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LMS Algorithms for Tracking Slow Markov Chains
With Applications to Hidden Markov Estimation and
Adaptive Multiuser Detection
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Abstract—This paper analyzes the tracking properties of the
least mean squares (LMS) algorithm when the underlying param-
eter evolves according to a finite-state Markov chain with infre-
quent jumps. First, using perturbed Liapunov function methods,
mean-square error estimates are obtained for the tracking error.
Then using recent results on two-time-scale Markov chains, mean
ordinary differential equation and diffusion approximation results
are obtained. It is shown that a sequence of the centered tracking
errors converges to an ordinary differential equation. Moreover, a
suitably scaled sequence of the tracking errors converges weakly
to a diffusion process. It is also shown that iterate averaging of
the tracking algorithm results in optimal asymptotic convergence
rate in an appropriate sense. Two application examples, analysis
of the performance of an adaptive multiuser detection algorithm
in a direct-sequence code-division multiple-access (DS/CDMA)
system, and tracking analysis of the state of a hidden Markov
model (HMM) with infrequent jumps, are presented.

Index Terms—Adaptive filtering, admission/access control, di-
rect-sequence code-division multiple-access (DS/CDMA) adaptive
multiuser detection, hidden Markov model (HMM), jump Markov
parameter, mean square error bound, weak convergence.

1. INTRODUCTION

N this work, we consider a class of adaptive least mean

squares (LMS) algorithms for the purpose of tracking a
time-varying parameter process with infrequent jump changes.
The time-varying parameter is modeled as a discrete-time
Markov chain whose transition matrix is “almost identity.” The
dynamics of the parameter process display piecewise-constant
behavior with infrequent jumps from one state to another. In
what follows, we often call it a slowly varying Markov chain or
a slow Markov chain. Our interest lies in figuring out the bounds
for tracking errors. To accomplish our goals, we carry out the
analysis in several steps. We derive mean-square error bounds,
treat an interpolated sequence of the centered estimation errors,
proceed with the consideration of a suitably scaled sequence of
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estimation errors, obtain its diffusion limit, and examine further
the error bounds via asymptotic normality.

Most analyses of LMS algorithms with time-varying param-
eters (see [1], [10], [11], [16], [17], [20], [34]) assume that the
parameter varies continuously but slowly over time with a small
amount of changes, e.g., a slow random walk. In contrast, we
deal with the case when the parameter is constant over long pe-
riods of time and then jump changes by possibly a large amount
(i.e., a Markov chain with transition probability matrix close to
the identity). Unlike the existing results on the analysis of LMS
algorithms, we explicitly consider this Markovian time-varying
parameter in the analysis. Noting the special feature of the tran-
sition matrix, we identify it as a Markov chain with two time
scales. Using recent results on two-time-scale Markov chains
[38], [39], we examine the asymptotic properties of the tracking
algorithm. Using the asymptotic normality resulting from the
limit diffusion process, we provide further error bounds on the
probability of deviations.

This paper is motivated by several practical applications, for
example, fault diagnosis and change detection [1], where the
LMS algorithm is used to track a parameter that undergoes infre-
quent jump changes. Such problems also appear in emerging ap-
plications of wireless communication and estimation of hidden
Markov models. Specifically, we consider the following two ex-
amples.

Example 1: (Effect of Admission/Access Control on Adap-
tive Multiuser Detector:) Activity detection in direct-sequence
code-division multiple-access (DS/CDMA) networks has been
studied in detail in [22] and [23]. In these papers, the task of
detecting changes in the user population due to the entrance of
new users or departure of existing users, is formulated as a se-
quential detection/isolation problem.

Here, we consider the performance analysis of an adaptive
linear multiuser detector in a cellular DS/CDMA wireless net-
work with changing user activity due to an admission or ac-
cess controller at the base station. Understanding the interac-
tion of an admission control/access control algorithm with the
physical layer interference suppression (multiuser detection) is
of increasing importance in cross-layer optimization of wire-
less networks, [33]. An admission controller [33] typically reg-
ulates the admission of new users to the network to maintain an
acceptable quality of service (e.g., signal-to-interference ratio)
and blocking probability (i.e., probability of new user being
rejected). An access (scheduling) controller determines on a
multiframe-by-multiframe basis (slower time scale than the bit
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interval) which group of users to transmit. Such access con-
trol is typically required when the network admits more users
than its capacity in order to reduce call blocking and handoff
blocking probabilities. The adaptive linear multiuser receiver
must dynamically adapt the weight vector of the receiver ac-
cording to an LMS-type algorithm [12], [26], [35] to track the
optimal linear minimum mean-square error (LMMSE). How-
ever, the coefficients of this LMMSE receiver jump change at
times corresponding to the arrival and departure of users (ad-
mission controller) or active user group (access control). Since
the number of possible combinations of active users is finite,
the coefficients of the LMMSE multiuser detector evolves ac-
cording to a finite-state process. The dynamics of the evolu-
tion of this finite-state process depends on the admission or
access control policies. In particular, for Markovian admission
or access control policies (e.g., Markov decision process based
admission controller [33], [29], or seed exchange (SEEDEX)
medium-access protocol [14]), the coefficients of the LMMSE
receiver evolves according to a finite-state Markov chain. Given
that the adaptive linear multiuser detector uses the LMS algo-
rithm to adaptively track the coefficients of the LMMSE receiver
(time-varying parameter), it is of interest to study how the LMS
tracks a parameter that evolves according to a Markov chain. In
contrast, most papers in adaptive multiuser detection [12], [27]
assume a constant optimal LMMSE receiver (weight vector) and
examine how the constant step size LMS algorithm (or recursive
least squares (RLS) with fixed forgetting factor) hovers about
this constant-weight vector.

Example 2: (State Estimation of a Hidden Markov Model
with Infrequent Jumps:) We analyze the performance of the
LMS algorithm for tracking the state of a slowly varying hidden
Markov model (HMM) [5], where the underlying Markov
chain’s transition probability is of the form I + Q) with ¢
being a small parameter and m being the total number of states.
The optimal HMM state filter (which yields the conditional
mean estimate of the state) requires O(m?) computations at
each time instant and hence intractable for very large m. For
sufficiently small ¢, it might be expected that the LMS would
do a reasonable job tracking the underlying Markov chain since
the states change infrequently. As described in Section V-B,
the LMS algorithm requires O(1) computational complexity
for an m-state HMM (i.e., the complexity is independent of m).
Recently, an O(m) complexity asymptotic (steady-state) HMM
state filter was proposed in [9]; see also [31]. It is therefore of
interest to analyze the performance of an LMS algorithm (in
terms of error probabilities) for tracking a time-varying HMM
with infrequent jump changes. Such an analysis is presented
in Section V-B. From a practical point of view, using an O(1)
complexity LMS algorithm for tracking a slow HMM is useful
in military sensor network applications—such as unattended
ground sensor networks [4], where conserving battery life of
individual processing sensors is important.

Main Results: Assuming that the true parameter 6,, evolves
according to a slow finite-state Markov chain with transition
probability matrix I +e() where ¢ > 0 is a small parameter, and
that the LMS algorithm operates with a step size p, we summa-
rize the main results of the paper as follows.
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i) In Section IIl, a mean-square stability analysis of
the LMS algorithm is performed which shows
that the mean-square tracking error is of the order
O(p + €/p) exp(p + /). Unlike the usual analysis
of tracking algorithms where the error depends on the
step size of the algorithm, the dynamics of the error
propagate with respect to the adaptation rate (the step
size of the tracking algorithm f) and the variation rate
(magnitude of the perturbation ¢) of the Markov chain.

ii) Based on the mean-square error bounds, a mean or-
dinary differential equation (ODE) limit is obtained
in Section IV. This ODE captures the evolution of the
tracking error of the LMS algorithm as a centered dy-
namic system. Such a characterization, in turn, provides
us with information of the trajectories. It turns out that
the ODE is identical to the case when the parameter 6,
is a constant for all time n.

iii) Building upon the mean-square estimates and the limit
ODE, the diffusion approximation of Section IV-C
(Theorem 18) shows that if the LMS algorithm with
step size 1 = O(y/¢) yields parameter estimates 0,,,
then the estimation error ,, — 6, is asymptotically
normal with zero mean and covariance identical to the
case when the parameter 6,, is a constant for all time
n. The asymptotic normality translates into approx-
imate normality for finite n under certain conditions
on the moments of the regression and noise vectors
(Section V-A).

iv) Section IV-D shows that iterate averaging reduces the
asymptotic covariance of the estimate of the LMS al-
gorithm. Iterate averaging was originally proposed by
Polyak [24] and Ruppert [30] independently (see also
[25]) for accelerating the convergence of stochastic ap-
proximation algorithms. It is well known [17] that for
a constant true parameter and decreasing step size, it-
erate averaging results in asymptotically optimal con-
vergence rate (the same asymptotic convergence rate as
the recursive least squares), which use matrix step sizes,
with an order of magnitude lower computational com-
plexity than RLS.

In the tracking case for a random-walk time-varying
parameter, it has recently been shown in [19] that the
fixed step size LMS algorithm with an iterate averaging
has similar properties to a recursive least squares al-
gorithm with forgetting factor. Obviously, for a time-
varying parameter, recursive least squares is not the op-
timal tracking algorithm. However, in our slow Markov
chain case, the parameter remains constant over long
duration. Hence, heuristically one would expect that it-
erate averaging yields real benefits. Section IV-D shows
that if e = O(u?), and the averaging window width is
O(1/p) (where p denotes the step size of the LMS al-
gorithm), then iterate averaging results in an asymptoti-
cally optimal tracking algorithm. To our knowledge, this
is the first example of a case where iterate averaging re-
sults in a constant step size LMS algorithm with optimal
tracking properties.
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v) The convergence analysis of this paper deals with the
case when the parameter is a slow Markov chain which
has a nonzero (but small) probability of jumping to
any other state at any time instant. In Section IV-E,
we briefly consider the much simpler case where the
parameters can randomly jump change to another state
but only after spending at least O(1/¢) time in the
current state. For this case, the above ODE and weak
convergence to diffusion results also hold. The model
and resulting analysis are relevant to periodic access
control (scheduling) policies in wireless networks.

vi) In light of i)-v), Section V-B presents expressions for
probability of error of the quantized estimate of the LMS
algorithm when tracking the state of a slow HMM. It
is shown that iterate averaging results in a lower error
probability. Section V-C shows that if the number of
active users in a wireless CDMA network evolves as
a slowly varying Markov chain, then the adaptive deci-
sion directed linear multiuser detector, the adaptive blind
multiuser detector, and the adaptive precombining mul-
tiuser detector are LMS algorithms tracking a Markov
chain with infrequent jumps. More importantly, it es-
tablishes that for sufficiently slow change in users (i.e.,
e = O(u?)) iterate averaging does indeed result in op-
timal convergence properties of the adaptive multiuser
detector. This gives theoretical justification to results in
[13] where it was shown that the blind adaptive mul-
tiuser detector using the so-called blind LMS algorithm
with iterate averaging has superior convergence proper-
ties to the standard blind LMS algorithm.

The rest of the paper is organized as follows. Section II
begins with the formulation of the problem. Section III is de-
voted to obtaining error bounds in terms of mean-square errors.
Section IV derives a mean ODE limit, and develops diffusion
approximation via weak convergence methods. Section V
considers two practical applications—state estimation of a
HMM with slow dynamics and adaptive multiuser detection in
a DS/CDMA wireless network. Section VI concludes the paper
with further remarks. Throughout the paper, for z € R*X", we
use z’ to denote its transpose, and |z| denote its norm. We also
use K to denote a generic positive constant. The convention
K+ K = K and KK = K will be used without notice. For
any two functions g; and g2, g1 = O(g2) and g1 = o(g2)
denote |g1/g2| < K and |g1/g2| — 0, respectively.

II. FORMULATION

Let {y, } be a sequence of real-valued signals representing the
observations obtained at time n, and {6,,} be the time-varying
true parameter, an R"-valued random process. Suppose that
n=0,1,...

where ¢, € R" is the regression vector and e,, € R is
a sequence of zero-mean random vectors. Note that (1) is
a variant of the usual linear regression model, in which, a
time-varying stochastic process 6,, is in place of a fixed param-
eter. Throughout the paper, we assume that 0, is a discrete-time
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Markov chain. The precise conditions on the parameter process
is given as follows.

Assumptions on the Markov Chain 0,,:
(A1) Suppose that there is a small parameter € > 0 and that
6,, is a discrete-time homogeneous Markov chain, whose
state space and transition probability matrix are given by

()
and

P =T1+4¢Q 3)

respectively, where [ is an R™*™ identity matrix and
Q@ = (gij) € R™*™ is a generator of a continuous-time
Markov chain (i.e., @ satisfies ¢;; > 0 for i # j and
>0y ¢ = 0 foreachi = 1,...,m). For simplicity,
assume the initial distribution P(p = ;) = po ; to be
independent of € foreachi = 1,...,m, where py; > 0

and 27;1 poi = 1.

Remark 3: Note that the small parameter ¢ > 0 in (Al) en-
sures that the identity matrix I dominates. In fact, g;; > 0 for
1 # j thus, the small parameter € > 0 ensures the entries of the
transition matrix to be positive since p;’j = 0;5 + eqi; > 0 for
e > 0 small enough, where 0;; = 1 if ¢ = j and is 0 otherwise.
The use of the generator () makes the row sum of the matrix P
be one since

prj = 1+5Zqij =1
j=1 j=1

The essence is that although the true parameter is time varying,
it is piecewise constant. In addition, the process does not change
too frequently due to the dominating identity matrix in the tran-
sition matrix (1). It remains as a constant most of the time and
jumps into another state at random instance.

Adaptive Algorithm: The adaptive algorithm is of LMS
adaptive filtering type with a constant step size. To track the
parameter {6, }, we construct a sequence of estimates {f,,}
according to

Ors1 = Oy + pipn (yn - @;ﬁn) , n=0,1,... (4

where p > 0 is a small constant step size for the algorithm. By
using (1) with 6,, = 6,, — 6,,, we obtain

9n+1 = a'rL - Mﬂnﬁﬂlngn + HPnEn + (Hn - gn—‘rl)- (5)

Our task to follow is to figure out the bounds on the deviation
0,, = 6,, — 0,,. This goal is accomplished by the following four
steps.
1) Obtain a mean-square error bounds for E|8,, — 6,,|2.
2) Obtain a limit ODE of centered process.
3) Obtain a weak convergence result of a suitably scaled se-
quence. R
4) Obtain probabilistic bounds on P(|0,—0,,| > «) for a >0,
and hence probability of error bounds based on the result
obtained in part 2).

Remark 4: The parameter 6,, is called a hypermodel in [1].
Note that while the dynamics of the hypermodel 6,, are used in
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our analysis, it does not enter the implementation of the LMS
algorithm (4) explicitly.

Assumptions on the Signals: Let F,, be the o-algebra gener-
ated by {(¢;,€;),7 <m,0;,7 < n}, and denote the conditional
expectation with respect to F,, by E,,. We will use the following
conditions on the signals.

(A2) The signal {,,¢e,} is independent of {f,}. Either
{¢n,en} is a sequence of bounded signals such that
there is a symmetric and positive-definite matrix B €
R™*" such that E¢, ¢!, = B

Y E.[eie; - B]| <K (6)

j=n

and in addition

oo

> Enpnej| <K (7)

j=n
or {¢n,e,} is a sequence of martingale differ-
ence signals satisfying sup,, E|¢,[*t® < oo and
sup,, E|pnen|?t? < oo for some A > 0.

Remark 5: Although {y,,} depends on 6,,, we have assumed
{¢n,en} to be independent of 6,,. The signal models we are
dealing with include a large class of practical applications. In-
equalities (6) and (7) are modeled after mixing processes and
are in the almost sure (a.s.) sense with the constant K indepen-
dent of w, the sample point. (Note, however, we use the same
kind of notation as in, for example, the mixing inequalities [2,
p- 166, eq. (20.4)] and [15, p. 82, egs. (6.6) and (6.7)].) This al-
lows us to work with correlated signals whose remote past and
distant future are asymptotically independent. To obtain the de-
sired result, the distribution of the signal need not be known.
The boundedness is a mild restriction; for example, one may
consider truncated Gaussian processes, etc. Moreover, dealing
with recursive procedures in practice, in lieu of (4), one often
uses a projection or truncation algorithm. For instance, one may
use

~

Ont1=7mH I:é\n + pen (yn - W%gn)} (3)

where 77 is a projection operator and H is a bounded set. When
the iterates are outside H, it will be projected back to the con-
strained set H. Extensive discussions for such projection algo-
rithms can be found in [17]. On the other hand, for the pos-
sibly unbounded signals, we can treat martingale difference se-
quences. With some modification, such an approach can also be
used to treat moving average type signals.

In the subsequent development, we will concentrate mainly
on the processes satisfying (6) and (7). The proof for the
unbounded martingale difference sequence is simpler (for
example, in the mean square estimate to follow, no perturbed
Liapunov functions are needed). For brevity, we will omit the
verbatim proof for such processes.

III. MEAN-SQUARE ERROR BOUNDS

This section establishes a mean-square error estimate for
E|f, — 0,|?>. We obtain the desired estimate via a stability
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argument using perturbed Liapunov function methods. It is
important to note that the mean-square error analysis below
holds for small positive but fixed x4 and e. Indeed, let A\p,;, > 0
denote the smallest eigenvalue of the symmetric positive defi-
nite matrix B defined in (A2). Then, in the following theorem
it is sufficient to pick out p and ¢ small enough so that

Aminft > O(p%) + O(ep); ©)

see (25) in the proof below. The phrase “for sufficiently large n”
in what follows means that there is an ng = ng(e, ) such that
(10) holds for n > ny. In fact, (10) holds uniformly for n > ny.

Theorem 6: Under conditions (A1) and (A2), for sufficiently
large n,ase — Oand 4 — 0O
El,>=E|f, — 0,> =0 (u+¢/p) exp(pu+e/p). (10)
Proof: 1t suffices to prove (10) for the Euclidian norm
|z| = (2/z)Y/?. Define V(z) = (2'x)/2. Direct calculation
leads to

E,V(0p1) - V(6y)
= B, {0, [~1outi + 1o + (6~ 010)]}

2
+E, - an

In view of the Markovian assumption, the independence of the
Markov chain with the signals {(¢n, €, )}, and the structure of
the transition probability matrix given by (3)

— 1100 PO+ 11Pnen + (B — Opg1)

Ep(0n —0ni1) = > E0i = 041100 = 0) 1 5,
i=1
= Z gi B Z_Jp‘a] I{enzgi}
i=1 j=1
= =<2 D Bl
i=1 j=1
=0(e). (12)

Using an elementary inequality ab < (a®+b?)/2 for two real
numbers a and b, we have

Bl =[] 1< (18u+1) /2 50
()l < O(e) (V(Ba) +1).
By virtue of the boundedness of the signal {(¢,,e,)}

0y,

~ 2
E, |— 1100000 + ponen + (0n — 0n+1)’
= O(> + pe +&)(V(B) + 1).

Using the above two inequalities in (11) together with (12)
yields

EnV(gn_H) - V(an) =FE, {@L [—/upn@;gn + /upnen} }

+0(e)(V(0n) +1)
+O0(p® + pe)(V(8,) +1).  (13)
To obtain the desired estimate, we need to “average out” the
terms inside the curly bracket {} in (13). Roughly speaking,

if ¢, e, were independent and also independent of 6,,, then
if E,, {p.¢!,} = B, the expectation of the term in the curly
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brackets would be — ;@Ban. The idea that follows is to extend Likewise
this rigorously to correlated noise (of mixing type) { ., €, } that

™ To do o. define two. petrbations of the Lispunow unction | 2 Zr Pt =00 [Busaise] = B B
by <0G+ pe)(V(Ba) +1). @D
Vi(f,n) = — ;J,ZE 6’ (¢ — B) ] Thus, we arrive at
S E,Vi(Oni1,n+1) = Vi(Bn, )
Vi(0,n)=nY 0 E.pje;. = PEn0,, (pn), — B) b + O(u® + pe)(V(6n) +1). (22)
=

An analogues estimate for Vi (,,,n) yields that

For each 0, by virtue of (A2), it is easily verified that E. Vi ( i, 1) — Vf(gm n)

s B B =0 + pe)(V(Bn) +1). (23)
w|> [Bnwiely = BI| 101 < O(u)(V(6) + 1)

iz Define
o W@, n) = V(@) + Vi@,n) + Vi),
~ ~ Then, using (11), (22), and (23), we obtain
[VE(0.n)] < O(p)(V(6) +1). (14) _
N BW (b1 +1) = W(Boum)

Similarly, for each 6 < _ILQ;,BHTL + O(;J,Z toue+ 5)(V(5n) +1). (24)
IV5(6,n)] < O(u)(V(8) +1). (15) Since B is positive definite, there is a A > 0 such that
' B0 > AV (f). For example, from the Rayleigh—Ritz theorem,
Note that A= Ay satisfies ' BO > )\V(H) where A\min > 0 is the smallest

E,V§ ( ann 1) — Vf(gm n) eigenvalue of B. This together with (14) and (15) implies

= E,Vi(Opir,n+1) — E, V(0 n+1) E,W(lns1.n+1) — W(b,,n)
+ E Vi (B +1) = VE(,n). (16) < =AW (6n,n) + O(p” + pe + &) (W (0, ) +1).
Choose p and e small enough so that there is a Ay > 0 satis-
fying Ao < A and
=M+ O(1?) + O(ne) < —Aop. (25)
by virtue of (A2). In addition Note that this is equivalent to (9). Then for such a small fixed
~ de, btai ing (O(u? <O(p?
B, VE(, n+17n+ 1) = B, VE @G n + 1) and e, we obtain (using (O(u” +ep+¢) < O(u” +¢€))

E W (fng1,m+1) < (1= Aop) W (6, m)

_— — . I_ — 7 ~
= szn:HE Ont1 9 ) [En+1<ﬂg<.0] B] Ont1 +O(€)W(0n7n)+0(u2+€).

It follows that

E V(0. n4+1)=Vi (6, n) = nEnb, (ong', — B) 8, (17)

e ~ , . ~ Taking expectation above and iterating on the resulting in-
—1 D Bnby [Buyip0f = B] (Busr — ). (18)  equality yields
j=n+1
EW (641,m+1) < (1= Aop)" EW (6o,0)

Using (5), similar estimates as that of (12) yield n
Z (1= o))" T EW (8;,5) + O(pn + ¢/ 1)

B, |0ni1 — 0] < By [@nh| |0a] + nEn|pnen| + O(e)

=0()(V(6n) +1) + O(e). (19) By taking n large enough, we can make (1 — Aou)” < O(p).

Thus, an application of the Gronwall’s inequality leads to

Moreover,
oo N ~ < - _ n—j
H Z Engit [En-l—l(ﬂj(»aj B] n+1 - 9 ) Ew(en—i—hn + 1) o O('u + E/u) P Ejz_:o(l )\OM)

j=n+1 -

o B < O(p+e/pn)exp(e/n).

/
< KuEy, Z B0 = Bll0n|fni1 — 0] Finally, applying (14) and (15) again, we also obtain
j=n+1 _

< K100 En|fnir — Ol EV(0541) < O+ ¢/p) exp(e/p).
< O + pe)(V(6,) + 1). (20)  Thus, the desired result follows. O
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In view of Theorem 6, it is clear that in order that the adaptive
algorithm can track the time-varying parameter, due to the pres-
ence of the term exp(e /), we need to have atleaste /u = O(1).
Thus, the ratio /4 must not be large. A glance of the order of
magnitude estimate O(p1+¢/ 1), to balance the two terms  and
¢/, we need to choose ¢ = O(u?). Therefore, we arrive at the
following corollary.

Corollary 7: Under the conditions of Theorem 6, if ¢ =
O(p?), then for sufficiently large n, EV (6,,) = O(u).

IV. MEAN ODE AND DIFFUSION APPROXIMATION

This section is devoted to getting the mean dynamics of the
tracking error and the diffusion approximation limit under suit-
able scales. The Markov chain that characterizes the evolution
of the parameter #,, we are working with in fact is e-dependent.
That is, 6,, should have been written as 6. Nevertheless, for no-
tational simplicity, we have suppressed the e-dependence up to
this point. Due to the form of the transition matrix given by (3),
the underlying Markov chain is one belonging to the category of
two-time-scale Markov chains. For some of the recent work on
this subject, we refer the reader to [38], [39] and the references
therein.

Here and in the following sections, we assume ¢ = O(u?)
(see Corollary 7), i.e., the adaptation speed of the LMS algo-
rithm (4) is faster than the Markov chain dynamics. Recall that
the mean-square error analysis in Section III deals with the
mean-square behavior of the random variable 6,, = 6,, — 6,
as n. — oo, for small but fixed x and €. In contrast, the mean
ODE and diffusion approximation analysis of this section deal
with how the entire discrete-time trajectory (stochastic process)
{6, : n = 0,1,2...,} converges (weakly) to a the limiting
continuous-time process (on a suitable function space) as
p — 0 on a time scale O(1/p). In Section IV-B, we show that
this limiting continuous-time process satisfies an ODE. The
next step is to determine the asymptotic error distribution—or,
equivalently, the rate of convergence. In Section IV-C, we show
that the limiting continuous-time process for the discrete-time
process {0, /./1} satisfies a linear diffusion. Since the under-
lying true parameter 6,, evolves according to a Markov chain
(unlike standard stochastic approximation proofs, where the
parameter is assumed constant), the proofs of the ODE and
diffusion limit in Section IV-C are nonstandard and require use
of the so-called “martingale problem” formulation.

To proceed, we first provide some preliminary results on two-
time-scale Markov chains relevant to our problem. Then, in the
second part, we will use these auxiliary results to derive the limit
diffusion process.

A. Properties of 6,
Define a probability vector by
., P(0, =0,)) € Rt*™,

Note that pj = (po,1,- - -,Po,m), Which is given in (Al). Note
also that (P°)™ is the n-step transition probability matrix with
P# given by (3) since the Markov chain is time homogeneous.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Recall from (A1) that @ is the generator of a m-state con-
tinuous Markov chain. Then the 1 X m-dimensional state prob-
ability vector w(7) = (m1(7),...,7m (7)) of this continuous
Markov chain at any continuous time 7 € R™ satisfies the
Chapman—Kolmogorov equation

dz(:) =a(r)Q,  w(0) = po,

where py is the initial probability defined in (A1).
Regarding the probability vector pS, and the (n — ng)-step
transition matrix, we have the following approximation results.

(26)

Lemma 8: Assume (A1). Then the following assertions hold.
a) For some kg > 0
P, =7 (en)+O(etexp(—ron)).

0<n<O(1/e) (27)

where 7(en) is defined in (26) with 7 = en. In addition

(PE)"™"0 =E(eng, en)+0(e+exp(—ko(n—ng))) (28)
where with 7y = eng and 7 = en, E(79, T) satisfies
d=(Tg,T —_
{ ((17? ) = E(r0,7)Q (29)
E(TQ./ To) = I

b) Define the continuous-time interpolation 6°(¢) of 6,, as
65(t) = 0., (30)

Then 6(-) converges weakly to §(-), which is a contin-
uous-time Markov chain generated by () with state space

M.
Proof: The proof for a) is essentially in that of The-
orems 3.5 and 4.3 of [39], whereas the proof of b) can be found
in [40]. ]

if t € [ne,ne +¢€).

Remark 9: Let us first explain the idea a little bit. In view
of [39], we can consider the transition matrix (3) as one that
includes all recurrent states. The dominating part of the matrix
P< can be thought of as I = diag(1,1,...,1) € R™*™, Each
of the scalar 1 can be viewed as an irreducible transition matrix.
Thus, the result of the aforementioned paper can be applied.
The statement of Lemma 8 indicates that the probability vector
p5, and the transition matrix (P<)™~ ™0 can be approximated by
m(en) and E(eng, en), respectively. The errors turn out to be of
the order O(e 4 exp(—kon)) forn < O(1/e).

In fact, a full asymptotic series was constructed in [39]. How-
ever, for our purpose, the leading term is sufficient. The error
term O(e + exp(—ron)) comes from the initial layer correc-
tions. Note that in [39], the running time is k instead of n, and
the notation for 7(en) in that paper is 6(en). In addition, here
we have used exp(—#kon) in lieu of A" fora0 < A < 1 as in
[39], which are equivalent.

As a corollary of Lemma 8, we obtain an approximation of
expected value of §,,. As a further direct consequence, we can
verify that 6,, — E6,, is a mixing sequence with exponential
mixing rate. We state the results below for future reference.

Corollary 10: The E#f,, can be approximated by

Ef, = 0.(sn) + O(e + exp(—kgn)), forn < O(1/¢)

0. (en) ef Z?ﬂrj(gn).
j=1
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Proof: Direct computation reveals that for n < O(1/e)

Ef, =Y 0;P(6,=0,)
j=1
= Z 0;mi(en) + Z 0;0(e + exp(—kon))
j=1 j=1
= Z 0;mi(en) + O(e + exp(—kgn)). 31
j=1
The proof of the corollary is thus concluded. O

Corollary 11: Define &, = 0,, — Ef,,. Then forn < O(1/e¢)

|Ex&ntk — E&nik| < K exp(—ron)
|E&ni1ék — By B&| < K exp(—kon). (32)
B. Mean ODE

This subsection is devoted to deriving the limit dynamic
system resulted in interpolation of centered tracking errors. We
examine 6,, = 6,, — 0,,. Define

g1 (t) = b, (33)
Then 6#(-) € D"[0, 00), the space of R™-valued functions that

are right continuous, have left-hand limits endowed with the
Skorohod topology [2], [6]. We will need another condition.

for ¢t € [nu, np + u).

(A3) Asn — o0
1 ni+n
— 3 En,pje; —0, in probability

" Jj=n1

1 ni+n

- Z E.,. ;¢ — B, in probability.

J=n1

In the following analysis, we need to deal with a term of the
form

(t+5)/u—1

Z (Ox — Ors1)/ V10

k=t/p

Here and henceforth, quantities such as ¢/ and (¢t + s)/p are
meant to be their integer parts, for notational simplicity. For
subsequent use, we present the following lemma.

Lemma 12: As pp — 0

(t+s)/u—1
E| > (0k —brs1)| = O(n); (34)
k=t/u
for 0 < s satisfying sy < 1
(t+5)/n—1 ?
E|| > (0h—0k1)| 10;:5<t/u| = O(sp). (35)
k=t/p

Proof: To verify the first equality, noting the elementary
property
P(gk = gt/ 0k+1 = g]) = P(gk = gi)P(gk-i-l = §]|0k = 5;)
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the fact p§; = 6;; + €q;; given by (3), and P(6), = 9;) <1, for
all k£, we have

(t+5) /=1 (t+5)/u—1
E Z (O — Ory1)| < Z E|0; — Op41]
k=t/p k=t/u
m m (t+s)/p—1
=33 > 16:—0,P(0k = 0i, 0011 = 6))
i=1j=1 k=t/u
(t45)/u—1

As for the second inequality, by the Markov property and
using telescoping

(t+s)/u—1 2

E > bk —bOksr)| 10:1<t/n
k=t/p

=E Hgt/u - 9(t+s)/u|2| 01/

=D > 10 -6

=1 j=1
X P (Orsyn = 03l0u = 0:) Ly, 5,5 (36)

Using the transition matrix given by (3) and Newton’s binomial
expansions, the (s/p)-step transition matrix

s/p

(T+eQ)m =3 <(Sé“)) (cQ) /M
=0
s/p
=T+0 Y (s/w)'e
=1
s/p
=I+0 Z(su)l =T+0(su) (37)
=1
since ¢ = O(u?). Using (37) in (36) yields (35). 0

In view of Lemma 12 together with (5), we have

gn-l—l = 5n - N‘Pn‘p;lgn + ppnen + pPn (38)

where Ep, = O(u). We state the assertion regarding the limit
ODE as follows.

Theorem 13: Under (A1)~(A3) and assuming that b = 56‘
converges weakly to #°, then §#(-) defined in (33) converges

weakly to 6(-), which is a solution of the ODE

ia(t) = —Bi(t),

t>0, 6(0) = #°.
dt >0, 6(0)

(39)

Remark 14: This theorem provides us with the evolution of
the tracking errors. It shows that 8,, — 6,, evolves dynamically so
that its trajectories follows a deterministic ODE. Since the ODE
is asymptotically stable, the errors decay exponentially fast to 0
as time grows.

Since the proof of the diffusion approximation in the fol-
lowing section uses similar techniques and is more difficult, we
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omit the proof here. However, we prove the following corollary
holds.

Corollary 15: Under the conditions of Theorem 13, for any
sequence t, — oo as p — 0, §*(- + t,) converges to 0 in
probability. _

Proof: Consider the process 8% () = 6#(-+t,,). Using the
same argument as in the proof of Theorem 13, {##(-), §*(-—T)}
is tight. Extract a convergent subsequence (still index it by u)
with limit (6(-), f7(-)), which satisfies the ODE (39). Note that
6(0) = 67(T). By virtue of Theorem 6, {6,,} is tight, so is
{67(0)}. Moreover, the limit ODE leads to

62(T) = exp(~BT)fr(0) — 0,

as 1" — oo.

The desired assertion then follows. O

C. Diffusion Limit

We need one more condition.

(A4) /u Z?Ltl/ " E, ;e converges weakly to a Brownian

motion with a covariance Xt for a positive-definite X.
Moreover

net/pntt/u

> Y E.pigieier| < K.
k=n

j=n

To proceed, define u,, = (gn — 0n)//1r. We obtain

gn - €n+1

N (40)

Un41 = Up — [Pr P Un + /Hpnen +

The following lemma holds.

Lemma 16: Under conditions (A1)—(A4), thereis an IV, such
that {u,, : n > N} is tight.
Proof: This is a corollary of Theorem 6. O

Next, define the continuous-time interpolation u*(-) as

ut(t) = u, fort € [u(n — N,), p(n — N,) +p). (4D

Remark 17: Note that in (A4), we have assumed the conver-
gence to a Brownian motion. Sufficient conditions guaranteeing
the convergence of the scaled sequence to the Brownian motion
in (A4) are readily available in the literature; see, for example,
[2], [6] among others. For instance, if {¢ne,} is a uniform
mixing sequence with mixing rate 1, satisfying >, 1/1,1/ 2 <
00, the classical result in functional central limit theorem (see
[2], [6]) implies that \/;723/ u=t pje; converges weakly to a
Brownian motion process w(¢) whose covariance is given by
Yt, where

¥ = Epopjel + ZEcijpgejeo + ZEcpocp}eoej. (42)
=1 =1
Theorem 18: Assume that (A1)-(A4) hold, and that u*(0)
converges weakly to u°. Then the interpolated process u*(-)
defined in (41) converges weakly to u(+), which is the solution
of the stochastic differential equation

du(t) = —Bu(t)dt + X2 dw(t) u(0) =u’  (43)

?
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where w(+) is a standard r-dimensional Brownian motion, B
and X are given in (A2), Section II and (A3), Section IV, and
¥1/2 denotes the square root of ¥ (i.e., ¥ = 21/2(21/2)’).

Remark 19: Since B is symmetric positive definite, the ma-
trix —B is negative definite and hence Hurwitz (i.e., all of its
eigenvalue being negative). It follows that

o0
Y= / exp(—Bt)X exp(—Bt)dt (44)
Jo

is well defined. In fact, Y is the stationary covariance of the dif-
fusion process and can be obtained as the solution of the Lia-
punov equation

B+ BY = ¥; 45)
see [17, Ch. 10] for further discussion. In view of Theorem 18,
6 — 0, is asymptotically normally distributed with mean 0 and
covariance ;2. This covariance is identical to that of the con-
stant step size LMS algorithm estimating a constant parameter
(i.e., ¢ = 0). The expression for the asymptotic covariance is
not surprising. Since #,, is a slowly varying Markov chain, its
structure of transition probability matrix P* makes the chain act
almost like a constant parameter, with infrequent jumps. As are-
sult, the process with suitable scaling leads to a diffusion limit,
whose stationary covariance is the solution of the Liapunov (45).

Remark 20: Before proceeding with the proof of Theorem
18, it is worthwhile considering the following intuitive expla-
nation. Consider the first-order time discretization of the sto-
chastic differential equation (43) with discretization interval 1
(see (41)) equal to the step size of the LMS algorithm. The re-
sulting discretized system is

Unt1 = Un — pBu, + /a2 0, (46)

where v,, = w,+1 —w, is a discrete-time white Gaussian noise.
By comparing (46) with (40), it is intuitively clear that they
are equivalent in distribution. In particular, by stochastic aver-
aging principle, the fast variable ¢,, ¢/, behaves as its average B
yielding the second term in (46). The equivalence in distribution
of the third terms in (46) and (40) can be seen similarly. Thus,
discretizing the continuous-time process (43) yields (at least in-
tuitively) the discrete-time process (46).

The proof that follows goes in the reverse direction, i.e., it
shows that as the discretization interval y — 0, the discrete-time
process (40) converges weakly (in distribution) to the contin-
uous-time process (43) under suitable technical assumptions.
The key technical assumption for this weak convergence of a
discrete-time process to a continuous-time process is that be-
tween discrete-time sample points, the process should be well
behaved in distribution. This well behavedness is captured by
the tightness assumption which roughly speaking states that be-
tween sample points, the process is bounded in probability. The
main tool used below to prove the weak convergence is the “mar-
tingale problem” formulation; see Step 2 of the proof.

Proof of Theorem 18: To establish the result, we use the
martingale averaging techniques (see [17, Chs. 8 and 10]),
which requires the tightness of the sequence be verified and the
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limit be identified as a solution of an appropriate martingale
problem. The proof is divided into several steps.

Step 1: It is difficult to verify the tightness of {u*(:)}. To
circumvent the difficulty, we use an N-truncation device. To be
more specific, for each N > 0, let Sy = {u : |u] < N} be
the sphere with radius N and let a smooth truncation function
be defined by

¢ (u) = {0, ifu€R" — Sy1.

Let
ulo ) = ul — ppnoul ¢ (ud) + ipne _{_M_
TL+1 n-n \//7
Define the corresponding interpolated process u**" (-) by
ut N () =wy,  fort € [u(n— Ny),p(n = N,) + p).

Then u* N (-) is an N-truncation for u*(-) [17, p. 284].

Lemma 21: Under (A1)—~(A3), {u""(-)} is tight.
Proof of Lemma 21: Foreach § >0,¢>0,and 0 < s < 6,
we have

Eu N (t+ 5) — uN ()]

(t+5)/u—1
> il g (u))
j=t/n

(t+5)/u—1 (ts+s) /u—1

< Ki”EY

tEp| > ) Eldeca
J=t/p k=t/p
K |erse 2
2 e 0.
+ 1 t Z [03 9]+1] (47)
i=t/n

By virtue of the boundedness of {u)} and {¢,¢],}, the first
term on the right-hand side of (47) is bounded by O(s?). In view
of (A3) part a), the second term is bounded by O(s). Using (35)
and noting 0 < s < 0

lim lim sup —E |0t45)/ = Orypl” = lim O(8) =
W

6—0 40 6—0
Consequently, it is easily verified that
hn%] limsup E|u*™ (t + s) — uN (t)]> = 0.
n—0
Thus {u* ()} is tight. O

Step 2: Extract a weakly convergent subsequence, and still
denote it by u*" (+) for notational simplicity. Denote the limit
by u™ (+). We have

(t+s)/u—1
ut Nt s)—ut N =—p Y eiiul g (uf)
Jj=t/u
(t+s)/pn—1 (t+s)/n—1 0. —0.
+VH Z piej + Z 9L 4g)
j=t/n Jj=t/p z
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By virtue of (34) in Lemma 12
(t+s)/n—1 0:— 0,01
E| Y LR =0W/vi=0\/n).
-z VI
j=t/u
Thus, it does not contribute anything to the limit, and
(t+s)/p—1
W Nt s) =N == Y euleY (uf)
j=t/u
(t+s)/n—1
VY wieito(l) (49)
Jj=t/n

where o(1) — 0 in probability as ;+ — 0 uniformly in ¢. There-
fore, we can ignore the o(1) term in (49) henceforth.

We proceed to use the martingale averaging techniques [17,
Ch. 8] to complete the proof. We will show that the u/" ()
converges weakly to u” (+), which is a solution of the truncated
stochastic differential equation

du™ = —BuN ¢ (uMN)dt + 2V % dw (50)
where w(+) is a standard Brownian motion, and B and ¥ given
by (A3). The key result used below is that proving u*" (-) con-
verges weakly to ™V (+) in (50) is equivalent to verifying that
u®N () is a solution of the martingale problem with operator

Sl () NoN(

LN f(uN) = — V£ (u™N)Bu u™) (51)
for any C? function with compact support. Note that £ is the
generator of the diffusion (50), and Vf and V2f denote the
gradient and Hessian of f(-), respectively. The phrase “u” ()
is a solution of the martingale problem” means that we need to

show that

t+s
™ (4 5)) — Fu™ (1)) - / £ f(u™ () dr

is a continuous-time martingale. A necessary and sufficient con-
dition for u®¥ (-) to satisfy the above continuous martingale prop-
erty is that (see [6, p. 174]) for any arbitrary positive integer ng,
for all j < ng, bounded and continuous functions A;(-), and
0<t;<t<t+s

FuM(t +5)) = F(u™(2))

t+s
_ /t LNf(uN(T))dT]:Q (52)

Thus, to prove u*™ (-) converges weakly to u™¥ (-), we only need
to show that (52) holds. Note that (52) relates to distribution of
ulN () at times t1, . .., , tng» 1.€., finite-dimensional distributions.

To verify (52), we work with the sequence indexed by p,
namely, {u*""(-)}. Since the development is along the line of
[17, Ch. 10], we will not provide the details; we will also sup-
press the function f(-) for simplicity.
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Choose a sequence of integers {n,} such that n, — oo as
w — 0but yun, = 6, — 0. By virtue of the continuity and the
smoothness of ¢™ ()

(t+5) /=1
’ ’
wo Y, e at ()
i=t/n
(t+s)/p—1 1 ing,+n,—1
N _N N
= > b > eihull,a (ul,) +o(1)
in,=t/p © j=in,

(53)

where o(1) — 0 in probability as 1 — 0 uniformly in ¢. By
virtue of (A3) part b)

ing4n,—1
- Z E;,, 0j¢; — B in probability as y — 0.

n =
H J=in,

Thus, as o — 0,46, — 7 (and, hence, 6, +6,, — T), we obtain
that
(t+s)/n—1 t+s
1 Z ij(p;uquj\ (u;\) — / Bu™ (7)g™ (uN (7))dr
i=t/n t

(54)

by virtue of the weak convergence of u*+" (-), and the Skorohod
representation. Likewise, detailed estimates yield

(t+s)/n—1 t+s
N Z pje; — / $12dw, aspu — 0. (55)
Jj=t/n t

Step 3: Using the technique of martingale problem approach
as in [17, Chs. 8 and 10], we have demonstrated that the limit
u®N(+) is a diffusion process satisfying (50).

Note that (43) is a linear stochastic differential equation and
hence has a unique solution for each initial condition. By a
piecing together argument (see [17, pp. 284-285]), letting N —
00, we obtain that the untruncated process u*(-) also converges
weakly. O

D. Iterate Averaging and Minimal Window of Averaging

In this subsection, we illustrate the use of iterate averaging for
tracking the Markov parameter 6,,. Iterate averaging was origi-
nally proposed in [25] for accelerating the convergence of sto-
chastic approximation algorithms. It is well known [17] that for
a constant parameter, i.e., ¢ = 0 in (3), and decreasing step size
(e.g., p = 1/n7 with v < 1 in (4)), iterate averaging results
in asymptotically optimal convergence rate, i.e., identical to re-
cursive least squares algorithm (which is a matrix-step-size al-
gorithm). In the tracking case for a random-walk time-varying
parameter, in general, iterate averaging does not result in an op-
timal tracking algorithm [19]. In light of Theorem 18, itis shown
later for the slow Markov chain parameter that iterate averaging
results in an asymptotically optimal tracking algorithm.

The rationale in using iterate averaging is to reduce the sta-
tionary covariance. To see how we may incorporate this into the
current setup, we begin with a related algorithm

—~ ~ I ~
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where I" is an 7 X 7 matrix. Redefine u,, = \/n(#,, — 6,,). Set
tn = >5—1(1/7) and let u°(t) be the piecewise-constant in-
terpolation of w,, on [t,,,t,,1) and u™(t) = u°(t + t,,). Then
using analogues argument, as previously, we arrive at v (+) con-
verging weakly to u(-), which is the solution of the stochastic
differential equation

du = (=T B 4 1/2)udt + TS ?dw. (56)
Note that (—=T'B + 1/2) and T'X./? replace — B and ¥ in (43).

The additional term /2 is due to the use of step size O(1/n)
[17, p. 329]. Minimizing the stationary covariance

/Oo exp[(—=I'B + I/2)t]TST exp[(—BI" + 1/2)t]dt
0

of the diffusion given in (56) with resect to the matrix parameter
I leads to the “optimal” covariance B~*X B~ 1.

Recall from (30) that our interpolation is taken with ¢ €
[n, un + ). Consider the LMS algorithm (4) together with
an iterate average

M’50+t/u—1A
o=t Y (57
j=no

for a sufficiently large n¢. That is, the average is over a window
with window width O(1/u), and is the so-called minimal
window width of averaging (see [17, Ch. 11]).

The analysis of the iterate averaged LMS algorithm (4) to-
gether with (57) for tracking the slow Markov chain proceeds
as follows: Letting ¢ and ¢» be nonnegative real numbers that
satisfy t1 4+ to = t, define

tu-i-i—}—l t“+tl—}—1
I’L ~ ~ M ~
bn =" > 6 and bn =" (6; —0;) (58)
J=t,—2 j=ty =2

where t,, — 00 as i — 0. Then consider the scaled cumulative
tracking error

_ H n

T () = 4 @ —9,). (59)
Using a similar argument as [17, p. 379], we obtain the fol-
lowing.

Theorem 22: Assume (A1)—(A3) hold. For each fixed ¢ > 0,
the scaled cumulative tracking error " (t) of the iterate aver-
aged LMS algorithm (i.e., (4) together with averaging (58)) con-
verges in distribution to a normal random vector %(¢) with mean
0 and covariance B~!X B/t + O(1/t?).

Remark 23: Note that B~'¥B~1/t is the optimal asymp-
totic covariance of recursive least squares when estimating a
constant parameter. Note that the number of iterates within
the window of averaging is ¢/u (¢/u = m is an integer by
our convention) and p/t = 1/n. Then Theorem 22 indicates
that within this window ©,, ~ N(0,B~'SB71(u/t)) =
N(0, B~YXB~1/(# of iterates within the window)).

Instead of using the arithmetic mean in (57), another possible
iterate averaging LMS algorithm is obtained by using (4) to-
gether with a weighted average of the form

Ont1 = (1= &p)Oy + pibr 1.
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Here, the forgetting factor « is a small positive constant. The
tracking analysis of this algorithm is similar to Theorem 22 with
1/a replacing the role of ¢. Ignoring an exponentially decaying
term, we redefine the scaled cumulative tracking error as

L1 L
_ ~ ~ \NT T
W) =ayE S (1—aw) (@ —6)
jztu_t;z

where t1 + t2 = 1/a. In this case, 1/(ap) (with integer part
convention used) is the effective number of iterates within the
averaging window; see [7, pp. 379-380] for further discussion.

E. Hypermodel With Deterministic Holding Times and
Random Jumps

In this paper, the hypermodel considered so far is a Markov
chain that has a nonzero (but small) probability of jump to a
new state at any given instant. We now briefly consider a simpler
problem where the parameter is subject to infrequent but random
jump changes once every £ time units, where the holding time
{ is deterministic but unknown. Such problems arise in access
controllers with periodic policies, see Section V-C.

Suppose that the parameters only change at multiples of ¢ =
|1/¢], where |z] denotes the integer part of z. With n as usual
representing the global discrete time, denote the local time in
an interval i/ < n < (i 4+ 1){ fori = 0,1..., as k. Hence
k = n(mod ¢). Denote 8, for it < n < (i+1)¢ by #i’. Instead
of (A1), assume that the hypermodel evolves as

9t = U, i=0,1,2,..., il <n<(i+1)
where {U*} is a sequence of independent bounded random vari-
ables. For example, {U"} may be a process taking finitely many
values. In this case, 9’}3 is a finite-state process that changes state
every £ time points.

Relax (A2) so that {¢,,, e, } is 8,, dependent. In terms of the
local time k denote ¢,, = (i, define B as in (6). Define ©; =
0,‘;[ . Then on the slow time scale ¢« = 0,1, .. ., the evolution of
the hypermodel is ©; = U,

Assume that the LMS algorithm (4) is used to track the pa-
rameter #,, with . = O(e?). Denote the LMS estimates as
@\ﬁ’”} = Big4. Similar to (33), define the tracking errorNH',‘f =
g,zf — #i¢ and its continuous-time interpolation §#-¢(¢) = i for
eacht € [uk, pk+ ). Then, by a straightforward application of
the results in [16] (see also [17]) for each of the iterations within
il < n < (i+1)¢, it can be shown that 6" () converges weakly
to 6"(-), which is the solution of the following two-time-scale

system: §°(-) evolves as a deterministic ODE (cf. (39))
dgi(t) i
N\ By
o 6°(¢) (60)

which is coupled with the random algebraic equation ©; = U’
(that determines B’ in (60)). Since the ODE (60) is asymptoti-
cally stable, the tracking error decays to zero exponentially fast.
Similarly, using the results in [16], the diffusion approximation
(43) holds with B and ¥ replaced by B? and X:*. Thus, for the
above hypermodel, iterate averaging as in Section IV-D also re-
sults in a tracking algorithm with asymptotically optimal con-
vergence rate.
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V. EXAMPLES: TRACKING SLOW HMMS AND ADAPTIVE
MULTIUSER DETECTION

As in Section IV, throughout this section we assume that
e = O(p?) or p = O(y/2), i.e., the adaptation speed of the
LMS algorithm (4) is faster than the Markov chain dynamics. To
gain further insight, Section V-A is concerned with probability
bounds; Section V-B deals with estimating the underlying state
of an HMM when the Markov chain has slow dynamics; finally,
Section V-C studies the effect of Markovian admission/access
policies on adaptive multiuser detection in DS/CDMA systems.

A. Probability Bounds

Here, we assume that {¢,,,e,} is a sequence of indepen-
dent and identically di/s\tributed (i.i.d.) random variables. The
estimates indicate that ¢, — ¢, is asymptotically normally dis-
tributed with mean 0 and covariance p with 3 given by (44).
Note that ¥ is identical to the error covariance matrix of the
LMS algorithm estimate when the underlying parameter 6,, is
a constant for all time n. Thus, we have shown that the LMS
algorithm for tracking a slow Markov chain behaves identically
(in terms of asymptotic covariance) to the LMS algorithm es-
timating a constant parameter. In the application examples to
follow, we require Gaussian approximations for finite values of
n. We consider two cases. R _

i) Gaussian {y,,, e, }: Then at time n, 6,, — 6,, ~ N(0, uX).
Denote by @H and 6, ; the 7th component of @L and §,,, respec-
tively. For any a > O and each s < r

N 9\n 1 911 7
P({Bns =i > a) =P | 2t > &
\ 12 \ i
+P an _Nen,i S _ a~
\ 12 U
_op [ 1P _ il s | ©n
\/ Hii X
A rough exponential-type upper (see [7]) bound gives us
~ .U’iii gn i 97, i
P(10,,:—0n.i|>a) < 2exp exp | ———="
\/ i
Likewise, we obtain
P(|fi = | < )
S Bri — Oni
>1—-2exp - exp | == L

\V uiﬁ,

We can further fine tune the above approximation by use an
idea of Feller as follows. Denote the standard normal distribu-
tion function by ®(z) and the corresponding density function
by z(z). Then

@(az):/m z(s)ds, and z(z) = (1/V27) exp(—z2/2).
- (62)
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Then (61) implies that

P(|fn,i = n > ) =22 — (63)
Wi
via a normal approximation.
By virtue of [7, p. 175]

-3

ltiu‘ ltiu‘
« «
<1l-

Owing to (63), it follows that

(|n1_0n1|>a \/7

We also obtain the lower bound
P(|6,; —
— — -3
/2 U2 X
Z _ _
T « «

Thus, the following result is obtained.

JE
Min’

— . (64
< 2u2u) 4

9n,,’i| Z a)

2
exp <— aN > (65)
2u%;

Remark 24: Suppose that the conditions (A1)—(A3) are sat-
isfied. In addition, assume that {¢,,, ¢,,} is a sequence of jointly
normally distributed random variables. Then both (64) and (65)
hold.

ii) Non-Gaussian {¢,,, e, }: In view of Theorem 18, (8,, —

0.)/ /I is asymptotically normal with mean zero and covari-
ance ¥ = (E ;) € R™*". Thus, (0,“ — 0n,i)//I is approxi-
mately normal with mean 0 and variance iii and

(nz_ n7)/

is approximately a standard normal random variable. This
section aims to derive further bounds without assuming normal
distribution on the signals {p,,e,} with the help of the
Berry-Essen estimates, given in the following lemma, whose
proof is in [8, Theorem 1, p. 524].

,U/in

Lemma 25: Suppose that { X, } is a sequence of i.i.d. random
variables satisfying EX,, = 0, EX? = ¢? > 0,and p =
E|X,|? < co. Then the distribution function of

Su = 3" Xif(ov)

denoted by Fs, (), satisfies

3p
a3\/n

where ®(x) is the standard normal distribution.

|[Fs, (z) — ®(x)] <

Remark 26: Suppose that the conditions (A1)-(A3) are
satisfied, and that {¢,,e,} is a sequence of (not necessarily
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Gaussian) i.i.d. random variables such that Ep,e, = 0,

E [ongle2] > 0, and E|p,e,|* < co. Then for any o > 0

and for some K > 0

Pl-——=<Z<——|-KVi
/1,21'1' Nzii
< P(|fni — O] < @)
<P|-———=<Z<—— | +K/i (66)
[y i

where Z denotes a standard normal random variable. Then we
can proceed as in the Gaussian case to obtain the upper and
lower bounds for P(|0n i — 0, < «). In addition, we can
also obtain bounds on P(|/€\nZ — 0, > «a). Moreover, large
deviations upper bounds may also be obtained. Furthermore,
for correlated signals, we may proceed to obtain Berry—Essen
estimate. We will omit the details, however.

B. Tracking Analysis of Slow HMM

In this subsection, we analyze the usefulness of the LMS algo-
rithm (4) for estimating the state of a HMM with slow dynamics.
As mentioned in Section I, given the computational efficiency of
the LMS algorithm for estimating the state of an HMM, there is
strong motivation to analyze the performance of the algorithm.
Given that the underlying parameter 6,, is a finite-state Markov
chain, the probability of error of the estimate quantized to the
nearest state value is a more meaningful performance measure
than the asymptotic covariance.

A conventional HMM [5], [28] comprising of a finite-state
Markov chain observed in noise is of the form (1) where ¢,, = 1
for all n and the states of the Markov chain 8;, 1 < i < m are
real-valued scalars. For this HMM case, the LMS algorithm (4)
has complexity O(1), i.e., independent of m.

Let HH denote the estimate #,, of (4) quantized to the nearest
Markov state, i.e.,

87 =B;.,  wherei* = arg min 0; —B,]. (67
Assume that the zero mean scalar noise process {e,, } in (1) with
variance o satisfies the condition in Lemma 25.

Error Probability for Slow HMM: For notational con-
venience assume that the states of the above HMM are
ordered in ascendmg order and are equally spaced, i.e.,
0, <0< ---<Bp,andd= 9L+1 — 6, is a positive constant.

Equation (45) implies that S = o2 /2. The probability of error
can be computed as follows:

P (05 £6,) =P8, —00>d/2 | 6, =

m—1

+>° P18

7

8,)P(6,=01)
0| >d/2 | 0, =0:)P(6,=0)

=(6 —b, >d/2 | 0, F#0m)P(00=0.m)-

We summarize this in the following result.
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Theorem 27: Suppose that the HMM satisfies (A1), (A2),
and {e,} is a sequence of zero mean i.i.d. random variables
that satisfies the condition in Lemma 25. Then the probability
of error of the LMS algorithm estimate 8 (67) in estimating the
state 6,, of the HMM is

P (5{3 ” en) — 11 (en)@° + 2(ma(en) + - --

d

d
+ T —1(en))®@°

v

=(2—mi(en) — T (en))®e

—i—7rm ETL

(69)

20/ 2

where ®°() is the complementary Gaussian cumulative distri-
bution function ®“(z) = [ z(s)ds.

Note that the complement Gaussian distribution above is
commonly referred to as () function in the communications
literature. Since () is used as generator in our formulation, we
use ®°(z) to denote the complementary Gaussian distribution.
The above result (based on weak convergence) is to be con-
trasted with the following computation of the error probability
using the mean-square convergence in Corollary 7 above. Using
Chebyshev’s inequality that

P(|6, — 0, > d/2|6,, = 0;) < Kp/d?

(where K is a positive constant independent of 1 and d) together
with (68) and Corollary 7 yields

P (5{3 £ en) < Ku/d.

Expression (70) is less useful than Theorem 27. However, it
serves as a consistency check. As p and € — 0, the probability
of error of the tracking algorithm goes to zero.

Comparison of Error Probabilities: 1t is instructive to com-
pare the probability of error expression (69) for the LMS algo-
rithm (4) tracking a slow Markov chain parameter with that of
the asymptotic HMM filter derived in [9]. By virtue of [35, eq.
3.35], the following upper bound holds for ¢ in (69):

AR A
N = Vaw iz P <‘ 20 )

As described in [35], the above is an excellent approximation
for small p. In [9], it is shown that the steady-state asymptotic
HMM filter with O(m) computational complexity has error
probability K 12 log(1/u?) where the constant K depends on
the steady-state probabilities of the Markov chain. These error
probabilities converge to zero much faster than that of the O(1)
complexity LMS algorithm with error probability upper bound
in (71).

Error Probability and Iterate Averaging: lterate averaging
can be used for vector state HMMs to reduce the error proba-

(70)

@(',

(71)
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bility of estimates generated by the LMS algorithm. Consider
the following vector state HMM: 0; € R, ©n € R is a se-
quence of i.i.d. random variables statistically independent of 6,,
and e,,, M = {f,05}. Define d = A, — 6; The probability of
error of the LMS algorithm in tracking this vector state HMM is

P (551 ” an) —p (|§n — 01| > |6, — 05)|6,, = 51)
X P(ﬂn = 91)
+P (|5n — G| > (6, — 01)|6, = 92)
x P(6,, = 05). (72)

The weak convergence result Theorem 18 implies that [0, —6,.]
is asymptotically normal with mean 0 and variance p3. This im-
plies that conditional on 6,, = 1, (6,, — 0,,)'d ~ N (0, ud'>d).
Substituting in (72) yields

P (55 4 an) _ g [ T2

\/ pd'Sd

In the case of iterate averaging, see Theorem 22, Y in (73) is
replaced with B~'X B~ defined in (A3) of Section IV-C. Since
Y. — B7'YB~! > 0 (positive definite) and ®° is monotonically
decreasing, iterate averaging yields a lower probability of error.

(73)

C. Effect of Admission/Access Control on
Adaptive Multiuser Detector

In this subsection, we examine the tracking performance of
an adaptive linear multiuser detector in a cellular DS/CDMA
system when the profile of active users changes due to an
admission or access (scheduling) controller at the base station.
The main point is to show that in many cases, the optimal
LMMSE multiuser detector varies according to a finite Markov
chain—hence, the above weak convergence analysis for the
LMS algorithm directly applies to the corresponding adaptive
linear multiuser detector which aims to track the LMMSE
detector.

Consider a synchronous DS-CDMA system with a max-
imum of K users and an additive white Gaussian noise channel.
After the received continuous-time signal is preprocessed and
sampled at the CDMA receiver (the received signal is passed
through a chip-matched filter followed by a chip-rate sampler),
the resulting discrete-time received signal at time n, denoted
by r,, is given by (see [23] for details)

= A(1)b + > Ak

keEK,

(k) + wn.  (74)

Here, the user of interest is user 1, K,, denotes the active users
(interferers) at time n, 7, is an N-dimensional vector; N is
called the processing (spreading) gain; s(k) is an N-vector de-
noting the normalized signature sequence of the kth user, so that
s'(k)s(k) = 1; b, (k) denotes the data bit of the kth user trans-
mitted at time n; A(k) is the received amplitude of the kth user;
w, 1s a white Gaussian vector with mean zero and covariance
matrix o/ where I denotes the N x N identity matrix and ¢ > 0
is a scalar. It is assumed that the discrete-time stochastic pro-
cesses {b,(k)}, and {w, } are mutually independent, and that
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{b,,(k)} is a collection of independent equiprobable £1 random
variables.

Specification of Active Users: Let P(X) denote the power
set of an arbitrary finite set X . For user 1, the set of all possible
combinations of active users (interferers) is (where () denotes
the null set, i.e., no interferer)

P({2,...,Ko})
= {wl {2}/ {273}7 {274}7 cee {27 3,4,..., KU}}

Then P({2,. .., Ko}) denotes the state space of the finite-state
process K ,,. Each time n, K,, assumes one of 20~1 possible
states in P({2,..., Ko}).

We assume that the network admission/access controller op-
erates on a slower time scale (e.g., multiframe-by-multiframe
basis) than the bit duration, i.e., the finite-state process {K,,}
evolves according to a slower time scale than the bits {b,,[k]}.
This is usual in DS/CDMA systems, where typically a user ar-
rives or departs after several multiframes (i.e., several hundreds
of bits). Then K ,, can be modeled as a slow finite-state Markov
chain with transition probability matrix I + () in the following
examples.

i)  Consider a single class of users (e.g., voice) with Poisson
arrival rate A and exponential departure rate ;. Then
the active users form a continuous-time Markov chain
(birth death process) with state space P({2,...,Ko})
and generator (). The time-sampled version, sampled
at the chip rate ¢, is then a slow Markov chain with
Pe =1+ €Q.

ii) Markov decision-based admission control of multiclass
users: The formulation in [33] considers admission con-
trol in a multiservice CDMA network comprising voice
and data users. Assuming a linear multiuser detector
at the receiver, the admission controller aims to min-
imize the blocking probability of users seeking to ac-
cess the network subject to signal-to-interference ratio
(quality-of-service) constraints on the active users K.
Assuming that the arrival rate of voice and data users
are Poisson and departure rates of active users is ex-
ponential, the problem of devising the optimal admis-
sion policy is formulated in [33] as a semi-Markov de-
cision process with exponential holding times. Again,
assuming that the arrival and departure of users are at a
slower time scale (e.g., several frames) than the bit du-
ration, a time-sampled version of this continuous-time
process at chip rate € results in a slow Markov chain.

iii) Periodic access control of multiclass users: In access
(scheduling) control [32], typically two classes of users
are considered—Class R of real-time users (e.g., voice)
and Class NR of non-real-time users (e.g., data users).
Access control is required when the network admission
controller admits more users than it has the capacity
to accommodate in order to reduce call blocking and
handoff blocking probabilities. The access controller
regulates the transmission rates of NR users since they
are tolerant to delays. By formulating the access control
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problem as an average reward constrained Markov de-
cision process, [32] shows that a Markov access control
strategy is optimal in the sense that the transmission
rate of NR users is maximized subject to signal-to-inter-
ference ratio (SIR) and outage probability constraints.
The Markov access control strategy determines on a
multiframe-by-multiframe basis which subset of users
in NR are allowed to transmit in conjunction with
users in R. The term Markov strategy means that the
particular subset K ,, of users in NR that are allowed to
transmit at each frame are determined by the trajectory
of a homogeneous Markov chain. Since K, evolves on
a multiframe basis, in the bit-interval time scale n, K ,,
is a slow Markov chain. As described in [14], regulating
the use of a wireless network by a Markov chain is
easily implemented by broadcasting the transition prob-
ability matrix of the Markov chain to all mobile stations
in the network. For example. in the SEEDEX medium
access protocol [14], each mobile station generates a
local version of the Markov chain K ,, by using the same
seed for its pseudorandom number generator. Another
widely used access control policy is the periodic access
control policy where user groups in NR transmit at pe-
riod intervals. If the length ¢ of these intervals is large,
i.e.,, £ = O(1/e), then the hypermodel of Section IV-E
applies.

In the following, we consider the effect of the above Mar-
kovian or periodic admission/access control strategies on
three types of adaptive multiuser detectors: decision-directed
receiver, blind receiver, and precombining receiver. In all three
cases, the optimal receiver weight coefficients evolve according
to a finite-state Markov chain and the adaptive linear receiver
is an LMS algorithm which attempts to track this Markovian
weight vector.

Adaptive Decision-Directed Multiuser Detection: We as-
sume that user 1 is the user of interest. Assuming knowledge
of the active user set K ,,, the optimal linear multiuser detector
seeks to compute the weight vector ¢}, such that

e = arg mcin Ex {Ab, (1) — c’rn}2 (75)
where b,,(1) is a training data sequence (or else the estimates
of the bits when the receiver is operating in the decision di-
rected mode). As shown in [26], ¢}, = R ls; where R,, =
E?n {r,r!}. Given K, is a slow Markov chain, it follows from
(74) that R,, and thus the optimal weight vector ¢}, are also
2(Ko—1)_gtate slow finite-state Markov chains, respectively. It is
clear that the above formulation is identical to the signal model
(1) with y,, = Ab,(1) (observation), 6, = ¢ (slow Markov
chain parameter), ¢, = 7, (regression vector). Indeed, {e,},
with e,, = y,, — ¢, 0., is a sequence of i.i.d. random variables
due to the orthogonality principle of Wiener filters.

Now consider the adaptive multiuser detection problem
where the active user set K, is not known. Thus, {,,} is the
observation sequence of an HMM. Hence, in principle, the
optimal (conditional mean) estimate of K, and therefore c
given the observation history (y1,...,y,) can be computed
using the HMM state filter. However, due to the large state
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space (exponential in the number of users Kj), this is com-
putationally prohibitive. For this reason, the adaptive linear
multiuser detector [35] uses the LMS algorithm (4) to minimize
(75) without taking into account the Markovian dynamics of
0, = c},i.e., 0, is the hypermodel (see Remark 4). For such an
adaptive linear multiuser detector, Remark 26 holds implying
that if e = uz, the estimate ¢, of the adaptive multiuser de-
tector is approximately normally distributed with mean cj, and
covariance .

Adaptive Blind Multiuser Detectors: The tracking analysis
of the so-called “blind” adaptive multiuser detection case con-
sidered in [12], [13] proceeds similarly. Assuming knowledge
of the active users K ,, the blind linear multiuser detector uses
the optimal weight vector ¢}, which is the solution of the fol-
lowing constrained optimization:

mcin Efn{c'rn}2 subject to ¢’s; = 1. (76)

Asshownin [12], ¢} = R, 1s1/s]R;1s; which is a slow finite-
state Markov chain since R,, is a slow finite-state Markov chain.
The constrained optimization problem (76) may be transformed
into an unconstrained optimization problem by solving for one
of the elements ¢, ;, ¢ € [1,..., N] using the constraint (76).
With no loss of generality, we solve for the first element c,, ¢
and obtain

]\T
Cnl = (1 - E Sl,icn,i> /51,1

i=2
By defining the (N — 1)-dimensional vector 6, =
(¢n2,-..,¢cnn), we obtain the equivalent unconstrained
optimization problem:

. 2
Compute min Jn  where J,, = Bz (yn —0'0n)". (77
Here, y,, = —7y,1/51,1 and ¢,, denotes the (N —1)-dimensional
vector
Pn = (Tn,z - Tn,181,2/81,1: cees TN — Tn,181,N/81,1)I .

(78)
In the adaptive case, when K, is unknown, i.e., #,, is the hyper-
model (see Remark 4 ), the adaptive blind multiuser detector in
[12], [13] is an LMS algorithm of the form (4), implying that
the above weak convergence results and Remark 26 apply. In
[12], approximate expressions are presented for the covariance
matrix Y.

Precombining Adaptive Multiuser Detectors for Fading
Channels: A performance analysis of MMSE receivers for
frequency-selective fading channels is presented in [21]. In gen-
eral, the optimal receiver weight coefficient ¢}, of the LMMSE
receiver varies rapidly in time depending on the instantaneous
channel values. Here we consider a particular receiver structure,
developed in [18], called a precombining LMMSE receiver
(also called LMMSE-RAKE receiver) which results in the
optimal receiver weight vector ¢, evolving according to a slow
finite-state Markov chain.

The continuous-time received signal for a frequency-selective
fading channel has the form

Ny—1

ZZZA

n= OkEK

cn k l>st nT—7y, l(k)+w(t)
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where T' denotes the symbol interval, L is the number of
propagation paths, w(t) is complex zero mean additive white
Gaussian noise with variance o2, ¢, (k,l) is the complex at-
tenuation factor for the kth user and [/th path, and 73 ; is the
propagation delay. The received discrete-time signal over a data
block of IV, symbols after antialias filtering and sampling at the
rate Ts = T/(SG) (where S is the number of samples per chip,
G is the number of chips per symbol) is (see [18] for details)

vy = 8C,Ab, +n, € CSEN

where S is the sampled spread sequence matrix, C,, is the
channel coefficient matrix, A,, is a matrix of received ampli-
tudes (the time variation in the notation is because inactive
usersie., k ¢ K, are considered to have zero amplitude—thus,
A, is a slow finite-state Markov chain), b,, is the data vector,
and n,, is the complex-valued channel noise vector. Assuming
knowledge of the active users K ,,, the precombining LMMSE
receiver seeks to find ¢ to minimize Efﬂ {C,A,b, —c'r,}>.
The optimal receiver is

¢ =8(8'S+o25;Y) "

where ¥, is the covariance matrix of C,, A,,b,, which consists
of transmitted user powers and average channel tap powers. As
remarked in [18], this shows that the precombining LMMSE
receiver no longer depends on the instantaneous values of the
channel complex coefficients but on the average power profiles
of the channel X,,. Thus, ¢, is a finite-state Markov chain.

In the case when the active users K, are unknown, i.e.,
6., is the hypermodel (see Remark 4 ), the adaptive precom-
bining LMMSE receiver uses the LMS algorithm to optimize
E{C,A,b, — ¢'r,}*. This is again of the form (4) and the
weak convergence tracking analysis of Theorem 26 applies.

Iterate Averaging: In all three cases above, providing
pu = O(g?), iterate averaging (Section IV-D) over a window
of O(1/p) results in an adaptive receiver with asymptotically
optimal convergence rate.

Periodic Access Control: As described in Section IV-E, for
periodic policies, the assumption that the LMMSE receiver
weight vector ¢}, jumps among a finite number of states can be
relaxed. Indeed, as long as ¢}, is bounded and jumps only every
[1/¢] time points, the above results hold.

€ RSGN[, XK LN,

VI. FURTHER REMARKS AND EXTENSIONS

1) Projection Algorithm (8): Using the idea given in [17],
we can develop a projection algorithm. Rewrite the recursive
algorithm as

Orir = On + 1100 (Y — €100) + p12m

where pz, is the vector with the shortest Euclidean length
needed to take 6, + 1o (Yn — n() ) back to the set H if the
iterates ever escape from it. Then we can carry out the analysis
as in the previous sections. We can obtain the following.
Suppose that (A1)—(A4) are satisfied but without the bound-
edness assumption on the signals. Suppose that {onl,, onen}t
is uniformly integrable. Suppose that 9 € HY, the interior of
H . Then the conclusion of Theorem 18 continue to hold.
Without assuming the normal distribution of {¢,,, e,, } and the
independence assumption as in Theorem 26, we can proceed to
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obtain the upper and lower bounds as in [17, Secs. 6.9 and 6.10];
see also the original paper [3]. We omit the details and refer the
reader to these references.

2) Semi-Markov Hypermodels: Finally, in communications
network applications, often 6,, evolves according to a semi-
Markov process instead of a discrete-time Markov chain. The
semi-Markov processes can be considered as Markov chains on
the general state space (M x RT) where M is the finite set de-
fined in (2). It would be of interest to extend the tracking analysis
of this paper to such semi-Markov processes.

3) e = O(p) Case: In the weak convergence analysis of
this paper we assumed ¢ = O(u?), i.e., the parameter evolves
as a Markov chain on a slower time scale compared to the LMS
algorithm.

Recently, in [37], we have analyzed the tracking capabilities
of the LMS algorithm withe = O(p), i.e., the parameter evolves
as a Markov chain on the same time scale as the LMS algorithm.
Somewhat remarkably, in this case, as shown in [37], instead
of having a deterministic ODE limit for the averaged system,
we obtain a Markovian switched ODE limit. Markov swtiching
ODE:s also arise in analyzing the tracking performance of a dis-
crete stochastic approximation algorithm; see [36].
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