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Abstract—Linear dispersion (LD) codes are a good candidate
for high-data-rate multiple-input multple-ouput (MIMO) sig-
naling. Traditionally LD codes were designed by maximizing
the average mutual information, which cannot guarantee good
error performance. This paper presents a new design scheme for
LD codes that directly minimizes the block error rate (BLER)
in MIMO channels with arbitrary fading statistics and various
detection algorithms. For MIMO systems employing LD codes,
the error rate does not admit an explicit form. Therefore, we
cannot use deterministic optimization methods to design the
minimum-error-rate LD codes. In this paper, we propose a simu-
lation-based optimization methodology for the design of LD codes
through stochastic approximation and simulation-based gradient
estimation. The gradient estimation is done using the score func-
tion method originally developed in the discrete-event-system
community. The proposed method can be applied to design the
minimum-error-rate LD codes for a variety of detector structures
including the maximum-likelihood (ML) detector and several sub-
optimal detectors. It can also design optimal codes under arbitrary
fading channel statistics; in particular, it can take into account
the knowledge of spatial fading correlation at the transmitter and
receiver ends. Simulation results show that codes generated by the
proposed new design paradigm generally outperform the codes
designed based on algebraic number theory.

Index Terms—Gradient estimation, linear dispersion codes, mul-
tiple-input multiple-output (MIMO), score function, stochastic ap-
proximation.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) technology
for wireless communications is currently an active

research area. Linear dispersion (LD) codes introduced in [1]
are a good candidate for high-data-rate MIMO signaling over
wireless channels. LD codes use a linear modulation framework
and the transmitted codeword is a linear combination over space
and time of certain “dispersion matrices” with the transmitted
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symbols as combining coefficients (see also [2]). The LD
codes are simple to encode. Furthermore, LD codes can be
decoded very efficiently either by the polynomial-complexity
maximum-likelihood (ML) detector, i.e., the sphere decoder
[3], or by a suboptimal detector, such as the nulling-and-can-
cellation detector [5] or the linear detector (see, e.g., [6]).
Traditionally LD codes (e.g., [1]) only optimize the average
mutual information; and therefore cannot guarantee good error
performance [7]. More recently, full-rate full-diversity linear
space-time codes have been introduced in the literature (see,
e.g., [16]–[19]). In [16], a scheme called threaded algebraic
space–time (TAST) coding is proposed. This scheme falls into
the general framework of LD codes. TAST codes guarantee
full diversity and full rate with arbitrary number of transmit
and receive antennas. The design of the TAST focuses on the
worst-case pairwise error probability (PEP). The PEP, however,
may not be the best performance metric, since it is not true in
general that the codes optimized with respect to the worst case
PEP will end up with the minimum block error rate (BLER). In
[18], linear space–time codes are designed via a deterministic
optimization of the Chernoff union bound. However, the Cher-
noff bound is not an asymptotic tight upper bound of the BLER.

This paper has two main ideas.

1) Average BLER minimization via a gradient estimation
based stochastic approximation algorithm: We design
LD codes with minimum BLER based on stochastic
approximation together with gradient estimation. Sto-
chastic approximation (SA) algorithms with gradient
estimation have been used extensively for optimizing
the performance of discrete-event systems (DES) [8].
Examples of DES include computer-communication
networks, traffic systems and flexible manufacturing
systems, queueing systems, product lines, etc. For most
DES, analytical expressions are not available for the
performance metrics—these metrics need to be opti-
mized via simulation-based optimization [8], [10], [26].
In this paper, we show how these gradient estimation
methods together with stochastic approximation can be
successfully used to design LD codes such that the BLER
is minimized. For MIMO systems employing LD codes,
we do not have an explicit form of BLER. Therefore,
we cannot use deterministic optimization method to
design the optimal (i.e., minimum error rate) LD codes.
The stochastic approximation algorithm with gradient
estimation is ideally suited for such situation. In this
paper, we employ the score function method to obtain an
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unbiased estimate of the gradient of BLER with respect
to the dispersion matrices. We then use this gradient
estimator to optimize the LD codes via the well-known
Robbins–Monro (R–M) stochastic gradient algorithm
[25]. Section III-A gives more perspective on gradient
estimation in stochastic approximation.

2) Spherical parameterization of energy constraint: Our LD
code design problem is a stochastic optimization problem
with an energy constraint that requires the dispersion
matrix coefficients to lie on the surface of a hyper-sphere.
We show that by re-expressing the constrained optimiza-
tion problem in spherical coordinates, it can be converted
into an equivalent unconstrained optimization problem.
That is, the LD codes obtained at each iteration in terms
of spherical coordinates automatically satisfy the energy
constraints. Actually this formulation is equivalent to
using differential geometry to project the derivative on
the tangent space of the sphere [23] and is inspired by
our recent work in reinforcement learning [24]. More
important, this spherical coordinate formulation allows
us to use a straightforward proof from the stochastic
approximation literature to show that the algorithm yields
strongly consistent estimates. Also, since the spherical
coordinate formulation exploits the structure of the en-
ergy constraint, it is much simpler than the usual generic
approaches for constrained stochastic optimization: e.g.,
a primal dual stochastic approximation algorithm to deal
with the constraint (which requires convexity while our
cost function is not convex in general).

Most work on space–time code design assumes ML detec-
tion. For very high data rate signaling, even the sphere decoder
might be too complicated to implement in practice. It is diffi-
cult to design space–time codes where a suboptimal detector
e.g., the nulling-and-cancellation detector as the performance
analysis seems intractable (see, e.g., [27]). One advantage of
the proposed method is that we can optimize the LD codes for
both the ML detector as well as suboptimal detectors such as the
nulling-and-cancellation detector. On the other hand, in MIMO
wireless systems, the individual antennas could be correlated
due to insufficient antenna spacing and lack of scattering [14],
[15]. Moreover, the fading channel statistics may deviate from
the common Rayleigh assumption, due to, e.g., line-of-sight
component. We demonstrate how to design optimal LD codes if
these long-term statistics can be measured beforehand. Finally,
we present simulation results to demonstrate that the LD codes
obtained using the proposed design procedure generally outper-
form the codes designed based on the algebraic number theory,
especially when a suboptimal detector is employed or when the
MIMO channels are spatially correlated.

For the simulation-based code design, one needs to know the
MIMO configurations as well as the fading statistics. We note
that other analytical space–time code design methods (such as
the mutual information criterion [1] as well as the rank-and-
determinant criterion [12]) also require such knowledge. While
the rank-and-determinant criterion does not require the number
of receive antennas, it turns out that the optimal codes do depend
on the number of receive antennas (see [1] and [16]). In our
design, we also need to know the operating signal-to-noise ratio

(SNR) (see also [1]). As we demonstrate through examples, the
codes generated by the proposed method under some fixed SNR
value perform well for a range of SNR of interest.

The remainder of this paper is organized as follows. We for-
mulate the LD code design problem as a stochastic optimiza-
tion problem in Section II. We discuss the design procedure and
the proposed stochastic optimization algorithm in Section III.
In Section IV, we provide some simulation results. The paper is
concluded in Section V. We defer some detailed computations
and proofs to the Appendices.

II. DESIGN OF LINEAR DISPERSION CODES

In this section, we present the signal model for MIMO
systems employing LD codes, and formulate the LD design
problem as a constrained stochastic optimization problem.

A. Signal Model

Consider a MIMO system with transmit antennas and
receive antennas. Assume that the channel is flat fading and

remains constant for symbol intervals, and the fading coeffi-
cient from the th transmit antenna to the th receive antenna
is denoted by . The signal transmitted from the th transmit
antenna at time index is denoted by , while the signal re-
ceived at the th receive antenna at time is denoted by . The
input–output relationship is given by

(1)
where is independent zero-mean complex Gaussian noise
with unit variance. The transmitted energy on all antennas
at any given time is normalized to unity; therefore, is the SNR
at each receive antenna regardless of the number of transmit
antennas. Equation (1) can be written in matrix form as

(2)

where is the matrix of the received signal, is the
matrix of the transmitted signal, is the matrix

of the additive white Gaussian noise, and is the
MIMO channel matrix.

Assume we transmit -QAM symbols with unit
average energy over symbol intervals, the LD transmission
matrix is given by [1]

(3)

where we have decomposed the transmitted symbols into
their real and imaginary parts, i.e., , ,
and are complex-valued dispersion matrices of di-
mension that specify the code. The rate of the LD code
is
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We also assume that the dispersion matrices sat-
isfy the following energy constraint:

(4)

As in [1], we denote and . Denote
the columns of , , , , and , respectively,
by , , , , and and define

(5)

(6)

Then we gather equations in and to form the single real-
valued system of equations [1]

...
...

... (7)

where the equivalent real-valued channel matrix
is given by

...
...

. . .
...

... (8)

The LD codes subsume, as special cases, both V-BLAST [5]
and orthogonal STBC [13]. From (3), we can see that LD codes
are very simple to encode. Furthermore, LD codes can be de-
coded very efficiently by several well-known MIMO demodu-
lation algorithms, such as the sphere decoder [3], the sequential
Monte Carlo (SMC)-based detector [4], the nulling-and-cancel-
lation detector [5], as well as the simple linear detectors.

B. Problem Formulation

The LD codes introduced in [1] are designed to maximize
the average mutual information between the input and output.
As pointed out by [7] and [16], maximizing the average mutual
information does not necessarily lead to better performance in
terms of error rate. Unfortunately, the BLER is difficult to ana-
lyze for arbitrary LD codes. Simulation optimization turns out
to be useful for this scenario. In this paper, we demonstrate how
to optimize the average error rate for LD codes through simula-
tion optimization with gradient estimation. First, we denote

(9)

and denote the set of dispersion matrices as
. With a slight abuse of notation, we also use to

denote the column vector that stacks all the columns of ,
, , and , for , i.e.,

Note that is a -dimensional vector.
Let denote the th block of the received signal corre-

sponding to the th block of transmitted signal and channel
, . Let denote the empirical

BLER for a given set of dispersion matrices . That is,

(10)

where is an indicator function, is the detector output.
Note that for fixed , since is an i.i.d. sequence,

is also an independent identically dis-
tributed (i.i.d.) sequence of random variables. For a given set of
dispersion matrices , the average BLER denoted by
is given by

(11)

The integrals in (11) are over the space (for ),
(for ), where is the discrete set of real-valued constellation
symbols that elements of take value from, and (for

), respectively. For notational simplicity we subsequently omit
the space over which these integrals are defined.

Aim: The design goal is to solve the following constrained
stochastic optimization problem: Given the sequence of empir-
ical BLER measurements for any choice of

, find the optimal set of dispersion matrices to minimize the
average BLER, i.e., compute

(12)

with the energy constraint set given by

(13)

From (11), we have

(14)

where

(15)
Remark 1: Because is Gaussian (as we will show

later), and it is continuously differentiable in , it follows that
is continuously differentiable in . (This point will be

clear in the next section.) Hence, attains a minimum
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on the compact set and the optimization problem (12), (13) is
well posed.

Remark 2: Note that an explicit closed-form expression for
the average BLER is usually not available. Indeed,

also depends on the particular detector employed (e.g.,
ML detector or suboptimal detector). We will use a stochastic
gradient algorithm that uses measurements of the empirical
BLER to compute the optimal LD code .
On the other hand, cannot be computed analyti-
cally. We therefore need to devise a scheme that estimates the
gradient using the empirical BLER measurements

.
Remark 3: Note that the reason we formulate the code design

problem based on the minimum BLER criterion is that it leads
to algorithms that can be proven to converge to the optimum
codes. On the other hand, it remains an open problem to devise
a provably convergent code design algorithm that minimizes the
bit error rate (BER). We discuss more on this in Section III-E.

C. Spherical Coordinate Parameterization

Recall that the dimension of is . Denote
. In this subsection, we parameterize the dis-

persion matrices by spherical coordinates . We
show that under these spherical coordinates , the constrained
optimization (12), (13) transforms to the equivalent uncon-
strained optimization problem. This in turn implies that we
can present a simple convergence proof without requiring any
form of projection of the estimates which typically makes
convergence proofs for stochastic approximation algorithms
very difficult.

Consider parameterized by . Here the spher-
ical coordinate such that

(16)

(17)

Remark: The above transformation is merely a higher di-
mensional version of the well-known two-dimensional spherical
coordinate transformation , —so that

automatically satisfies the constraint .
There are three important properties of in (16), (17) that

we will use.

i) involves and and hence is periodic in
. Thus, it suffices to consider instead of

. This boundedness of makes proving con-
vergence of a stochastic gradient algorithm very simple.
Indeed one of the main reasons for the complexity in the
convergence proofs of stochastic gradient algorithms is
demonstrating “tightness” [25] of the estimates—i.e., that
they are bounded in probability. Here is bounded almost
surely which is a much stronger condition!

ii) It is easy to check that the vector
satisfies the constraint . Thus,

in terms of , automatically satisfies the constraint
(13).

iii) Finally, the transformation from to is invertible; see
(47) for an explicit formula for converting from to .
Therefore, the constrained optimization (12), (13) in is
equivalent to an unconstrained one in , as follows:

(18)

Let denote the local minimum of (18), and thus
is the corresponding local minimum of (12), (13). Note that by
the chain rule of differentiation

(19)
In Section III-B, estimates of will be computed by
a simulation-based gradient estimator. Here we focus on com-
puting which is needed in the gradient estimation Al-
gorithm 1 below. Define

(20)

For , we have

...

(21)

For , we have

(22)

It is apparent that elements of the above vectors can be computed
recursively to save computations.

III. OPTIMAL CODE DESIGN

A. Rationale for Simulation-Based Gradient Estimation and
Optimization

In this subsection, we provide a brief overview of the sto-
chastic optimization and simulation-based gradient estimation
aspects of the linear dispersion code design problem addressed
in later sections of this paper. As we just described, our goal
is to compute the optimal dispersion matrices or equivalently
spherical coordinates so as to minimize the average BLER
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. Since it is difficult if not impossible to get a closed-
form expression for the average BLER for an arbi-
trary dispersion matrices , we need to resort to a stochastic gra-
dient algorithm to optimize .

Stochastic gradient algorithms are well studied in signal
processing. One of the best known stochastic gradient algo-
rithms in adaptive filtering is the least mean-squares (LMS)
algorithm. However, there is a key difference between the
LMS algorithm and the stochastic gradient scheme required to
minimize . In the LMS algorithm, the gradient estimate
can be computed analytically—it is simply the derivative of a
quadratic function. In our case, due to the dependence of the
density function on , we need to introduce an additional step
of estimating the gradient.

The aim of gradient estimation is to compute an unbiased
estimate of the true gradient. Let denote an estimate of

, we require . Unbi-
ased gradient estimates (or more generally asymptotically un-
biased estimates) are necessary for the stochastic gradient algo-
rithm to converge to the optimal value . A naive approach of
estimating the gradient is to implement a numerical difference
method for computing the gradient. Such an approach, called
the Kiefer–Wolfowtiz approach [25], was developed during the
1950s. It is numerically ill-conditioned (since the definition of
the gradient requires the denominator to be as small as possible),
does not make use of the available information on the explicit
form of the density functions, and generates biased estimates
[25] with large variance.

Modern gradient estimation methods have been developed
during the last ten years in the stochastic discrete-event sys-
tems community [8], [26]. These recent methods do not resort
to numerical differences and they exploit the known structure
of the underlying probability density function to generate unbi-
ased estimates of the gradient. Broadly speaking there are three
classes of gradient estimation algorithms that deal with den-
sity functions which are dependent on the parameter , namely,
the score function method (also known as the likelihood ratio
method) [26] which we use in this paper, the measure valued
differentiation (also known as the weak derivative approach),
and the process derivative approach which includes infinitesimal
perturbation analysis (IPA). In the case when the random sam-
ples (e.g., , , ) are timewise independent, as in this paper,
the score function and measure valued differentiation perform
similarly. In addition the score function method is intuitively
simple to explain and implement. That is why we have used
the score function method for gradient estimation in this paper.
The process derivative method requires a larger computational
complexity at each step and is only applicable to the ML de-
tector where the decision boundaries can be analytically deter-
mined—see the last remark in Section III-E.

The stochastic gradient algorithm (which is known as the
Robbins–Monro (R–M) algorithm [25] when , , are time-
wise independent) is of the form

(23)

Here, is the parameter value at the beginning of itera-
tion , is the simulation-based gradient estimate of

at iteration , is a decreasing
step-size sequence of positive real numbers such that

(24)

The step sequence is usually chosen as a harmonic series
for all , where is a positive scalar. It is well known

that the asymptotic convergence rate of the above stochastic gra-
dient algorithm can be made asymptotically optimal by using
the ingenious procedure of iterate averaging [25]. Such a proce-
dure uses , , and a moving average of the
resulting parameters. The above stochastic gradient algorithm
will converge (under the conditions given in Section III-D) with
probability one to a local stationary point of .

B. Gradient Estimation Algorithm for ML Detector

In this subsection, we present a simulation-based gradient
estimation algorithm for generating unbiased random samples

of the gradient for the case when the ML
detector is employed. The unbiased estimates will be used in the
stochastic gradient algorithm [cf. (23)] to compute the optimum

or equivalently . For a given set of dispersion ma-
trices , a given information symbol vector , and a given
channel realization , from (7) we obtain that is Gaussian with
mean and covariance matrix 1/2 , namely

(25)

We propose the following two-stage simulation algorithm to
generate the gradient estimate .

Algorithm 1 [Composite-score function
algorithm]
Given the set of dispersion matrices

at the th iteration, perform the
following simulation steps:

Step 1) Composition method to generate
mixture sample:
a) Draw symbol vectors

uniformly from
the constellation set .

b) Simulate observations
where each is

generated according to (7)
using symbol vector , i.e.,

(26)

c) Using the ML detection al-
gorithm, decode based on
the observations and the
channel value , .



WANG et al.: STOCHASTIC GRADIENT ALGORITHMS FOR DESIGN OF MINIMUM ERROR-RATE LD CODES IN MIMO WIRELESS SYSTEMS 1247

Compute the empirical BLER
.

Step 2) Score function method for gra-
dient estimation: Using the em-
pirical BLER ,
compute the gradient estimate as

(27)
where the element of

is given by

for (28)

An explicit formula for
is given in Ap-

pendix I. is given by (21)
and (22).

The following theorem shows that the simulation-based gra-
dient estimate generated by the above algorithm is indeed
an unbiased estimator.

Theorem 1: Under the conditions: 1) ex-
ists for all ; 2) is uniformly
bounded for all ; then Algorithm 1 generates unbiased
samples, i.e.,

(29)

Proof: Conditions (1) and (2) hold, since
is continuously differentiable with respect to , and is pe-
riodic and bounded in . From (19)

(30)

Consider the term in the RHS of the above equa-
tion. From (14) and (15), we have

(31)

We now use the following proposition whose proof appears
in Appendix II.

Proposition 1: For the ML detector, we have

(32)

Using (31) and (32) in (30), we have

(33)

The above equation shows that
is an unbiased estimate of .

Theorem 1 follows from the definition of in (27).

C. Stochastic Approximation Algorithm

In this subsection, we use the above gradient estimator in a
stochastic approximation algorithm to solve the optimization
problem given in (18).

Algorithm 2 [Optimal LD codes design]
Assume at the th iteration the current

set of dispersion matrices is with
the coordinate parameterization , per-
form the following steps during the next
iteration to generate and the corre-
sponding :

Steps 1 & 2) Same as Steps 1) and 2) of
Algorithm 1.

Step 3) Update new set of dispersion
matrices: Generate

(34)

then update according
to (16) and (17).

The convergence of the above algorithm is given by the fol-
lowing theorem:

Theorem 2: Under the conditions: 1) the step size satis-
fies (24); 2) is uniformly integrable; 3) is
Lipschitz for all in ; then the sequence of estimate

generated by the stochastic approximation Algorithm 2
converges almost surely to a local stationary point , or equiv-
alently converges almost surely to .

We refer the reader to of [25, Th. 2.5, Ch. 5, p. 105] for a
general proof with martingale difference noise and to [25, Ch.
6] for Markovian noise. Actually the proof in our case is con-
siderably simpler since the noise samples are i.i.d. The uniform
integrability of follows straightforwardly as following:
In (27), the first term on the RHS is uniformly bounded since
it is an indicator. From (28) the second term of (27) comprises
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of the product of two subterms. The second subterm is
uniformly bounded since it is the product of and
functions, see (21), (22). The first subterm of (28) is uniformly
integrable since from Appendix I it involves

which is a finite variance Gaussian by assumption (see also (2)).

D. Gradient Estimation for Suboptimal Detectors

Linear Detector: A linear detector applies a linear
transformation —e.g., linear zero-forcing detector

, or linear minimum mean square error
(MMSE) detector —on the
received signal in (7), and then performs symbol-by-symbol

threshold detection. After the linear transformation ,
we have

with

(35)

where represents the residual multiple-access interference
(MAI) for the MMSE detector, and for the ZF detector.
We then perform the following normalization

with

(36)

Note that for either detector, the decision region for is
fixed and given the decision rule is independent of
MAI and noise variance. Denote

, and , then we have

(37)

Note that in the ZF case, we have . The em-

pirical BLER is then denoted as

(38)

Hence the average BLER is given by

(39)

Due to the above normalization and the symbol-by-symbol
threshold decision rule, in (38) is independent of . The
gradient is then

(40)

The above equation shows that
is an unbiased estimate of . Note that by (37)

is a multivariate Gaussian density whose co-
variance is parameterized by and (which is a function
of ), both of which are explicit functions of . Hence,

can be obtained analytically.

Nulling-and-Cancellation Detector: In the nulling-and-can-
cellation detector, we first perform a decomposition on the
channel matrix to obtain , where is a unitary

matrix, and is an upper triangular matrix. We then perform
the following nulling operation:

(41)
where . We first detect symbol based on
the following normalized :

(42)

Subsequently the detection of is based on

(43)

Note that in terms of BLER performance, the above decision-
feedback detection is exactly the same as a “genie-aided” de-
tector where perfect feedback is assumed in (43) [28]. Hence,
as far as BLER is concerned, we can write (43) equivalently as

with

(44)

Denote the decision statistics

(45)
Then as in the above linear detector case, the empirical BLER
and the average BLER are given respectively by (38) and (39).
Moreover, again since the symbol decision regions are indepen-
dent of , the gradient is given by (40), with re-
placed by (45). Now in order to find an analytical expression
for , we need to find an explicit expression
for , in terms of .

To that end, denote as the th column of ,

i.e., . Denote further

, . Denote ,
. Then it can be shown that

(46)

Hence, indeed , can be expressed explicitly
in terms of Therefore, can be obtained
analytically.
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E. Implementation Details and Discussions

Variance Reduction: In simulation-based optimization (e.g.,
Algorithm 2), reducing the variance of the gradient estimates
leads to improved convergence rate. Since our LD code design
is offline, variance reduction to improve convergence rate is not
of great importance. We simply remark that the variance can be
reduced by choosing large in Step 2) of Algorithm 2 (recall
that the gradient estimate is unbiased for any integer ). From
our experience, we find that choosing to be (around) 1000
works quite well.

SNR Dependence of Convergence Rate: From the previous
discussions, the optimal code is a function of the number of
transmit antennas , the number of receive antennas , and
the signal constellation constellation . Moreover is also a
function of the operating SNR as both the empirical BLER

and the gradient depend on
(see Appendix). Therefore, the optimal code we obtain is

SNR-dependent (see also [1]). However, as we will demonstrate
through examples in Section V, the codes optimized for a par-
ticular SNR work fine for a wide range of SNR of interest.

Initialization of Algorithm 2: To initialize the LD code de-
sign Algorithm 2, we need to specify an initial (and hence

). In numerical studies, we found that if we randomly gen-
erated , then sometimes many of the components of
would be close to zero, leading to numerical problems in the de-
tection algorithm. To overcome this difficulty, we first randomly
generate the vector satisfying the energy constraint (13), and
then compute the corresponding by inverting the spherical
coordinate transformation (16), (17) as follows:

for (47)

Computation Complexity of the Algorithm: The complexity
of the proposed method comes from the Monte Carlo simu-
lations as well as the gradient computations. From (27), we
only need to compute the gradient of the log-likelihood func-
tion when the empirical BLER is not zero. The overall com-
plexity can still be high especially for large number of antennas
and/or with high data rates as the simulation can be slow and
also we have to compute gradients for more parameters. Fortu-
nately, since the design is a purely offline design, once the codes
are designed the implementation complexity (encoding and de-
coding) is the same as the general LD codes.

Local Convergence: Since Algorithm 2 is a stochastic gra-
dient algorithm, it converges to a local minimum . By trying
different initial conditions, and picking the best solution, we can
obtain better codes. Another possibility is to use a simulated
annealing based stochastic gradient scheme [11] to obtain the
global optimum solution.

Performance-Complexity Trade-off: In general, the parame-
ters and are also the design variables. Usually is chosen
to be equal to the number of transmit antennas to guarantee full

spatial diversity, and is chosen to be to facil-
itate the polynomial-time ML detection [16]. In some scenarios,
we can choose and to obtain the best performance–com-
plexity tradeoff. For example, we can choose to reduce
detection complexity. One of the advantages of Algorithm 2 is
that we can design optimal LD codes with arbitrary and .

Approximate Score Function Method for Suboptimal Detec-
tors: As seen in Section III-D, the exact implementation of the
score function method calls for the use of ,
which is detector-dependent. Fortunately, numerical studies in-
dicate that if we simply employ (27), (28) for gradient estima-
tion for suboptimal detectors, and replace by the empirical
BLER of the corresponding detector, we can still obtain very
good codes. Such an approximate implementation of the score
function method provides a universal code design algorithm as
we can design optimal LD codes for various types of detector
structures, i.e., exactly the same stochastic gradient Algorithm
2 can be used with gradient estimator given in Algorithm 1 to
minimize the average BLER given empirical estimates of the
BLER from the suboptimal detector. Of course, in general the
optimal LD codes for different detection structures may be dif-
ferent.

LD Code Design for Arbitrary Fading Statistics: Most
work on space–time codes assumes the idealistic case of i.i.d.
Rayleigh MIMO channels. In reality, the individual antennas
could be correlated due to insufficient antenna spacing and lack
of scattering [14], [15]. It is very difficult (if not impossible)
to optimize the design of space–time codes analytically for
a specific transmit and receive correlation structure. In [20],
the authors propose to combine beamforming with space–time
coding for the case of transmit correlation only. However, only
orthogonal STBC is considered which incurs a significant rate
loss. Our algorithm turns out to be useful in this scenario as
well. Assume there is correlation at both the transmitter side
and the receiver side. We employ the spatial fading correlation
model in [14], wherein the channel matrix can be decom-
posed into three parts, namely

(48)

where is an matrix composed of i.i.d. com-
plex Gaussian entries with zero mean and unit variance, and

and are the transmit and
receive correlation matrices, respectively. When the long-term
correlation, i.e., and , can be measured in advance, such
knowledge can easily be taken into account in our LD code de-
sign framework. The only modification in the algorithm for this
case is that during the first step of the algorithm the channel
matrix is randomly generated according to (48). All the other
steps remain the same. Algorithm 2 will “automatically” gen-
erate the optimal LD codes adapting to the specific correlation
structure. Moreover, the proposed design framework can also be
employed to design codes for MIMO channels that exhibit more
complicated fading statistics, e.g., Rician fading, or Nakagami
fading, a task traditional approaches are unable to accomplish.

Minimum BER LD Code Design: So far, we have assumed
that the performance metric in our code design is the BLER.
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Another performance metric of practical interest is the BER.
The empirical bit error function is defined as

of bit errors

(49)

Note that for a particular detector, is a deterministic function
of , , . The objective function (14) is then replaced by

(50)

As in (31) its gradient can be decomposed into
two terms. An unbiased estimate of the second term,
i.e., , can be ob-
tained using Algorithm 1, with replaced by .
On the other hand, the first term of the gradient, i.e.,

, is no longer zero.
That is, Proposition 1 does not hold under the BER metric. The
exact design algorithm for the minimum-BER LD code remains
an open problem. Nevertheless, numerical studies indicate
that if we simply employ Algorithms 1 and 2, and replace the
empirical BLER by the empirical BER , we can obtain
codes with very good BER performance.

Pathwise Derivative Estimate for ML Detector: It can be
shown similar to the proof of Prop 1 in Appendix II that

no error (51)

with

no error

(52)

where and are defined in (71). Just as for the score
function algorithm, the composition method can be used to ef-
ficiently simulate (51). However, simulating unbiased estimates
from (52) requires computing the summation over all the sym-
bols which is numerically expensive. Also note that for other
detectors such as the nulling-and-cancellation detector, an ex-
pression for is not available.

IV. SIMULATION RESULTS

In this section, we give three examples that illustrate the per-
formance of the LD codes obtained by Algorithm 2. As we have
mentioned in Section III-E, we first randomly generate the dis-
persion matrices with proper scaling such that the energy con-
straint is satisfied. We then obtain the initial spherical coordi-
nates via (47). Note that different random initializations might
lead to different LD codes. However, we have found that the
codes generated with different initial conditions usually end up

Fig. 1. BER performance of the new LD code and the DAST code in 3 � 1
uncorrelated MIMO channel with QPSK constellation.

with very similar error performance. In the examples given in
this section, only one random initial point is used to feed into
Algorithm 2. Note also that our code design depends on the op-
erating SNR. In the following examples, we design the codes by
choosing the SNR so that the BLER is around .1 We will
see that the codes optimized for a particular SNR work fine for
a wide range of SNR of interest.

All codes are designed under the BLER criterion. To illustrate
the performance of the optimized codes, we show their BER per-
formance together with the BER performance of some known
good codes in the literature. Here instead of using the exact score
function algorithm to design codes for the nulling-and-cancel-
lation detector, we simply employed Algorithm 2 to design the
corresponding codes.

Example 1—New LD Codes With ML Detector: We first
present simulation results for i.i.d. fading channels using the
sphere decoder. Fig. 1 compares the BER performance of the
new LD code (obtained using Algorithm 2) with that of the
TAST code for a system employing three transmit antennas
and one receive antenna, and QPSK constellation. The data
rate 2 b/s/Hz. In this case, the TAST code is actually the
DAST code proposed in [21]. At the BER of , the gain of
the new LD code over the DAST code is about 1 dB. Next we
consider a system with three transmit antennas and two receive
antennas. Figs. 2 and 3 show the BER performance of the new
LD codes and the TAST codes employing QPSK and 16QAM
constellations, respectively. The rate is 4 b/s/Hz for the codes
in Fig. 2 and 8 b/s/Hz for the codes in Fig. 3. In Fig. 2, we
also plot the BER of a randomly generated LD code. It is seen
that the new codes perform better than the TAST codes for a
wide range of SNR. Note that the new LD codes have the same
encoding and decoding complexity as the TAST codes. Note
also that the new LD codes in Fig. 2 and Fig. 3 are different as
the proposed design depends on the specific symbol constel-
lation employed. Similar results are given in Fig. 4 and Fig. 5

1For example, the LD code in Fig. 4 is searched with SNR = 8 dB, while the
LD code in Fig. 5 is searched with SNR = 14 dB.
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Fig. 2. BER performance of the new LD code and the TAST code in 3 � 2
uncorrelated MIMO channel with QPSK constellation.

Fig. 3. BER performance of the new LD code and the TAST code in 3 � 2
uncorrelated MIMO channel with 16QAM constellation.

for a system employing four transmit antennas and one receive
antenna, with QPSK and 16QAM, respectively. The gain of the
new LD codes over DAST codes is more pronounced for the
second case, which is more than 1 dB. In Fig. 6 we show the
performance of the new LD code for the case of four transmit
antennas and two receive antennas with QPSK constellations.
The rate is 4 b/s/Hz for this case. Again the new code per-
forms uniformly better (though slightly) than the TAST code.
In the same figure we also plot the performance of a new LD
code designed by choosing . Note that by reducing
from 4 to 2, we only need to jointly decode four instead of eight
QPSK symbols, resulting in reduced detection complexity. The
performance loss is less than 1 dB at the BLER of .

Example 2—New LD Codes With Nulling-and-Cancellation
Detector: In this example, we consider designing LD codes
for suboptimal detectors, in particular, the zero-forcing nulling-

Fig. 4. BER performance of the new LD code and the DAST code in 4 � 1
uncorrelated MIMO channel with QPSK constellation.

Fig. 5. BER performance of the new LD code and the DAST code in 4 � 1
uncorrelated MIMO channel with 16QAM constellation.

and-cancellation detector. We also assume i.i.d. fading chan-
nels. In Fig. 7 we present the BER performance of the new code
optimized for four transmit antennas and one receive antenna
with QPSK constellation. We also show the performance of the
DAST code and a randomly generated LD codes. The gain of the
new LD code can be clearly seen. Fig. 8 shows the performance
of the new LD code for three transmit antennas and two receive
antennas with 16QAM or QPSK constellations. The rate is
kept to be 4 b/s/Hz. Therefore, for 16QAM constellation only
one symbol is transmitted per channel use, whereas for QPSK
constellation two symbols are transmitted per channel use. We
also show the performance of the TAST code with the same
detector as a reference. It is seen that using a larger constel-
lation leads to better performance. The results in Fig. 8 verify
the fact, as pointed out in [22], that reducing the transmission
rate, in terms of number of symbols per channel use, will lead
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Fig. 6. BER performance of the new LD code and the TAST code in 4 � 2
uncorrelated MIMO channel with QPSK constellation.

Fig. 7. BER performance of the new LD code and the DAST code in 4 � 1
uncorrelated MIMO channel with QPSK constellation, nulling-and-cancellation
detector.

to improved performance using the nulling-and-cancellation de-
tector.

Example 3—New LD Codes for Spatially Correlated
Rayleigh Fading Channels: Finally we give an example of
the optimal LD codes for spatially correlated Rayleigh fading
channels. We consider a MIMO channel with spatial cor-
relation at both the transmitter and the receiver. The correlation
matrices are given by

(53)

We assume QPSK constellation is employed so the data rate
is b/s/Hz. Fig. 9 shows the BER performance of the
LD code obtained by Algorithm 2 over this correlated MIMO
channel. In the same figure we also show the performance of the
TAST code. Note that although for i.i.d. fading channels
using QPSK constellation, the LD codes obtained by Algorithm

Fig. 8. BER performance of the new LD code and the TAST code in 3
� 2 uncorrelated MIMO channel with QPSK or 16QAM constellation,
nulling-and-cancellation detector.

Fig. 9. BER performance of the new LD code and the TAST code in 2 � 2
correlated MIMO channel with QPSK constellation.

2 perform roughly the same as the TAST code; however, in the
presence of spatial correlation, the new LD codes outperforms
the TAST code considerably.

V. CONCLUSION

In this paper, we have proposed a simulation-based optimiza-
tion approach for the design of optimal (i.e., minimum error
rate) LD codes—the resulting algorithm uses stochastic approx-
imation and simulation-based gradient estimation.

The proposed algorithm (Algorithm 2) turns out to be a
universal algorithm in the sense that it can be applied to a wide
range of detector structures in either i.i.d. fading or spatially
correlated fading wireless MIMO channels, with arbitrary
fading distributions. Simulation results show that codes gen-
erated by the new algorithm generally outperform the codes
designed based on algebraic number theory. We have also
showed that the amount of improvement obtained by the new
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codes depends on the scenario, in particular, the number of
transmit and receive antennas, the symbol constellation, the
detection algorithm, and the availability of the knowledge on
the spatial channel correlation structure.

APPENDIX I
CALCULATION OF

Here, we explicitly compute which is re-
quired in the simulation-based gradient estimation Algorithm 1.
Note from (25) we simply need to compute the gradient of the
following function:

(54)

We first compute the gradient of with respect to . The
gradient with respect to , , and follow similar
arguments and are given at the end of this section. The th
entry of the gradient of is

(55)

where and are -dimensional and -dimensional unit
column vectors with one in the th and th entries, respectively,
and zeros elsewhere. From (8), we have

(56)

where

...
...

. . .
...

...
. . .

...
... (57)

with

(58)

We obtain

(59)

Therefore, we have

(60)

For the gradients with respect to , , and , similar
expressions can be given as

(61)

(62)

(63)

where

...
...

. . .
...

...
. . .

...
... (64)

with

(65)

...
...

. . .
...

...
. . .

...
... (66)

with

(67)

...
...

. . .
...

...
. . .

...
... (68)

with

(69)
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APPENDIX II
PROOF OF PROPOSITION 1

Denote the set of possible symbol block vector as
. Since all block vectors are equiprobable,

it is sufficient to show that

(70)

By the definition of in (10), the signal model in (7),
and the ML detection rule, we have

(71)

Using (25) and (32) we have

(72)

Note that since , then in (72) the summand pair
corresponding to indexes and will cancel each other,

. Hence, the final result is zero.
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