
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 3, MARCH 2003 657

Iterate-Averaging Sign Algorithms for Adaptive
Filtering With Applications to Blind Multiuser

Detection
G. George Yin, Fellow, IEEE, Vikram Krishnamurthy, Senior Member, IEEE, and Cristina Ion

Abstract—Motivated by the recent developments on iterate
averaging of recursive stochastic approximation algorithms and
asymptotic analysis of sign-error algorithms for adaptive filtering,
this work develops two-stage sign algorithms for adaptive filtering.
The proposed algorithms are based on constructions of a sequence
of estimates using large step sizes followed by iterate averaging.
Our main effort is devoted to improving the performance of
the algorithms by establishing asymptotic normality of a suit-
ably scaled sequence of the estimation errors. The asymptotic
covariance is calculated and shown to be the smallest possible.
Hence, the asymptotic efficiency or asymptotic optimality is
obtained. Then variants of the algorithm including sign-regressor
procedures and constant-step algorithms are studied. The
minimal window width of averaging is also dealt with. Finally, it-
erate-averaging algorithms for blind multiuser detection in direct
sequence/code-division multiple-access (DS/CDMA) systems are
proposed and developed, and numerical examples are examined.

Index Terms—Adaptive filtering, asymptotic efficiency, iterate
average, rate of convergence, sign algorithm.

I. INTRODUCTION

M OTIVATED by the ingenious procedure ofiterate aver-
aging for accelerating convergence rates of stochastic

approximation algorithms, proposed independently by Polyak
[28] and Ruppert [32], this work is devoted to adaptive filtering
algorithms using sign operators. We show that the convergence
rates of such adaptive filtering algorithms can also be accel-
erated by iterate averaging and that the resulting algorithms
have optimal convergence rates. Furthermore, we develop it-
erate-averaging algorithms for blind multiuser detection in direct
sequence/code-division multiple-access (DS/CDMA) systems
and provide promising numerical results.

Manuscript received December 1, 2000; revised November 18, 2002.
The work of G. G. Yin was supported in part by the National Science
Foundation under Grants DMS-9877090 and DMS-9971608. The work of
V. Krishnamurthy Research was supported in part by the ARC Special Research
Center for Ultra-Broadband Information Networks (CUBIN), University of
Melbourne, Australia. The work of C. Ion was supported in part by the
National Science Foundation under Grant DMS-9877090 and in part by
Wayne State University.

G. G. Yin and C. Ion are with the Department of Mathematics, Wayne
State University, Detroit, MI 48202 USA (e-mail: gyin@math.wayne.edu;
cion@math.wayne.edu).

V. Krishnamurthy is with the Department of Electrical and Computer En-
gineering, University of British Columbia, Vancouver BC V6T 1Z4, Canada
(e-mail: vikramk@ece.ubc.ca) and the University of Melbourne, Melbourne,
Australia.

Communicated by J. A. O’Sullivan, Associate Editor for Detection and Esti-
mation.

Digital Object Identifier 10.1109/TIT.2002.808100

Owing to its importance and various applications in adap-
tive signal processing and learning, adaptive filtering algorithms
have received much attention; see [1], [2], [9]–[12], [25], [33],
[35], [37], [38], among others. Suppose that and
are sequences of measured output and reference signals, respec-
tively. Assuming the sequence is stationary, by ad-
justing the system parameter, adaptive filtering algorithms aim
to make the weighted output match the reference signal
as well as possible in the sense that a cost function is minimized.
If a mean square error cost

is used, the gradient of is given by

and the recursive algorithm is of the form

(1)

where as and . If the cost
function is , the gradient becomes

and a recursive algorithm takes the form

(2)

where for any ( is the in-
dicator of ). Algorithm (1) is commonly referred to as a least
mean square (LMS) algorithm, whereas (2) is called a sign-error
algorithm. Compared with (1), algorithm (2) has reduced com-
plexity. Because of the use of the sign operator, the algorithms
are easily implementable and multiplications in (2) can be re-
placed by simple bit shifts. As a result, it becomes appealing
in various applications; see [9], [10], [12], [35] and the refer-
ences therein. However, for each, as a function of ,

is not continuous. Thus, the analysis of such
an algorithm is more difficult than that of (1). Much effort has
been devoted to the improvement of sufficient conditions for
convergence of such algorithms. Recently, in [5], by treating an
algorithm with randomly generated truncation bounds, we ob-
tained that the recursive algorithm converges with probability

(w.p. ) by assuming only stationarity and finite second mo-
ments of the signals, which is close to the minimal requirement
needed. In addition, we also examined rate of convergence of
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the algorithm by weak convergence methods. A crucial obser-
vation is that although the functions are not continuous
in , can be a smooth function thanks to the smoothing
effect provided by taking expectation. Note that Gaussian ap-
proximation and central limit results for adaptive signal process
algorithms have also been considered, for example, in [2], [33]
among others. Notably, Markovian-type processes are treated in
[2] and stochastic averaging ideas are used in [33].

In this paper, in addition to (1) and (2), an algorithm known
as a sign-regressor algorithm used frequently in applications,
will also be considered. In this case, in lieu of (2), one uses
sign operator only for the regressor by taking the sign
of componentwise. Experience with numerical examples
shows that the sign-regressor algorithm often outperforms (2).
The rationale for using sign-regressor algorithms is to take
advantages of both LMS and sign-error algorithms and to have
the performance close to that of (1) with less complexity. De-
voted to (2) and its variations such as sign-regressor algorithms
and algorithms with constant step size, in comparison to the
recent study on the sign-error algorithms, we shift gear and
emphasize the asymptotic efficiency issues. Our plan is as
follows. We first develop the iterate-averaging sign-error al-
gorithms. Then we proceed with the analysis of sign-regressor
algorithms without providing verbatim proofs since they can
be carried out similarly to those of sign-error algorithms with
weaker conditions and simpler proofs. An alternative method
for analyzing the averaging algorithms is along the line of
strong approximation. We refer the reader to [26], [27] for
related references and further study.

Inspired by the recent work on iterate averaging of stochastic
approximation algorithms [28], [32], [21], we propose several
iterate-averaging algorithms for sign adaptive filtering algo-
rithms. The motivation behind the averaging approach can be
traced back to the work of Chung [7] and many subsequent
papers on adaptive stochastic approximation. Nevertheless, it
has been shown that the iterate-averaging approach leads to
asymptotic optimality (the best scaling factor and the minimal
variance) and has advantages for various applications. First, its
initial approximation uses slowly varying step sizes larger than

to get rough estimates, which enables the iterates to
get to a neighborhood of the minimizer faster than that of
a small step-size procedure. Then, by averaging the iterates,
the resulting sample path possesses the minimal variance. Our
effort in what follows is to prove that the iterate-averaging
adaptive filtering algorithms are asymptotically optimal.

The rest of the paper is arranged as follows. Section II is
devoted to the iterate-averaging of sign-error algorithm. It
provides the convergence of algorithm (2) and obtains the
convergence of . The asymptotic efficiency issue is then
studied. Section III proceeds with the ramifications and vari-
ations of the iterate-averaging approach. We study averaging
in sign-regressor algorithms, algorithms with constant step
size, and minimal window width of averaging. To demon-
strate the performance of the algorithms, a case study of
blind interference suppression in DS/CDMA spread-spectrum
telecommunication systems is provided in Section IV. Sec-
tion V gives further remarks. Finally, an appendix containing
the proofs of some technical results, concludes the paper.

Throughout the paper, we use to denote the transpose of
for , , and use to denote the norm of.

For notational simplicity, denotes a generic positive constant
whose values may vary for different usage. For a square matrix

, by we mean that it is positive definite.

II. I TERATE-AVERAGING SIGN-ERRORALGORITHMS

A. Convergence of Sign-Error Algorithm

Consider the two-stage sign-error algorithm

(3)

In what follows, we use to denote the conditional ex-
pectation with respect to , the -algebra generated by

. Define

and

To proceed, we state the conditions needed.

has a unique minimizer, denoted by .
is a stationary sequence with

For each , is continuous; there is an
such that for each

w.p.

and (4)

where is Hurwitz, i.e., all of its eigenvalues have
negative real parts. Either is a martin-
gale difference sequence satisfying ,

for some , or it is a bounded
uniformly mixing sequence such that there is a deter-
ministic sequence of real numbers satisfying

for each , , and for each
and some

and

(5)

Remark 2.1:We have collected the conditions needed for
both convergence and rate of convergence in (A). As far as con-
vergence alone is concerned, not all aspects of the assumptions
are needed.

By (4), is locally (near ) linearizable. To see
this, suppose that the joint density of and exists.
Denote by the conditional distribution with respect
to and by the corresponding
conditional density. It can be seen that
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Moreover, for any , the partial derivatives of exist. Using
to denote theth component of , and using and

to denote the th components of and , respectively, we
have

see also [12, p. 195] and [5]. Thus, a sufficient condition for
(4) is that is differentiable with bounded derivatives.
Moreover, if and are independent and identically
distributed (i.i.d.) random variables or martingale difference se-
quences, where is the
density of .

Condition (5) requires the signals and
having decreasing dependence as .

The is referred to as a uniform mixing measure in [8, p.
348]; see also [3, p. 200]. The inequality is reminiscent of the
well-known mixing inequalities (see [3], [8], [19]).

The noise sequences covered by the conditions include
bounded and uniform mixing sequences, or uncorrelated
signals with finite th moment, or combination of them.
Note that for uncorrelated signals, (5) is trivially satisfied
and the conditional expectation is replaced by expectation.
The conditions for an moving average process of
order driven by a martingale difference noise are similar to
those of the martingale difference noise; we need only place
the conditions on the driving noise instead of on and
(The analysis can be carried out as in [38].) If the sequence

is bounded and uniform mixing with mixing rate
(see [19, p. 82] and [8, p. 349]), then so are and

. By the stationarity, , and it
follows from (5) that if

and

(6)

Note that the bounded mixing signal is not restrictive. In
practice, one often wants to avoid excessively large values
of the observation. Although modeling at large values often
follows from traditional setup (such as Gaussian assumptions),
it is undesirable for single observation to have significant effect
on the iterations. Thus, one often uses a robust algorithm. For
the sign-error algorithm that we are interested in, we can use

(7)

where for a vector such
that for , are bounded real-valued functions on the
real line that are nondecreasing and that satisfy ,

, and as . For
further discussions on the use of such functions and robust algo-
rithms, see [29] (also [22, Sec. 1.3.4, p. 22]). For the sign-error
algorithm, due to the boundedness of , the use of

the function is equivalent to the truncation of . However,
for notational simplicity, we choose to use the bounded mixing
condition here. Moreover, an alternative procedure projects the
iterates into a bounded region (e.g., a hyperrectangle); see [22]
for more discussion.

Theorem 2.2:Assume (A) and is the global asymptotic
stable point of the ordinary differential equation (ODE)

, where is an average of . Then w.p. ,
and w.p. .

Remark 2.3: In lieu of an algorithm with expanding random
truncation bounds as in [5], we examine the algorithms directly.
Using the treatment of stochastic approximation algorithms of
[22], the proof of convergence is converted to the verification of
a recurrence condition by using [22, Theorem 7.1, p. 163]. In
fact, we need only verify that the recurrence condition, namely,
“for each , let there be a compact set such that

infinitely often (i.o.) with probability at least” is ver-
ified, then as in the argument of [22, p. 164],
w.p. . As a result, using the ODE method, a sequence of piece-
wise-constant interpolation of the iterates is uniformly
bounded and equicontinuous in the extended sense (see [22, p.
73]). for a definition). By virtue of the Ascoli–Arzelá theorem,
we obtain that any convergent subsequence has a limitsat-
isfying . A stability argument then implies
w.p. . Therefore, only the recurrence needs to be verified. By
[22, Theorem 7.2, p. 164], a sufficient condition that guarantees
the recurrence is: is bounded in probability. That is, for
any , there is a such that .
Since by Chebyshev’s inequality

which can be made if , and (or
), which can be established via a Liapunov function

argument. Since we will prove a result with a sharper bound on
in Theorem 2.4 using similar techniques, we omit the

details here.

B. Asymptotic Efficiency

This subsection is devoted to the asymptotic efficiency of the
sign algorithm. As was mentioned, the heart of the problem is
to show that is asymptotically normal with the
optimal covariance matrix. In fact, we obtain a more interesting
functional invariance theorem.

Define and . Then (3) can be rewritten
as

(8)

The proof of the following bounds via Liapunov theory is in-
cluded in the Appendix.

Theorem 2.4:Under (A), for sufficiently large ,
, and the bounds hold uniform in.

Much effort has been devoted to improving the rate of con-
vergence and to reduce the asymptotic variance in the adap-
tive estimation problems. Consider (2) with ,

. Under suitable conditions, it can be shown that
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converges in distribution to a normal random
variable as . It is clear that among the pos-
sible ’s with , gives us the best scaling
factor. Since in evaluating rates of convergence, one uses the
scaling factor together with the asymptotic covariance matrix

, for different algorithms with , we wish to find
the one with minimal variance. The idea outlined in [7] is to
consider (2) with , where is a (matrix-valued) pa-
rameter. It follows that the asymptotic covariance
is a smooth function of . Minimizing with respect to
(w.r.t.) leads to the choice and the optimal
variance , where is the noise co-
variance and is defined in (4). Although is explicitly
given, is virtually unknown. To circumvent such a diffi-
culty, researchers developed step-size-adaptation algorithms. In
the context of adaptive filtering, this amounts to constructing
another sequence , estimates of , on top of the adap-
tive filtering estimate. Then use a sequence of matrix-valued
step-size in the actual estimation, denoted by. It
can be shown that such a recursive least squares (RLS) type al-
gorithm is convergent and . Although
optimality is obtained, the RLS algorithm has computational
complexity compared to the order complexity of a
scalar step size stochastic approximation algorithm. A new ap-
proach, initiated in the late 1980s [28], provides a much better
alternative (see also a scalar version of the algorithm in [32]).
Instead of adaptively generating the matrix-valued estimates, a
simple iterate-averaging approach is used leading to the desired
asymptotic optimality. The corresponding problems for adap-
tive filtering under quadratic cost functions were treated in [38]
among others. We will show that the averaging approach for
the sign algorithms of adaptive filtering also leads to asymptotic
optimality. Rather than dealing with the iterates as in [38], we
work with suitably interpolated sequences. As a preparation, we
first derive an asymptotic equivalence. Then we proceed with an
invariance theorem. In order not to disrupt the flow of presenta-
tion, we relegate their proofs to the Appendix.

Using (A) and

rewrite the first equation in (3) as follows:

(9)

where is defined in (4) and

(10)

Note that and hence is a martingale dif-
ference sequence. Define

if

if

It follows from (9) that for any integer and

(11)

Next, consider a continuous-time interpolation

for (12)

where denotes the integer part of. Then we have

where

Since is nonsingular

and

Thus, for each

where

(13)

Lemma 2.5:The following estimates hold:

for each and

as (14)
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The proof of the lemma is in the Appendix. To proceed,
choose such that

but as (15)

We further derive the following lemma; its proof is in the
Appendix.

Lemma 2.6:

as , where in probability uniformly in .

We proceed to obtain a functional central limit theorem or
invariance theorem. The proof is standard; see, for example, [3],
[8], [22]. In fact, under (A)

converges weakly to a Brownian motion

(16)
with covariance , where

(17)

The proof of the following theorem is also in the Appendix.

Theorem 2.7:Under (A), defined in (12) is tight
in , and it converges weakly to a Brownian motion with
covariance , where with and

defined by (4) and (17), respectively.

III. I TERATE-AVERAGING SIGN-REGRESSORALGORITHMS

A. Sign-Regressor Algorithm With Iterate Averaging

In lieu of (2), by taking sign componentwise, we obtain the
so-called sign-regressor algorithm. In this section, we consider
an iterate-averaging sign-regressor algorithm

(18)

where denotes for
. To carry out the asymptotic analysis, we need the fol-

lowing conditions.

is stationary with ,
and , where is Hurwitz. Either

is a martingale difference sequence satis-
fying , for some ,
or it is bounded and uniformly mixing with mixing rate

satisfying .

Remark 3.1: It is easily seen that the conditions are much
weaker than (A) used before. The sequence is sta-
tionary, so are , , and .
Moreover, is bounded by w.p. . Since we only
take the sign of componentwise, the nonsmoothness of

in the sign-error algorithm (3) is removed. As a result, the anal-
ysis is simpler. In addition, conditions for an process
driven by a martingale difference noise can also be provided
(see Remark 2.1).

Proceeding as in Section II, under (B), we can verify the
recurrence condition, and show that defined in (18) con-
verges w.p. . Define , take a continuous-time
interpolation of the iterates , for

, , and let be the unique such
that . Using the ODE methods [22, Chs. 5 and 6],
we can show that is uniformly bounded and equicon-
tinuous in the extended sense. Then the Ascoli–Arzelà theorem
implies that any convergent subsequence has a limitsatis-
fying the limit ODE

(19)

with the unique stationary point . Moreover, (B)
implies that (19) is asymptotically stable. We then obtain the
following result.

Theorem 3.2:Under condition (B), defined by (18)
converges w.p. to .

Remark 3.3: It is interesting to compare (18) with the
algorithm (1). Under stationarity of the signals and assuming

, the limit of the ODE for (1) and the unique
minimizer of the quadratic cost functions are

(20)

respectively. They are similar to that of (19). As a result, the two
algorithms have similar asymptotic behavior. The difference is
that is symmetric, whereas in (18), the symmetry is lost.
We only assume the eigenvalues of have positive
real parts. To some extent, the sign-regressor algorithm is one
“between” the LMS algorithm and the sign-error algorithm. As
a result, its performance is close to LMS algorithm and its com-
plexity is similar to the sign-error algorithm.

To proceed, define

Denoting as before, we have

Define

if

if .

Similar to (11), we arrive at for any

(21)

Next define

for , where is given by (18). Similarly as in Sec-
tion II, we obtain the following.
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Theorem 3.4:Under (B), converges weakly to a
Brownian motion whose covariance is

where is given in condition (B) and

(22)

B. Minimal Window of Averaging

So far, we have only considered the averaging with window
width . In [21], averaging with “minimal” window width,
the smallest window width needed to be effective for improving
the performance, was considered. From an application point of
view, the minimal window of averaging provides a useful in-
sight. Following the approach outlined in [22, Ch. 11.1], let us
illustrate the idea by use of the sign-regressor algorithm. For it-
erates given by (18), for and

, define

(23)

Taking the averaging window width to be rather than
as before, for any , define

(24)

It follows that

where in probability uniformly in . Using the weak
convergence method (see [22, Chs. 8 and 10]), we establish that

converges weakly to , which is the stationary solution
to

(25)

where is the “square root” of given in (22). By in-
voking [22, Theorem 1.1, p. 331], we obtain the following.

Theorem 3.5:Assume (B). For each , treat
as a sequence of random variables. Then converges in
distribution to a normal random vector with mean and
covariance where is defined in
Theorem 3.4.

C. Constant-Step-Size Algorithms

In many practical applications of adaptive filtering such as
the interference suppression example discussed in Section IV,

constant-step-size algorithms are required for tracking slowly
varying parameter variations. This subsection considers iterate
averaging for theconstant step sizesign-regressor algorithm.
The algorithm is

(26)

where denotes a forgetting factor applied to the
averaging procedure. Since the minimal window of averaging
is of particular importance, the following discussion is devoted
to such cases.

Case i): Decreasing Forgetting Factor :
Using (B) and for definiteness, let us concentrate on the case
of bounded mixing condition. Then [3, p. 197] and [8, Ch. 7.3]
imply that converges weakly to a Brownian
motion with covariance , where is given by (22). The
sequence is uniform mixing, so are
and . Therefore, they are strongly ergodic. Con-
sequently, for any

(27)
both in probability. (In fact, they converge w.p., but for
our analysis, convergence in probability is sufficient.) Define

for . Similar to [20], we obtain
the following. Assume converges to and (B). Then
converges weakly to , which is a solution to the differential
equation (19). Furthermore, for any as ,

converges weakly to given by (19).
Define and for .

Then it can be shown that converges weakly to ,
a solution of (25), as and . To proceed, define

Using the argument of [22, p. 333], we obtain the following.

Theorem 3.6:Assume converges to and (B). Then, for
each fixed , converges in distribution to a normal
random vector with mean , covariance ,
and defined in Theorem 3.4.

Case ii): Constant Forgetting Factor: Here we take a con-
stant forgetting factor with . In the analysis,
we examine the asymptotic properties of the dynamic system
given by (26) as and , whereas in the imple-
mentation, and are kept as constants. Define

(28)

By using the interpolations and , a similar argument
as in Theorem 3.6 leads to the following result.

Theorem 3.7:Assume (B). For each fixed , con-
verges in distribution to a normal random vector with mean
, covariance , and defined in Theorem 3.4.
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D. Remarks on AveragedSign-Error and LMS Algorithms

The discussions thus far readily carry over to minimal win-
dows of averaging for the following decreasing step-size and
constant step-size sign-error algorithms:

(29)

where . Moreover, either a constant forgetting
factor or a sequence of decreasing forgetting factors can be
included. Results similar to Theorems 3.5, 3.6, and 3.7 can be
obtained with the use of condition (A) in lieu of (B) and with

replaced by given in Theorem 2.7.
Similar results for minimal windows for averaging and con-

stant step size LMS algorithms with averaging can be estab-
lished by using the techniques of [22]; we summarize the results
as follows. For fixed , , as defined in (28), converges in
distribution to a normal random variable with meanand
covariance , where

(30)

and

(31)

IV. CASE STUDY: SIGN ALGORITHMS FORBLIND MULTIUSER

DETECTION IN DS/CDMA SYSTEMS

DS/CDMA is among the most promising multiplexing
technologies for cellular telecommunications services such
as personal communications, mobile telephony, and indoor
wireless networks. Demodulating a given user in a DS/CDMA
network requires processing the received signal to minimize
two types of interference, namely, narrow-band interference
(NBI) and wide-band multiple-access interference (MAI)
caused by other spread-spectrum users in the channel—as well
as ambient channel noise [15]. NBI is caused by the coexistence
of spread-spectrum signals with conventional communications;
see [15] and [17] for a recent review of active NBI suppression
methods that have resulted in substantial gains in DS/CDMA
systems. MAI arises in DS/CDMA systems due to the fact that
all users communicate through the same physical channel using
nonorthogonalmultiplexing, which has many advantages in
wireless CDMA systems such as greater bandwidth utilization
under conditions of channel fading and bursty traffic.

Recently,blind multiuser detectiontechniques [14], [30], [31]
have been developed that allow one to use a linear multiuser de-
tector for a given user with no knowledge beyond that required
for implementation of the conventional detector for that user.
Blind multiuser detection is useful in mobile wireless channels
when the desired user can experience a deep fade or if a strong
interferer suddenly appears. In [14] a blind LMS algorithm is
given for linear minimum mean-square error (MMSE) detec-
tion. In [31], a code-aided blind RLS algorithm for jointly sup-
pressing MAI and NBI is given. More recently, in [16], a blind
averaged LMS algorithm is presented with a heuristic mean-

square error convergence analysis in the same spirit as [14] and
[31].

The objective of this section is to use the averaged sign-error
LMS and the sign-regressor LMS algorithms analyzed in Sec-
tions II and III of this paper to the MMSE detection scheme for
multiuser detection in a DS/CDMA system. The performance
of the sign algorithms will be studied and compared with that of
the standard LMS.

A. DS/CDMA Signal Model

Consider a synchronous-user binary DS/CDMA commu-
nication system. Assume that this system transmits through
an additive white Gaussian noise channel. After the received
continuous-time signal is preprocessed and sampled at the
CDMA receiver (the received signal is passed through a
chip-matched filter followed by a chip-rate sampler), the
resulting discrete-time received signal at time, denoted by

, is given by (see [31] for details)

(32)

Here is an -dimensional vector; is called the processing
(spreading) gain; is an -vector denoting the normalized
signature sequence of theth user, i.e., each element

for , so that ;
denotes the data bit of theth user transmitted at time;

is the received power of theth user; is the NBI
signal -vector, which is assumed to be a bounded stationary
autoregressive (AR) process with mean zero and covariance ma-
trix ; is the standard deviation of the noise samples;is
a white Gaussian vector with mean zero and covariance matrix
, where denotes the identity matrix. It is assumed that

the discrete-time stochastic processes , , and
are mutually independent, and that is a collection of in-
dependent equiprobable1 random variables.

We assume that user 1 is the user of interest. Following the
definition of , denotes the normalized signature sequence
of user 1. For user 1, the term in (32) is
termed MAI. The aim of a multiuser detector is to suppress
the MAI and adaptively estimate (demodulate) the bit sequence

given the observation sequence. A linear blind mul-
tiuser detector demodulates the bits of user 1 according to (see
[31] for details) , where denotes the
estimate of the transmitted bit at time , and denotes an
appropriately chosen “weight vector.” In this section, we focus
on the widely used code-aided blind linear mean output error
(MOE) detector [14], [31] which chooses the “weight vector”
so as to minimize the MOE cost function

subject to (33)

The constraint ensures that the received energy from the user of
interest is equal to 1. Thus, the above is a minimization of the
energy from the interferers. Furthermore, as shown in [14], the
MOE cost function has a unique global minimum (with respect
to ). The blind MOE detector yields the following estimate

of the transmitted signal (see [31] for details):

where (34)
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and denotes the autocorrelation matrix of the re-
ceived signal . In the preceding equation, is the optimal
linear MOE “weight vector.” Such a detector is “blind” since
it does not assume any knowledge of the data symbols
and signature sequences of other users.

The output signal-to-interference ratio (SIR) is widely used
to characterize the performance of a linear multiuser receiver.
The SIR for an arbitrary weight vectoris defined as

SIR (35)

The SIR of the optimal weight vector and the MOE of are
given by [31, eqs. 5 and 7, respectively]

SIR

(36)

B. Adaptive Sign Algorithms for Blind Multiuser Detection

In adaptive blind multiuser detection problems, we are
interested in recursively adapting the weight vector to
minimize , the MOE given by (33). In particular, it is often
necessary to use a constant step-size tracking algorithm due
to the time-varying nature of caused by the birth and death
of users (MAI interferers). We now present constant step-size
versions of the sign-regressor and sign-error algorithms for
blind adaptive multiuser detection.

In presenting the sign algorithms for blind adaptive multiuser
detection, it is convenient to work with an unconstrained opti-
mization problem rather than (33). Let , for
denote the components of . The constrained optimization
problem (33) may be transformed into an unconstrained
optimization problem by solving for one of the elements ,

using the constraint (33). With no loss of
generality, we solve for the first element and obtain

By defining the -dimensional vector

we obtain the equivalent unconstrained optimization problem

Compute where (37)

Here, and denotes the -dimen-
sional vector

As in (20), let denote the MMSE solution

It is straightforward but tedious to show that the components
of are indeed the last elements of optimal weight
vector defined in (34). Using the defined above, we call
the constant step-size sign-regressor algorithm (26) with fixed
forgetting factor operating on the DS/CDMA signal model
(32) as theblind averagedsign-regressor algorithm. Similarly,

we call the constant step-size sign-error algorithm (29) as the
blind averagedsign-error algorithm.

Remark 4.1:When is small, computations using and
may become ill-conditioned. This is trivially taken care of as

follows. because , in and .

Canonical Coordinates. In [14], constraint (33) for the
blind LMS algorithm is taken care of by introducing canonical
coordinates together with a MSE analysis. The essential idea
is to replace the unconstrained gradient of the MOE in (33),
namely, , by its component orthogonal to , namely,

. The blind averaged LMS and blind av-
eraged sign-error algorithm can be expressed in canonical
coordinates as

respectively. It is easily seen that the estimatesin the above
two algorithms automatically satisfy constraint (33). However,
it is not possible to derive a sign-regressor algorithm in canon-
ical coordinates that satisfies constraint (33). For example, the
sign-regressor algorithm in canonical coordinates

doesnot satisfy constraint (33). In the numerical examples
presented later, we found the performance of the blind averaged
LMS and sign-error algorithms in canonical coordinates are
identical to the corresponding algorithms derived for the uncon-
strained cost function. However, it is more convenient to work
with the equivalent algorithm derived for the unconstrained
cost function.

C. Performance Analysis of AveragedAlgorithms

Note that we have assumed that is a bounded sequence
of regressive process (e.g., stationary truncated Gaussian au-
toregreesive process), and that and are i.i.d. pro-
cesses. It follows that is a sum of bounded mixing sequence
and martingale difference sequence, so the noise condition in
(A) is satisfied. Thus, all the convergence and asymptotic opti-
mality results derived in Sections III-C and -D for the averaged
sign-error and sign-regressor algorithms hold. To proceed, we
derive approximate expressions for , , and and
the asymptotic excess mean-square error and SIR of the aver-
aged and un-averaged sign LMS algorithms for the DS/CDMA
signal model. These are commonly used performance measures
for adaptive filtering algorithms in the signal processing and
CDMA literature; see [14] or [31]. In what follows, we use
and , the covariance matrices defined in condition (B) and
(31).

To obtain expressions for the asymptotic excess mean-square
error, we first note that the zero mean estimation errorof the
MMSE (Wiener) solution , given by

(38)

is uncorrelated with —this is the principle of orthogonality
[13] for the MMSE solution , which is easily verified. Note
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that for the DS/CDMA signal model (32), using (36), and the
definition of the equivalent unconstrained problem (37), we
have .

We need the following additional assumptions:

i) and are independent.

ii) The input data and the previous weight vector are
statistically independent [13, Ch. 9].

These two assumptions are not needed for the weak convergence
analysis presented earlier. They are introduced only to give sim-
plified closed-form expressions for the weighted error correla-
tion, excess mean square error, and steady-state SIR. Without
these assumptions, the expressions would involve fourth-order
moments—while these can be computed, the resulting expres-
sions are messy and yield little insight (see also [14]).

Assumption i) is justified when for fixed processing gain,
the number of users is large. Assuming the binary signature
sequences are chosen randomly (equiprobably over all choices)
and the amplitudes are identical, one can apply the i.i.d.
version of the central limit theorem to (32). Alternatively, if the
amplitudes , , the Lindberg–Feller
central limit theorem, see [36, pg. 150], can be applied. The
central limit theorem implies is asymptotically a zero-mean

-dimensional Gaussian random vector. This in turn implies
is approximately an -dimensional zero-mean

Gaussian random vector, andand are scalar zero-mean
Gaussian random variables. Since orthogonality for Gaussian
random variables is equivalent to independence,and are
asymptotically independent.

Note that assumption ii) is satisfied if the interference con-
sists only of MAI and white noise. This assumption is used in
[31] for analyzing the blind RLS algorithm; it is also commonly
used in deriving closed-form expressions for the performance
of adaptive filtering algorithms (see [13]).

Weighted Error Correlation : The weighted error corre-
lation matrices for the various averaged algorithms can be
obtained from the analysis of Sections IV-A and –B as follows.

. Consider given in (30).
Because of i) and ii) above, in (31) can be computed as

Let denote the weighted error correlation ma-
trix. Note that is an positive-definite
matrix. Then (30) implies that

(39)

. Consider
given in Theorem 3.4. Using results i) and ii), in (22) is

since . We have the
weighted error correlation matrix

(40)

Next, as in [10], we use assumption ii) above which implies that
is approximately a Gaussian sequence. Then Price’s formula

yields

where

(41)

. With defined in
Theorem 2.7, using results i) and ii) above, in (17) is given
by

Thus, the weighted error correlation matrix satisfies

(42)

Under the Gaussian assumption, [6, eq. (39)] shows that
where .

Asymptotic Excess Mean Square Error:The MOE de-
fined in (33) can be expressed again as

Since as , the last term is asymptotically
unimportant. Hence, for large, where the
excess mean square error is defined as

(43)

In what follows, we compute expressions for the asymptotic ex-
cess mean square error .

. It follows from (39) that

(44)

Note that the above equation is identical to that of the blind
RLS, see [31, eq. 40]. As for blind RLS, the steady-state misad-
justment of the averaged LMS algorithm is independent of the
eigenvalue distribution of the data autocorrelation matrix.

. Using the Gauss-
ian assumption which implies (41) together with (40) and (43)
yields

(45)

We can easily compute a lower bound for by bounding
in terms of as follows. Let ,
, be the eigenvalues of the positive-definite sym-

metric matrix . Since all the diagonal elements of
this matrix are
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TABLE I
ASYMPTOTIC EXCESSMEAN SQUARE ERRORS� (1)

lower bound

Using the well-known inequality that the harmonic mean is less
than the arithmetic mean, we obtain

which implies that

and

. It follows from (42)
that

(46)

Just like the blind RLS algorithm and the blind averaged LMS
algorithm analyzed earalier, the steady-state misadjustment of
the averaged sign-error algorithm is independent of the eigen-
value distribution of the data autocorrelation matrix.

It is illustrative to compare the asymptotic excess mean-
square error of the averaged sign algorithms with their standard
(unaveraged) counterparts. Expressions for the asymptotic
excess mean-square error of the standard sign-error algorithms
have been derived in [6] and for the sign-regressor algorithm in
[10]. Table I summarizes the results.

Remark 4.2: i) All the expressions for the standard algo-
rithms above assume that . In particular, terms involving

are negligible. More precise expressions are available in [6]
and [10]. The expressions for the sign-regressor algorithm given
are lower bounds. ii) for the averaged algorithms do
not depend on the eigendistribution of . This is particularly
useful in dynamic mobile environments where the eigenstruc-
ture of can change rapidly. In [31], a similar property
is shown for the blind RLS algorithm. It only remains to give
tractable expressions for . It is tedious but straightfor-
ward to show that

SIR: The SIR Defined in (35) can be reformulated in terms of
the asymptotic excess mean-square error as

SIR SIR SIR

D. Numerical Examples

In this section, computer simulations are presented that il-
lustrate the performance of the averaged sign algorithms. For
a detailed numerical study of the averaged LMS algorithm in
blind-multiuser detection, please refer to [16]. As is common in

the CDMA literature, we use the steady-state SIR as the figure of
merit for assessing the interference suppression capability of the
various algorithms. All the signal and noise powers are given in
dB relative to the channel noise variance, see (32). The sim-
ulations below assume a synchronous DS/CDMA system with
processing gain . The desired user’s signature is gen-
erated as an -sequence. The signature sequences of the other
MAI’s are generated randomly.

Example 1 (MAI Suppression):The user of interest has SNR
of 20 dB. There are 7 multiple access interferers: 5 users each
of SNR 20 dB, and two users of SNR 40 dB. Fig. 1 shows the
SIR versus time for the following six algorithms, averaged over
100 independent simulations: a) blind LMS versus blind aver-
aged LMS; b) blind sign regressor versus blind averaged sign
regressor; c) blind sign error versus blind averaged sign error.

In addition, we also simulated the blind RLS algorithm given
in [31]. The blind RLS algorithm and averaged blind LMS al-
gorithm yielded virtually indistinguishable SIR plots. It is seen
from Fig. 1 that the averaged LMS and averaged sign algorithms
exhibit faster convergence than the unaveraged algorithms.

Example 2(Dynamic Environment—MAI and NBI With
Time-Varying Statistics):The simulation starts with one
desired user’s signal and 6 MAI signals each of 20 dB. At
time 500, a 10-dB NBI interferer is added to the system. The
NBI signal is a bounded stationary AR signal with both poles
at 0.99. At time 1000, another strong MAI signal of 40 dB is
added. At time 1500, three of the original 20-dB MAI signals
are removed from the system. Fig. 2 shows SIR versus time for
the six algorithms averaged over 100 independent simulations:

a) blind LMS with step size ;

b) blind averaged LMS with , ;

c) blind sign regressor with (for imple-
mentation using binary shifts);

d) blind averaged sign regressor with ;
.

e) blind sign error with ;

f) blind averaged sign error with ,
.

It is seen that in all cases, the averaged algorithms have better
convergence properties than the algorithms without averaging.
Also, it is interesting to note that the sign-regressor algorithm
performs similarly to the LMS algorithm whereas the sign-error
algorithm performs worse.

V. FURTHER REMARKS

Iterate-averaging algorithms have been developed in this
paper, and have been shown to be asymptotically efficient in the
sense that , where (with ,
or , or depending on the type of algorithms) is the
optimal asymptotic covariance. In fact, a functional central
limit theorem is obtained and the usual central limit theorem
becomes a corollary. As pointed out in [38], the asymptotic
optimality cannot be improved by placing a constant in the
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Fig. 1. Average SIR versus time for MAI suppression. The parameters are
specified in Section IV-D.

gain. That is, if we replace by for some constant,
the will not show up in the asymptotic covariance.

Using essentially the same analysis but with more complex
notation, we can obtain similar results with more general step
size in lieu of the slowly varying step size used
in this paper. For some of the related references, we refer the
reader to [22, Ch. 11].

In a recent work [18], we have applied the sign algorithm to
discrete stochastic approximation for optimization of spreading
codes. For future study, one may consider further properties of
such algorithms. In addition, one may consider an averaging
algorithm with feedback; see [22, p. 60] and the references
therein. One may also study algorithms using averaging in both
iterates and observations. Another interesting problem is to
consider the associated adaptive step-size algorithms (see [2]
and [22, p. 53]).

APPENDIX

A. Proof of Theorem 2.4

We use the techniques of perturbed test function to obtain the
estimate. Define . Note that is -measur-
able so is . By virtue of condition (A), for sufficiently large ,

(47)

To proceed, we introduce the perturbations and define

(48)

By virtue of (5)

and

(49)

so the perturbations are small. We show that they also lead to
desired cancellations. Direct computation yields that

(50)

Similarly, we obtain

(51)
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Fig. 2. Average SIR versus time for time-varying NBI and MAI suppression. The parameters are specified in Section IV-D.
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The Hurwitz assumption on implies that there is a
such that for some . It follows that
there is a with such that

(52)

Using (47)–(52)

It follows from (49) that for some

(53)

Taking expectation in (53) and iterating on the resulting
inequality

Moreover, by using (49), we also have .
Furthermore, the bounds derived are uniform in. This con-
cludes the proof.

B. Proof of Lemma 2.5

Using telescoping

(54)

Since is stable, there is a such that

for

Thus, is bounded yielding the first inequality in
(14). The second equation in (14) is proved in [4, p. 9].

The following proofs are carried out by using bounded mixing
conditions. The proofs under martingale difference signals or

processes are much simpler.

C. Proof of Lemma 2.6

1) We first show that under (A) and (15),
in probability as uniformly in . Since

is bounded w.p. (Theorem 2.2), w.p. by (15). By
(13)

Since

by Theorem 2.4, and , in
probability.

Using and interchanging the orders of
summations, we obtain

by (13) and (14).
2) We show that for , , and

where , , , and
in probability uniformly in . In fact, using the

Dirichlet formula to interchange the order of summations in
, , and , we obtain

Note that by virtue of (13), for

(55)

First, we have that as

(56)
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by virtue of the mixing property of , and by Lemma 2.5.
For the corresponding term in , since is a martin-

gale difference sequence, it is uncorrelated and by Lemma 2.5,
as

(57)

Finally, we come to the terms in . By using Theorem 2.4,
. This together with Lemma 2.5 and the

boundedness of the signals yields that as

(58)

Combining (56)–(58), the desired result follows.
3) We next show that and contribute nothing to

the limit, so only is asymptotically important. To prove
in probability uniformly in , it suffices to consider

in accordance with step 2)
above. First, note (59) at the bottom of the page. By using the
mixing inequality (6), we have

as

Moreover

as

The above estimates and (59) then lead to that as
.

Finally, for , since is a martingale difference
sequence

(60)

Note that as , that as
, that , and that is

continuous in by condition (A). Note also that as a function of
, is bounded and is dominated

by a linear function of . In view of (10), the dominated
convergence theorem and as yield
that the last term in (60) goes touniformly in .

D. Proof of Theorem 2.7

By virtue of Lemma 2.6, and the choice of ,

as , where in probability. Thus, is
also tight in . Moreover, (16) and Slutsky’s theorem
yield the desired result.

(59)
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