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Abstract—Multifunction radars (MFRs) are sophisticated
sensors with complex dynamical modes that are widely used in
surveillance and tracking. Because of their agility, a new solution
to the interpretation of radar signal is critical to aircraft surviv-
ability and successful mission completion. The MFRs’ three main
characteristics that make their signal interpretation challenging
are: i) MFRs’ behavior is mission dependent, that is, selection
of different radar tasks in similar tactic environment given dif-
ferent policies of operation; ii) MFRs’ control mechanism is
hierarchical and their top level commands often require symbolic
representation; and iii) MFRs are event driven and difference and
differential equations are often not adequate. Qur approach to
overcome these challenges is to employ knowledge-based statistical
signal processing with syntactic domain knowledge representa-
tion: a signal-to-symbol transformer maps raw radar pulses into
abstract symbols, and a symbolic inference engine interprets the
syntactic structure of the symbols and estimates the state of the
MFR. In particular, we model MFRs as systems that “speak”
a language that can be characterized by a Markov modulated
stochastic context free grammar (SCFG). We demonstrate that
SCFG, modulated by a Markov chain, serves as an adequate
knowledge representation of MFRs’ dynamics. We then deal
with the statistical signal interpretation, the threat evaluation, of
the MFR signal. Two statistical estimation algorithms for MFR
signal are derived—a maximum likelihood sequence estimator to
estimate the system state, and a maximum likelihood parameter
estimator to infer the system parameter values. Based on the
interpreted radar signal, the interaction dynamics between the
MFR and the target is studied and the control of the aircraft’s
maneuvering models is implemented.

Index Terms—Electronic warfare, inside-outside algorithm,
Galton—-Watson branching process, maximum-likelihood esti-
mation, multifunction radar, stochastic context-free grammars,
syntactic modeling, syntactic pattern recognition.

1. INTRODUCTION

LECTRONIC support measure, a division of electronic
warfare, involves intercepting and interpreting radiated
electromagnetic energy for an operational commander to lo-
cate and identify radar sources, and evaluate their potential
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threats. The electronic support algorithm described in this
paper considers the self protection of the target from radar
threats, and a major component of which is the interpretation
of the intercepted radar pulses in terms of the possible radar
modes, such as “search” and “track maintenance.” In the cur-
rent problem setup, because we focus on the target perspective,
the radar model is simplified by removing its multiple target
tracking capability, and we limit the scenario to having only
one multifunction radar in the proximity of the target.

In building electronic support systems to analyze radar sig-
nals, statistical pattern recognition has been used extensively.
Conventional radars could be characterized by fixed parameters
such as radio frequency, pulsewidth, and peak amplitude [1], [2].
For such radar characterizations, decision-theoretic approach as
in statistical pattern recognition is sufficient for solving signal
processing problems such as emitter identification and threat
evaluation. References [3] and [4] discuss template matching
of the intercepted radar signal against an EW library for both
emitter type and emitter mode identification. Histogram tech-
niques are described in [5] to study temporal periodicities in
radar signals such as pulse repetition intervals.

However, modern radars, especially multifunction radars
(MFRs), makes the statistical pattern recognition approach inad-
equate. MFRs are radio-frequency sensors with beam-steering
antennas that are widely used in modern surveillance and
tracking systems, and they have the capability to perform a
multitude of different tasks simultaneously by multiplexing
them in time using short time slices [6]. The list of these
tasks includes search, acquisition, multiple target tracking, and
weapon guidance [7]. At the same time, they maintain low
probability of being detected and jammed.

The reasons for the inadequacy of the statistical pattern recog-
nition are two folds. The first concerns with the exploding di-
mension of the feature space due to the versatility of the radar.
The possible variation of the radar parameters such as the car-
rier frequency and radar pulsewidth makes the statistical pattern
recognition infeasible. The second reason deals with the pos-
sible time varying feature space necessary for correct recogni-
tion. Because of the time multiplexing capability of the radar,
the underlying representation of the radar may need to vary in
order to capture the dynamics of the radar.

This paper considers a hybrid algorithm of both statistical and
syntactical pattern recognition techniques. The methodology is
to codify all a priori knowledge available and analyze observ-
ables within the context of the a priori knowledge. Because of
the success of formal language in codifying human language,
we propose to embody radar domain knowledge in a modified
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language representation, and implement signal interpretation as
a parsing operation through the radar pulses. In this representa-
tion, radar pulses are analogous to English letters, and control
rules of pulse generation to English grammar.

The origins of syntactic modeling can be traced to the classic
works of Noam Chomsky on formal languages and transfor-
mational grammars [8]-[11]. Among the many grammars and
languages that have been investigated for practical applications,
finite state grammar (FSG) and context free grammar (CFG),
as well as their stochastic counterparts, stochastic FSG and
stochastic CFG, are currently the most widely used classes of
grammars. The application of the grammars to syntactic pattern
recognition is covered in depth in [12]. In [13], stochastic
context free grammar (SCFG) is applied to study gesture recog-
nition and monitoring of an online parking lot. In [14] and [15],
the dynamics of a bursty wireless communications channel is
modeled in SCFG. References [16] and [17] describe syntactic
modeling applied to bioinformatics and [18] and [19] apply
these models to the study of biological sequence analysis and
RNA. In addition, on a more related topic to our paper, SCFG
is studied in [20] and [21] as an alternative approach to plan
recognition.

In this paper, we model MFRs as Markov-modulated SCFGs
to take into account the MFR’s mode dependent behavior, its hi-
erarchical control, and the control law consisting of operational
rules. The more traditional approach such as hidden Markov and
state space models are suitable for target modeling [22], [23],
but not radar modeling. Traditionally, MFRs’ signal modes were
represented by volumes of parameterized data records known as
electronic intelligence (ELINT) [1]. The data records are anno-
tated by lines of text explaining when, why and how a signal
may change from one mode to another. This makes radar mode
estimation and threat evaluation fairly difficult. In [24] and [25],
SCFG is introduced as a framework to model MFRs’ signal and
it is shown that MFRs’ dynamic behavior can be explicitly de-
scribed using a finite set of rules corresponding to the production
rules of the SCFG. SCFG has several potential advantages that
follow.

1) SCFG is a compact formal representation that forms a
homogeneous basis for modeling and storing complex
system domain knowledge [12], [26], [27], and in which
it is simpler and more natural for the model designer to
express the control rules of MFR [24]. Specifying the pro-
duction rules of the SCFG allows convenient modeling of
the human computer interface.

ii) SCFG is more efficient in modeling hidden branching pro-
cesses when compared to a stochastic regular grammars
or hidden Markov models with the same number of pa-
rameters. The predictive power of a SCFG measured in
terms of entropy is greater than that of the stochastic reg-
ular grammar [28]. SCFG is equivalent to a multitype
Galton-Watson branching process with finite number of
rewrite rules, and its entropy calculation is discussed in
[29].

iii) The recursive embedding structure of MFRs’ control rules
is more naturally modeled in SCFG. As we will show
later, the Markovian type model has dependency that has
variable length, and the growing state space is difficult
to handle since the maximum range dependency must be
considered.
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In summary, the main results of the paper are as follows.

1) A careful detailed model of the dynamics of an MFR
using formal language production rules. By modeling the
MFR dynamics using a linguistic formalism such as a
SCFG, a MFR can be viewed as a discrete event system
that “speaks” some known, or partially known, formal
language [30]. Observations of radar emissions can be
viewed as strings from this language, corrupted by the
noise in the observation environment.

2) Novel use of Markov modulated SCFGs to model radar
emissions generated by MFR. The complex embedding
structure of the radar signal is captured by the linguistic
model, SCFG, and the MFR’s internal state is modeled by
a Markov chain. This modeling approach enables the com-
bination of the grammar’s syntactic modeling power with
the rich theory of Markov decision process.

3) Statistical signal processing of SCFGs. The threat evalu-
ation problem is reduced to a state estimation problem.
Maximum likelihood estimator is derived based on a hy-
brid of the forward-backward and the inside-outside algo-
rithm. (Inside-outside algorithm is an extension of HMM’s
forward-backward algorithm [31].)

4) Parameterizing the MFR model with the target’s maneu-
vering models, the interaction between the target and the
MEFR is studied. The target’s probing of the MFR in order
to find a maneuvering model that maximize its safety is
formulated as a discrete stochastic approximation problem,
and simulation study of the problem is performed.

The rest of the paper is organized as follows. Section II de-
scribes the multifunction radar in detail and its role in elec-
tronic warfare. Section III models the MFR’s command gener-
ation mechanism, where the construction of the Markov chain
in terms of the MFR’s goals and subgoals, and MFRs’ hierar-
chical control as a set of syntactic rules are detailed. Section IV
presents the threat estimation algorithm and the discrete sto-
chastic approximation algorithm, and Section V provides the
numerical studies. Finally, Section VI concludes the paper.

II. ELECTRONIC SUPPORT AND MFR

Electronic warfare (EW) can be broadly defined as any mili-
tary action with the objective of controlling the electromagnetic
spectrum [32]. An important aspect of EW is the radar-target in-
teraction. In general, this interaction can be examined from two
entirely different viewpoints, that of the radar and of the target.
From the radar’s viewpoint, the goal is to detect and identify tar-
gets, and to maintain a firm track. From the target’s viewpoint,
the goal is to protect itself from radar-equipped threat by inter-
preting intercepted radar emissions and evaluating their threat
(electronic support or ES). In this paper, the target’s viewpoint
is the focus, and MFRs are the specific threat considered.

The approach taken in this paper to interpret the MFR signal
is knowledge-based. The raw radar signal is interpreted with
respect to a grammatical model that describes its characteris-
tics; the characteristics of interest is the order of the events de-
tected, and the event occurrence time is not of much importance.
The signal interpretation consists of two main components, a
signal-to-symbol transformer and a symbolic inference engine.
Fig. 1 illustrates the two components in the context of the ES
architecture, and a brief description of which is given here: The
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Fig. 1. Electronic support (ES) framework considered in this paper. The radar
signal emitted by the MFR is captured by the ES system on board the target
after being corrupted by the stochastic environment. The system consists of an
antenna, a signal-to-symbol transformer and a symbolic inference engine. The
signal-to-symbol transformer consists of a receiver/deinterleaver and a pulse
train analyzer, and its main purpose is to map raw radar signal to abstract sym-
bols that are recognizable by the symbolic inference engine. The symbols are
identified as a and b in the figure.

receiver processes the radar pulses intercepted by the antenna,
and outputs a sequence of pulse descriptor words (PDW), where
a PDW is a data structure containing parameters such as car-
rier frequency, pulse amplitude, and pulsewidth of an individual
pulse. The PDWs are then processed by the deinterleaver, and
segregated according to their originating radar emitters. The
pulse train analyzer further processed the deinterleaved PDWs,
and classify them into abstract symbols called radar words. (See
Section II-A for definitions.) Finally, the symbolic inference en-
gine analyzes the syntactic structure between the radar words,
interprets its threat level, and outputs the results on a pilot in-
strumentation panel.

Because the receiver, deinterleaver and pulse train analyzer
have been well studied, the signal-to-symbol transformer is not
covered in this paper, and we only focus on the symbolic in-
ference engine. Using an analogy between the structural de-
scription of the radar signal and the syntax of a human lan-
guage, a symbolic inference engine is said to contain the prior
domain-specific knowledge of the “language” MFRs “speak.”
The knowledge consists of the operational rules and constraints
captured by the radar analysts that are believed to be applied
in the generation of the radar signal for each specific mission
goal, and such knowledge allows the radar analysts to distin-
guish “grammatical” radar signal from “ungrammatical” one,
and to reason about the particular mission goal the MFR is ex-
ecuting. In today’s modern radar systems, the operational rules
are often implemented with fuzzy logic or expert system [22],
and conventional mathematical formalisms such as differential
and difference equations are not effective in analyzing them. In-
stead, in order to compactly store the syntactic knowledge of
the MFR’s language, formal language theory is applied, and the
MFR language would be fully specified by the establishment of
a grammar [27].

As far as ES is concerned, the optimal approach is to col-
lect a corpus of radar samples, and induce the grammar directly
without human intervention. However, because of the degree
of complexity and potentially lack of data on the MFR signal,
grammatical induction approach is impractical. In this paper,
stochastic context free grammar is chosen to model the MFR
signal for each of its mission goal because of its generality over
the hidden Markov and state space models, and the existence

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

Radar Task Target identification for an existing track

Alert Nonadaptive Track Range Resolution
T \

Radar Words |||| I” ‘

Radar Commands

T

LI AT 10
a b

A ERHAR Gy .
b

Fig. 2. Radar signal corresponds to different layers of radar command gener-
ation hierarchy. A radar task consists of a sequence of radar commands that
would best achieve a tactic goal, and each radar command can be mapped to a
certain catenation of radar words that MFR is to execute.

of algorithms for parameter estimation. The context-free back-
bone is constructed from the domain-specific knowledge of the
MFRs’ signal generation mechanism. Section II-A describes the
MFR’s domain-specific knowledge that would be used to con-
struct the model for knowledge-based signal processing.

A. MFR System Architecture and Its Signal Generation
Mechanism

Before discussing the MFR architecture, we begin by de-
scribing the radar signal that is generated by different layers of
the MFR command generation hierarchy. The list below begins
by the actual radar pulses generated by the MFR, to the software
objects that are scheduled by the MFR processor, and ends with
the radar policy that governs the scheduling process.

* Radar word: A fixed arrangement of finite number of
pulses. For example pulses with a fixed pulse repetition
frequency.

* Radar command: Catenation of finite number of radar
words that is optimized for extracting certain target infor-
mation. Examples are target acquisition and nonadaptive
track.

* Radar task: The three main radar tasks are search, target
identification and target tracking, and each is implemented
by a template of radar commands designed to achieve the
tactical goal.

* Radar mode: The constraints or emphasis on the execution
of certain radar tasks due to the mission requirements or
resource allocations.

An example of the above radar signal is illustrated in Fig. 2.
The radar task and the radar commands in the example are self-
explanatory, and the letters ¢ and b denote radar words. The
vertical bars represent radar pulses, and a particular arrangement
of them makes up the radar words.

Following the macro/micro architecture as described in [22,
Section 15.5.6 15.5.6], the generation of the radar signal is mod-
eled by a MFR composed of four basic components:! a situation
assessment, a radar manager, a command scheduler, and a radar
controller, which are illustrated in Fig. 3. The chain of com-
mands starts with the situation assessment which provides eval-
uation of the tactic environment to the radar manager. The radar
manager evaluates the threat accordingly, and enters the appro-
priate radar task to the planning queue for scheduling. The radar

IThe system architecture does not include multiple target tracking function-
alities such as data association. The paper focuses on a single target’s self pro-
tection and threat estimation, and thus models only the radar signal that a single
target can observe.
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Fig. 3. MFR system architecture. The situation assessment provides the eval-

uation of tactical environment to the radar manager. The radar manager, based
on the evaluation, selects a radar task on which the command scheduler/radar
controller will operate. The command scheduler plans and preempts the tasks in
the planning queue depending on the radar load, and the moves the tasks fixed
for execution to the command queue. The radar controller maps the tasks in the
command queue to appropriate radar commands, which is retrieved by the radar
for final execution.

task consists of a sequence of macro radar commands, and the
commands can be repeated or preempted in the planning queue
by the command scheduler. The commands that are fixed for
execution are passed to the radar controller, where they will be
mapped to the appropriate radar words and retrieved by the radar
for execution.

In the rest of the section, we will discuss the operational de-
tails of each of the MFR components, and their relationship
to the macro/micro architecture. More specifically, the macro
sensor management, as described in [22], requires the MFR to
have three basic components: an operating scheme, a perfor-
mance standard, and an adaptation procedure, and the micro
sensor management requires the MFR to be able to select com-
bination of radar pulses that best accomplish the performance
requested by the macro tasks given the system status. We will
describe how each of the requirements are satisfied by the MFR
components.

The macro management is accomplished by the radar man-
ager and the command scheduler. Radar manager sets the oper-
ating scheme and the performance standard for the MFR. It is a
finite state machine that transitions among a set of tasks, with the
transition probabilities determined by the radar mode. It sets the
guidance to which radar commands are to be created by map-
ping each radar task to a template of radar commands. The map-
ping can be mission dependent, and such dependency models
the performance standard. For example, a radar task “Target
identification for an existing track,” depending on the perfor-
mance standard, may be mapped to an template of radar com-
mands such as {Alert, Nonadaptive track, Range resolution 1}
or { Alert, Nonadaptive track, Range resolution 2}, where Range
resolution 1 and 2 differ in carrier frequency and the radar wave-
forms used.

The command scheduler models the adaptation procedure,
and the adaptation is modeled by the scheduler’s ability to plan
and preempt radar commands in the planning queue. The com-
mand scheduler processes the radar commands stored in the
planning queue sequentially, and it plans, if the current com-
mand requests it, by appending radar commands in the planning
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queue, and preempts by inserting commands in front of the cur-
rent command. The planning and preempting will be discussed
according to some rules to be specified.

The micro sensor management, on the other hand, is accom-
plished by the radar controller. Similar to the command sched-
uler, the radar controller processes the radar commands in the
command queue sequentially and maps the radar commands to
radar words according to a set of control rules. Each radar com-
mand may be mapped to a multitude of different radar words
depending on the tactic environment, and the mapping will be
specified explicitly later in terms of the grammar’s productions
in Section III.

As a remark, the control is separated into the command
scheduler and the radar controller because of the MFR needs
to be both adaptive and fast [33]. The command scheduler
orders radar commands by time and priority, and stores them
in the planning queue for it allows real time rescheduling. On
the other hand, due to the system’s finite response time, radar
commands in the planning queue are retrieved sequentially
and placed in the command queue where no further planning
or adaptation is allowed. The radar controller maps the radar
commands in the command queue to radar words and which
are retrieved by the radar for execution.

III. A SYNTACTIC REPRESENTATION OF MFR DOMAIN
KNOWLEDGE

In terms of natural language processing, we model the MFR
as a system that “speaks” according to a stochastic grammar,
and more specifically, we place the domain knowledge dis-
cussed in the previous section in a compact mathematical
formalism called the stochastic context free grammar. In
Section III-A, an overview of the formal language theory is
provided. In Section III-B, the radar manager, the command
scheduler and the radar controller are modeled, and the details
of the Markov modulated SCFG are provided. In Section III-C,
a well posedness issue of the grammatical model is discussed.

A. Formal Languages and Transformational Grammars

A formal language can be broadly defined as any set of strings
consisting of concatenations of symbols. The complete set of
distinguishable symbols in the language is known as the al-
phabet and is denoted here by 7. For example, an alphabet
mightbe 7" = {a, b}, and one language over this alphabet might
consist of all finite (or null) repetitions of the combinations ab
followed by either b or aa; in this language, the strings b, aa,
ababaa and ababb are valid strings but aba is not.

The general notion of a formal language is impractically
broad. It is much more useful, and intuitive, to specify a
language in terms of its structural patterns. This is often accom-
plished by defining a grammar [8], [10], [11] sometimes known
in the literature as a transformational grammar. In grammatical
terminology, a grammar is a four-tuple (N, T, P,S). N is a
finite set of nonterminal symbols, 7" is a finite set of terminal
symbols, and N N'T = {. P is a finite set of production
rules, and S € N is the starting symbol. The grammars are
divided into four different types according to the forms of their
production rules [8], [34]. Specifically, context free grammar
has production rules P of the form A — 7 where A € N
and 7 € (N UT)%; the superscript X indicates the set of
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all finite length strings of symbols in a finite set of symbols
3], excluding the string of length 0. The rule A — 7 indicates
the replacement of the nonterminal A by 7. In addition, as
shown in [10], any context free grammar may be reduced to
Chomsky Normal form, and which has production rules of the
form A; — A;Ay and A; — w, where A;, A;, Ay € N, and
w € T. An example of context free grammar in the Chomsky
Normal form consists of the following elements:

T ={a,b} N ={Ap, A1} S={A}
P :{AO — AOA1|b,A1 — a}

where the bar | separates the two production rules, meaning
that the nonterminal Ay may be mapped to either Ag A; or
b. Starting from the nonterminal Ay, the strings can be derived
by applying production rules to iteratively replace nonterminal
symbols with substrings. The preceding example admits the fol-
lowing derivations:

Ay = b

AO = AOA1 = bA1 = ba

etc.
As a shorthand notation, the multiple derivation steps in the last
derivation above may also be expressed as Sy = ba. Further-
more, please note that the notation — is used to express produc-
tion rules, and =- is used to represent derivation or replacement
of nonterminals in a string.

In addition, as is often the case, a certain amount of uncer-
tainty exists in the process under study. In order to make the
model more robust, and also to capture the random effect in the
model, probabilities are added to the set of production rules P.
Stochastic context free grammar is a four-tuple (N, T, P*,S)
with all elements identical to the context free grammar except
P is a finite set of stochastic production rules. Let A be a non-
terminal in NV, the probability of its production rule A — 7 in
P# is denoted as P(A — 7)), and the probabilities must satisfy

Y PA—n) =1

neO

where O is the set of all right hand sides for A in P?. For ex-
ample, the grammar given above may be converted into a sto-
chastic one by assigning the following probabilities to the pro-
duction rules

Ao 25 AoAr Ao 22 A T aAr A P

A Simple Example of MFR and Inadequacy of HMM: As
compared to conventional radars, MFRs are distinguished by
their ability to switch between radar tasks, and plan ahead their
courses of actions [33]. As an illustrative example showing the
correspondence between the grammar and the MFR, consider
production rules of the form: i) B — bB andii) B — AB|BC,
where A, B and C' are nonterminals representing radar com-
mands in the planning queue and b is a radar command in the
command queue. The rule B — bB is interpreted as directing
the command scheduler to append b to the command queue, and
B in the planning queue. Similarly, B — AB is interpreted as
delaying the execution of B in the planning queue and insert A
in front. Suppose the planning queue contains the radar com-
mand B, a possible generation of the radar words is illustrated
in Fig. 4. (The figure also illustrates the mapping of the radar
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Fig. 4. The figure illustrates a possible realization of the scheduling process
represented by a grammatical derivation process. B and C' are nonterminals
and b is a terminal. The triangle represents the mapping of the radar command
b to the radar words, y and w, by the radar controller.

commands to some radar words by the radar controller.) It can
be seen that as long as the command queue commands appear
only to the left of planning queue commands in the rule, the
command queue and the planning queue are well represented.
In addition to the interpretation of the production rules, an-
other important property is their generative power, and why a
more established method such as hidden Markov model cannot
be used. As shown in [35], the rules of the form i have the
syntax of regular grammar and they can be used to represent
hidden Markov models, i.e., stochastic regular grammar. The
rules of the form ii, on the other hand, have the syntax of con-
text free grammar. In other words, the MFR grammar has rules
that strictly contain regular grammar (rules of the form ii cannot
be reduced to i), and, thus, the MFR grammar cannot be suffi-
ciently modeled by HMM. The production rules presented in
this example is a self-embedding context free grammar and it
cannot be represented by a Markov chain [10]. A context-free
grammar is self-embedding if there exists a nonterminal A such
that A = nAp with 7, 3 € (N U T)*. For the rules presented,
self-embedding property can be shown by a simple derivation

B — AB — ABC.

In addition to the self-embedding property, HMM is not suit-
able because the radar controller may generate variable length
radar words. If HMM is to model the radar words, the Mar-
kovian dependency may be of variable length. In this case, max-
imum length dependency needs to be used to define the state
space, and the exponential growing state space might be an
issue. Furthermore, for sources with hidden branching processes
(MFRs), stochastic context free grammar is shown to be more
efficient than HMM in the sense that the estimated SCFG has
lower entropies [28].

B. A Syntactic Model for a MFR Called Mercury

In this subsection, because the MFR domain knowledge is
application dependent, for illustrative purpose, the grammatical
representation is discussed based on a particular type of MFR
called Mercury (The declassified version of the Mercury’s tex-
tual intelligence report can be found in [36]). The output of the
MEFR is modeled by a set of terminals, and the hierarchical com-
mand generation mechanism is modeled by a set of production
rules that map the top level radar tasks to radar commands, and
from radar commands to radar words.
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TABLE 1
LisT oF MERCURY RADAR COMMANDS AND THEIR CORRESPONDING RADAR
WORDS
Command Words Command Words
W1 W2WAWS W1 W7 WrWy
Four-word search WoWAWSWL WoWTWTWT
WAWEW W2 W3W7TWTWT7
W5W1WaW4 WAWTWTWT
W1 W3Ws5W1 WsW7TWTWT
Three-word search W3WsW1W3 WeWTWTWT
WsW1W3WS W1 WIWIWS
WlWi WL W1 W2 WRWIWS
W2 W2 WaW?2 W3WWRWS
Acquisition wW3wW3wW3wWs Track WAWSWIWS
(ACQ) WAWLWLWY maintenance W5 WSWIWS
W5 WsWsWS (TM) WEWSWRWS
W1 WeWeWE W1 W9W9W9
Non-adaptive Track WoWEWEWE W2 W9WYW9
(NAT) or W3WeWEW6 WIWYWYW9Y
Track maintenance WLWEWEWE W4WIWYWY
(TM) W5 WeWEWe6 W5 WYWYWY
W7 WeWEWE WEWIWYW9
Range resolution WS WEWEWE Fine track W WTWTWT
WoWeWEW6 maintenance WRWIWIWS
ACQ, NAT or FTM WEWEWEWE (FTM) WYWYWYW9

The MFR grammar is {N, U N, U N, T, P, U P, S}.
N, is the set of radar tasks. N, and N, are identical sets of
radar commands available to the MFR, and they are differ-
entiated only by their residing queues; N, are the commands
in the planning queue and N, are in the command queue. P,
is the set of production rules mapping N, to (N. U N,)T.
P, is the set of production rules mapping N, to 1., where
T. is the set of radar words. In SCFG, S is the starting
symbol, however, in our formulation, .S is a Markov chain
with state space defined by N,. The output of the Markov
chain is in NI;" and it is the starting symbols for P,. Specific
to Mercury, the set of radar words 7T, consists of nine distinct
elements {wy, . .., wg }. The set of available radar commands is
{Three-word search, Four-word search, Acquisition, Nonadap-
tive track, three stages of Range resolution, Track maintenance,
Fine track maintenance}, and it is written in shorthand as
{3WS;,4WS;, Ay, NAT;, RR1;, RR2;, RR3;, TM,FTM, },
where t = p or ¢ denoting N,, or N, respectively. Table I lists
the radar commands and their corresponding radar words.

The Mercury’s grammar will be introduced according to the
framework depicted in Fig. 3. The radar manager is modeled as
a Markov chain whose state space is N,., the command sched-
uler is represented by the production rule P, (self-embedding),
and the radar controller, introduced along with the effects of the
stochastic channel, is modeled by the production rule P,. We
will describe each MFR component in detail.

1) Radar Manager: The radar manager, for each time
period, determines the overall task or tactical goal the MFR
is to accomplish. The time evolution of the radar manager
is modeled as a Markov chain, and its state space, N, =
{Search for new targets, Target identificationfor existing
tracks, Track update for existing tracks}, is defined based
on the major radar task categories [22]. Let k = 0,1, . .. denote
discrete time. The state of the MFR, z; € N,., is a three state
discrete time Markov chain. The output of each state is defined
by templates of radar commands that specify the type and the
order of the radar commands the MFR is to complete in order
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TABLE II
LIST OF TARGET’S MOTION MODELS

=
L&

Type of Motion Models
Constant velocity model
Time correlated acceleration model
Horizontal turn model

»
»

S = O
—_ o O

to accomplish the tactical goal. The templates for the states are
expressed in the production rules listed here.

Search for new targets — 3WS,|[4WS,,;

Target identification for existing tracks — A,NAT,RR1,;

Track update for existing tracks — TM,,.
Each state may output multiple templates and they are separated
by bars. Different templates are characterized by their compu-
tational cost and accuracy, and their selection is modeled prob-
abilistically.

Define the transition probability matrix as A = [a;i]sx3,
where a;; = P(z) = e;lzx—1 = ¢;), and e; and e; are MFR
states in V,.. The transition of the MFR is assumed to be driven
by the interaction between the MFR and targets. For example,
if the target is far away from the MFR and flies with constant
velocity, the probability of the MFR jumping to “Track update
for existing tracks” might be low. On the other hand, when the
target is close and shows high maneuverability, the probability
of being tracked might be higher because MFR would allocate
more resources to it.

In order to characterize the interaction between the MFR and
a target, the target behavior pattern is described first. A target
state process is ¥, = (2k, sk ), Where 2, refers to its kinematics
and sy, is a staircase-type trajectory indicating its motion models
such as constant velocity model [37]. In this paper, z. € R
denotes distance of the target with respect to the MFR, and s, =
(s1,s2) is an indicator vector featuring the motion model in
which the target is maneuvering. The dependency between the
MEFR and targets is established by parameterizing the transition
matrix A with (zg, sx).

Table II lists the values of sj, and their corresponding motion
models. The list of representative motion models are used in
[38] to study the benchmark tracking problem. The first model,
constant velocity model, characterizes the periods of nonmaneu-
verability, and it is described in [39]. The other two models are
to account for target maneuvers. The time correlated accelera-
tion model is first proposed in [40] and the horizontal turn model
is described in [41].

Because of its generality and utility interpretation, Logit
model is selected to parameterize the transition matrix. Let
P,;, (Paown) be the probability of the MFR system to move up
(down) a state and Pi,y is the probability of the MFR system
remaining in the current state. The probabilities are illustrated
in Fig. 5 and they are shown as follows:

P exp(a’ty)
1 4 exp(a/yr) + exp(b'yy)
P B exp(b'vr)
T T+ exp(a'ipr) + exp(b' )
P _ 1
Sty T 4 exp(a’ty) + exp(Vy)
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Fig. 5. MFR states and transition probabilities.

TABLE III
PRODUCTION RULES OF MERCURY’S COMMAND SCHEDULER

3WS, —  3WS. 3WS,|3WS,
4WS, —  4WS. 4WS,[4WS,
Ap — A AylA.

NAT, —  NAT, NAT,|NAT,
RRl, — RRI. RRI,|RRI. RR2,[RRI,
RR2, — RR2. RR2,|RR2. RR1,[RR2. RR3,|RR2.
RR3, — RR3. RR3,|RR3. RR2,|RR2, RR3,|RR3,
TMp —  TM. TM,|TM, FTM,[TM, FTM,|FTM,, TM,|TM,
FIM, — FTM. FIM,|FTM. TM,|TM, FTM,|FTM,

where a, and b are vectors of regressor parameters. The justifi-
cation of the logit model is given in Appendix A.

2) Command Scheduler: The command scheduler models
the MFR’s ability to plan and to preempt radar commands based
on the radar task and the dynamic tactic environment. With the
template of radar commands in place, the main operation of
the command scheduler is to implement the scheduling of radar
commands in the command queue and/or the rescheduling of
commands in the planning queue. The operational rules for the
scheduling and rescheduling could be constructed based on a
small set of basic rules. Suppose N, = {4, B,C} and N, =
{a,b, ¢}, the basic control rules that are available to the com-
mand scheduler are listed.

Markov and B — bB|bC
Adaptive and B — AB|BC
Terminating and B — b

The interpretation of the rules follows the example given at
the end of the previous subsection. A rule is Markov if it sent a
radar command to the command queue, and re-scheduled either
a same or a different radar command in the planning queue. A
rule is Adaptive if it either preempted a radar command for an-
other radar command or if it scheduled a radar command ahead
of time in the radar’s time line after the current command. A
rule is Terminating if it sent a radar command to the command
queue without scheduling any new commands.

The significance of the Markov rule is obvious. It represents
the completion of one radar command and the scheduling of
another. The two adaptive rules model the MFRs’ ability to: 1)
Preempt and ii) Plan the radar commands. The preempt rule is
B — AB, where the command B is preempted when a higher
priority task A enters the queue. On the other hand, the plan rule
is B — BC', where the command C'is scheduled ahead of time.
The terminating rule reflects the fact that the queues have finite
length, and the grammatical derivation process must terminate
and yield a terminal string of finite length. Applying the basic
control rules to the templates, the production rule P, could be
constructed. With some constraints in place, the complete set of
rules is listed in Table III.

3) Radar Controller and the Stochastic Channel: The radar
command is mapped to the radar words by the radar controller,
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TABLE IV
PRODUCTION RULES OF MERCURY’S RADAR CONTROLLER

4WS — WiWo Wy Ws|WoaW W5 Wy
|WaWs W1 Wa|Ws W1 Wa Wy
3WS —» WiWaWs Wi |Wa3WsWi W3
|Ws W1 W3 Wi
A—  Q1|Q2]Q3]|Q4]|Q5|Qs
NAT —  S176|Qs6
RR1 — WrTj
RR2 — WgTs
RR3 — WoTj
™ —  S1T6|S2T7|S2T8|S2Ty
FIM —  Q6|Q7|Qs|Q9
So—  S1|Ws
S1— Wi |Wa|Ws3|Ws|Ws
Ts — WeWsWs
Ts — WgWsWs
T7 — W W, Wr
To — WoWoeWy
Qi — W,W,W;W;
W; LN w1 |wa|ws|wa|ws|we |wr|ws|we

fori=1,...,9

and the words could be corrupted by the stochastic channel be-
fore it’s intercepted. Here, production rules of the radar con-
troller are devised, and the effect of the stochastic channel is
incorporated.

The production rules of the radar controller are derived from
visual inspection of the radar commands listed in Table 1. The
syntactic structure of the radar commands are captured by
defining the nonterminals and their corresponding production
rules. We begin by defining the triplets as follows:

Ts — wewsws Ty — wswsgws

T7 — wrwrwy  Tg — wowgewy

and blocks of four words

Q1 — wmwiwiwr Qs — wawawsws Q7 — wrwrwrwy

Q2 — wawrwawe Q5 — wswswsws Qg — WWsWWs

Q3 — wawswaws Qe — WeWeWeWs Q9 — WoWoWoWy.

Furthermore, we introduce two new nonterminals

Sl — w1|w2|w3|w4|w5 52 — Sl|w6.
The nonterminals introduced specifies the complete set of the
production rules for the radar controller.

Based on the radar controller’s production rules, the effects
of the stochastic channel could be easily incorporated. For each
radar word w;, define a new nonterminal W; and the production
rule

Wi — wi|we|ws|ws|ws |we|wr|ws|wg [F;] fori=1,...,9

where P, = [P;1, Pio, Pis, Pia, Pis, Pig, Pi7, Pig, Pig]™ is a
vector of probabilities indicating how likely W,; would be cor-
rupted and intercepted as one of the other radar words. When
compiled together, the complete set of production rules are
specified and they are listed in Table IV. As will be illustrated
in later sections, the probabilities of the production rules could
be estimated based on training data. In addition, since each w;
is a pulse train, a pulse train analysis can be conducted to assign
prior probabilities to the channel probabilities W; [42].
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Fig. 6. A string of radar words are intercepted by the MFR, and the signal interpretation problem is, based on the domain specific knowledge on the MFR’s control
hierarchy, how to infer the tasks MFR is performing from the radar words. Task 1 is searching for new targets, task 2 is target identification for existing tracks, and

task 3 is track maintenance for existing tracks.

C. Well Posedness of the Model

One practical issue of modeling with SCFG is that the signal
generated by radar systems has finite length, and this finiteness
constraint must be satisfied if the model is to be stable. In ad-
dition, the finiteness criteria provides a constraint on the SCFG
model parameters, which may be used as a bound on the param-
eter values. We discuss this point by first defining the stochastic
mean matrix.

Definition: Let A, B € N, the stochastic mean matrix My
isa |[N| x |N| square matrix with its (A, B)th entry being the
expected number of variables B resulting from rewriting A

>

ne(NUT)*s.t.(A—n)eP

My(A,B) = P(A — n)n(B;n)

where P(A — n) is the probability of applying the production
rule A — 0, and n(B;n) is the number of instances of B in 7
[43].

The finiteness constraint is satisfied if the grammar in each
state satisfies the following theorem.

Theorem: If the spectral radius of My is less than one, the
generation process of the stochastic context free grammar will
terminate, and the derived sentence is finite.

Proof: The proof can be found in [43].

IV. STATISTICAL SIGNAL INTERPRETATION OF THE MFR
SIGNAL AND CONTROL

Given the MFR knowledge representation as discussed previ-
ously, we are now in the position to describe the symbolic infer-
ence engine. (Recall the ES framework in Fig. 1.) The input to
the engine is a batch of noisy radar words stored in a track file,
and the aim is to extract the embedded syntactic pattern that is
described by the domain specific knowledge. Fig. 6 illustrates
the inference problem we are to solve. In general, with such an
assumption, any pattern recognition technique is automatically a
signal interpretation technique. Specific to our case, because the
knowledge is stored as a Markov modulated SCFG, a hybrid of
the inside-outside and the forward-backward algorithm will be

. Al ‘e

.‘.v“"Outside probabilit
P(wl p—lAquwq+1 m)

_____________

Inside Probability

Fig. 7. Inside and outside probabilities in SCFG.

used. In this section, we describe the state estimation algorithm
with the assumption of complete system knowledge (known pa-
rameter values) in Section IV-A, and the application of EM al-
gorithm to estimate the system parameters in Section IV-B. In
Section IV-C, we extend the estimation algorithm to the control
of the target’s maneuvering models.

Notation: The following notation will be used throughout the
section. Let xg., = (xo,Z1,-..,2,) be the (unknown) state
sequence, where x; € N, (See Section III-B-1), and ~;., =
(Y1,72, - - -, o) be the intercepted radar commands. Each ~y;, =
(w1, wa, ..., wny,) is astring of concatenated terminal symbols
(radar words), and my, is the length of ~;. It is convenient to
introduce the following variables:

o forward variable: f;(k) = P(v1,7v2,- -, VK, Tk = €i);

» backward variable: b; (k) = P(Vk+1,Vk+2,- -, Vn|Te =

€i)s

* Inside variable: §;(k,p,q) = P(wpq|Ad,, x1 = ei);

* outside variable:

Oé;-(k',p, (]) = P(wl(p*1)7 A;znﬁ W(g+1)m |$1c = 67;)
where w), is the subsequence of terminals from pt" position of
7i to ¢*" position, and A7 is the nonterminal A’ € N, that de-
Tives wpq, or Al S Wpq. Fig. 7 illustrates the inside and outside
probabilities. (Details of forward and backward algorithms can
be found in [44], and inside and outside in [28].)
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A. Maximum Likelihood Estimation of MFR’s State via Viterbi
and Inside Algorithms

The estimator of MFR’s state at time £k is
Zr = argmax; P(zry = e;|y1.n), and which could be
computed using the Viterbi algorithm. Define 6;(k) =
MaXyg 2y, ap_y P(0,T1,- 8 = 4,71,%2,---,Vk), the
Viterbi algorithm computes the best state sequence inductively
as follows:

1) Initialization: 6;(1) = m;0;(71

2) Induction:

), forl <i< M.

k1) = max (6, (B)ai(r)] oiCes)

fori1<k<n—-1,1<:<M
Ti(k+1) = arg max 6;(k)aji,

forl<k<n-1,1<i<M.

3) Termination: &, = arg maxi<;j<a 0;(n).
4) Path backtracking: &y, = Tg41(&x41), fork =n—1,n—
2,...,1

where o; (k) is the output probability of the string -y, generated
by the grammar G;. An efficient way to calculate the probability
is by the inside algorithm, a dynamic programming algorithm
that inductively calculates the probability.

The inside algorithm computes the probability, o; (%), induc-
tively as follows:

1) Initialization: ﬂ;(k,p,p) =

2) Induction:

P(AT — w,|G;).

kpsg ZZP (A7 — AT A®)Bi(k, p, d)Bi(k, d+1,q)

r,s d=p

forVy,1 <p < q < mg.
3) Termination: o;(vx) = Bi(k, 1, my).
Running both the Viterbi and the inside algorithms, the poste-
riori distribution of the states given the observation could be
computed.

B. Model Parameter Estimation Using EM Algorithm

In Section IV-A, MFR’s state estimation problem was dis-
cussed assuming complete knowledge of the system parameters,
i.e., the Markov chain’s transition matrix and the SCFG’s pro-
duction rules. In reality, such parameters are often unknown. In
this subsection, EM algorithm is applied for parameter estima-
tion and it is discussed in detail in [45].

Let 7., be the incomplete data, and let {z¢.,,, C1.,} be the
missing (or hidden) data. For a Markov chain with M states,
Cr = (CY A = m;m), C*(A = %), ,OM(A = ;1))
and C*(A — ;) is the number of counts the production
rule A — 7 is applied in deriving 7, with grammar 4. Let
® = {aj;, PY(A — n),...,PM(A — 1)} be the model pa-
rameters, where P?(A — ) is the set of production rules prob-
abilities for grammar . The EM algorithm iteratively computes
the maximum likelihood parameter estimates by computing

U+ — arg mg,x Es) {log Ly,(®)|y1:m, P}
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where  the  complete-data  likelihood
TT_, Pk, Cilarr, @) P(wplerr, ®)P(z,|®).

In order to facilitate the discussion of the EM algorithm, the
following two variables are introduced

L,(®) s

fi(k)bi(k)

xith) = S fBh(®)

Pz = ei|y1m) =

and

Eﬂ( ) (xk =€, Tk4+1 = 61|’Yl n)
f]( )aj101(7k+1)b1(k + 1)

T S H(R)agioi (e )bilk+ 1)

The Expectation step of the EM algorithm yields the following
equation:

(10gﬁ (@)

—ZZZZ%

k=1 x, A%k T%k
X IOgP (A = )Xz, (K)

+ Z Z Z log (a’mklzkﬂ) fmk_l_r,‘,(k — 1)

k=1 xp Tr_1

+ 573 log Pl@o) i ()

k=1 zo

(C™*(A = n;))

where Eg:) (C*+(A — n;7;)) can be computed using inside
and outside variables [35]. The Maximization step of the EM
algorithm could be computed by applying Lagrange Multiplier.
Since the parameters we wish to optimize are independently
separated into three terms in the sum, the three terms are the es-
timates of the prior distribution, the transition matrix, and the
production rule probabilities, we can optimize the parameter
term by term. The estimates of the probabilities of the produc-
tion rules can be derived using the first term of the equation, and
the updating equation is

Y= Eat) (C(A = m5%)) Xay (K)

PA —=m) = 2o 2okt Baw (C7+(A = 1037%)) Xan (K)

Similarly, the updating equation of the transition matrix a;; is

D > )
" Py 1X1( )-

Under the conditions in [46], iterative computations of the ex-
pectation and maximization steps above will produce a sequence
of parameter estimates with monotonically nondecreasing like-
lihood.

C. Optimization of Target-MFR Interaction Dynamics

Based on the interpretation of the radar signal and the inter-
action dynamics between the MFR and the target, autonomous
control of the aircraft’s maneuvering model is devised in this
subsection. Recall the Target-MFR interaction as discussed in
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Fig. 8. The selection of maneuvering model induces a particular radar mode.
The mode is observed indirectly from the intercepted radar pulses and its threat
evaluated. Based on the evaluation, the control strategy selects maneuvering
models such that the ownship safety is maximized.

MFR

Section III, where each maneuvering model triggers a partic-
ular radar mode, and the mode is characterized by the transi-
tion probabilities of the radar tasks. With this assumption, the
maneuvering model selection is formulated as an optimization
problem of finding an efficient adaptive search (sampling) plan
with the objective of staying in the “safest” mode most often,
and the problem setup is illustrated in Fig. 8.

Let the discrete time [ = 1,2, ... indexes the sequence of
maneuvering models selected by the aircraft. Let X[, s] be the
single performance measure, the MFR’s average occupancy in
track mode when the target is maneuvering in model s, and
which can be computed from the stationary distribution of the
estimated Markov chain. The aim is to find s* such that

s* = argrsnelgE{X[l, s]}
where S is the set of all possible maneuvering models. The
model selection is not straightforward because the performance
of the maneuvering cannot be evaluated analytically, and it
must be estimated or measured based on the intercepted radar
pulses. We treat this problem as a discrete stochastic approx-
imation problem. The problem is also called the multiarmed
bandit where the aim is to find the best slot machine out of
a finite number of such machines. Other approaches such
as multiple comparison also exist [47], but this approach is
preferred because of its ability to adapt to slowly time-varying
radar conditions.

Two discrete stochastic approximation algorithms will be ap-
plied, and their detailed description can be found in [48]. The
target begins in an arbitrarily chosen motion model, and prob-
abilistically explore the model space. The idea is to implement
an efficient adaptive sampling plan that allows one to find the
maximizer with as few samples as possible by not making un-
necessary observations at nonpromising models. The following
notations are used in the algorithms. {s()} € S is a sequence
of maneuvering models generated by the algorithm that can be
thought as the state of the algorithm at time 1. It is convenient
to map {s'} to a sequence of unit vectors {Y[/]} where it has 1
in the jth component if s() = (), and zeros elsewhere. In ad-
dition, let 7[l] = (1/1)[W®[s(1)],..., WO [s(|S)]]* denotes
the empirical state occupation probability measure, where | - |
gives the number of elements in the set and W ()[s] is a counter
that measures the number of times the state sequence visits the
state s. Finally, 5() is the estimate of the optimal mode s* gen-
erated by the algorithm at time [. It is the main output of the
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algorithm and it is used to control the aircraft’s mode changes.
The two algorithms are summarized here.

Aggressive Search:

1) Initialization: At time [ = 0, select initial state s(?) € S.
Set 7[0, 5] = 1, 7[l,s] = 0 forall s € S, s # 5(0). Set
500) = 4(0),

2) Sampling and Evaluation: Given the state s(!), compute
X[1, s"V]. Generate a candidate state 5) from S — {5V}
according to a uniformly distributed random variable.
Compute X1, 50)].

3) Acceptance: If X[1,50] > X[l,50], then set s(+1) =
50 otherwise set s+ = (),

4) Adaptive filter for updating state occupation probabilities:
Update state occupation probabilities

all+ 1] = 7[l] + ull + 1] (Y[ + 1] — #[1])

with the decreasing step size u[l] = 1/I, where ) is indi-
cator function.
5) Update estimate of optimal radar mode: If

o [l +1, s(lﬂ)} > [1 11, g(l)}

then set §(+1) = s(+1). otherwise, set §¢+D = (1) Set
l «— 1+ 1and goto Step 1.

Conservative Search:

1) Initialization: At frame time [ = 0, initialize state |S|-di-
mensional vectors H [0], L[0] to zero, and K [0] = 1 (vector
of ones). Select initial state s(9) € S.

2) Sampling and Evaluation: Given the state s(!), generate,
as in Step 1 of Aggressive Search, 5§, X[l,s(], and
X[1, 5]. Update the accumulated cost, occupation times
and average cost as

H [l + 175(1)} —1 [1 + 1,s(l)] /K [l + st} :

3) Acceptance: If H[l +1,50] > H[I+1,50], set s(+1) =
50 otherwise set s(+1) = s,

4) Update estimate of optimal radar mode: 3 = sV, Set
l — [+ 1 and go to Step 1.

The aggressive search explores the model space S by jumping
between the models as a irreducible Markov chain, and it does
not converge. However, it is shown in [48] that M — s* almost
surely, meaning the algorithm spends most time at the global
maximizer than any other state, and it is consistent. On the other
hand, the conservative search converges almost surely to the
globally optimal model. The convergence analysis of the con-
servative search holds for any size of the maneuvering model
sequence, as long as it’s greater than 0, where the aggressive
search requires long sequence. In addition, one advantage of
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the aggressive search is that, if we keep the step size constant
for both algorithms to make them adaptive to time-varying pa-
rameters, it is faster than the conservative search because it ag-
gressively explore the state space. The numerical studies of the
algorithms are discussed in the next section.

V. NUMERICAL STUDIES OF THE ALGORITHMS

A software testbed is implemented in C++ for MFR signal
simulation and interpretation. In this section, the data structure
used to implement the algorithms, and some numerical results
will be discussed.

A. Implementation of the Software

The grammatical derivation process requires recursive em-
bedding of terminals, repeated readings of nonterminals and
modification of the output string. In order to have efficient re-
peated memory access, the production rules and their probabil-
ities are both stored as a map data structure indexed by nonter-
minals, and with their right hand sides implemented with linked
lists. In addition, the nonterminals and the terminals are stored
as vectors, and the starting symbol as a string. With this setup,
the grammatical derivation can be easily implemented by re-
peatedly accessing and joining the linked lists of the production
rules. In addition, because any context free grammars can be re-
duced to Chomsky Normal Form [10], the testbed is written to
accept only grammars in Chomsky normal form.

B. Model Complexity and Its Modeling Power

Here we describe briefly several implementation issues of
our testbed and the possible remedies. The major implementa-
tion issue of the testbed is with the inside-outside algorithm:
the computation complexity of the algorithm and the number of
local maxima in the likelihood function. Suppose the MMSCFG
has M states, and the states are represented by a grammar with L
nonterminals. Suppose further that the observation sequence has
length n, and each observation has, on average, mt radar words
for 1 < ¢ < M. The average case complexity of each itera-
tion of the EM parameter estimation algorithm is O(n M3 L?)
(The complexity of the inside-outside algorithm for radar words
of length m is O(m>L3) [35]), where 1 = E{rm'}. However,
because the inside and outside algorithms could be run against
the data independently, parallel computation is possible and the
computation time could be reduced substantially. In order to
deal with the local maxima problem, one of the approaches is to
pick the initial parameter value more cleverly with pretraining
method introduced in [28], where significant computational sav-
ings is recorded and EM typically converges to the global max-
imum.

One important implementation detail regarding the modeling
power of the SCFG is its predictive power against branching
processes. In [28], study is done to compare the SCFG and the
HMM on their capability in modeling branching processes in
terms of entropy argument. In their study, a SCFG and a HMM
model are inferred against simulation data from a branching
process, and it is observed that the estimated SCFG consistently
has lower entropy than the estimated HMM model. Since our
MFR grammar is a multitype Galton Watson branching process,
SCFG has higher predictive power than HMM.
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TABLE V
THE SOURCE AND ESTIMATED PARAMETER VALUES OF THE MARKOV
MODULATED SCFG

Source SCFG
Grammar 1 Grammar 2
RRI, 2% RRI,2 RRl,  RRI, 2% RRl,; RRI,

0.2

RRI,2 - RRI.
0.172

RRI, 2% RRI,y RR2,  RRI, 2 RRl,; RR2,
RRI,; — RRI, RRIp2 — RRI,
RR2, 2% RR2,2 RRl,  RR2, 2% RR2,; RRI,
RR2, 2% RR2,2 RR3,  RR2, 2¥ RR2,; RR3,
RR2,5 5 RR2. RR2,, - RR2,
RR3, 2 RR2, RR3, RR3, 2¥ RR2, RR3,
RR3, 27 RR3. RR3, 27 RR3,
Transition Matrix

07 03

04 06
Estimated SCFG
Grammar 1 Grammar 2
RRI, "2 RRI1,; RRI, RRI, "2° RRI,; RRI,
RRI, "" RRIl,; RR2, RRI, "2° RRI,; RR2,

RRI,; - RRI.
0.806

RR2, "® RR2,5 RRI, RR2, "%° RR2,, RRI,
RR2, "2® RR2,, RR3, RR2, °2* RR2,;, RR3,
RR2,; 5 RR2. RR2,; > RR2,

RR3, "27 RR2, RR3,  RR3, "Z° RR2, RR3,
RR3, °7% RR3, RR3, "7%* RR3,
Transition Matrix

0.711  0.289
0.397 0.603

C. Numerical Results of the State and Parameter Estimation

In this subsection, the state and the parameter estimation
algorithms derived in Section IV-A and -B are evaluated against
simulation data. The model parameters such as the transition
probabilities and the production rule probabilities are estimated
and, based on the estimated values, the hidden state sequence
is inferred. For simplicity, the MFR is characterized by a
subset of the MFR grammar developed. The set of nonter-
minals is {RR1,,RR2,,RR3,}, and the set of terminals is
{RR1.,RR2.,RR3.}. The grammars used in the numerical
studies are shown in Table V in its Chomsky Normal form,
and they characterize two different range resolution algorithms
with different performance standards. Because the grammar
is reduced, only two Markov states are considered, and the
templates used to define the states are identical except their
production rule probabilities. The Markov transition matrix is
assumed fixed in this study. Fig. 9 shows the evolution of the
likelihood values from the parameter estimation algorithm, and
the state estimation error probability with the parameter values
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Fig. 9. The left figure shows the likelihood values obtained from iterating the
parameter estimation algorithm, and the right figure is the state estimation error
probability with the parameter values for each iteration of the algorithm.

for each iteration of the algorithm. The final estimated param-
eter values are listed in Table V, and it can be seen that the
estimated parameter values are very close to their true values.

In addition, the effect of the initial values on the parameter
and state estimation is also studied. We initialize the estimation
algorithms with values of different square-distance from the true
values, and run the parameter and state estimation algorithms.
It is found that the algorithm is not sensitive to the initial values
of the transition matrix, but it is sensitive to the initial values
of the production rule probabilities. One observation is that if
the grammars of different states are initialized too close to each
other, the Markov chain degenerates into an i.i.d. sequence and
the estimation algorithm updates only one state instead of two.
For transition matrix along, the rms (root mean squared) error of
the initial values to the true values, and of the estimated param-
eter values to the true model parameters are listed here. The rms
error of the estimated model parameters are very close to each
other despite of the differences in the initial values. Moreover,
the state estimation error probabilities of the cases shown in the
table at the bottom of the page all approach zero.

D. Numerical Results of the Autonomous Selection of
Maneuvering Models

In the second numerical study, we look at the interaction be-
tween the radar and the target maneuvers, and how the target
selects its maneuvering models according to discrete stochastic
approximation algorithms introduced in Section IV-C. The sce-
nario is illustrated in Fig. 10. We assume that the target intends
to follow a circular path, circumventing the MFR, to reach a lo-
cation labeled by X in the figure. The path is planned before
the mission, and the target switches between its maneuvering
models to maximize its safety.

In this paper, the target is assumed to be able to maneuver
in four different motion models, and the MFR would respond
with four corresponding radar modes characterized by their
Markov modulated SCFG representations. Because the target’s
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Fig. 10. The scenario of the numerical study sets a target to follow a circular
path, circumventing the MFR, to reach the location labeled by X. The target’s
trajectory following the sequence of maneuvering models as shown in Fig. 11
is illustrated in this figure.

Sample Path of the Discrete Stochastic Approximation Algorithm

T T T T T T T T T T T T

Modes

10 11 12 13

T

Discrete Time

14 15

Fig. 11. The sample path of maneuvering models obtained from the discrete
stochastic approximation algorithm.

distance from the MFR stays fixed along the circular path, the
MFR’s transition between modes depends only on the target’s
maneuvering models. The SCFGs, because they correspond to
the micro control, are identical across the modes (the grammar
used here is the same as the one used previously), but the
transition matrix of the radar manager varies depending on the
target’s maneuvering model. In this scenario, the simulation
results from both algorithms look virtually identical, and only
one set of results will be presented. Fig. 11 illustrates a sample
path of the maneuvering models obtained from the algorithm,
and Fig. 10 is the flight trajectory of the target following the ma-
neuvering models. It can be seen that high maneuvering models

rms error of initial values 0.02

0.03 0.4 0.6 0.8

rms error of estimated parameters 0.14225

0.148172 0.137346 0.107406 0.144219
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Fig. 12. Empirical distribution of the occupancies in the four maneuvering
models.

are deployed at the end to ensure its survivability. Fig. 12
shows the empirical distribution of the mode occupancies after
running the algorithms for 10 times, and it is observed that the
maneuvering model with the highest empirical distribution is
the one with the least threat, i.e., least average tracking time.
One implementation detail of the algorithm is the initializa-
tion of the Markov chain and the SCFGs. The initial parameter
values are fixed for each computation of the cost function be-
cause the stochastic approximation algorithm requires the es-
timator to be consistent. The Markov chain is initialized uni-
formly, and the SCFG is initialized according to the pretraining
method introduced in [28]. Briefly, the training data is first used
to train a hidden Markov model with start and terminating states.
The trained HMM is mapped to its approximated SCFG coun-
terpart, and that is used as the initial configuration for the SCFG.

VI. CONCLUSION

The main idea of this paper is to model and characterize MFR
as a string generating device, where the control rules are spec-
ified in terms of SCFG modulated by the radar’s current tac-
tical goal, and which is modeled by a Markov chain. This is un-
like modeling of targets, where hidden Markov and state space
models are adequate [22], [23]. The modeling is knowledge
based, where each production rule corresponds to a operational
rule employed by the MFR to generate its radar words, and such
domain specific knowledge is assumed to be supplied by expert
radar analysts. The signal interpretation of the MFR, under our
formulation, is reduced to a state estimation by parsing through
radar words, and a maximum likelihood sequence estimator is
derived to evaluate the threat poses by the MFR. A maximum
likelihood parameter estimator is also derived to infer the un-
known model parameters with the Expectation Maximization
algorithm. In addition, based on the interpreted radar signal,
the interaction dynamics of the MFR and the target is studied
and the control of the aircraft’s maneuvering models is for-
mulated as a discrete stochastic approximation problem. Since

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 3, MARCH 2008

SCFGs are multitype Galton-Watson branching processes, the
algorithms proposed in this paper can be viewed as filtering
and estimation of a partially observed multitype Galton-Watson
branching processes.

APPENDIX

A. A Justification of Logit Model

The Logit model can be justified by utility maximization ar-
gument. Consider only binary Logit model for simplicity, the
utilities of the decisions (advancing up or down the state space
as illustrated in Fig. 5) are

Uup =ay + bqu + Cusl{; + dusi + €y
Udown = aq + bazy + CdsllC + ddSz + €q
where € is random threshold value. The threshold value indi-
cates the amount of threat the MFR could take before switching
of states is desired. The threshold value is random because dif-
ferent targets may have different threshold values. Assuming
that the MFR always selects the decision with the highest utility,
the probability of going up in state can be expressed as
P, =P(U, > Uy)
=P ((au — aa) + (by — ba)zk + (cu — ca)sp
+(dy — da)si + (€4 — €4) > 0)
=P (e>—(a+bz + csp, —I—dsi)) .
Suppose that the random variable ¢ has the logistic distribution,
the probability of advancing up the states, under the utility max-
imization argument, is expressed as
exp (a + bz + (:3,1c + dsz)
1+ exp (a+ bz + cst + ds?)’

Py =

A more general discussion for more than two states can be found
in [49].
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