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Iterate-Averaging Sign Algorithms for Adaptive
Filtering With Applications to Blind Multiuser
Detection

G. George YinFellow, IEEE Vikram Krishnamurthy Senior Member, IEEEand Cristina lon

Abstract—Motivated by the recent developments on iterate  Owing to its importance and various applications in adap-
averaging of recursive stochastic approximation algorithms and tive signal processing and learning, adaptive filtering algorithms
asymptotic analysis of sign-error algorithms for adaptive filtering, have received much attention; see [1], [2], [9]-[12], [25], [33],

this work develops two-stage sign algorithms for adaptive filtering.
The proposed algorithms are based on constructions of a sequence[35]' [37], [38], among others. Suppose thatc R” andy, €R

of estimates using large step sizes followed by iterate averaging.are sequences of measured output and reference signals, respec-
Our main effort is devoted to improving the performance of tively. Assuming the sequendgy,, ¢,,)} is stationary, by ad-

the algorithms by establishing asymptotic normality of a suit-  justing the system parametgradaptive filtering algorithms aim

ably scaled sequence of the estimation errors. The asymptotic to make the weighted outp@ty,, match the reference signa

covariance is calculated and shown to be the smallest possible. I ible in th that t function is minimized
Hence, the asymptotic efficiency or asymptotic optimality is aswell as possible in the sense that a costfunction Is minimized.

obtained. Then variants of the algorithm including sign-regressor [f @ mean square error cost
procedures and constant-step algorithms are studied. The
minimal window width of averaging is also dealt with. Finally, it- L(0) = Ely, — 0 pn|?/2 = E|ly1 — 0’ p1]*/2
erate-averaging algorithms for blind multiuser detection in direct
sequence/code-division multiple-access (DS/CDMA) systems ards used, the gradient di(¢) is given by
proposed and developed, and numerical examples are examined.
Lo(0) = —Ep1(y1 — 0'¢1)

and the recursive algorithm is of the form

Index Terms—Adaptive filtering, asymptotic efficiency, iterate
average, rate of convergence, sign algorithm.

I. INTRODUCTION Ont1 = On + Gnon(yn — 0,,0n) )

OTIVATED by the ingenious procedure dérate aver- where0 < a,, — 0 asn — 0 and})_, a, = oo. If the cost
aging for accelerating convergence rates of stochastignction isL(f) = E|y; — '], the gradient becomes
approximation algorithms, proposed independently by Polyak
[28] and Ruppert [32], this work is devoted to adaptive filtering Lg(0) = —E(¢18gn (y1 — 0’@1))d§f — f(6)
algorithms using sign operators. We show that the convergence ) )
rates of such adaptive filtering algorithms can also be acc@fd a recursive algorithm takes the form
erated by iterate averaging and that the resulting algorithms
have optimal convergence rates. Furthermore, we develop it-

erate-averaging algorithms for blind multiuser detectionin diregfhere for anyy € R sgn(y) = 1iy>0) = Liy<oy (La is the in-

sequence/code-division multiple-access (DS/CDMA) syster@gator of A). Algorithm (1) is commonly referred to as a least

and provide promising numerical results. mean square (LMS) algorithm, whereas (2) is called a sign-error
algorithm. Compared with (1), algorithm (2) has reduced com-
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the algorithm by weak convergence methods. A crucial obs@iroughout the paper, we usé to denote the transpose of
vation is that although the functionfs () are not continuous z € R**" for /, » > 1, and usgz| to denote the norm of.
in 6, Ly(#) can be a smooth function thanks to the smoothirfgor notational simplicityC' denotes a generic positive constant
effect provided by taking expectation. Note that Gaussian aphose values may vary for different usage. For a square matrix
proximation and central limit results for adaptive signal proceds, by B > 0 we mean that it is positive definite.
algorithms have also been considered, for example, in [2], [33]
among others. Notably, Markovian-type processes are treated in 1. | TERATE-AVERAGING SIGN-ERRORALGORITHMS
[2] and. stochast!c aver-gglng ideas are used in [33]. A. Convergence of Sign-Error Algorithm

In this paper, in addition to (1) and (2), an algorithm known ] . )
as a sign-regressor algorithm used frequently in applications Consider the two-stage sign-error algorithm
will also be considered. In this case, in lieu of (2), one uses
sign operator only for the regresseor, by taking the sign
of ¢, componentwise. Experience with numerical examples 7 _ 5 _ Lg n ;0 ®)
shows that the sign-regressor algorithm often outperforms (2). et I R
The rationale for using sign-regressor algorithms is to take what follows, we useE,, to denote the conditional ex-
advantages of both LMS and sign-error algorithms and to hayectation with respect toF,, the o-algebra generated by

1 , 2
Opt1 =6, + njwnSgn(yn —0,0n), 3 <7< 1

the performance close to that of (1) with less complexity. D&%, , 4., o1, k < n}. Define

voted to (2) and its variations such as sign-regressor algorithms
and algorithms with constant step size, in comparison to the
recent study on the sign-error algorithms, we shift gear aadd
emphasize the asymptotic efficiency issues. Our plan is as
follows. We first develop the iterate-averaging sign-error al-

def
fn(0) = @nsgn(y, — 0'¢y)

rs def

gorithms. Then we proceed with the analysis of sign-regressit Proceed, we state the conditions needed.
algorithms without providing verbatim proofs since they can (A) L(f) has a unique minimizer, denoted bg,.

be carried out similarly to those of sign-error algorithms with
weaker conditions and simpler proofs. An alternative method
for analyzing the averaging algorithms is along the line of
strong approximation. We refer the reader to [26], [27] for
related references and further study.

Inspired by the recent work on iterate averaging of stochastic
approximation algorithms [28], [32], [21], we propose several
iterate-averaging algorithms for sign adaptive filtering algo-
rithms. The motivation behind the averaging approach can be
traced back to the work of Chung [7] and many subsequent
papers on adaptive stochastic approximation. Nevertheless, it
has been shown that the iterate-averaging approach leads to
asymptotic optimality (the best scaling factor and the minimal
variance) and has advantages for various applications. First, its
initial approximation uses slowly varying step sizes larger than
O(1/n) to get rough estimates, which enables the iterates to
get to a neighborhood of the minimizéy faster than that of
a small step-size procedure. Then, by averaging the iterates,
the resulting sample path possesses the minimal variance. Our
effort in what follows is to prove that the iterate-averaging
adaptive filtering algorithms are asymptotically optimal.

The rest of the paper is arranged as follows. Section Il is

{(yn, pn)} is a stationary sequence with

B(4)meb=F>0
Y1

For eachn, E,, f,.(9) f/ (9) is continuous; there is an
A, € R™*" such that for each

Fal®) = Fa(6.) = Au(8— 6.) + O(6 - 0.[2) wep. 1
andEAn B DSE (4)

whereDsg is Hurwitz, i.e., all of its eigenvalues have
negative real parts. Eithef(y,,¢,)} is a martin-
gale difference sequence satisfyilgy, |**° < oo,
E|p;|*t® < oo for somes > 0, or it is a bounded
uniformly mixing sequence such that there is a deter-
ministic sequence of real numbefg(n)} satisfying
n(n) > 0 for eachn, 3, n'/?(k) < oo, and for each

j > nand some&’ > 0

|E.A; — Dsg| < Cn*/?(j —n)
and
.. f;(8.)] < Cn'/2(j —n). (5)

devoted to the iterate-averaging of sign-error algorithm. It Reémark 2.1:We have collected the conditions needed for
provides the convergence of algorithm (2) and obtains tR@th convergence and rate of convergencé\in Qs far as con-
convergence of,,. The asymptotic efficiency issue is thervergence alone is concerned, not all aspects of the assumptions
studied. Section Ill proceeds with the ramifications and var@'e needed.

ations of the iterate-averaging approach. We study averagingy (4), 7.(6) is locally (near6,) linearizable. To see
in sign-regressor algorithms, algorithms with constant stegis  suppose that the joint density of, and ¢, exists.
size, and minimal window width of averaging. To demonpenote byF, ,|,(-) the conditional distribution with respect

strate the performance of the algorithms, a case study gf(,. . ;i < n y,} and by gn () the corresponding
blind interference suppression in DS/CDMA spread-spectru@Bnditional density. It can be seen that

telecommunication systems is provided in Section IV. Sec-

tion V gives further remarks. Finally, an appendix containinén(e)

the proofs of some technical results, concludes the paper.

= —(0/00)(E,|Y, — 0 ¢,

= En(@n<2Fn,s\zp(9I@n) - 1))
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Moreover, for any , the partial derivatives qff;g)) exist. Using the functior=(-) is equivalent to the truncation ¢f,. However,

6' to denote théth component of , and usingf, ;(¢) andy, ; for notational simplicity, we choose to use the bounded mixing
to denote the th components of,, (#) andy,,, respectively, we condition here. Moreover, an alternative procedure projects the
have iterates into a bounded region (e.g., a hyperrectangle); see [22]

T iond for more discussion.
(0/067) fn,i(0) = —(9%/06"067) (Enlyn — 6'0n) : -
Theorem 2.2:Assume Q) andd. is the global asymptotic

/

= 2En ((pn’l%_’]_gn’sl“o(e ('0_"_)) stable point of the ordinary differential equation (ODE)=
see also [12, p. 195] and [5]. Thus, a sufficient condition f()f(g)y wheref(6) is an average of,,(6). Thend,, — 6, w.p.1,
(4) is thatg,, () is differentiable with bounded derivatives.andgn — 6, w.p. 1.
Moreover, if{y,} and{y,} are independent and identically ) ) ) )
distributed (i.i.d.) random variables or martingale difference se-Remark 2.3:1n lieu of an algorithm with expanding random
quencesA, = Dsg = E(p,¢,g(6'¢,)) Whereg(-) is the truncation bounds as in [5], we examine the algorithms directly.
density ofY; . Using the treatment of stocha_stic approximation algqrith_ms of

Condition (5) requires the signal§y;,¢;), j < k} and [22], the proof of convergence is converted to the verification of
{(y;,¢;),7 > k+n} having decreasing dependenceas co. & recurrence condltlon by using [22, Theorem 71 p. 163]. In
Then(n) is referred to as a uniform mixing measure in [8, pf'act, we need only verify that the recurrence condition, namely,
348]; see also [3, p. 200]. The inequality is reminiscent of théPr €ach0 < p < 1, let there be a compact s#f, such that
well-known mixing inequalities (see [3], [8], [19]). .0@ eER, |nf|n|Fer often (i.0.) with probability at least” is ver-

The noise sequences covered by the conditions inclufi€d. thenasin the argument of [22, p. 164 sup,, 6| < oo
bounded and uniform mixing sequences, or uncorrelatétP- 1. As aresult, using the ODE method, a sequence of piece-
signals with finite(4 + §)th moment, or combination of them, Wise-constant interpolatiofy™ (-)} of the iterates is uniformly
Note that for uncorrelated signals, (5) is trivially satisfieounded and equicontinuous in the extended sense (see [22, p.
and the conditional expectation is replaced by expectatio??!])- for_a definition). By virtue of the Ascoll—ArzeIétht_aorem,
The conditions for anMA(p) moving average process ofWe obtain that any convergent subsequence has adimisat-
orderp driven by a martingale difference noise are similar tfying ¢ = f(¢). A stability argument then implie&, — 0.
those of the martingale difference noise; we need only plalP- 1. Therefore, only the recurrence needs to be verified. By
the conditions on the driving noise instead of gn and ¢, [22, Theorem 7.2, p. 164], a sufficient condition that guarantees
(The analysis can be carried out as in [38].) If the sequent® recurrence is{d, } is bounded in probability. That is, for
{(yn,n)} is bounded and uniform mixing with mixing rate@nye > 0, there is &’ > 0 such thatup,, P(|f.| > C:) < e.

n(n) (see [19, p. 82] and [8, p. 349)]), then so dté,} and Since by Chebyshev’s inequality
{f~(0)}. By the statipnarityEfj(e*) = f(f.) = 0, and it P(|6.] > C.) < E[§,|2/C?
follows from (5) that ifj < &
which can be madg « if sup,, E|0,,|? < oo, andl/C2? < ¢ (or

[Ef(0:) fr(0:)] = [Ef;(0:) [E; f1,(6:)]] C. > 1/,/2), which can be established via a Liapunov function
<EY2|f;(0.)|*EY? |Ejf,;(6*)|2 argument. Since we will prove a result with a sharper bound on
< COn*(k—7) On — 0. in Theorem 2.4 using similar techniques, we omit the

IEA; A, — DspDlg| = |EA; A} —Ea;Eay| details here.
<Cn'(k - j) B. Asymptotic Efficiency
and This subsection is devoted to the asymptotic efficiency of the
|E(A;— Dsg)(Ax—Dig)'| <Cn'2(k — j). (6) sign algorithm. As was mentioned, the heart of the problem is

Note that the bounded mixing signal is not restrictive. IF10 show thaty/n(¢, — f.) is asymptotically normal with the

. . , ogtimal covariance matrix. In fact, we obtain a more interesting
practice, one often wants to avoid excessively large valu . . .
unctional invariance theorem.

of the observat|(_)r_1. Although modeling at Iarge values c_>ften Defined = 86, andd,, — 6, —d,. Then (3) can be rewritten
follows from traditional setup (such as Gaussian assumptlons%,

it is undesirable for single observation to have significant effed
on the iterations. Thus, one often uses a robust algorithm. For

- ~ 1
. . ) . 0 =4 — - -0 . 8
the sign-error algorithm that we are interested in, we can use bl = 0ot g (pnsen (yn = Oron)) ®)

_ 1 Y The proof of the following bounds via Liapunov theory is in-
ftr = b+ 255 (Pnsen (g = Onon)) % cluded in the Appendix.

() — (=.( = / 0 r ~
where:(:L) - (:1(“)’ -+, E(z))" for a vectors € R such Theorem 2.4:Under @), for sufficiently largen , E|f,|? =
that for: < r, Z;(-) are bounded real-valued functions on the(l/ 7Y, and the bounds hold uniform in
real line that are nondecreasing and that satsfio) = 0, AL ‘
Ei(z;) = —Ei(—x;), andE;(z;)/z; — 0 asz; — oo. For Much effort has been devoted to improving the rate of con-
further discussions on the use of such functions and robust algergence and to reduce the asymptotic variance in the adap-
rithms, see [29] (also [22, Sec. 1.3.4, p. 22]). For the sign-errive estimation problems. Consider (2) with = O(1/n7),

algorithm, due to the boundednessgi(y, —0.,¢, ), theuse of 2/3 < + < 1. Under suitable conditions, it can be shown that
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nY/?(6,, — 6.) converges in distribution to a normal random
variable N (0, S) asn — oo . Itis clear that among the pos-
sibley’'s with 2/3 < v < 1,y = 1 gives us the best scaling
factor. Since in evaluating rates of convergence, one uses the n Z |9 2)
scaling factor together with the asymptotic covariance matrix

S, for different algorithms withu,, = O(1/n), we wish to find

+Z \Iln|])(A — Dsgp)b;

J m

the one with minimal variance. The idea outlined in [7] is to + Z ,—\I/(n|j)5Mj. (12)
consider (2) witha,, = I'/n, wherel is a (matrix-valued) pa- 77

rameter. It follows that the asymptotic covariange= S(T") Next, consider a continuous-time interpolation

is a smooth function of’. Minimizing S(F) with respect to Int] +1

(w.r.t) T leads to the choic&* = —Dgg and the optimal  w,4q(t) = 7(6@”“ —0.), fort € [0, 1] (12)
varianceSiy = DgpYse(Dgg)’, whereXsg is the noise co- v +1

variance andDsg, is defined in (4). Althougls?y, is explicity where|z] denotes the integer part of Then we have
given, Dsg is virtually unknown. To circumvent such a diffi- 5

culty, researchers developed step-size-adaptation algorithms. In wnt1(t) =) e (t)

the context of adaptive filtering, this amounts to constructing i=0

another sequencﬂn, estimates OTDSE, on top of the adap- where

tive filtering estimate. Then use a sequence of matrix-valued 1 [nt] &

step-sizei, = A, /n in the actual estimation, denoted y. It e (t) = =T > Z \1/ (k|7)f:(6)

can be shown that such a recursive least squares (RLS) type al-
gorithm is convergentangn(6,, —0.) ~ N (0, S&g). Although -
optimality is obtained, the RLS algorithm has computational ¢, (t) =—F——= Z Ok

complexityO(r?) compared to the orde&?(r) complexity of a n+lis

scalar step size stochastic approximation algorithm. A new ap- T2 ~

proach, initiated in the late 1980s [28], provides a much better €5 (t) :\/_1 Z U (klm —1)0p,
alternative (see also a scalar version of the algorithm in [32]). e

Instead of adaptively generating the matrix-valued estimates, a 1 WJ k =
simple iterate-averaging approach is used leading to the desired en(t) = VS Z Z - U(k[7)O(105]),
asymptotic optimality. The corresponding problems for adap-
tive filtering under quadratic cost functions were treated in [38] Lnt] &

among others. We will show that the averaging approach for  ex(t) = — Z Z — W (klj)(4; — Dsg)d;
the sign algorithms of adaptive filtering also leads to asymptotic n+l /

kmjm

optimality. Rather than dealing with the iterates as in [38], we i [nt] &
work with suitably interpolated sequences. As a preparation, we 2 (t) = \/_ > Z — U (k|7)6
first derive an asymptotic equivalence. Then we proceed with an n+l/= j=m 7

invariance theorem. In order not to disrupt the flow of presenta-Since Dgg; is nonsingular

tion, we relegate their proofs to the Appendix. _ _ Dsg .
Using () and U(klj) =W (k= 1]j) + === (k ~ 1]j)
Fal8) = Fa(8) + [fn(6) = fu(6)] and )
rewrite the first equation in (3) as follows: D3g¥(nlj) =Dgg + > 7 2= 17).
l=j+1
~ ~ 1 1 ~ 1 ~
Onir = O+ — fu(B) + n_DSE9 + —(A — Dsg)fn Thus, for each
—6M + 0007 @) — Z (k= 11j) = =Dgg + ®(nl5)
. . . J k 7+1
whereDsg, is defined in (4) and ) ) Where
() = Su0)] = [FaO) = Fa®L QO g porgupy 4 3 (_ - k_) (k- 1j).
Note thatE,,6 M,, = 0 and hencgéM,,} is a martingale dif- k=jt1 N
ference sequence. Define (13)
N (BPse) o ifn>j+1 Lemma 2.5: The following estimates hold:
U(nlj) = 1=j+1 .
I, if n=j. 1 .
_ > Ukl <C < o0, for eachm andk > m
It follows from (9) that for any integem > 0 andn > m Jr J7

Gt =U(nm — 10, +Z (nlj)£3(6.) =3 I8l —0,  asn o (14)
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The proof of the lemma is in the Appendix. To proceedn the sign-error algorithm (3) is removed. As a result, the anal-
choosern = m(n) such that ysis is simpler. In addition, conditions for aiA(p) process
m(n) driven by a martingale difference noise can also be provided
Jn 0, asn —o0o.  (15) (see Remark 2.1).

m(n) — oo but

We further derive the following lemma; its proof is in the Proceeding as in Section Il, unddB)( we can verify the
Appendix. recurrence condition, and show thgf defined in (18) con-
verges w.pl. Definet, = ", 1/n?, take a continuous-time
interpolation of the iterate8™(¢t) = 0,44, fort € [tpyi —
DSE1 L] tn,tntit1 — tn), @ > 0, and letm(t) be the uniquer such
Wnt1(t) = = \/W Z fi (0 thatt,, <t < t,41. Using the ODE methods [22, Chs. 5 and 6],
) we can show tha{6™(-)} is uniformly bounded and equicon-
asn — oo , whereo(1) — 0/in probablllty uniformly int. tinuous in the extended sense. Then the Ascoli-Arzela theorem

We proceed to obtain a functional central limit theorem dfplies that any convergent subsequence has a fifrjitsatis-
invariance theorem. The proof is standard; see, for example, [¥jnd the limit ODE
[8], [22]. In fact, under A) f(t) = b— Dsré(t) (29)
[nt]
NTEST Z f;(0) converges weakly to a Brownian motion
n

Lemma 2.6:

with the unique stationary poirtt, = Dgéb. Moreover, B)
implies that (19) is asymptotically stable. We then obtain the
(16) following result.

with covarianceXsgt, where Theorem 3.2:Under condition B), {f,,} defined by (18)

converges w.pl to 6, .
Yse=Efi(f Z Efi(6 . _ _
Remark 3.3:1t is interesting to compare (18) with the

algorithm (1). Under stationarity of the signals and assuming
+ZEfj(6*)f{(0*). a7 Etzollga’l. > 0, the limit of Fhe ODE fo.r (1) and the unique
i minimizerd, of the quadratic cost functions are

The proof of the following theorem is also in the Appendix. é(t) = Ey101 — [Ep10,]0(t), 0, = [Eg1¢)] *Ey101 (20)

Theorem 2.7:Under @), {w,,+1(-)} defined in (12) is tight respectively. They are similar to that of (19). As a result, the two
in D[0, 1], and it converges weakly to a Brownian motion wittalgorithms have similar asymptotic behavior. The difference is
covarianceSigt, whereSiy, = D3p Ysp(Dsp )’ with Dsg and  thatE, ¢ is symmetric, whereas in (18), the symmetry is lost.
Ysg defined by (4) and (17), respectively. We only assume the eigenvaluesEfign(p,, )¢, have positive
real parts. To some extent, the sign-regressor algorithm is one
“between” the LMS algorithm and the sign-error algorithm. As

[ll. | TERATE-AVERAGING SIGN-REGRESSORALGORITHMS . . . .
aresult, its performance is close to LMS algorithm and its com-

A. Sign-Regressor Algorithm With Iterate Averaging plexity is similar to the sign-error algorithm.
In lieu of (2), by taking sign componentwise, we obtain the To proceed, define
so-called sign-regressor algorithm. In this section, we consider €n = Sgn(n)yn — Sgn(pn)@, by

an iterate-averaging sign-regressor algorithm L~
Denotingf,, = 6,, — 6. as before, we have

L. , 2
_ _ 1 1 n”y nYy nYy
i1 =0, " 10 o O (18)  Define

whereSgn(-) denotesSgn(p) = (sgn(¢1), ..., sgn(p,))’ for _ [ (52sm) ifn>j+1

¢ € R". To carry out the asymptotic analysis, we need the fol- (nlj) = l=j+1 )

lowing conditions. I, if n=j.

(B) {(yn,en)} is stationary withESgn(p1)¢, = Dsg, Similarto (11), we arrive at for any: > 1
andESgn(y1)y1 = b, where— Dgp is Hurwitz. Either _ - ~ L I
{(yn,n)} is a martingale difference sequence satiga+1 = ¥(n|m —1)0,, + Z ﬁw(n J)E
fying E|y;[*1° < oo, E|p1[*1? < oo for somes > 0, /

or it is bounded and uniformly mixing with mixing rate 1~
77(”) satisfyingzj 771/2(j) < 0. Z JT,II, ”|1 Sgn(cp]) DSRW . (21)
j=m

Remark 3.1:1t is easily seen that the conditions are mucRext define
weaker than4) used before. The sequenfly,, ¢.)} is sta- ~
tionary, so are{Sen(p.)}, {sSen(pn)}, and{San(p. ), ). Bat1(®) = ([nt] + 1/V+ DiEnss —0:)
Moreover,{Sgn(y,)} is bounded byt w.p. 1. Since we only fort € [0,1] , wheref,, is given by (18). Similarly as in Sec-
take the sign of,, componentwise, the nonsmoothnesg,d#) tion Il, we obtain the following.
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Theorem 3.4:Under B8), w,+1(-) converges weakly to a constant-step-size algorithms are required for tracking slowly

Brownian motion whose covariance is varying parameter variations. This subsection considers iterate
. . 1y averaging for theconstant step sizeign-regressor algorithm.
Ssrt = DspXsr(Dsg)'t The algorithm is
whereDgpg is given in condition B) and S 1 =05 + eSen(,) (U — 05 0n)
Ssr =BG+ BLEG+ ) EBGE (22 , ,
=2 =2 where0 < p, < 1 denotes a forgetting factor applied to the

averaging procedure. Since the minimal window of averaging
is of particular importance, the following discussion is devoted
to such cases.

So far, we have only considered the averaging with window Case i): Decreasing Forgetting Factgr, = 1/(n + 1):
width O(n). In [21], averaging with “minimal” window width, Using B) and for definiteness, let us concentrate on the case
the smallest window width needed to be effective for improvingf bounded mixing condition. Then [3, p. 197] and [8, Ch. 7.3]
the performance, was considered. From an application pointigfply that\/EZ?:nLt/ el-1 &, converges weakly to a Brownian
view, the minimal window of averaging provides a useful inmotion with covarianc&sg ¢, whereXgy is given by (22). The
sight. Following the approach outlined in [22, Ch. 11.1], let usequence (¥, v, )} is uniform mixing, so ardy,Sgn(¢,)}
illustrate the idea by use of the sign-regressor algorithm. Forgnd{sgn(%)%}_ Therefore, they are strongly ergodic. Con-
erates); given by (18), fort € [tnyi — tn,tntiv1 — tn) @nd  sequently, for anyn > 1

B. Minimal Window of Averaging

1 > 0, define
1 n4+m—1 ) 1 n+m—1
Uj =570, —6.),  U"(t) = Upnpi. 3) > Sen(e;)@; — Dsr, - > Sen(p)y; — b
Jj=m j=m
Taking the averaging window width to bgn”| rather than (27)
O(n) as before, for any > 0, define both in probability. (In fact, they converge w.p, but for
3 our analysis, convergence in probability is sufficient.) Define
~ 1 )t 0°(t) = 65 fort € [ne,ne + ). Similar to [20], we obtain

0" (t) :—Lth Z 0i the following. Assumé§ converges td, and B). Theng=(-)
r=n converges weakly té(-), which is a solution to the differential

. et equation (19). Furthermore, for any — oo ase — 0,
Un(t) = [tn/2] Z [0 = 6.]. (24) 6 (t- + -) converges weakly té, given by (19).
=n Defineu,, = (0,,—0.)/+/e andu®(t) =u,, fort € [en,en+¢).
It follows that Then it can be shown thaf (¢. + -) converges weakly ta(-),
nbm(tn 1) —1 e (tn 1)1 a solution of (25), as — 0 andt. — oco. To proceed, define
- 1 - D
Uty =Ut0)+ Y, =&— Y. %Ui (e +1)/e]
: 12 : ? iye e
= = O<(t) = (Ve/t) Y. (67 0.).
n+m(t,+t)—1 1 i=|t:/e]
- ). Sen(ei)¢i - DsrUi+o(1)

Using the argument of [22, p. 333], we obtain the following.

i=n

whereo(1) — 0 in probability uniformly in¢. Using the weak ~ Theorem 3.6: Assumefj converges td, and @). Then, for
convergence method (see [22, Chs. 8 and 10]), we establish @agh fixed: > 0, U*(t) converges in distribution to a normal

U™(-) converges weakly tt(-), which is the stationary solution random vectot/ (t) with mean), covariancesdy, /¢ + O(1/2),
to andSg, defined in Theorem 3.4.

Case ii): Constant Forgetting Factqgr. Here we take a con-
stant forgetting factop,, = p with 0 < p < 1. In the analysis,
we examine the asymptotic properties of the dynamic system
given by (26) ag — 0 andp = p. — 0, whereas in the imple-
mentationp ande are kept as constants. Define

Theorem 3.5:Assume B). For eacht > 0, treat{U™(t)} (te+1)/p—1
as a sequence of random variables. Thié?(t) converges in Us(t) = Vr Z (0; — 0,). (28)
distribution to a normal random vecték(t) with mean0 and 2

dU(t) = —DsrU(t)dt + S duw(t) (25)

WhereEéé{2 is the “square root” ofisg given in (22). By in-
voking [22, Theorem 1.1, p. 331], we obtain the following.

/.:tg
covarianceV;, = Sip/t + O(1/t*) where Sy, is defined in =l
Theorem 3.4. By using the interpolations®(-) andu*(-), a similar argument
as in Theorem 3.6 leads to the following result.
C. Constant-Step-Size Algorithms Theorem 3.7:Assume B). For each fixed > 0, U*(t) con-

In many practical applications of adaptive filtering such agerges in distribution to a normal random vedtmt) with mean
the interference suppression example discussed in Section\ovariancessy /+HO(1/t?), andSgy defined in Theorem 3.4.
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D. Remarks on AvagedSign-Error and LMS Algorithms square error convergence analysis in the same spirit as [14] and

The discussions thus far readily carry over to minimal winS1l-

dows of averaging for the following decreasing step-size and e objective of this section is to use the averaged sign-error
constant step-size sign-error algorithms: LMS and the sign-regressor LMS algorithms analyzed in Sec-

tions Il and 11l of this paper to the MMSE detection scheme for
0511 =05 + eonsgn(yn — 05" o) multiuser detection in a DS/CDMA system. The performance
Ors1 =(1 = pn)Bn + pnt: (29) of the sign algorithms will be studied and compared with that of
the standard LMS.
where0 < p, < 1. Moreover, either a constant forgetting
factor p or a sequence of decreasing forgetting factors can Be DS/CDMA Signal Model

included. Results similar to Theorems 3.5, 3.6, and 3.7 can beconsider a synchronous-user binary DS/CDMA commu-
obtained with the use of conditioA] in lieu of (B) and with pjcation system. Assume that this system transmits through
S$ replaced bySgg given in Theorem 2.7. an additive white Gaussian noise channel. After the received
Similar results for minimal windows for averaging and concontinuous-time signal is preprocessed and sampled at the
stant step size LMS algorithms with averaging can be estabpMmA receiver (the received signal is passed through a
lished by using the techniques of [22]; we summarize the resul§ip-matched filter followed by a chip-rate sampler), the

as follows. For fixedt, U%(t), as defined in (28), converges inresulting discrete-time received signal at timedenoted by
distribution toU(¢) a normal random variable with mearand . is given by (see [31] for details)

covarianceS; s/t + O(1/t?), where

K
* def ~_ _ Tn = V Pkbk N)Sk + Sn + 0wy (32)
Stams= DosSiusD,) (30) kz::l ()
and Herer,, is anN-dimensional vector) is called the processing

(spreading) gaing, is an N-vector denoting the normalized

signature sequence of thigh user, i.e., each element; €

ot {-1/V/N,+1//N} fori = 1,2,..., N, so thats} s, = 1;

Doy =E{p1¢1},  &a=¢n(yn —¥0s).  (31) by (n) denotes the data bit of thigh user transmitted at time;

P, = Ai is the received power of thith userg, is the NBI

) signal N-vector, which is assumed to be a bounded stationary

IV. CASE STUDY: SGN ALGORITHMS FORBLIND MULTIUSER autoregressive (AR) process with mean zero and covariance ma-

DETECTION IN DS/CDMA SrsTEMS trix Rg; o is the standard deviation of the noise sampies;is

DS/CDMA is among the most promising multiplexinga white Gaussian vector with mean zero and covariance matrix

technologies for cellular telecommunications services suéhwherel denotes théV x N identity matrix. Itis assumed that

as personal communications, mobile telephony, and indabe discrete-time stochastic proces8agn)}, {s.}, and{w=, }

wireless networks. Demodulating a given user in a DS/CDMare mutually independent, and tHa}.(n)} is a collection of in-

network requires processing the received signal to minimizependent equiprobabiel random variables.

two types of interference, namely, narrow-band interferenceWe assume that user 1 is the user of interest. Following the

(NBI) and wide-band multiple-access interference (MAIJefinition of s;, s; denotes the normalized signature sequence

caused by other spread-spectrum users in the channel—as wkliser 1. For user 1, the ter@:k‘i2 VPb(n)sy in (32) is

as ambient channel noise [15]. NBI is caused by the coexisteteemed MAI. The aim of a multiuser detector is to suppress

of spread-spectrum signals with conventional communicatiorieg MAI and adaptively estimate (demodulate) the bit sequence

see [15] and [17] for a recent review of active NBI suppressidn(n) given the observation sequence A linear blind mul-

methods that have resulted in substantial gains in DS/CDM#ser detector demodulates the bits of user 1 according to (see

systems. MAI arises in DS/CDMA systems due to the fact thg81] for details)b; (n) = sgn(c,ry), whereb;(n) denotes the

all users communicate through the same physical channel usésgmate of the transmitted bit(») at timen, andc.. denotes an

nonorthogonalmultiplexing, which has many advantages irappropriately chosen “weight vector.” In this section, we focus

wireless CDMA systems such as greater bandwidth utilizatiam the widely used code-aided blind linear mean output error

Yrms =E6E + Z E&&G + ZEfjfll

=2 j=2

under conditions of channel fading and bursty traffic. (MOE) detector [14], [31] which chooses the “weight vector”
Recentlyblind multiuser detectiotechniques [14], [30], [31] so as to minimize the MOE cost function
have been developed that allow one to use a linear multiuser de- G E{(¢r,)?) subject tods; = 1. (33)

tector for a given user with no knowledge beyond that required . ]
for implementation of the conventional detector for that usefn€ constraint ensures that the received energy from the user of

Blind multiuser detection is useful in mobile wireless channelgtérest is equal to 1. Thus, the above is a minimization of the
when the desired user can experience a deep fade or if a str8A§rgy from the interferers. Furthermore, as shown in [14], the
interferer suddenly appears. In [14] a blind LMS algorithm iMOE cost function has a unique global minimum (with respect
given for linear minimum mean-square error (MMSE) deted? <)- The blind MOE detector yields the following estimate
tion. In [31], a code-aided blind RLS algorithm for jointly sup1(7) of the transmitted signal (see [31] for details):

pressing MAI and NBI is given. More recently, in [16], a blind —ls;

~ - , B
averaged LMS algorithm is presented with a heuristic mean- bi(n) = sgn(cx'rn), wherec, = siR=1s,

(34)
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andR = E{rr'} denotes the autocorrelation matrix of the rewe call the constant step-size sign-error algorithm (29) as the
ceived signal-. In the preceding equatiomr, is the optimal blind aveagedsign-error algorithm
linear MOE “weight vector.” Such a detector is “blind” since

it does not assume any knowledge of the data symhdis) y» may become ill-conditioned. This is trivially taken care of as

and signature sequences of other users. 0 - X
The output signal-to-interference ratio (SIR) is widely usegows. becausey, = 1/N, 1/s11 = Ns11in ¢ andys.

to characterize the performance of a linear multiuser receiverCanonical Coordinates. In [14], constraint (33) for the

Remark 4.1: Whensy, ; is small, computations using, and

The SIR for an arbitrary weight vectoris defined as blind LMS algorithm is taken care of by introducing canonical
dof P coordinates together with a MSE analysis. The essential idea
SIR= = (35) s to replace the unconstrained gradient of the MOE in (33),
o2dc+ Y Pr(csp)? namely,r! c,r, , by its component orthogonal tg, namely,
k=2

_ _ rl ¢n (rn —7l,8151) . The blind averaged LMS and blind av-
The SIR of the optimal weight vector and the MOE ot are  eraged sign-error algorithm can be expressed in canonical

given by [31, egs. 5 and 7, respectively] coordinates as
SIR* =P, [s}(R — Pis15}) 's1] {En+1 =Cp — puricn (rﬁ —7rhs181), Co=$1
-~ E / 2 IR 1 36 Cn+l = (1 - p)cn + PCn+1
(=E{(dr)*}=¢, = TRy (36)

Cpa1 = Cp —esgn (r1¢,) (1 — 11 5181) o = 51
{ Cpn41 = (1 - P)Cn + pEn+l
B. Adaptive Sign Algorithms for Blind Multiuser Detection respectively. It is easily seen that the estimaies the above

In adaptive blind multiuser detection problems, we ardwo algorithms automatically satisfy constraint (33). However,
interested in recursively adapting the weight vectqr to it is not possible to derive a sign-regressor algorithm in canon-
minimize ¢,,, the MOE given by (33). In particular, it is oftenical coordinates that satisfies constraint (33). For example, the
necessary to use a constant step-size tracking algorithm @ign-regressor algorithm in canonical coordinates
to the time-varying nature af, caused by the birth and death Cog1 = Cn — €7, CnSEN (1 — 15151 , %o = s1
of users (MAI interferers). We now present constant step-size { o1 = (1= p)en + plni1

versions of the sign-regressor and sign-error algorithms f(%es not satisfy constraint (33). In the numerical examples

blind adapt|ye muItu_Jser det_ectlon. . . . resented later, we found the performance of the blind averaged
In presenting the sign algorithms for blind adaptive multiuser,

detection. it ent ¢ K with irained MS and sign-error algorithms in canonical coordinates are
etection, 1t Is convenient to work with an un_cons raine Opﬁ'd ntical to the corresponding algorithms derived for the uncon-
mization problem rather than (33). Let ;, for: = 1,..., N

denote th A Th trained obtimizati strained cost function. However, it is more convenient to work
enote the components of.. The constrained optimization, .y, e equivalent algorithm derived for the unconstrained
problem (33) may be transformed into an unconstram% st function

optimization problem by solving for one of the elemeats;, '

i € [L,...,N] using the constraint (33). With no loss ofc. performance Analysis of AagedAlgorithms

enerality, we solve for the first elem and obtain .
g W, W v ! et ' Note that we have assumed tHg} } is a bounded sequence

N of regressive process (e.g., stationary truncated Gaussian au-
Cn1 = <1 - Sltcm) [s11- toregreesive process), and thag (n)} and{w, } are i.i.d. pro-
=2 cesses. It follows thap,, is a sum of bounded mixing sequence
By defining the(V — 1)-dimensional vector and martingale difference sequence, so the noise condition in
(A) is satisfied. Thus, all the convergence and asymptotic opti-

) ) ) o mality results derived in Sections IlI-C and -D for the averaged
we obtain the equivalent unconstrained optimization problenign-error and sign-regressor algorithms hold. To proceed, we

Computemin .J,, where.J,, = E(y,, — 91%)2. (37) derive appro>_<imate expressions r\s, Ssg, and Ssg and
o the asymptotic excess mean-square error and SIR of the aver-

Here,y, = —7, 1/51,1 andy, denotes thé NV — 1)-dimen- aged and un-averaged sign LMS algorithms for the DS/CDMA

en = (Cn,27 L) Cn,N)/

sional vector signal model. These are commonly used performance measures
n = (Tn2 — Pr1812/811,  Po N — 1818 /511) for adaptive filtering algorithms in the signal processing and
g_) = (e 191.2/51, N _ 181N /51,1) CDMA literature; see [14] or [31]. In what follows, we ugg,,,
As in (20), letf, denote the MMSE solution and Dsg, the covariance matrices defined in conditi@®) and
0. = E{vn} ' E{pnya}. (31).

To obtain expressions for the asymptotic excess mean-square

It is straightforward but tedious to show that the componentsror, we first note that the zero mean estimation erfoof the
of 6, are indeed the lastV — 1) elements of optimal weight \i\vSE (wWiener) solutiord.., given by

vectore, defined in (34). Using the,, defined above, we call . ,

the constant step-size sign-regressor algorithm (26) with fixed En = Yn = Pnbs (38)
forgetting factorp operating on the DS/CDMA signal modelis uncorrelated withp,,—this is the principle of orthogonality
(32) as theblind aveagedsign-regressor algorithmSimilarly, [13] for the MMSE solutiord,., which is easily verified. Note



YIN et al. ITERATE-AVERAGING SIGN ALGORITHMS FOR ADAPTIVE FILTERING 665

that for the DS/CDMA signal model (32), using (36), and th8lext, as in [10], we use assumption ii) above which implies that
definition of the equivalent unconstrained problem (37), we, is approximately a Gaussian sequence. Then Price’s formula

haveEe*?/2 = Ely, — 0./ 0n]?/2 = E(c.'1)?/2 = (/2. yields
We need the following additional assumptions: B
- . Dsgr = \/jDDW
i) e andy,, are independent. ™
, . . . where
i) Theinput datar,, and the previous weight vectoy_; are de 1
statistically independent [13, Ch. 9]. D= diag [—7 e
Y independent | : VEZ(1.1)

(41)

These two assumptions are not needed for the weak convergence 1
arjglyss presented earlier. They are mtrodL_Jced only to give sim- JEA(N TN - 1)}} .
plified closed-form expressions for the weighted error correla- ) n - , ) )
tion, excess mean square error, and steady-state SIR. WitHt{raged Sign-Error Algorithm. With S&y defined in
these assumptions, the expressions would involve fourth-ordele0rém 2.7, using results i) and ii) abo¥ey in (17) is given

moments—while these can be computed, the resulting expr8¥-

sions are messy and yield little insight (see also [14]). Sop = E {(p o (sgn(yn — ©},04))? }
Assumption i) is justified when for fixed processing gan nrm 2

the number of userX is large. Assuming the binary signature {pnpn} Dy,

sequences are chosen randomly (equiprobably over all choices) - ET 9

and the amplitudes are identical, one can apply the i.iglhus, the weighted error correlation matrix satisfies

version of the central limit theorem to (32). Alternatively, if the D=1

amplitudes4, = o(K), k = 1,..., K, the Lindberg—Feller Ksp(o) = pSip = pDS*ElDW%. (42)

central limit theorem, see [36, pg. 150], can be applied. T
central limit theorem implies,, is asymptotically a zero-mean =
N-dimensional Gaussian random vector. This in turn implieCsDW Wher_eC = (V2/m)(1/0c(n)). )

. . . . Asymptotic Excess Mean Square Error:The MOE(,, de-
{¢n} is approximately anlN — 1)-dimensional zero-mean . g ;

; fined in (33) can be expressed again as
Gaussian random vector, aefland{y, } are scalar zero-mean o
Gaussian random variables. Since orthogonality for Gaussian ¢ :E[y” — (0 — 0]
random variables is equivalent to independenfeandy,, are " B 2
asymptotically independent. _¢ n tr[DypK(n)] E{( YRR }

Note that assumption ii) is satisfied if the interference con- T2 2 Yn = PnZe)¥nn -

sists Only of MAI and white noise. This aSSUmption is used |g|nceE{§n} — 0 asn — oo, the last term is asymptotica”y

[31] for analyzing the blind RLS algorithm; itis also commonlynimportant. Hence, for large, ¢,, = (/2 + €ex(n) Where the
used in deriving closed-form expressions for the performanggcess mean square error is defined as

of adaptive filtering algorithms (see [13]). tr[Dy, K (n)]

Weighted Error Correlation : The weighted error corre- €ex(n) = # (43)
'a“"f‘ matrices for the various ayeraged algorithms can lPr?what follows, we compute expressions for the asymptotic ex-
obtained from the analysis of Sections IV-A and —B as fOIIOW%'ess mean square errQt (o)

Averaged LMS Algorithm. ConsiderSy,;s given in (30). o |

A d LMS Algorithm. It foll f 39) that

Because of i) and ii) above;; ys in (31) can be computed as verage gorithm. TLIOTOWS ri) m (39) tha
/ ’ 2 = _ tr[DWWK(OO)] _ /)C(N — 1) 44
Erms = E{pn@), (Yn — ©00:)7/2} = Dy (/2. cex(00) = 2 o 2 ’ (44)

LetK(n)défE{éné’ } denote the weighted error correlation malNote that the above equation is identical to that of the blind
trix. Note thatK (n) is an(N — 1) x (N — 1) positive-definite RLS. see [31, eq. 40]. As for blind RLS, the steady-state misad-

rL‘jender the Gaussian assumption, [6, eq. (39)] showsithat—

matrix. Then (30) implies that justment of the averaged LMS algorithm is independent of the
D17 eigenvalue distribution of the data autocorrelation matrix.
K(c0) = pSiys = PP%p ] (39) _Averaged S::Lgn—R.e.gre_SSOI_* Algorithm. Using the Gauss-

2 ian assumption which implies (41) together with (40) and (43)
Averaged Sign-Regressor Algorithm. Consider Si; vyields
given in Theorem 3.4. Using results i) and Bgr in (22) is €ex(00)  t1[DyppKsp(o0)]  pam

0 0,)? 5 = 5 = 5C§tr [DD,,D]. (45)
Ysr =E {Sgn(@n)Sgn(Lpn)'w}
2 We can easily compute a lower bound égg¢(oo) by bounding

T tr [DD,,, D] in terms oftr [DD,,, D]~ as follows. Let\;, i =
=E {Sgu(¢n)Sgu(en)’} 5 = SIv-nx(v-1) 1,...,N — 1, be the eigenvalues of the positive-definite sym-

metric matrix[DD,,D]~". Since all the diagonal elements of

since E{S n)S n)'} = Iin_ _1). We have the " ¢
{Segn(pn)Sen(e,)'} (N—1)x(N—-1) this matrix arel

weighted error correlation matrix
DD
Ksr(o0) = pSig = m. (40)

N-1
tr[DDy D)™ = Y X = (N - 1),
2 i=1
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TABLE | the CDMA literature, we use the steady-state SIR as the figure of
ASYMPTOTICEXCESSMEAN SQUARE ERRORS¢x (00) merit for assessing the interference suppression capability of the
Algorithm Standard Averaged various algorithms. All the signal and noise powers are given in

blind LMS 5¢tr[Dyy] 3N -1) dB relative to the channel noise variancg, see (32). The sim-

sign regressor' | ¢/ (N —1)maxi /Dey(i,9) | 53¢(N=1)  yations below assume a synchronous DS/CDMA system with
sign error £,/ 53tr[Dyy] £3C¢(N-1) processing gaitN = 31. The desired user’s signature is gen-
erated as am-sequence. The signature sequences of the other
MAI's are generated randomly.

tlower bound

Using the well-known inequality that the harmonic mean is less Example 1 (MAI Suppression)The user of interest has SNR

than the arithmetic mean, we obtain of 20 dB. There are 7 multiple access interferers: 5 users each
N of SNR 20 dB, and two users of SNR 40 dB. Fig. 1 shows the
N-1 _N-1_ 1 3N = SIR versus time for the following six algorithms, averaged over
tr[PDy,D] N | T N-14"" 100 independent simulations: a) blind LMS versus blind aver-

Z; A aged LMS; b) blind sign regressor versus blind averaged sign
which implies that regressor; c) blind sign error versus blind averaged sign error.

_ In addition, we also simulated the blind RLS algorithm given
tr[DDyD] > N =1 and eex(00) > [p/2]¢(7/2)(N —1). in [31]. The blind RLS algorithm and averaged blind LMS al-
Averaged Sign-Error Algorithm . It follows from (42) gorithm yielded virtually indistinguishable SIR plots. Itis seen
that from Fig. 1 that the averaged LMS and averaged sign algorithms

exhibit faster convergence than the unaveraged algorithms.
_ t[DpKsu()] _ prs J gea e

cex(00) = 2 T 99 Example 2(Dynamic Environment—MAI and NBI With

Just like the blind RLS algorithm and the blind averaged LM im_e—\(/jarying, St_atistlics):ghéa MSLTU!atiOT star:]s ]:N'Ztg d%neA
algorithm analyzed earalier, the steady-state misadjustmen igpired users signal an signals each o - AL

the averaged sign-error algorithm is independent of the eigéW—]e 5,00’ Ia' 10'(88 Nglémerfgrer IS adde.d tolth?;ftim' 1|'he
value distribution of the data autocorrelation matrix. NBI signal is a bounded stationary AR signal with both poles

It is illustrative to compare the asymptotic excess meaft 0.99. At time 1000, another strong MAI signal of 40 dB is

square error of the averaged sign algorithms with their stand&%ded' Attime 1500, three of the original 20-dB MAI signals

(unaveraged) counterparts. Expressions for the asympttﬁ/}{gr,em‘?veq fr:om the syst((ajm. Flgl.ozos_hgws SI? Versus tl|m_e fo.r
excess mean-square error of the standard sign-error algoritﬁ six algorithms averaged over independent simulations:

have been derived in [6] and for the sign-regressor algorithmina) blind LMS with step size = 10~3;
[10]. Table | summarizes the results.

(N—1).  (46)

b) blind averaged LMS wita = 10=3, p = 0.01;
Remark 4.2:i) All the expressions for the standard algo-

rithms above assume that 1 . In particular, terms involving
¢? are negligible. More precise expressions are available in [6]
and [10]. The expressions for the sign-regressor algorithm giverd) blind averaged sign regressor with= 2 x 1073 ~ 279;
are lower bounds. ii¥.x(c0) for the averaged algorithms do p = 0.01.
not depend on the eigendistribution©t,.. This is particularly
useful in dynamic mobile environments where the eigenstruc-
ture of D, can change rapidly. In [31], a similar property f) blind averaged sign error with = 2 x 1073 ~ 279,
is shown for the blind RLS algorithm. It only remains to give p = 0.01.
tractable expressions for[D.,,] . It is tedious but straightfor-
ward to show that

c) blind sign regressor with= 2 x 1073 ~ 2~ (for imple-
mentation using binary shifts);

e) blind sign error witle = 2 x 1073 ~ 279;

Itis seenthatin all cases, the averaged algorithms have better
i convergence properties than the algorithms without averaging.
' Sk1 Also, it is interesting to note that the sign-regressor algorithm
tr{Dgg] =2 (Z Pi(1~ Sllsk); +(N - 1)02> : performs similarly to the LMS algorithm whereas the sign-error
k=2 algorithm performs worse.
SIR: The SIR Defined in (35) can be reformulated in terms of
the asymptotic excess mean-square error as V. FURTHER REMARKS

SIR= SIR"/[1 + (€ex/p1)SIR"]. Iterate-averaging algorithms have been developed in this
paper, and have been shown to be asymptotically efficientin the
sense that/n(f,, —0.) ~ N (0, S*), whereS* (with S* = Ss,
or Ssr, or Spus depending on the type of algorithms) is the
In this section, computer simulations are presented that dptimal asymptotic covariance. In fact, a functional central
lustrate the performance of the averaged sign algorithms. Hamit theorem is obtained and the usual central limit theorem
a detailed numerical study of the averaged LMS algorithm lmecomes a corollary. As pointed out in [38], the asymptotic
blind-multiuser detection, please refer to [16]. As is common ioptimality cannot be improved by placing a constant in the

D. Numerical Examples
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LMS with forced constraint

20 . - - Using essentially the same analysis but with more complex
I AL notation, we can obtain similar results with more general step
“I A l"\ "‘h w
;n |

sizea,, in lieu of the slowly varying step siz&(1/n") used
in this paper. For some of the related references, we refer the
reader to [22, Ch. 11].

In a recent work [18], we have applied the sign algorithm to
discrete stochastic approximation for optimization of spreading
codes. For future study, one may consider further properties of
A | such algorithms. In addition, one may consider an averaging
algorithm with feedback; see [22, p. 60] and the references
therein. One may also study algorithms using averaging in both
iterates and observations. Another interesting problem is to
T T e T consider the associated adaptive step-size algorithms (see [2]

e and [22, p. 53)).

R

Time Averaged SIR (in dB)
® 3

(a) Blind LMS and Averaged LMS algorithms

APPENDIX
withe =10"4, p =5 x 1073

A. Proof of Theorem 2.4

We use the techniques of perturbed test function to obtain the
estimate. Defind/(6) = (6'6)/2. Note thatf,, is F,,-measur-
able so ig,,. By virtue of condition A), for sufficiently largen,

my@myw@wzgammwm—n@n

1 ~

:—9’DSE9+ 9’( — Dgg)b,,

1
Iy E,¢n¢n

@

Time Averaged SIR (in dB)
3

n
d ! +HM%H+H&%h%)

1
L + W Enol,on. 47)
VO 50 100 150 200 250 300 350 400 450 500

e To proceed, we introduce the perturbations and define

(b) Blind Sign regressor and Averaged Sign Re- V( Z —E, ' [4; DSE]9
gressor algorithms with e = 1074, p = 5x 1073

°°1
W= Bt

: W(n) =V(#,) +V(#an) + V(fa,n).  (48)
By virtue of (5)

QS
T

IV (8,n)| <C (1+V(0))

m i“"“‘ i | w 1 and
| "W'"W e [7(6,m)| <O—(1+ V(H)) (49)

so the perturbations are small. We show that they also lead to
desired cancellations. Direct computation yields that

e E,V(0ni1,n+1) = V(0y,n)
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Fig. 1. Average SIR versus time for MAI suppression. The parameters &#milarly, we obtain

specified in Section IV-D. ~
EnV(Hn_H,n +1) - (Hn,n)
gain. That is, if we replacé/n” by a/n” for some constant, 3 (i) § B (62)

Time Averaged SIR (in dB)
® 3
7

thea will not show up in the asymptotic covariance. -

0 (%) (1+V(8,). (51)



668

T

16f 4
140 i
@
2
£ 121 ! ¢
@ i i
7]
’%10-

s

g
< L p
<8
£
[

6

4k J
2k J
o L L ) . . . . . .

() 200 400 600 800 1000 1200 1400 1600 1800 2000

time

(a) Blind LMS with & = 10~3

@
8
& 12t
-4
w
310
:
o 8f
£
=
6 |
4 4
2} 4
0 L " L " " L L z —
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

(c) Blind Sign Regressor with e = 2 x 1073

Time Averaged SIR (in dB)

0 ' " 2 '

0 200 400 600 800

' N
1000 1200
time

s L
1400 1600

(e) Blind Sign Error e = 2 x 1073

s
1800 2000

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 3, MARCH 2003

TV

Time Averaged SIR (in dB)
=
=l

400 600 800 1000 1200 1400 1600 1800 2000
time

(b) Blind Averaged LMS & = 1072, p = 1072

-
N
T

Time Averaged SIR (in dB)
o 'c'
T

o 200 400 600 800 1000 1200 1400 1600 1800 2000
time

(d) Blind Averaged Sign Regressor with ¢ =
2x 1073, p =102,

20 T T T T T T T T
18
18
141
@
5
£ 121
x
@ Il
%10 3
g i
H
o 8f 1
£
=
6k ]
oF
2 4
0 L " L ) ) ) L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000
time

(f) Blind Averaged Sign Error e = 2 x 1073,
p=10"2

Fig. 2. Average SIR versus time for time-varying NBI and MAI suppression. The parameters are specified in Section IV-D.
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The Hurwitz assumption osg implies that there isa > 0 is bounded w.p1 (Theorem 2.2)¢;, — 0 w.p. 1 by (15). By
such that/, Dsgf,, < —AV (6,,) for some) > 0. It follows that  (13)

there is a\y with 0 < Ay < A such that [nt]
1~ ~ 1 ~ 1 ~ Z Y(klm —1)
A ~ _(m- 1) _ _ —_1\/29
< —n—g‘/(@n). 52 =~ Jn+l |: Dsg + ©([nt]|m 1):| ((m 1) Hm) .
Using (47)—(52) Since
E W(n +1) = W(n) E|(m —1)"%0,,] = O(1)
~(Ao/n")V (0) + O(1/n*") (1 + V(6,) + Endl0n)- by Theorem 2.4, an@m — 1)7/?/\/n+1 — 0,¢e2 — 0in
It follows from (49) that for som® < A\; < Ao probability. _ , _ _
Using E|6;]> = O(j~7) and interchanging the orders of
E,W(n+1) < <1 _ ﬁ) W(n) summations, we obtain
" B n’ lnt] &
C
L Z Z W(k[5))6;]°
+0 < ) (1+E,¢ 0n). (53) \ /n +1 5 -
Taking expectation in (53) and iterating on the resulting C Lnt] 1 nt) .
inequality < ﬁ Z 7 ’|‘I’(7€|J)|
L (1/2)-
W(n+1 §H<1——> w(1) = 0?77 =0
=1 by (13) and (14).
"2 A\ 1 2) We show that foi = 0,4, and5
+XI(-2)o(+) - )
j=1li=j e;(t _ SE Z CI, + 0

B where¢? = f;(6.), ¢} = (A; — Dsp);, ¢¢ = 6M;, and
Moreover, by using (49), we also ha® (¢,,) = O(1/n”). o(1) — 0 in probability uniformly int¢. In fact, using the
Furthermore, the bounds derived are uniforrninThis con- Dirichlet formula to interchange the order of summations in
cludes the proof. 0O e(t), ek(t), ande? (t), we obtain

en(t) + en(t) + e (t)

B. Proof of Lemma 2.5 [nt] |nt]

Using telescoping \/% > Z W(k]7)f(0+)

Jmka
k k
Lnt] |_nt_]
Zw = Dl (klj) — w(klj ~ 1] ! L G(kj)(4; - Dsp)d;
J
T L L A D)
:m(k|m_1)%_1. (54) L bl
m ¢—ZZ W(k|5)6
n+1

j=m k=j

j=m k=j

SinceDsg, is stable, there is a > 0 such that
Note that by virtue of (13), fof = 0, 4, 5
t

k [nt] Lnt]
. . ‘ D .
Wkl < [T d= 1), fork>j+1. el (t) = 5B ¢t ®(|nt]|5)¢E. (55)
I=j+1 ’ \/n +1 Z ]:m J
. . o . First, we have that as — oo
Thus, ¥(klm — 1) is bounded yielding the first inequality in 9
(14). The second equation in (14) is proved in [4, p. 9]. O Lnt]

Z (lnt]17)¢}

The following proofs are carried out by using bounded mlxmg vn+1
conditions. The proofs under martingale difference signals or Lan Lan
MA (p) processes are much simpler.

| A

3(62) fr(0:)]

C. Proof of Lemma 2.6 k>
[ntJ |nt]

1) We first show that underA) and (15).e;.(t) + €2 (t) + Z |D(|nt]|5) |an/2 —j) =0 (56)
e3(t) — 0 in probability asn — oo uniformly in . Since{d,, } n+1 >j

n

IN
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by virtue of the mixing property of f;(6..)}, and by Lemma 2.5. o oy s
Forthe corresponding tema’ﬁ(t),since{&Mn} is amartin- < ntl Z ] =0 ") =0, asn — oo.
gale difference sequence, it is uncorrelated and by Lemma 2.5, j=m
asn — oo Moreover
| Sy I
1 - , EH/ Aj — Dsg)'(Ar — Dsg) fi(0h)
E n+1 Z(I)(L’I”Lt“])(SM] n+1 j=m k>j >3 i
j=m
o OS2 B4, - Dl
c -\ (2 2 < — g4ty — SE
< g 2 PRt EOME — 0. (57) n+l
J=m [nt] ||nt] 1
Finally, we come to the terms irf (¢). By using Theorem 2.4, x > Y Ei(Ax - Dsp) 7 60
E|f;| = O(j77/%). This together with Lemma 2.5 and the 1> | k=t
boundedness of the signals yields thabas oo [nt] 1 [nt] 1
[nt] — ’I’L+ 1 Z J'y/2 l’y
Eley(t |<—Z|<I> [nt]3)| > 1(Lnt] [B)] o
k>j =0(n 3"’/ )—>07 asn — oo.
X E1/2|(Aj — Dsp)(Ax — Dsp)?EY?|6;1>  The above estimates and (59) then lead to #jat) — 0 as
> E1/2|§k|2 n — o0. }
nt) Finally, for e2(t), since{é6M,} is a martingale difference
1 . sequence
<C Y 1Ll q )
= 1 [nt] Lnt]
m(t+stt,)—1 E|l—— Z Z E(6M;)
1 vn+1 <=
X Y (e(lnt]k)] 7=m
n+1
k=m(t+t,) L’”J
0. (58) = Z E[E;(6M;)'§M;]. (60)

Combining (56)—(58), the desired result follows. ~ _
3) We next show that*(¢) ande? (¢) contribute nothing to Note thatf, — 0 asn — oo, thatm = m(n) — oo as

L . : . thatj > m = m(n), and thatE;(6M;) 6M; is
the limit, so onl is asymptotically important. To prove " . > J
et(t) = 0in proytjaén?ty umf)(l)rnrw)ly int, I)tlsufﬁces to congder continuous irY by condition A). Note also | that as a function of
n .) is bounded angi,, (6) — f..(6.) is dominated

(1/vn+1 )ZL’”J (A; — DSE)H in accordance with step 2) 0, f"(.) Ju(0

a linear function of) — 4,. In view of (10), the dominated
above. First, note (59) at the bottom of the page. By using t gnvergence theorem ag} (51,)'6M; — 0 asn — oo yield
mixing inequality (6), we have J I

that the last term in (60) goes touniformly in ¢. O
LntJ LntJ
C ~ ~
— Z Z EG}(A]- — D) (A — Dsg)fm D. Pro-of of Theorem 2.7 .
j=m k>j By virtue of Lemma 2.6, and the choicef = m(n),
C lnt] [nt] |nt]
Sn—HJ;nEWj”Aj_DSE' (I/vn+1 JX;L fi(0) = (1/vn+1 ;f; o(1)
[nt) N asn — oo, whereo(1) — 0 in probability. Thusw,,4+1(-) is
X Z E;(A, — Dgg)| |0m] also tight in D" [0, 1]. Moreover, (16) and Slutsky’s theorem
k> yield the desired result. O
1 |_nt_] ~ 1 |_nt_] LntJ
E — (Aj — Dsg)b;| = Z > E6j(A; - Dsp)'(Ax — Dsg)fi
j=m _] =m k=m
C LntJ |_ntJ ~ k—1 1
! /
< 1 Z Z E0;(Aj — Dsg)'(Ax — Dsg) Z L 1(01)
j=m k2>j I>j
o | N
+ > > E0(A; - Dsp) (Ak — Dsg)0m| - (59)

J=m k>j
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