

where Σ(θ) is defined in (5.10). By virtue of Lemma 4.3, θµ(·) converges weakly to
θ(·). As a result, by Skorohod representation, sending µ → 0 and lδµ → u leads to
θµ(µlnµ) converging to θ(u) w.p.1. In addition, I{θµ(lδµ)=θj} → I{θ(u)=θj} w.p.1. It
follows that
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E

�0∏
j=1

hj(v
µ,N (tj), θ

µ(tj))

⎡⎣(t+s)/µ−1∑
lnµ=t/µ

tr
[
∇2f(vNlnµ

, θlnµ
)(vNlnµ+nµ

− vNlnµ
)

× (vNlnµ+nµ
− vNlnµ

)′
]⎤⎦

→ E

�0∏
j=1

hj(v
N (tj), θ(tj))

⎡⎣∫ t+s

t

m0∑
j=1

tr
[
∇2f(vN (u), θj)Σ(θj)

]
I{θ(u)=θj}du

⎤⎦
= E

�0∏
j=1

hj(v
N (tj), θ(tj))

[∫ t+s

t

tr
[
∇2f(vN (u), θ(u))Σ(θ(u))

]
du

]
.

(5.23)

In view of (5.19)–(5.23), the desired result follows.
Corollary 5.5. Under the conditions of Lemma 5.4, the untruncated process

(vµ(·), θµ(·)) converges weakly to (v(·), θ(·)) satisfying the switching diffusion equation

dv(t) = −v(t)dt + Σ1/2(θ(t))dw,(5.24)

where w(·) is a standard Brownian motion and Σ(θ) is given by (5.10).
Proof. The uniqueness of the associated martingale problem can be proved simi-

larly to that of [22, Lemma 7.18]. The rest of the proof follows from a similar argument
as in [16, Step 4, p. 285].

Combining Lemma 5.1, Lemma 5.4, and Corollary 5.5, we have proved the fol-
lowing result.

Theorem 5.6. Assume conditions (M) and (S) and that (vµ(0), θµ(0)) converges
weakly to (v(0), θ(0)). Then (vµ(·), θµ(·)) converges weakly to (v(·), θ(·)), which is the
solution of the martingale problem with operator defined by (5.15), or equivalently, it
is the solution of the system of diffusions with regime switching (5.24).

Remark 5.7. The reason for obtaining a result such as Theorem 5.6 stems from
the motivation for figuring out rates of convergence. If θ were a fixed parameter, we
would obtain a diffusion limit as those in [16, Chapter 10]. As a consequence, the
sequence vn will be approximately normal. Now, our motivation is still for getting
the rate of convergence. However, Theorem 5.6 reveals that vn is an asymptotically
Gaussian mixture. The mixture results from the time-varying parameter.

Remark 5.8. Occupation measure for hidden Markov model. The development
thus far concerns recursive estimation of the occupation measure π(θn), given exact
measurements of the conditional Markov sequence {Xn}. The above results can be ex-
tended to the hidden Markov model (HMM) case where the process {Xn} is observed
in noise as {Yn}, where

Yn = Xn + ζn.(5.25)

Assume that {ζn} satisfies the standard noise assumptions of an HMM [8, 13], i.e., it is
a mutually independent and identically distributed (i.i.d.) noise process independent
of Xn and θn. Then, given {Yn}, to recursively estimate π(θn), the following modified
version of the LMS algorithm (2.3) can be used. Replace Xn+1 in algorithm (2.3) by
Yn+1. The mean square error analysis, switching ODE, and switching diffusion results
of the previous sections carry over to this HMM case. More precisely, the following
theorem holds.
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Theorem 5.9. Consider the LMS algorithm (2.3), where Xn+1 is replaced by
the HMM observation Yn+1 defined in (5.25). Assume that the conditions of Theo-
rem 5.6 hold, that {ζn} is a sequence of i.i.d. random variables with zero mean and
E|ζ1|2 < ∞, and that {ζn} is independent of {Xn} and {θn}. Then the conclusions
of Theorems 3.1, 4.5, and 5.6 continue to hold.

6. Application—Adaptive discrete stochastic optimization. In this sec-
tion we apply the results developed in sections 3–5 to analyzing the tracking per-
formance of an adaptive version of a discrete stochastic optimization algorithm pro-
posed by Andradóttir [2]. Throughout this section we assume that the M in (2.1) is
M = S = {e1, . . . , eS}, where ei denotes the standard unit vector. In what follows,
M denotes the set of candidate values from which the time-varying global minimizer
is chosen at each time instant (according to a slow Markov chain). S is the set of
candidate solutions for the discrete optimization. Because we assume M = S, we do
not use the notation S in this section. Note that the assumption that M = S is made
purely for notational convenience. Indeed, the set M of possible values from which
the time-varying optimum is drawn can be any subset of S.

6.1. Static discrete stochastic optimization. Consider the following discrete
stochastic optimization problem:

min
θ∈M

E{cn(θ)},(6.1)

where for each fixed θ ∈ M, {cn(θ)} is a sequence of i.i.d. random variables with finite
variance. Let K ⊂ M denote the set of global minimizers for (6.1). The problem is
static in the sense that the set K of global minima does not evolve with time.

When the expected value E{cn(θ)} can be evaluated analytically, (6.1) may be
solved using standard integer programming techniques. A more interesting and im-
portant case motivated by applications in operations research [20] and wireless com-
munication networks [11] is when E{cn(θ)} cannot be evaluated analytically and only
cn(θ) can be measured via simulation.

If a closed form solution of E{cn(θ)} cannot be obtained, a brute force method
[18, Chapter 5.3] of solving the discrete stochastic optimization problem involves an
exhaustive enumeration. It proceeds as follows: For each possible θ ∈ M, compute
the empirical average

ĉN (θ) =
1

N

N∑
i=1

ci(θ)

via simulation for large N , and pick out θ̂ = arg minθ∈M ĉN (θ).

Since for any fixed θ ∈ M, {cn(θ)} is an i.i.d. sequence of random variables
with finite variance, by virtue of Kolmogorov’s strong law of large numbers, ĉN (θ) →
E{c1(θ)} w.p.1 as N → ∞. This and the finiteness of M imply that, as N → ∞,

arg min
θ∈M

ĉN (θ) → arg min
θ∈M

E
{
c1(θ)
}

w.p.1.(6.2)

In principle, the above brute force simulation method can solve the discrete stochastic
optimization problem (6.1) for large N and the estimate is consistent, i.e., (6.2) holds.
However, the method is highly inefficient since ĉN (θ) needs to be evaluated for each
θ ∈ M. The evaluations of ĉN (θ) for θ /∈ K are wasted because they contribute
nothing to the estimation of ĉN (θ), θ ∈ K.
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The idea of discrete stochastic optimization in [3] is to design an algorithm that
is both consistent and attracted to the minimum. That is, the algorithm should
spend more time obtaining observations cn(θ) in areas of the state space M near
the minimizer θ, and less so in other areas. Thus in discrete stochastic optimization
the aim is to devise an efficient [18, Chapter 5.3] adaptive search (sampling plan),
which allows us to find the maximizer with as few samples as possible by not making
unnecessary observations at nonpromising values of θ.

In the papers [2] and [3], Andradóttir has proposed random search–based discrete
stochastic optimization algorithms for computing the global minimizer in (6.1). In this
subsection a brief outline of the assumptions and algorithm in [2] is given. Sections 6.2
and 6.3 analyze the performance of an adaptive version of the algorithm for tracking
a time-varying minimum. In [2], the following stochastic ordering assumption was
used.

(O) For each ei, ej ∈ M, there exists some random variable Y ei,ej such that for
all ei ∈ K, ej ∈ K, and el ∈ M, l �= i, j,

P (Y ej ,ei > 0) ≥ P (Y ei,ej > 0), P (Y el,ei > 0) ≥ P (Y el,ej > 0),

P (Y ei,el ≤ 0) ≥ P (Y ej ,el ≤ 0).
(6.3)

Roughly speaking, this assumption ensures that the algorithm is more likely to
jump towards a global minimum than away from it; see [2] for details. Some examples
on how to choose Y ei,ej are given in [2]. For example, suppose cn(θ) = θ + wn(θ) in
(6.1) for each θ ∈ M, where {wn(θ)} has a symmetric continuous probability density
function with zero mean. In this case simply choose Y ei,ej = cn(ei) − cn(ej). It is
easily established that such a Y ei,ej satisfies assumption (O). In [10] a stochastic
comparison algorithm is presented for this example.

The static discrete stochastic optimization algorithm presented in [2] is as follows.
Algorithm 1 (static discrete stochastic optimization algorithm).

a. Step 0: (Initialization) At time n = 0, select starting point X0 ∈ M. Set

π̂0 = X0, and select θ̂∗0 = X0.

b. Step 1: (Random search) At time n, sample X̃n with uniform distribution
from M−{Xn}.

c. Step 2: (Evaluation and acceptance) Generate observation Y Xn,X̃n . If

Y Xn,X̃n > 0, set Xn+1 = X̃n; else, set Xn+1 = Xn.
d. Step 3: (LMS algorithm for updating occupation probabilities of Xn) Con-

struct π̂n+1 as

π̂n+1 = π̂n +
1

n
(Xn+1 − π̂n).

e. Step 4: (Compute estimate of the solution) θ̂∗n = ei∗ , where

i∗ = arg max
i∈{1,...,S}

π̂∗
n+1;

set n → n + 1 and go to Step 1 (π̂i
n+1 denotes the ith component of the

S-dimensional vector π̂n+1).
The main convergence results in [2] for the above algorithm can be summarized

as follows.
Theorem 6.1. Under assumption (O), the sequence {Xn} generated by Algo-

rithm 1 is a homogeneous, aperiodic, irreducible Markov chain with state space M.
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Furthermore, for sufficiently large n, {Xn} spends more time in K than other states;
i.e., if θ = ei is a global minimizer of (6.1), then the stationary distribution π(θ) of
{Xn} satisfies πi(θ) ≥ πj(θ), ej ∈ M − K, where πi(θ) denotes the ith component
of π(θ).

The theorem shows that θ̂∗n is attracted to and converges almost surely to an
element in K.

6.2. Adaptive discrete stochastic optimization algorithm. Motivated by
problems in spreading code optimization of CDMA wireless networks [11], we consider
a variant of Algorithm 1 where the optimal solution θ ∈ M of (6.1) is time-varying.
Denote this time-varying optimal solution as θn. We subsequently refer to θn as the
true parameter or hypermodel. Tracking such time-varying parameters is at the very
heart of applications of adaptive SA algorithms. We propose the following adaptive
algorithm.

Algorithm 2 (adaptive discrete stochastic optimization algorithm).

a. Steps 0-2: identical to Algorithm 1.
b. Step 3: (Constant step-size) Replace Step 3 of Algorithm 1 with a fixed-

step-size algorithm, i.e.,

π̂n+1 = π̂n + µ (Xn+1 − π̂n) ,(6.4)

where the step size µ is a small positive constant.
c. Step 4: identical to Algorithm 1.

Note that as long as 0 < µ < 1, π̂n is guaranteed to be a probability vector.
Intuitively, the constant step size µ introduces exponential forgetting of the past
occupation probabilities and permits tracking of slowly time-varying θn. The rest of
this section is devoted to obtaining bounds on the error probability of the estimate θ̂∗n
generated by Algorithm 2.

6.3. Convergence analysis of adaptive discrete SA algorithm. In adap-
tive filtering (e.g., LMS), a typical method for analyzing the tracking performance
of an adaptive algorithm is to postulate a hypermodel for the variation in the true
parameter {θn}. Since θn ∈ M and M is a finite state space, it is reasonable to
describe {θn} as a slow Markov chain on M for the subsequent analysis. Henceforth,
we assume that (M) holds for {θn}. Note that the hypermodel assumption is used
only for the analysis and does not enter the actual algorithm implementation; see
Algorithm 2.

Theorem 6.1 says that for fixed θn = θ the sequence {Xn} generated by Algo-
rithm 2 is a conditional Markov chain (conditioned on θn); i.e., assumption (S) of
section 2 holds. The update of the occupation probabilities (6.4) is identical to (2.3).
Thus the behavior of the sequence {π̂n} generated by Algorithm 2 exactly fits the
model of section 2 with m0 = S. In particular, the mean squares analysis of section 3,
the limit system of switching ODEs, and switching diffusion limit of section 5 hold.

Owing to the discrete nature of the underlying parameter θn, it makes sense to
give bounds on the probability of error of the estimates θ̂∗n generated by Step 4 of
Algorithm 2. Define the error event E and probability of error P (E) as

E = {θ̂∗n �= θn}, P (E) = P (θ̂∗n �= θn).(6.5)

Clearly E depends on n and the step size µ; we suppress the n here for notational
simplicity. When we wish to emphasize the n- and µ-dependence, we write it as Eµ

n .
Based on the mean square error of Theorem 3.1, the following result holds.



REGIME SWITCHING STOCHASTIC APPROXIMATION 1211

Theorem 6.2. Under conditions (M) and (S), if µ = ε, then there is an n1 such

that for all n ≥ n1 the error probability of the estimate θ̂∗n generated by Algorithm 2
satisfies

P (E) = P (Eµ
n) ≤ Kµ1−2γ , 0 < γ <

1

2
,(6.6)

where K is a positive constant independent of µ and ε.
The above result can be used to check the consistency: As µ → 0, the probability

of error P (E) of the tracking algorithm goes to zero. The constant K can be explicitly
determined; however, it is highly conservative.

Proof. The estimate of the maximum generated by the discrete stochastic opti-
mization algorithm at time n is π̂∗

n = arg maxj π̂
j
n (where π̂j

n denotes the jth com-
ponent of the S-dimensional vector π̂n). Thus the error event E in (6.5) is equiva-
lent to E =

{
arg maxi π

i(θn) �= arg maxj π̂
j
n

}
. Then clearly the complement event

Ē =
{
arg maxi π

i(θn) = arg maxj π̂
j
n

}
satisfies

Ē ⊇
{∣∣∣∣max

i
πi(θn) − max

j
π̂j
n

∣∣∣∣ ≤ min
i,j

|πi(θn) − π̂j
n|
}

⊇
{∣∣∣∣max

i
πi(θn) − max

j
π̂j
n

∣∣∣∣ ≤ L

}
,

where

L ≤ min
i,j

|πi(θn) − π̂j
n|(6.7)

is a positive constant. Then the probability of no error is

P (Ē) = P

(
arg max

i
πi(θn) = arg max

j
π̂j
n

)
> P

(∣∣∣∣max
i

πi(θn) − max
j

π̂j
n

∣∣∣∣ ≤ L

)
for any sufficiently small positive number L. Then, using the above equation and
Theorem 3.1,

P (E) ≤ P

(∣∣∣∣max
i

πi(θn) − max
j

π̂j
n

∣∣∣∣ > L

)
≤ P
(
max

i
|πi(θn) − π̂i

n| > L
)
.

(6.8)

Applying Chebyshev’s inequality to (3.1) yields, for any i,

P (|πi(θn) − π̂i
n| > L) ≤ 1

L2
Kµ

for some constant K. Thus (6.8) yields

P
(
max

i
|πi(θn) − π̂i

n| > L
)
≤ 1

L2
Kµ.(6.9)

It only remains to pick a sufficiently small L. Choose L = µγ , where 0 < γ < 1
2 is

arbitrary. It is clear that, for sufficiently small µ, L satisfies (6.7). Then (6.9) yields
P (E) ≤ Kµ1−2γ .
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Using the diffusion approximation Corollary 5.5 and Theorem 5.6, a sharper upper
bound for the error probability can be obtained as follows. First, without loss of
generality we may order the states θi ∈ M so that the covariances Σ(θ) are, in
ascending order,

Σ(θ1) ≤ Σ(θ2) ≤ · · · ≤ Σ(θS),(6.10)

where Σ(θi) ≤ Σ(θj) (resp., Σ(θi) < Σ(θj)) means that Σ(θi) − Σ(θj) is nonnegative
definite (resp., positive definite). Note that Σ(θi) is explicitly computable using (5.11).
Define

eji
def
= ej − ei, σji(θ)

def
=

√
eji,′Σ(θ)eji.(6.11)

Theorem 6.3. Assume that conditions (M) and (S) hold and that µ = ε. Then

for sufficiently large n the error probability of the estimate θ̂n generated by Algorithm 2
satisfies

P (E) =

S∑
i=1

P (θn = θi)P (E|θn = θi) =

S∑
i=1

zi(µn)P (E|θn = θi) + O(µ + exp(−k0n)),

(6.12)

P (E|θn = θi) ≤
S∑

j=1

j �=i

[
I(eji,′π̄(µn) ≤ 0)Φc

(−eji,′π̄(µn)/
√
µ

σji(θ1)/2

)

+ I(eji,′π̄(µn) > 0)Φc

(−eji,′π̄(µn)/
√
µ

σji(θS)/2

)]
,

(6.13)

where zi(·), π̄(·) are defined in (5.2), and σji(·) are defined in (6.11), which can be
computed using (5.11) and Φc(·) = 1 − Φ(·), with Φ(·) being the standard normal
distribution function.

Proof. Clearly P (E) =
∑S

i=1 P (θn = θi)P (E|θn = θi). Then (5.2) yields (6.12).
Now

P (E|θn = θi) = P

(
arg max

j
π̂j
n �= ei|θn = θi

)

= P

⎛⎜⎜⎝ S⋃
j=1

j �=i

{π̂j
n − π̂i

n > 0} | θn = θi

⎞⎟⎟⎠
≤

S∑
j=1

j �=i

P
(
π̂j
n − π̂i

n > 0 | θn = θi
)

(union bound).

Upper bounds for each of the S − 1 terms in the above summation will now be
constructed.

Using (5.1), with π̄(µn) defined in (5.2),

π̂n = E{π(θn)} +
√
µvn = π̄(µn) +

√
µvn + O(µ + exp(−k0n)),(6.14)
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where v(t), the limit of the interpolation of vn, satisfies the switching diffusion (5.24),
and Σ(θi) are in ascending order as in (6.10).

Define scalar processes βji
n and βji(t) as βji

n = eji,′vn and βji(t) = eji,′v(t). Then
βji(t) satisfies the real-valued switching diffusion

dβji(t) = −βji(t)dt + σji(θ(t))db(t),

where σji(θ(t)) is defined in (6.11) and b(t) is a real-valued standard Brownian motion.
Owing to (6.14), π̂j

n − π̂i
n = eji,′π̂n = eji,′π̄(µn) +

√
µβji

n + O(µ + exp(−k0n)).
Since the O(µ+ exp(−k0n)) does not contribute to the limit in distribution, we drop
it henceforth. We have

P
(
π̂j
n − π̂i

n > 0 | θn = θi
)

= P

(
βji
n >

−eji,′π̄(µn)
√
µ

∣∣∣∣ θn = θi

)
.(6.15)

Since the process βji
n is a Gaussian mixture and the limiting process βji(t) is a

switching diffusion, it is difficult to explicitly compute the right-hand side of (6.15).
However, it can be upper-bounded by considering the Gaussian diffusion processes

βji(t) and β
ji

(t), which are defined as follows:

dβji(t) = −βji(t)dt + σji(θ1)db(t), βji(0) = βji(0),

dβ
ji

(t) = −β
ji

(t)dt + σji(θS)db(t), β
ji

(0) = βji(0).

Due to the ordering of the positive definite matrices Σ(θi) in (6.10), the scalars σji(θi)
satisfy

σji(θ1) ≤ σji(θ2) ≤ · · · ≤ σji(θS).(6.16)

To proceed, we claim the following result and postpone the proof until later.
Lemma 6.4. For any a > 0, P (βji(t) ≤ a) ≥ P (βji(t) ≤ a|θ(t) = θi) ≥

P (β
ji

(t) ≤ a). For any a ≤ 0, P (βji(t) ≤ a) ≤ P (βji(t) ≤ a|θ(t) = θi) ≤
P (β

ji
(t) ≤ a).

Lemma 6.4 implies that

P (βji(t) > a|θ(t) = θi) ≤ I(a > 0)P (βji(t) > a) + I(a ≤ 0)P (β
ji

(t) > a).(6.17)

Since βji(t) and β
ji

(t) are real-valued diffusions and are stable, their stationary co-

variances are easily computed as σ2 = σ2
ji(θ1)/2 and σ2 = σ2

ji(θS)/2, respectively.

Thus, asymptotically βji(t), β
ji

(t) are Gaussian random variables with zero mean

and variance σ2
ji(θ1)/2 and σ2

ji(θS)/2, respectively. Then (6.17) yields

P (βji(t) > a|θ(t) = θi) ≤ I(a > 0)Φc

(
a

σji(θ1)/2

)
+ I(a ≤ 0)Φc

(
a

σji(θS)/2

)
.

Thus for sufficiently large n and sufficiently small µ > 0,

P (βji
n > a|θn = θi) ≤ I(a > 0)Φc

(
a

σji(θ1)/2

)
+ I(a ≤ 0)Φc

(
a

σji(θS)/2

)
.

Using this in (6.15) proves the theorem.
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Proof of Lemma 6.4. Let t1 < t2 < · · · < tN ≤ t denote the sequence of jump
times of the Markov chain {θ(t)}. Let Gt denote the σ-algebra generated by {θ(s) :
s < t, θ(t)}. Then

βji(t) = e−t

[
σji(θ(0))

∫ t1−

0

eτdb(τ) + σji(θ(t1))

∫ t2−

t1

eτdb(τ) + · · ·

+ σji(θ(tN ))

∫ t

tN

eτdb(τ)

]
,

βji(t) = e−t

[
σji(θ1)

∫ t1−

0

eτdb(τ) + σji(θ1)

∫ t2−

t1

eτdb(τ) + · · ·

+ σji(θ1)

∫ t

tN

eτdb(τ)

]
,

where βji(t) is a zero mean scalar Gaussian variable. Conditioned on Gt, βji(t) is

a zero mean scalar Gaussian random variable. Since σji(θ1) ≤ σji(θ(t)) for all t
by (6.16), clearly E{βji(t)}2 ≤ E{βji(t)}2. Hence for x > 0, E{I(βji(t) ≤ x)} >

E{I(βji(t) ≤ x)|Gt, θ(t)}. Taking E{·|θ(t)} on both sides and using the fact that
βji(t) is independent of θ(t) yields P (βji(t) ≤ x) > P (βji(t) ≤ x|θ(t)). The result for

β
ji

(t) is established similarly.
Remark 6.5. First, Markov chain Monte Carlo–based simulation methods can be

used to evaluate the probability of error of the algorithm. In addition, a Gaussian
approximation–based heuristic expression can be obtained for the probability error
bounds of Algorithm 2 in lieu of Theorem 6.3. Consider a real-valued switching
diffusion process

dx = −xdt + σ(θ(t))db,

where θ(t) is the limit Markov chain as in section 5. The negative term −x implies
that the system is stable. Thus, by virtue of an argument as in [16, p. 323], the
covariance is given by

Ex(t)x(0) = E

(∫ t

−∞
exp(−(t− s))σ(θ(s))db(s)

)(∫ 0

−∞
exp(−s)σ(θ(s))db(s)

)
.

Assume in addition that the generator Q of the Markov chain θ(t) (the one given
in condition (M)) is irreducible, which implies (see [22]) that, except for zero, all
other eigenvalues are on the left half of the complex plan. As a result, the stationary
covariance exists and is given by

σ̃2 = E

S∑
l=1

∫ ∞

0

exp(−2s)σ2(θl)I{θ(s)=θl}ds.(6.18)

This covariance may be computed via the Monte Carlo method. Using σ̃2, an approx-
imation of the probability of error for Algorithm 2 can be computed.
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