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I. INTRODUCTION

Electronically scanned antenna (ESA) radars
possess an agile beam that permits adaptive allocation
of transmitted energy in space and time. There is
strong motivation in designing dynamic radar resource
management algorithms that exploit this beam agility
to facilitate the ESA radar handling a variety of tasks,
such as tracking a set of targets and searching a
sector for new targets. Radar resource management
algorithms aim to enhance the overall radar system
performance–this performance is ultimately judged
on how closely the radar track database matches actual
target trajectories. Furthermore, the resource allocation
problem of efficiently conducting several parallel
tracking and searching tasks using the radar’s antenna
is an important part of the scheduling problem that
needs to be considered. Due to the stochastic nature
of radar detection and target dynamics, scheduling of
radar measurements is a stochastic control problem.
The control of ESA radars is studied in the literature
under the field of sensor management [3]. There
are the following two broad methodologies in the
literature for formulating radar resource management
problems.
1) Heuristic Scheduling based on Rule-Based

Design: Under this methodology, a scheduling rule
is defined based on descriptive rule based design,
see [3], [14] and also [7], [8], for single target
resource allocation algorithms. Detailed scheduling
of measurement order, given a set of measurements
with specified types and processing time intervals
is considered in [13]. Heuristic schedulers are
often designed to operate in real time with limited
computational requirements. However, since heuristic
schedulers are not based on optimizing a cost
function, their performance is difficult to predict.
2) Optimization-Based Scheduling: In the

optimization-based approach for radar resource
management, a multi-stage cost function is minimized
over a finite or infinite horizon. Globally optimal
stochastic optimization methods such as stochastic
dynamic programming (DP) can in principle be used
to compute the optimal radar resource management
policy. Unfortunately, the curse of dimensionality
inherent in DP makes their direct application
intractable. One can resort to the myopic case, i.e.,
optimize an instantaneous cost [6], but this is typically
inappropriate in airborne surveillance. Indeed,
optimizing the radar performance over a long term
horizon (e.g. one to several minutes) is desirable in
airborne surveillance radar resource allocation due to
the following reasons.

1) Due to the large surveillance volumes to be
covered with scarce resources, the number of tracked
targets and track load depend dynamically on the
search scan allocation. In particular, the long-term
dynamical behavior of the number of tracked targets
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and the system performance as a function of the
allocated search resources need to be taken into
account. These dynamics also involve future track
load and hence the future resource demand.
2) It is preferable to avoid repeated target

initiations and drops due to optimistically trying
to track resource consuming, low-SNR targets in
situations where the system is saturated.
3) Course changes of the ESA radar platform and

the spatially inhomogeneous antenna gain of an ESA,
lead to dynamically changing resource demand when
tracking a set of targets.
4) Reacquisitions of targets that reappear after a

blindness period (i.e., Doppler blindness, elevation and
vegetation mask for ground targets), and tracking a
set of interacting targets with possibly mixing tracks,
result in time intervals of increased resource demand.
Before such time intervals, it is important for the
resource management algorithm to decide which
measurements are affordable and to what extent other,
parallel tasks of the system will be affected.
5) Synchronization of search scans and adaptive

track updates may reduce the resource demand.
However, synchronization requires the radar resource
manager to consider a time interval stretching at least
over the next search scan pass of the target.

To solve the long-term stochastic optimization
problem via DP, simplifying assumptions are needed.
In the existing literature, several such assumptions are
used as we now briefly describe.

1) In [14], [10], and [5] it is assumed that all
targets are tracked initially and the scheduling
problem concerns only the ordering of track update
measurements. In radar resource allocation, this
assumption is inappropriate since the search scan is
an integral part of the resource management problem.
Furthermore, the radar resource manager needs to
consider track drops and track reinitiations apart
from track accuracy. In the literature, there seems
to be little previous work in simultaneous treatment
of searching and tracking that explores dynamics in
tracking performance and resource demand.
2) In [10] and [5] to facilitate efficient prediction

of the tracking dynamics, a regular, discrete
timescale is assumed where at each time instant a
single measurement occurs. Such an assumption is
inappropriate in radar resource management since the
measurement times are controlled.
3) In [10] and [9] the multi-dimensional kinematic

state was quantized to a Markov chain, and the
beam scheduling problem was formulated as a
special type of partially observed Markov decision
processes (POMDPs) called a multi-armed bandit.
However, the multi-armed bandit assumption is quite
restrictive for airborne surveillance radar resource
management–since it assumes that the tracking
dynamics are isolated to one track per time interval.

Moreover, for general POMDPs, the number of states
becomes prohibitively large, leading to computational
intractability. (POMDPs are appropriate for the
classification problem where the state is discrete, [4].)

In this paper, we present hierarchical methods
for optimization-based resource management of
ESA surveillance radars. The purpose is to provide
practically feasible methods for optimization-based
resource management given a series of simplifications
and approximations which do not severely restrict the
optimal solution. An important aspect is that both
searching and tracking are considered. Moreover,
the method provides a tool in radar design for
benchmarking heuristic schedulers. Although this
paper is primarily directed towards surveillance radars,
it can also be applied to other sensor systems, such as
ground- and ship-based multi-function radars, fighter
aircraft radars, and multi-sensor systems including
one or several adaptive sensors. The main ideas in this
paper, and the steps behind arriving at the resource
management method, are the following.

1) Two-Level Two-Timescale Scheduling, and
Abstraction of Measurement Operations: Scheduling
of radar measurements naturally decomposes into
two different scales. At the slow timescale with
regular intervals in the order of seconds, the radar
resource manager needs to decide on the batch of
measurements to make in the following time interval,
i.e., what measurements to make and how to make
them. We refer here to this slow-timescale decision
process as resource allocation.
Given the decisions on the slow timescale,

the local order of measurements within a batch is
arranged into a sequence of measurements by a
fast-timescale scheduler. We assume the relevant
dynamics of tracking performance are captured by
the slow timescale, and that optimization of local
arrangement of measurements within the batches is
of minor significance for the system performance.
Therefore, the emphasis here is on the slow-timescale
scheduling, and we do not consider joint design of the
slow-timescale and the fast-timescale scheduling.
At the slow timescale, measurements are abstracted

into measurement operations. A measurement
operation is considered to be an algorithm in the radar
that generates a sequence of measurements needed
for achieving a low-level measurement task such as
“update track with repeated update attempts,” see for
instance the track update algorithm designed in [7].
Fast feedback measurements that need to be made
on a fast timescale are allowed within measurement
operations. For example, repeated attempts to update a
target are handled by the fast-timescale scheduling.
Thus, the fast-timescale scheduler must be able
to include the fast feedback measurements in the
sequence of measurements, while processing the batch
of measurement operations. Thereby, the batch-wise
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Fig. 1. Two-timescale scheduling.

slow-timescale decision making in resource allocation
is facilitated. An overview of the two-timescale
approach is shown in Fig. 1. In Section II, ideas
behind the two-level two-timescale scheduling
approach are presented further.
2) Formulation of the Slow-Timescale Resource

Allocation as a Stochastic Optimization Problem: The
physical level aspects of sensor performance are
abstracted into Quality of Service (QoS) measures
used in an optimization criterion. The QoS measures
are defined target-wise based on concepts such as
track accuracy and track continuity, and expressed in
terms of tracking utility. Models for predicting the
QoS measures, given the decision parameters, are
presented in Section III. The models are formulated
target-wise based on discrete-time Markov chains,
where the sampling period of the chains coincide with
the regular, slow timescale.
A single sensor performance measure is defined as

an aggregate of the target-wise measures, integrated
over a time horizon, see Section IVA. In Section IVC
control parameters for the measurement operations
on the discrete, slow timescale are described. Finally,
resource constraints for the batch-wise planning of
measurements are discussed in Section IVB. The
resource constraints are made explicit by a series
of constraints on the utilized time per time interval
(i.e., load), where the time intervals coincide with the
intervals on the slow timescale.
3) Approximate Lagrange Relaxation Formulation

and Separation of the Problem into Components: In
Section V, resource constrained optimal resource
allocation on the slow timescale is pursued using
approximate DP based on Lagrange relaxation [4].
That is, by replacing future stochastic Lagrange
multipliers with estimates given average resource
constraints, the resource allocation problem is
separated into components. Thereby, optimization can
be performed component-wise, and the coordination
of the components are carried out via the resource

constraints. This decomposition into smaller
components results in a computationally tractable
optimization-based resource allocation which
otherwise would suffer from combinatorial explosion.
The price is that the uncertainty in the future effects
from present decisions will not be fully considered in
the predictions during optimization.
4) Hierarchical Extension and Lagrangian

Relaxation Method (LRM): To incorporate
coordination between track updates and the search
scans, a hierarchical extension to the separated
problem is proposed in Section VH. The space is
divided into a set of sectors where the same search
scan sequence is used for each sector. Decisions on
track updates are then conditioned hierarchically on
the search scan parameters of the sector of the track.
Searching and tracking in a sector then corresponds
to a component of the optimization problem. We refer
to the resulting resource allocation method based on
the hierarchical extension as the Lagrange Relaxation
Method (LRM). The hierarchical method for resource
allocation based on the LRM can be viewed as an
offline method for benchmarking performance of
other resource allocation methods.
In Section VI, a numerical example is provided

which demonstrates the utilization of the method as a
tool in radar design. In the example, we benchmark
the performance of LRM against two important
heuristic tracking methods: adaptive tracking (AT),
and track while scan (TWS), given homogenous
scenarios with varying target density. Evaluations
were made using a sophisticated testbed which has the
capability of realistically modelling an airborne ESA
surveillance radar in arbitrary scenarios. The example
shows that LRM is useful as an offline reference for
radar resource management. Also, the LRM yields
insight on how to improve real time utilization of
radar resources.

II. OVERVIEW OF PROPOSED TWO-TIMESCALE
SCHEDULING ALGORITHM

In this section, we motivate the two-timescale
scheduling ESA radar resource management
algorithm proposed here. Details are presented in
Section V, and in particular, a pseudocode example
of optimization-based slow-timescale scheduling is
given in Section VG.
The radar resource management problem can

be formulated as follows. At time instants when
the radar is idle, decide on the next measurement
e.g., a single or sequence of coherent processing
intervals (CPIs), so as to optimize the future radar
performance integrated over a time horizon. The
long-term consequences of the decisions are for
example modelled by maintaining an optimized plan
of future measurements, and after each measurement
is completed, new information is received implying
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that replanning is needed. An optimal (stochastic DP)
approach to the problem is practically infeasible due
to the large state space (exponential in the number of
targets) and the irregular timescale on which decisions
need to be made.
In order to cope with the large dimensionality

issues and yet develop a computationally feasible
algorithm, the following approximations are
introduced here.

Slow-Timescale Planning: The initial idea is to
maintain a plan of future measurements, and only
replan at regular time instants, occurring on a slower
rate than the actual measurements. Batches of the
plan are then extracted at these instants for further
processing. The regular replan instants define a slow
timescale, where the length of the time intervals is
denoted ¢t. Herein, the intervals on the slow timescale
are called batch intervals, and the planning on the
slow timescale is denoted resource allocation.
Utilization of Measurement Operations, and

Two-Timescale Scheduling: The introduction of a
slow timescale in replanning is not straightforward
because of fast feedback measurements. Fast feedback
measurements occur when trying to adaptively
confirm search detections, or update a track by
using repeated measurement attempts. That is, if an
attempt to update a track fails, another attempt is
immediately scheduled until the target is detected,
or the update attempt failed. Decisions regarding fast
feedback measurements cannot be handled at the slow
timescale.
To still be able to maintain a slower rate

of planning, measurements are abstracted into
measurement operations including the fast feedback
measurements. A measurement operation is an
algorithm which generates the measurements needed
to achieve a low-level radar task such as “update
track using repeated attempts,” or “search a sector
with confirmation measurement.” The plan is
then constructed out of these operations without
detailed insight into the actual algorithm defining the
operations. A consequence from using measurement
operations is that a fast timescale scheduler is needed,
which transfers a sequence of measurement operations
to a sequence of measurements. The fast timescale
scheduler is responsible for fitting the fast feedback
measurements into the sequence of measurements,
and to look to that the resulting sequence is feasible
in terms of ambiguity resolution [13]. We assume
a feasible schedule is always possible to achieve by
rearranging measurements locally in time.
Fast-timescale scheduling, and slow-timescale

resource allocation form together a two-level
two-timescale scheduler. In Fig. 2, the two timescales
are illustrated. Both the regular replanning instants,
and the time interval following a replanning instant,
are enumerated with k. A batch of measurement

Fig. 2. Batches of search and track update operations are decided
on at regular time intervals on slower rate than that of

measurements. T1 represents track update operation, and S1
represents sector search.

Fig. 3. Overview of two-timescale, online resource allocation in
radar system as suggested in this paper. Resource allocation

maintains a plan from which batches of measurement operations
are extracted at regular time intervals. Measurements in batches
are arranged by fast-timescale scheduler also handling fast
feedback. Output of fast-timescale scheduler is stream of

measurements propagated to antenna system. T1 represents track
update operation, and S1 represent search operation in a sector.

operations in interval k is parameterized with dk.
An overview of the approach in a radar system is
presented in Fig. 3.
Handling Random Batch Execution Time: Since

fast feedback measurements depend on random
detection events, the execution time of a batch of
measurement operations varies randomly. A new
batch of measurements is still generated with a rate
of 1=¢t. Measurements that are not completed at the
time when a new batch is generated, are executed
before and together with the new batch. As a result,

404 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 42, NO. 2 APRIL 2006



the accumulated time of measurements waiting to
be executed may grow with time. To counteract
such a growth, a feedback of the execution time
from the previous batch is needed. The expected
execution time of next batch is then adjusted with the
observed variation in time from the previous batch;
see Section IVB for a short discussion. If a batch
finishes early, the next batch should be ready for
processing by the fast-timescale scheduling.
Ignoring Measurement Order in a Batch at the

Slow Timescale: Search and tracking performance
is fairly insensitive to variations in the time instants of
the measurements. That is, the dynamics of tracking
performance (e.g., accuracy and track continuity)
are slower than the high rate at which measurements
are obtained. Consequently, optimizing the detailed
order of measurements is not important for system
performance. Instead the main issue is how and
approximately when to make measurements. We
choose ¢t such that the relevant dynamics of system
performance are captured on the slow timescale.
Decisions regarding measurement order within
slow-timescale batches can then be ignored by
the resource allocation algorithm and left to the
fast-timescale scheduler. Moreover, optimization-based
fast-timescale scheduling or joint optimization of
fast-timescale and slow-timescale scheduling is not
crucial for the global system performance. Therefore,
we do not pursue joint design and the emphasis of this
paper is on the slow timescale.
Finally, the sequential nature of the radar (i.e.,

the radar can only take one action at a given time
instant) is relaxed by introducing constraints on the
resource utilization of the batches, see Section IVB.
In Section V, the resource constraints are included in
the slow-timescale resource allocation via Lagrange
relaxation, which is a key for achieving a separation
of the problem into components. The constraints
are then used to coordinate the components. As a
consequence, the combinatorial explosion of the
resource allocation problem due to the number of
targets is alleviated.
We present the formulation of resource allocation

on the slow timescale as a stochastic optimization
problem in Section IV. First, a model for prediction
of tracking performance on the slow timescale is
discussed.

III. MODELLING OF TRACKING PERFORMANCE
DYNAMICS

In this section, we present a Markov chain model
for prediction of tracking performance dynamics on
the slow timescale. Such a model is fundamental
for the formulation of optimization-based resource
allocation, and for evaluation of noninstantaneous
sensor performance measures.

The following attributes are important when
considering the radar output quality and thus the
tracking performance.

1) Detect and maintain tracks of the targets.
2) Keep the same identity of the tracks throughout

the surveillance volume, i.e., to avoid track drops
leading to reinitiations with new track identities, and
to avoid mixing two or more tracks. Track mixes are
difficult to predict, and as an approximation we will
predict incorrect data associations events instead,
although not all association failures lead to track
mixes.
3) Sustain the accuracy of the tracks.

A. Markov Chain Formulation

One would like to formulate a model for the
prediction of the dynamics of these items from the
sequence of measurements dk. We use target-wise
Markov chains to capture the dynamics.
Assume a scenario with targets Ti, i 2 f1, : : : ,Mg,

where M is the number of targets. In the sequel, i
indexes the targets. The target kinematic states are
defined as »i(t) = [rx,i(t),vx,i(t),ry,i(t),vy,i(t)]

T, where
rx,i(t),ry,i(t) are the position parameters of the target,
and vx,i(t),vy,i(t) are the velocity parameters. The
kinematic states evolve dynamically according to a
linear state space model [1],

»i(t+T) = F(T)»i(t) +wi(T) (1)

where F(T) is the state transition matrix of the target
state model, and wi(t,T) is the driving maneuver input
modelled as white and Gaussian with,

Efwi(t,T)g= 0, covfwi(T)g=Qi(T): (2)

We assume for simplicity that Kalman filters
are used to compute the state estimate »̂i,tjs of the
track of target i at time t, given the measurements
included in the track up to time s. Furthermore, the
conditional covariance is Pi,tjs = Ef»̃i,tjs»̃Ti,tjsg, where
»̃i,tjs = »i(t)¡ »̂i,tjs.
For each target, we define a finite valued discrete

time state xi,k that measures the tracking performance.
The time index k refers to the slow timescale and
the tracking performance dynamics are captured on
this slow timescale. At each time instant k, the state
xi,k is an aggregate of state variables needed when
expressing an instantaneous target-wise tracking utility
Ui(xi,k), for instance:

1) xtracked,i,k 2 f0,1g, indicating if a target is
tracked or not in the time interval k.
2) xdropped,i,k 2 f0,1g, indicating if a target has been

tracked, but is now dropped.
3) A discrete parameterization of Pi,tjtm , the

conditional covariance representing the online
accuracy, given by the Kalman filter when the target

WINTENBY & KRISHNAMURTHY: HIERARCHICAL RESOURCE MANAGEMENT 405



is tracked. The time tm represents the time of the last
update, tm · t. On the discrete timescale, we write
Pi,kjkm , km · k. Below, an example is presented of a
discrete parameterization of Pi,kjkm .
4) xreinit,i,k 2 f0,1g, an indicator state of that a track

has been reinitiated after a period where the target
was dropped. Track reinitiations only occur at time
instants when a target is observed by a search scan.
The indicator state triggers for one time interval on
the slow timescale.
5) xmix,i,k 2 f0,1g, an indictor state for a track mix.

We assume track mixes only occur at track updates.
The indicator state triggers for one time interval on
the slow timescale.

The process xi,k, is assumed to evolve according
to a finite Markov chain on the slow timescale.
However, the modelling of the transitions of the chain
involve various probabilities, which depend on the
continuous-valued kinematic state »i(t). We assume
that the dynamics of »i(t) can be approximated as
deterministic when calculating transition probabilities
by replacing »i(t) with the estimate »̂i,tjtm . Thereby, all
stochastic entities involved when expressing tracking
performance are treated as discrete, which is highly
practical in performance predictions. For instance, this
allows formulation of the radar resource allocation
problem as a finite-state Markov decision process.
Let pxi,k denote the state probability vector of

xi,k. Assume that transitions of xi,k are affected by
the measurements in batch k, parameterized with
dk. Then, the target-wise dynamic model has the
following form,

pxi,k+1 = Ptr,1(dk,»i,k)pxi,k (3)

where Ptr,1 is the transition matrix of the Markov
chain, and »i,k = »i(k¢t). The kinematic state,
»i,k, has been conditioned on explicitly since it
affects the detection probabilities and evolves
dynamically (although assumed deterministically),
and consequently the Markov chain is nonstationary.
If there is any case where a deterministic treatment
of »i(t) is inappropriate, it is possible to utilize a
multiple scenarios approach. That is, a set of multiple
future realizations of »i(t) can be assumed, where
(3) is evaluated for each realization. The state xi,k
is assumed to be fully observed so that when time
instant k occurs, the state of the performance model
xi,k is known.
The rest of this paper is based on the Markov

chain model in (3). We now discuss specific issues
regarding the model including an example on how
to quantize Pi,kjkm , an example of a Markov chain
for performance prediction, a discussion on how to
calculate transition probabilities, and an estimation
of the number of states in the chain. A numerical
example is presented where the Markov chain is used
for tracking performance prediction.

B. Discrete Parameterization of Accuracy

We present here a discrete parameterization of the
Kalman filter covariance to represent a distribution
over the covariance at predictions using the Markov
chain xi,k. All time indices in this subsection are at the
slow timescale.
Let kn denote the discrete time interval when

observation n occurs. Let the time since the previous
update be Tn = kn¡ kn¡1 (the target index i is omitted
for the time variables due to convenience in notation).
The Kalman filter covariance evolves according to the
Riccati equation

Pi,knjkn¡1 = F(Tn)Pi,kn¡1jkn¡1F(Tn)
T+Qi(Tn) (4)

Pi,knjkn = (I¡Ki,nH)Pi,knjkn¡1 (I¡Ki,nH)
T+Ki,nRi,nK

T
i,n

where Qi(Tn) is the covariance of the covariance input
in the target motion model used in a Kalman filter,
Ri,n is the covariance of the measurement noise, Ki,n
is the Kalman gain, and H is the linear mapping from
the kinematic state space to the observation space.
Computing Pi,kjkm requires knowledge of the initial

filter covariance Pi,k0 at time k0, the mapping Qi(T),
the measurement covariances Ri,n, the prediction
time k, and the time instants of the measurement
updates kn, n= 1, : : : ,m. At predictions, only the
time instants kn are stochastic due to uncertainties
in when observation instants will occur. The rest of
the variables are either known or functions of the
sequence kn and k. Therefore, we include k and, kn,
n= 1, : : : ,m as variables explicitly in the discrete state
xi,k, while the other variables are treated as implicitly
available. Thereby, Pi,kjkm is parameterized by the state
xi(t). Although the sequence kn grows with time, the
memory in the recursion in (4) is typically short,
and it is sufficient to include the last few intervals
between the observation time instants in the state,
e.g. fk¡ km,Tmg, to get an approximate discrete
parameterization of Pi,kjkm . To initialize the recursion,
a covariance matrix based on the average update rate
in the recent past is used.

C. Example of a Markov Chain Model for
Performance Prediction

An example of a Markov chain for target-wise
tracking performance prediction is presented in Fig. 4.
In the chain, there are states included to account
for the state components, xtracked,k, xdropped,k, xreinit,k,
xmix,k. Furthermore, the parameterization of Pi,kjkm
suggested above, i.e., fk¡ km,Tmg, is depicted as a
“matrix” valued state. A target is tracked whenever
one of the states in the matrix is active. If a tracked
target is detected, the Markov chain jumps to one of
the leftmost states depending on k¡ km (at updates
detections k¡ km becomes Tm). At track updates, an
incorrect association is accounted for by activating a
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Fig. 4. Example of Markov chain for keeping track of dynamic,
discrete performance state, i.e., if target is tracked or not, track
reinitiation, track mixes, and k¡ kn,Tn given that target is tracked.

Transition probabilities are conditioned on when and how
measurements are made. On target detection, transition is to one
of leftmost states depending on time since previous update. On a
detection failure, a step to the right will be taken. States for
indication of track mixes with nearby targets are included in
leftmost states, which is illustrated in the magnification.

mix state, xmix,k = 1, given the predicted probability of
correct association PCA. The detection probabilities are
conditioned on whether measurements are made in an
interval. The search scan has a detection probability
Pd,search given an interval where the search scan passes
the target, otherwise it is zero. Whenever a target is
tracked, both the search scan and the adaptive updates
may update the track. Thus, in Fig. 4, Pd depends on if
the search scan passes the target, if an adaptive track
update is made, or if both events occurs in a time
interval.

D. Transition Probabilities

The detection probabilities are determined by
the signal-to-noise ratio (SNR), which is calculated
via the radar equation [3, ch. 2] for each target.
If for example the search scan passes a target in a
time interval, the detection probability is determined
by Pd,search(SNR). Real time computation of these
detection probabilities requires tracking of the
expected radar cross section for each known target.
Different expressions apply for various

measurement types. Adaptive target updates utilize
optimized sequences of track update attempts to
achieve a detection probability close to one (though
the expected processing time of the sequence increases
when the target appears weaker). Since an airborne
ESA radar has its antenna fixed to the aircraft hull,
the radar has nonhomogenous properties in space. The
expressions for SNR include this spatial dependency.
We assume detection thresholds are lower for tracked
targets compared with those of yet undetected targets.
Therefore, Pd given a search scan pass, will be higher
for tracked targets than for yet undetected targets,

Pd,search. This comparative gain is of high importance
for the combined performance of searching and
tracking of weak targets, since reinitiations are
suppressed.
We do not pursue the modelling of detection

probabilities and processing times of adaptive updates
further here. For details of the modelling of detection
probabilities, we refer to [15, ch. 2, 3, 4].
Target-to-track mixes occur as consequences of

plot-to-track data association errors in dense parts
of the scenario, although only some data association
failures lead to track mixes. As a rough estimate of
the event, the probability of a plot-to-track association
error may be used. Approximate expressions are
presented in [12] for scenarios with a homogeneous
density of targets, where the number of targets in a
volume is Poisson distributed with the density as a
parameter. Consider a homogeneous environment of
tracked targets in the vicinity of target i (number of
targets in a volume is assumed Poisson distributed),
and denote the density of tracked targets ½track,i. All
neighboring targets are observed simultaneously
with Pd = 1. The probability of a correct plot-to-track
association is then approximated as,

PCA ¼ e¡¼½track,i
p
jSi,kjkm j (5)

where Si,kjkm =HPi,kjkmH
T+Ri,k is the covariance of the

measurement residual given by the Kalman filter at
time k.
In [15, ch. 4], prediction of association errors

based on open loop assumptions are studied for
scenarios given two crossing target trajectories. For
approximate predictions in these scenarios, we have
simplified forms of calculating the plot-to-track
association error events based on the expected
future trajectories, and the filter accuracies at the
measurement update instants. These filter accuracies
are parameterized approximately with the Markov
chain above. A DP example for controlling adaptive
update instants of two crossing targets is given in
Section VF.
The quantization of Pi,kjkm will dominate the

number of states in the Markov chain. Assume
the maximum time from the last target detection
until the target is dropped is 20 s, and ¢t = 1 s.
Thus we need 20 samples of k¡ km. Furthermore,
assume we sample Tm with 2 s intervals implying 10
samples of Tm. Consequently, the number of states is
20£ 10 = 200 plus states needed for accounting for
incorrect associations, target drops, reinitiations, etc.
Fortunately, the transition matrix of the chain will
be very sparse, and therefore we can accept larger
chains.
Example of Performance Predictions using the

Markov Chain Model: Consider the single target
scenario presented in Fig. 5. The target approaches
the radar at a speed of 300 m/s, and the platform
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Fig. 5. Incoming target scenario. Target velocity is 300 m/s, and
platform is assumed to be stationary at origin. Target passes
through an area with increased target density, which is 0.01

targets per km2 at the maximum.

is assumed stationary at the origin. Along the path,
the target passes through an increased target density
area, with target density set to 0.01 targets per
km2. The radar utilizes TWS with a time between
search scan passes of 10 s. The Markov chain in
Fig. 4 is employed to model the target performance
components, where ¢t = 1 s, and the maximum
time until target drops is 40 s. That is, at least one
detection every fourth search scan pass is required for
track maintenance. In Fig. 6, the predicted results are
presented in terms of P(xtracked,k = 1), P(xdropped,k = 1),
P(xreinit,k = 1), and P(xmix,k = 1). The relatively high
risk of dropping and reinitiating a target indicated by
the figure is partly due to the poor initiation criterion,
i.e., the track is assumed to be started on the first
detection. In reality, an initiation criterion is likely to
be used, thus blocking tracking until detections are
received more regularly.

IV. RESOURCE ALLOCATION FORMULATION

We now proceed with the formulation of resource
allocation on the slow timescale as a stochastic
optimization problem, given the tracking performance
model from the previous section. This includes
formulating objectives and constraints of resource
allocation, and a parameterization of measurement
control actions.

A. Formulation of Objectives

Based on the tracking performance state, xi,k,
introduced in Section III, we can now formulate
an instantaneous utility measure Ui(xi,k). The utility
function is specified for each target individually.

Fig. 6. Results from predictions using Markov chain in scenario.
From top to bottom: (a) detection probability of search scan in
searching (crosses), and tracking (circles), where detection

thresholds are lowered 3dB, (b) probability of tracking target,
(c) probability that target is dropped, (d) probability of track

reinitiation indication, (e) probability of track mix indication (here,
incorrect data association).

Define:

Unom,i, a nominal utility measure for tracking a
target, also corresponding to a user priority.
Qacc,i(Pi,kjkm), a scalar-valued quality measure for

accuracy between zero and one.
Creinit,i, a cost for a reinitiation of target i.
Cmix,i, a cost for a track mix of target i.

We choose to express the target-wise, instantaneous
utility as,

Ui(xi,k) = xtracked,i,kUnom,iQacc,i(Pi,kjkm)

¡Creinit,ixreinit,i,k ¡Cmix,ixmix,i,k: (6)

If desired, Unom,i, Creinit,i, and Cmix,i can be made
dependent on the kinematic state »i,k, and thus
geographically dependent. The overall instantaneous
utility of the radar system at time t is defined as
U(xk) =

PM
i=1Ui(xi,k), where xk is the aggregated

state of all target-wise performance models, i.e.,
xk = fxi,kgMi=1.
Example (continued from Section IIID): As an

illustration, the expected instantaneous utility measure,
EfU(xk)g has been evaluated on the results from the
incoming target scenario presented in Fig. 6. The
following definitions are used:

Unom = 1

Qacc(Pkjkm ) =Qrange

³q
HrPkjkmH

T
r

´
Qcross-range

³q
Hc-rPkjkmH

T
c-r

´
Qrange(¾) =Qcross-range(¾)

=

8><>:
1, ¾ · ¾0
(¾1¡¾)=(¾1¡¾0), ¾0 < ¾ · ¾1
0, ¾ > ¾1

9>=>;
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Fig. 7. Example of instantaneous utility measure evaluated on
results of incoming target scenario. See Figs. 5 and 6.

where ¾0 = 500, ¾1 = 5000, and where Hr, Hc-r
projects on to the range and the cross-range axes of
the target.
Creinit = Cmix = 60, i.e., reinitiations and track

mixes are punished with 1 min of accurate tracking.

Computing Pkjkm requires the covariance of the
maneuver noise Q(T) (see (2)) and the covariance of
the measurement noise Rn. In the numerical examples
presented here, the following matrices are used:

Q(T) = q

·
Q0(T)

Q0(T)

¸
, Q0(T) =

·
T3=3 T2=2

T2=2 T

¸
(7)

Ri,n =

·
cos'i,n ¡ri,n sin'i,n
sin'i,n ri,n cos'i,n

¸·
¾2r 0

0 ¾2'('i,n)

¸

£
·
cos'i,n ¡ri,n sin'i,n
sin'i,n ri,n cos'i,n

¸T
(8)

where ri,n is the range to a target i at the time of
observation n, 'i,n is the azimuth to the target
in relation to the antenna normal axis, ¾r is the
measurement standard deviation in range set to 50 m,
and ¾' is the measurement standard deviation in
azimuth set to ¾'('i,n) = 0:1¼=(180cos'i,n). In the
examples herein, q= 1000.
In Fig. 7, the resulting expected utility is shown.

Note the inverted peaks occurring due to the non-zero
probability of track reinitiations and track mixes.
The instantaneous utility as defined herein can very
well be below zero. The jigsaw pattern is due to
the variation in accuracy affecting the utility via
Qacc,i(Pi,kjkm).
Noninstantaneous Utility: In resource allocation

herein, we search for the next batch of measurement
operations, which maximizes the expected utility
of the radar system integrated over a time window.

That is, given a global tracking performance state x0
at the present time indexed with k = 0, the aim is to
maximize a noninstantaneous utility,

J0(x0) = E

(
N¡1X
k=0

U(xk)¢t
¯̄̄
x0

)
(9)

with respect to the measurement batch d0. Here,
N denotes the prediction horizon. The expectation
is over the future radar measurements, including
measurement time instants and measurement errors,
and ideally over future target trajectories. In the
sequel, the multiplication with ¢t will be omitted
in the notation since it merely acts as a scaling. The
objective function in (9) can also be formulated as a
discounted, noninstantaneous utility.
For explicitness, the optimization problem is

expressed as the recursion,

max
d0
U(x0)+Ex1jx0,d0fJ

¤
1 (x1)g, (10)

where J¤1 (x1) represents the future utility as a
consequence of decisions d0 made at k = 0, and given
a sequence of optimal future decision, i.e.,

J¤k (xk) = max
dk
U(xk)+Exk+1jxk ,dkfJ

¤
k+1(xk+1)g: (11)

The decision parameter vectors dk are here assumed
to fulfill the resource constraints on available
measurement time. Note that in (11), the modelling of
the decision consequences has the form of a recursion
with nested maximizations and expectations.
Test Targets and Constant Number of Targets M

during Predictions: Targets yet undetected at k = 0
may become detected within the prediction horizon,
thus entering the evaluation of (9) (this is the benefit
of searching). To account for these targets, a set of
a priori modelled test targets are utilized to sample
the space of trajectories of yet unknown targets.
The density of the test targets corresponds to an
expected density of targets in the whole or in parts
of the scenario, or alternatively, weights can be put
on the test targets to achieve the desired density
of the model. Online, the prior probabilities that
there are still undetected targets along the test target
trajectories are computed given the previous search
scans launched in the particular areas. This is done for
all test targets.
Given the utilization of test targets, the number of

targets M in the evaluation of (9) will remain constant
during predictions, although the predicted number of
tracked targets will change dynamically. This results
in a saving of complexity in the formulation compared
to if M represented the number of tracked targets,
which would imply a dynamically changing M. In
Fig. 8, an example is given of test target trajectories
incoming from two directions.
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Fig. 8. Illustration of trajectories of test targets used to predict
density of tracked targets at k > 0, yet undetected at time k = 0.
Figure shows nonmaneuvering trajectories from two different

directions.

B. Resource Constraints

When disregarding order of measurements within
a batch in resource allocation, the implicit constraint
that the radar only can do one thing at a time is
removed. At planning, the constraint must be replaced
with constraints on the resource utilization of the
batches.
As a consequence of the utilization of

measurement operations, the actual execution time of
a of a measurement batch will generally be random.
Let uk(xk,dk) be the measurement execution time of
batch k, and define lk(xk,dk) = uk(xk,dk)=¢t as the load
in interval k. Note that the load is also a function of
the kinematic state, in particular the target positions
in relation to the radar platform. This dependence
is assumed implicitly for notational convenience.
Desirably, the sequence of resource constraints used
in planning are formulated as,

lk(xk,dk)·w:p:1 1, 8 k ¸ 0: (12)

Unfortunately, this formulation is computationally
infeasible. Since the standard deviation, ¾lk , is
typically a fraction of one, it makes sense to
approximate (12) with expectations,

l̄k(xk,dk) = Eflk(xk,dk) j xk,dkg ·w:p:1 ck: (13)

Note that the expectation is not over the state at this
stage. The sequence ck is a reaction to observed
outcomes of the execution time in previous interval,
e.g., in time interval k¡ 2. For instance, ck = 1¡
±k¡2=¢t, where ±k¡2 is the observed deviation from
(k¡ 1)¢t in finishing time of the batch in interval
k¡ 2. A full consideration of the variation of batch
processing time requires that the distribution of ck
is carried along in the state xk. Unfortunately, the
computational demand would be large. However,
since the deviation ±k¡2 usually is small, the loss from
ignoring the variation at predictions is anticipated

to be minor. Therefore, we let ck = 1 for k > 1
at planning. At the first time interval, k = 0, no
approximation is needed. For notational convenience
we put ck = 1 for all k subsequently.

C. Parameterization of Measurements on the Slow
Timescale

We deal with three kinds of measurements: search
scans, adaptive track updates for single targets, and
adaptive updates for a group of tracks or crossing
targets. A search scan is herein parameterized with
a vector of parameters representing allocated time per
time interval on the slow timescale. One parameter
is required for each interval in which the scan may
be allocated. For search scan j, the allocation vector
is denoted as uj = [uj,k0,j ,uj,k0,j+1, : : : ,uj,k1,j ], where
k0,j , and k1,j are the first and last intervals in which
allocation is allowed. A sequence of search scans
associated with a sector, S, is then parameterized
with an aggregated vector of allocation vectors,
uS = [u1,u2, : : : ,uj , : : :]. Other parameters relevant in
modelling, such as integration gain, probability of
detection, and the time instant of a scan passing over a
certain azimuth location, are computed out of uS .
The decisions regarding a sequence of

adaptive target updates are parameterized with
a sequence of discrete parameters, dupd,i =
fdupd,i,0,dupd,i,1, : : : ,dupd,i,N¡1g, where dupd,i,k 2
f“update track i at time interval k,” “do not update,
track i at time interval k”g. An update command
triggers a sequence of update attempts, which
results either in a successful or a failed detection.
A sequence of update attempts is optimized locally
with the objective to minimize the expected time
to achieve a target detection at a high probability,
see e.g. [7]. Discrete decision variables for target
updates facilitates DP when controlling track updates.
However, the resulting measurement time will be
random. Adaptive track updates of closely spaced
targets are similar to adaptive updates of one target.
A sequence of update attempts are launched until all
targets are updated. Each attempt may consist of one
or several CPIs of different beam positions, although
a gain only occurs if more than one target can be
observed per CPI.
The parameter vector dk is an aggregation of all

search scan parameters and track update parameters of
time interval k.

V. OPTIMIZATION-BASED RESOURCE ALLOCATION
WITH APPROXIMATE DYNAMIC PROGRAMMING

An optimization algorithm for the nested,
stochastic control problem formulated in (10)
and (11), with constraints (13), typically relies on
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stochastic DP. Unfortunately, the size of the state
space explodes combinatorially with the number
of targets in the scenario, and an optimal approach
is infeasible. Therefore, approximate solutions are
needed. In this section, we suggest an approximate
relaxation of the resource constraints (13) to separate
the problem into components, thereby achieving a
simplification. An optimization algorithm is presented,
utilizing the separation.

A. Separation into Subtasks

An approach to large-scale control problems
is to achieve a separation into components, where
each component can be optimized locally, and then
coordinated globally via the constraint on the control
signals, i.e., on the resource constraints (13) in
this case. The control problem studied herein has a
separable structure in the targets which is suitably
explored. A key observation is that measurements
have local effects in space on tracking performance
on targets. For example, track updates of a target
affect tracking performance of the target, and perhaps
of nearby targets, but not of targets distant in space.
Likewise, search scans in one sector do not affect
tracking performance of targets in other sectors.
Formally, this reasoning is treated by grouping targets
into subtasks such that decision parameters have local
effects in the performance modelling of the subtasks.
The utility of a subtask s is then written

Us(xk) =
X

fijTi belongs to sg
Ui(xi,k): (14)

Define xs,k as the aggregated state for the targets
sorted to s. The system utility at time k is thenP
sUs(xs,k). For subtask s, and time interval k, the

decision parameters are denoted as ds,k. The decision
parameters of the total batch of scans in interval k
is then an aggregate of the decision parameters for
all subtasks. State transitions for targets part of s are
assumed to be locally dependent on ds,k,

pxi,k+1 = Ptr,1(ds,k,»i,k)pxi,k , fi j i belongs to sg:

(15)

A separation with this property is a division of
space into exclusive sectors defined by, e.g., target
density, task definitions, and sensor characteristics.
Another possibility is to disregard the search scan
support in tracking, i.e., the search is only used to cue
adaptive tracking. Then each tracked, independently
acting target is regarded as an independent subtask.
Neighboring, interacting targets are merged to form
new independent subtasks, and searching a sector for
undetected targets is also an independent subtask. This
gives a flat separation into subtasks as illustrated in
Fig. 9.

Fig. 9. Formation of independent subtasks. S1, S2, and S3
represent sectors that should be searched, while T1, T2, and T3

are tracked targets.

The load in interval k, coming from the
measurements associated with s is here denoted as
ls,k. Based on the load of all subtasks, the resource
constraints are reformulated as,X

s

l̄s,k(ds,k,xs,k) =
X
s

Efls,k(ds,k,xs,k) j ds,k,xs,kg · 1,

k 2 f0,N ¡ 1g: (16)

B. Approximate Lagrange Relaxation

According to (15), decisions on track updates
and search scans have local effects on tracking
performance for each subtask disregarding one fact:
the measurements compete for the same constrained
resources. By introducing Lagrange relaxation, the
constraints on the resources are included explicitly in
the optimization

Lk(xk,dk,¸k)

=U(xk)+¸k(1¡ l̄k(xk,dk))

+Exk+1jxk ,dk

½
max
dk+1

Lk+1(xk+1,dk+1,¸
¤
k+1(xk+1))

¾
:

(17)

Here ¸k is the Lagrange multiplier at time k and ¸
¤
k(xk)

is the Lagrange multiplier such that the resource
constraint is fulfilled with equality at optimum d¤k . The
Lagrange multipliers are regarded as internal variables
in an optimal decision mapping d¤k = ¹

¤
k(xk) which

includes the resource constraint at time k, however,
we chose to make the Lagrange multipliers explicit.
The optimal Lagrangian at time k, Lk(xk,d

¤
k (xk),¸

¤
k(xk))

is equal to the optimal value-to-go function J¤k (xk). At
the last stage N, LN(xN) =U(xN).
One of the aims of introducing the Lagrange

multipliers is to separate the optimization problem into
subtasks. Using the expressions from (14)—(16) the
Lagrangian is reformulated. For clarity, the k+1 stage
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is also expanded,

Lk(xk,dk,¸k)

=
X
s

Us(xs,k) +¸k

Ã
1¡
X
s

l̄s,k(xs,k,ds,k)

!

+Exk+1 jxk ,dk

(
max
dk+1

X
s

Us(xs,k+1)+¸
¤
k+1(xk+1)

£

Ã
1¡
X
s

l̄s,k+1(xs,k+1,ds,k+1)

!

+Exk+2 jxk+1,dk+1

½
max
dk+2

Lk+2(xk+2,dk+2,¸
¤
k+2)

¾)
:

(18)
Rearranging terms gives

Lk(xk,dk,¸k)

=
X
s

(Us(xs,k)¡¸kl̄s,k(xs,k,ds,k)) +¸k +Exk+1 jxk ,dk

£

(
max
dk+1

X
s

(Us(xs,k+1)¡¸¤k+1(xk+1)l̄s,k+1(xs,k+1,ds,k+1))

+Exk+2 jxk+1,dk+1

½
max
dk+2

Lk+2(xk+2,dk+2,¸
¤
k+2)

¾

+¸¤k+1(xk+1)

)
: (19)

A separation of (19) in terms of subtasks requires
that the inner sums can be moved outside both
the maximizations and the expectations. In these
expressions, ¸¤k(xk) is a function of the global state,
and this prevents the separation. However, there will
be many subtasks, and we assume that the variation
of ¸¤k(xk) is moderate compared with the average
Exk jx0f¸

¤
k(xk)g. It is then reasonable to replace ¸¤k(xk)

for k > 0 with estimates. These estimates are denoted
ˆ̧ ¤
k, and chosen such that,

Exk jx0fl̄k(xk,d
¤
k (xk))g= 1, k > 0: (20)

Note that the expectation now includes the state,
which is not the case in (13). Since ˆ̧ ¤k are conditioned
on the present state x0, and future information input is
disregarded, they are regarded as open loop estimates.
It will be a part of a global optimization algorithm to
search for ˆ̧ ¤k.
There are low-pass effects which will reduce the

fast term variation of ¸¤k(xk), motivating the use of
estimates. That is, since a Lagrange multiplier can be
interpreted as a marginal price for a resource, a large
¸k compared with ¸k¡1 and ¸k+1 will reduce the desire
to allocate in interval k while moving allocations to
the neighboring intervals, thus reducing the price ¸k.

Measurements tend to spread out in time, and the
pressure on the constraints will be slowly varying.
The long term variation of the Lagrange multipliers
typically depends on the number of tracked targets
which will be stochastic as well. This variation is
usually small due to averaging effects. However,
the variation of batch execution time, which gives
rise to a reaction in the capacity ck of a following
interval (see Section IVB), will induce a variation in
¸¤k due to correlation between ck and ¸

¤
k. To account

for this variation, an ad-hoc, small variation of ¸¤k
which is white and independent of the state is
suitable to include in the modelling. Then, ˆ̧ ¤k is
assumed to be the mean of this variation. At
optimization, an expectation should be taken over
this variation as well. Since the expectation will
be placed outside the maximization, it will help
making derivatives exist. This is useful for speeding
up optimization.
Using the open loop estimates ˆ̧ ¤k, a recursive

argument is carried out that separates the problem. For
notational convenience, define a vector of Lagrange
multiplier estimates ˜̧ = [¸0,

ˆ̧ ¤
1, : : : ,

ˆ̧ ¤
N¡1], and denote

the element corresponding to time k as ˜̧ k. Assume
that the Lagrangian at time k+1 can be rewritten as a
sum of Lagrange components for each subtask, plus a
term depending on the multipliers only,

Lk+1(xk+1,dk+1,
˜̧ ) =

X
s

Ls,k+1(xs,k+1,ds,k+1,
˜̧ ) +

N¡1X
n=k+1

˜̧
n:

(21)
The Lagrangian at time k is then expressed as,

Lk(xk,dk,
˜̧ ) =

X
s

(Us(xs,k)¡ ˜̧ k l̄s,k(xs,k,ds,k)) + ˜̧ k

+Exk+1 jxk ,dk

(
max
dk+1

X
s

Ls,k+1(xs,k+1,ds,k+1,
˜̧ )

)

+
N¡1X
n=k+1

˜̧
n: (22)

The maximum operation is separable in the subtasks
due to the local influence of decision parameters
in subtasks, e.g., if fs(ds) is a set of functions
representing local consequences of the decision ds
regarding measurements of subtask s, we have
that

max
d

X
s

fs(ds) =
X
s

max
ds
fs(ds): (23)

Thus, the sum can be moved outside the
maximization. Furthermore, the expectation is carried
out per subtask due to the independence assumptions
regarding target-wise performance. Consequently,
given the assumption in (21), the Lagrangian at stage
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k is also separable in the subtasks:

Lk(xk,dk,
˜̧
k)

=
X
s

Ã
Us(xs,k)¡ ˜̧ k l̄s,k(xs,k,ds,k)

+Exs,k+1 jxs,k ,ds,k

½
max
ds,k+1

Ls,k+1(xs,k+1,dds ,k+1,
˜̧ )

¾!

+
N¡1X
n=k

˜̧
n

¢
=
X
s

Ls,k(xs,k,ds,k,
˜̧ ) +

N¡1X
n=k

˜̧
n: (24)

At the last stage, we have that LN(xN) =
P
s Us(xs,k)

¢
=Ls,N(xs,N). Carrying out a recursive argument from

time N and proceeding backwards, the Lagrangian
at the decision time instant k = 0 separates in the
subtasks.
In [4], a similar approximate DP approach given

averaged resource constraints is used with the aim
of achieving a separation of a different sensor
management problem, namely that of optimizing
target classifications.

C. Separated Optimization Solution

A possible optimization algorithm for the problem
is to locally optimize each subtask given ˜̧ , and to
iteratively search for ˜̧ such that the expected resource
constraints (20) are fulfilled. Let ˜̧ j denote the
Lagrange multiplier estimate at iteration j. Moreover,
denote Efl̄jg= [: : : ,Exk jx0fl̄

j
kg, : : :], the vector of

predicted, expected load given the optimized decisions
at iteration j. Assume that Efl̄jg is continuous and
differentiable with respect to ˜̧ . Via a first-order
Taylor expansion, the equations in (20) are solved
iteratively for ˜̧ according to,

˜̧ j+1 = ˜̧ j +¢ ˜̧ j ,

Efl̄jg+ @Efl̄
jg

@ ˜̧
¢ ˜̧ j = 1:

(25)

Thus, at each iteration, d¤s,k are optimized locally for

all k, given the present estimate of ˜̧ . The expected
load coming from the subtask is computed based
on d¤s,k, and Efl̄jg is formed by summing over all
subtasks. Furthermore, @Efl̄jg=@ ˜̧ is summed from
the partial derivatives of each subtask. Then, (25) is
used to generate the new ˜̧ iterate.
For target tracking subtasks, Ls,0(xs,0,ds,0,

˜̧ )

is discontinuous with respect to ˜̧ due to the
maximization over the discrete update variables. Then,
a subgradient method is applicable. However, by

assuming that future ¸k will vary randomly, where
ˆ̧ ¤
k

only represents a nominal value, a faster search in a
continuous space is possible.
Next, we outline how to calculate the Lagrangian

for three different subtasks. After that, pseudocode
for resource allocation based on the approach outlined
herein is given.

D. Adaptive Tracking Subtasks

If the subtask is to generate updates for a single
target where the state space is fairly small, (24) forms
a base for DP. Resource constraint are included via the
Lagrange multiplier cost terms. The Markov decision
process in (3) based on a chain such as in Fig. 4 can
be used straight off.
Consider a subtask of tracking target Ti. Denote

the value-to-go function for Ti at time k as Ji,k(xi,k).
Let Ji,k(xi,k) be equal to the local Lagrangian of

the subtask given the vector ˜̧ i.e., Ji,k(xi,k) =

LTi,k(xi,k,dupd,i,k,
˜̧ ), (Ji,k(xi,k) is implicitly a function

of dupd,i,k and
˜̧ ). Given ˜̧ , the local decision problem

is characterized as a Markov decision process. The
optimization is achieved with a DP backwards
recursion,

J¤i,k(xi,k)

= max
dupd,i,k

Ã
Ui(xi,k)¡ ˜̧ k l̄i(xi,k,dupd,i,k)

+
X

xi,k+12Xi

J¤i,k+1(xi,k+1)P(xi,k+1 j xi,k,dupd,i,k,»i,k)

!
:

(26)

Here, Ji,N =Ui(xi,N), and l̄i(xi,k,dupd,i,k) is the expected
load given a scheduled track update, and given
the filter covariances predicted by the state in time
interval k. Since dupd,i,k is a binary variable, and since

l̄i(xi,k,dupd,i,k) is zero given no update, the maximum
operation is possible to interpret as the following
comparison. At each time and state, the marginal
difference in future utility from launching an update
or not,X
xi,k+12Xi

J¤i,k+1(xi,k+1)

£ (P(xi,k+1 j xi,k,upd,»i,k)¡P(xi,k+1 j xi,k,wait,»i,k))
(27)

is compared with the cost of the update, ˜̧ k l̄i(xi,k,upd);
update a track if the marginal utility gain from making
the update is larger than the cost.
When ˆ̧ ¤k is modelled as stochastic (in order to

improve modelling faults connected to the open loop
assumption, e.g., by modelling a small amount of
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Fig. 10. Results from DP of adaptive track update instants for
incoming target in Fig. 5. From top to bottom: (a) probability of
tracking target, (b) expected utility, (c) average track load given
by AR-filter of true, peaky load curve, (d) expected time between

adaptive track updates.

white Gaussian noise in ˆ̧ ¤k), the optimal value-to-go
function J¤i,k(xi,k) will become stochastic for k > 0,
even conditioned on the state. When accomplishing
the DP recursion, the probabilities, P(d¤upd,i,k =
upd) and P(d¤upd,i,k =wait) are computed instead
of d¤upd,i,k for k > 0, in combination with the mean
and approximate variance of J¤i,k(xi,k). A detailed
explanation is out of scope of the paper.
Example of DP in Single Target Tracking (continued

from Sections IIID and IVA): Consider the incoming
target scenario from Fig. 5. Assume a stationary
load situation in a radar system, where ˜̧ k is equal
to a constant for all k. In the example, ˜̧ k is chosen
from a standard scenario. The typical range of ˜̧ k
depends on, for instance, the system in question,
models for determination of l̄i(xi,k,upd), target signal
strength and density, and the choice of utility measure.
Fig. 10 shows results from carrying out the recursion
(26) for the incoming target. The models and the
utility function are the same as in Section IIID and
Section IVA, with the following differences.

1) Tracking is carried out only by adaptive
updates, no search scan measurements update the
track once it is started.
2) The time between search scan passes is

25 s instead of 10 s. A lower scan rate brings the
possibility to increase coherent integration and thereby
improve the detection range.
3) The maximum time between adaptive updates is

set to 10 s.

E. Search Subtasks and Open Loop Optimization

In search subtasks, the local state space is still
too large for DP due to the large number of test

targets. To deal with this complexity, we use open
loop assumptions on the search scan parameters,
meaning that the modelling excludes observations of
future states. The future decisions are then no longer
conditioned on the observed future states, but on the
expected future state predicted from the present state.
Formally, the maximizations in (24) are moved outside
the expectations. The recursive definition in (24) is
thus updated for open loop assumptions to,

Ls,k(xs,k,ds,k,
˜̧ )

=Us(xs,k)¡ ˜̧ k l̄s,k(xs,k,ds,k)

+max
ds,k+1

Exs,k+1jxs,k ,ds,kfLs,k+1(xs,k+1,ds,k+1,
˜̧ )g:

(28)

The maximizations in open loop are suitably extracted
from the recursion,

max
ds,0

Ls,0(xs,0,ds,0,¸
¤
0)

= max
ds,0,ds,1,:::

(Us(xs,0)¡¸
¤
0ls,0(xs,0,ds,0)

+Exs,1 jxs,0 ,ds,0fUs(xs,1)¡
ˆ̧ ¤
1ls,1(xs,1,ds,1) +Exs,2 jxs,1 ,ds,1f: : :gg):

(29)

In a similar manner as for ˆ̧ ¤k, a random variation
can be added to ds,k in order to account for the fact
that ds,k is random for k > 0, although the open
loop assumption makes them erroneously look
deterministic. Thus, ds,k will be regarded as a nominal
decision which will most likely be altered in the
future due to the actual feedback. The open loop
optimization results in a control structure called open
loop feedback control, see [2, ch. 6]. Note that the
approach only disregard future information in the
predictions, and feedback will indeed be utilized.
The search scan performance depends on the

future tracking utility and track load of yet undetected
targets. To predict these entities, we use test targets
as discussed in Section IVA, and illustrated in Fig. 8.
For each test target, we can predict the future utility
and track load utilizing Markov chains and DP, as
demonstrated above in Fig. 10. This is the approach
taken in the demonstration in Section VI, where the
chain in Fig. 4 forms the performance model for a set
of nonmoving test targets.
To the large number of possible test target

trajectories and limited computational resources,
the state space for each test target may have to be
restricted to one or a few states, e.g., to xtracked,k.
The utility and load for the tracked targets are then
estimated by either assuming a fixed, average track
update rate for all detected targets, or by optimizing
average track update rates based on time averages
of the predicted values of ˆ̧ ¤k. The later results in a
hierarchical optimization problem when searching
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Fig. 11. Results from search example: (a) search load with load allocation of first three search scans (solid), and track load (dashed),
(b) expected, instantaneous utility (curve with circles), and number of tracks, (solid without circles).

for ˆ̧ ¤k. A short example is now given of this
approach.
Search Performance Prediction Example: Consider

a scenario where test targets enter the scenario along
trajectories illustrated in Fig. 8 from eight regularly
sampled directions. The test targets trajectories are
divided into cells of 7500 m. We assume that all
test targets have the same velocity of 250 m/s. The
test targets move to the next neighboring cell on the
trajectory in a time discrete fashion every 30 s (250 ¢
30 = 7500). The probability that there is an undetected
target in a cell is modelled a priori for every cell
such that the test targets yield a target density of
½0 = 1:5 ¢ 10¡4 targets per km

2. The probabilities are
regarded as state variables which are affected by the
history of search activities, and are carried along from
one time instant to the other.
A search subtask is assumed in the scenario where

a sector from ¡75 to +75 deg needs to be searched,
given half the radar resource. No targets are tracked
initially. In the example, ˆ̧ ¤k is optimized to yield a
total search and expected track load of 0.5. Average
track update rates are decided for each tracked test
target individually by extracting an asymptotic time
average of the optimized ˆ̧ ¤k. The track load, track
accuracy and the utility of a test target depend on
the resulting update rate and on the location of the
target. In this example we have not considered track
mixes when deciding on the update rates, nor the
coordination of search scans and track updates.
In Figs. 11 and 12, results from open loop

optimization with a time horizon of 80 s, and with
¢t = 2 s are presented. Fig. 11(a), shows the search
and track load as a function of time, together with
the load allocation of the first three consecutive
search scans. (The utilized search scan in this
example includes range ambiguity resolution, binary
integration, and long coherent integration times,
and is therefore seemingly slow.) In Fig. 11(b), the

predicted, instantaneous utility and the predicted
number of tracked targets are shown as a function
of time. In Fig. 12, the resulting coverage after each
of the three search scans is illustrated in terms of the
expected number of yet undetected targets. A white
color implies a low risk of yet undetected targets.

F. Crossing Targets Tracking Subtasks

Consider the scenario with two crossing targets
in Fig. 13. We have applied DP to the scenario,
aiming at predicting update time instants and future
track load. Although the scenario only contains two
targets, modelling with a fully observed system is
computationally demanding. Therefore, the following
simplifications are considered.

1) An adaptive update algorithm is used
with Pd.1, and where both targets are observed
simultaneously. This means that the sequences of
update instants are captured by a common state, e.g.,
with tracking performance dynamics modelled by the
Markov chain in Fig. 4.
2) An open loop assumption is made regarding

the effect of the measurement value outcome on the
kinematic state estimate. Note, in crossing target
situation, the actual outcome of the state estimate
affects the control reactions, which is not the case for
single target tracking.
3) The probability of track mix is predicted

at each stage and state by calculating two-stage
plot-to-track association errors [15, ch. 4].

Predictions are made using the same constant
Lagrange multiplier values, and utility function, as
in Section VD. The track load model differs to that
in Section VD since the targets are coscanned when
fruitful.
In Fig. 14, some results from DP in the crossing

target scenario are presented. The time between

WINTENBY & KRISHNAMURTHY: HIERARCHICAL RESOURCE MANAGEMENT 415



Fig. 12. Expected number of yet undetected targets as function
of location after (a) first, (b) second, (c) third scan. White implies

there are no undetected targets.

updates, T, is predicted to drop when track mixes
are likely, thereby counteracting mixes. The predicted
instantaneous utility remains mainly unaffected during
the crossing, but the expected track load is nearly
doubled.

G. Pseudocode for the Separated Solution to Resource
Allocation

Assume that an initial estimate of ˜̧ exists, then an
algorithm for generating a measurement batch is now
the following.

1. Form subtasks:
1.1. Each tracked target forms a subtask.
1.2. Space is divided into sectors, for which the

optimized search scan properties may differ,

Fig. 13. A scenario of two crossing targets.

Fig. 14. Results from DP in crossing target scenario in Fig. 13.
From top to bottom: (a) expected utility of the two targets,
(b) expected combined track load, (c) expected time between

updates as generated by DP.

for instance due to spatially inhomogeneous
utility function definitions, or varying spatial
antenna properties. A search subtask is formed
in each sector.

1.3. Group tracked targets which may interact
during the prediction interval, or which may
benefit from simultaneous scanning. Each
group forms a subtask.

2. Optimize parameters locally for each subtask,
given the estimate of ˜̧ 0, and calculate Efl̄

j
sg, and

@Efl̄jsg=@ ˜̧ for each subtask.
2.1. For each tracked target which has not been

grouped, utilize backwards recursive DP to
optimize the time instants of updates.
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2.2. For each search task, optimize the time
allocation of the sequence of search scans of
the task.

2.3. For each group of tracked targets, optimize the
future measurements needed to maintain the
tracks using open loop assumptions, possibly
in combination with DP.

3. Sum Efl̄jsg and @Efl̄jsg=@ ˜̧ over the subtasks to
form Efl̄jg and @Efl̄jg=@ ˜̧ .

4. Update the Lagrange multiplier vector, ˜̧ according
to (25).

5. If track load is sufficiently close to one for all time
intervals, proceed to 6, otherwise continue with 2.

6. To form the next measurement batch, extract the
measurements of the first time interval from each
subtask.

The algorithm is restarted when next measurement
batch should be produced. Initial estimates in
optimization are taken from the previous time instant.
In online solutions, one should try to reduce the
number of parameters and rely on tabulated results
from offline optimization. Furthermore, it is not
meaningful to spend computational resources on
finding the exact optimum. The goal is primarily to
coarsely assess the future resource situation.

H. Extension to Coordinate Search Scans and
Adaptive Track Updates

Synchronization of track updates and search scans
is achieved in the framework by ordering subtasks and
parameter dependencies hierarchically. Tracking of a
target within a sector is then considered as a subtask
to the subtask of maintaining a radar image in the
sector. The DP optimizations of track updates will
be conditioned on the sequence of search scans in
the sector, and on the Lagrange multiplier estimates.
The optimization of search scan parameters and the
generation of Lagrange multiplier estimates are made
at a global level using nonlinear programming. For
details we refer to [16].
The method, including the hierarchical ordering of

searching and tracking tasks, has been implemented
as a benchmarking reference algorithm. In the
numerical example section, Section VI, the method
is denoted LRM. Due to computational demand it is
infeasible as an online solution. However, as an
offline benchmarking method, it proves to be very
useful.

VI. NUMERICAL EXAMPLE

In this section we illustrate the use of the LRM
algorithm as a tool in radar design. The LRM is
compared with both a TWS policy, which updates
tracks while scanning for new targets, and an ad-hoc
AT policy. AT uses the search scans only to cue

Fig. 15. Scenario of regularly distributed test targets. Density of
targets is ½0 = 1:5 ¢ 10¡4 targets per km

2.

AT, for which adaptive track updates are scheduled
once every 6th second per track. More targets result
in higher track load, and left over time is used for
searching. Track loads larger than one result in that
AT has to drop tracks, leading further to reduced
overall performance. In this example, the three
methods utilize a quick search scan which resolves
range ambiguities from scan to scan. Targets may
be eclipsed by the radar transmission intervals and
thus remain undetected at one scan pass, but will
likely be detected a following scan. The search scans
cover 360 deg before new scans are started. This
results in scan times of about 2.5 to 20 s depending
on level of coherent integration. The TWS method
herein utilizes a 6 s scan giving a fair balance between
search and tracking performance in the example. AT
utilizes search scans with increasing level of coherent
integration to detect smaller targets. The search may
proceed until the system becomes saturated by track
load.
The scenario in the demonstration consists of

nonmoving test targets placed regularly in space, see
Fig. 15, where the target density is ½0 = 1:5 ¢ 10¡4
targets per km2. No targets are tracked at k = 0. Each
target is given a weight to achieve target densities
½ 2 ½0 ¢ f1,3g (corresponding to medium and high
densities for the modelled radar).
Due to the open loop assumptions of search scan

parameters and Lagrange multipliers in optimization,
detailed evaluations of LRM require extensive
Monte Carlo simulations. A quick but low precision
alternative is to do evaluations using the prediction
given by the optimization. The evaluations of
LRM are then based on the open loop assumptions
regarding search scans and Lagrange multipliers.
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Fig. 16. Startup transients of utility for densities ½ 2 ½0 ¢ f1,3g.
Upper three curves corresponds to ½= 3½0, and lower three curves
to ½= ½0. LRM corresponds to curves with stars, TWS to circles,

AT to crosses.

The sensor, performance prediction models, and
utility function are similar to those used in previous
examples with the following additions and exceptions:

¢t = 2 s for reduced size of the state space, and
k¡ km is sampled up to 30 s.
Creinit = 30, and Cmix = 30.
In order to include both the startup phase of

the performance transient, and a period where the
transient has levelled out, the time horizon is set to
100 s plus a burn in time of the Markov decision
processes.

All targets have the same definition of utility
function. The Markov chain model of Fig. 4 used in
optimization of LRM is also used for evaluations of
TWS and AT. The detection probabilities are then
computed for each target individually, and for each
time instant k conditioned on the following entities:
target location in relation to the radar geometry,
target radar cross section, sequence of search scans
in the sector of the target uS , scheduled target updates
dupd,i,k. By inserting the detection probabilities in the
Markov chain transition matrix, the probability vector
of the target performance state is simulated using
(3). Further, the probability of correct association
is computed with (5), based on an estimate of the
background density of tracked targets. In homogenous
density scenarios at the chosen density levels and
update rates, track mixes are rare and have little
impact on the overall utility.
Results: Fig. 16 shows comparisons of utility

transients for LRM, TWS, and AT given the two
target densities. LRM optimizes the area under the
utility transient given the resource constraints.
At the medium density scenario, ½= ½0, AT

performs better than TWS. The reason is that while
AT increases the coherent integration gain of the

search scan to produce more tracks, TWS is forced to
maintain a high scan rate to sustains tracking quality.
Thus, AT starts more low-SNR targets. Additionally,
the tracking quality of AT tracks is better than that
of TWS tracks. AT updates each target every 6th
second. With TWS on the other hand, tracks may
remain undetected for one or a few scan passes due
to eclipsing and a stretched out shape of the Pd-curve.
LRM copies the behavior of AT at low and medium
density scenarios. A difference is the adaptive control
of the time between updates, illustrated in Fig. 10(d).
This adaptivity gives a slight advantage over AT in
that more resources are used for searching, and even
more low-SNR targets can be started. The utility gain
of these costly targets is not substantial.
At the the high density scenario, ½= 3½0,

conditions are reversed. AT saturates from adaptive
tracking. TWS maintains substantially more tracks
than AT, although still at a lower tracking performance
per track. LRM now combines TWS and AT behavior.
Half the resource is utilized for TWS, while the rest is
utilized in adaptive updates when TWS detection fails,
and to fill in with updates in between the search scan
passes.
Discussion: TWS distributes the energy equally in

all directions, and is therefore likely to operate well
for homogenous target densities and homogenous
task definitions. In dense scenarios particularly,
TWS achieves an efficient coordination of track
updates. The performance difference between TWS
and LRM in the dense scenario is therefore small.
With varying target densities, inhomogeneous task
definitions, and inhomogeneous sensor characteristics,
the performance difference can be significant in favor
of LRM. For instance, LRM has the ability to adapt
the resource allocation policy sector-wise, where
for each sector the three properties are reasonably
homogenous. In a sector with high target density,
LRM combines the benefits of TWS and AT, while
in a low density sector, LRM acts more like AT. For
tracks with high performance requirements, adaptive
updates are favored. The essence of the LRM behavior
is possible to capture in a heuristic policy.

VII. CONCLUSIONS

In this paper we formulated the radar resource
management problem for adaptive airborne
surveillance radars as a stochastic optimal control
problem. We modelled performance of radar tracking
target-wise as Markov decision processes. Since an
optimal (stochastic DP) approach is computationally
intractable, a novel suboptimal method based on
hierarchical time decomposition and Lagrange
relaxation is presented. The method was implemented
as an offline tool for benchmarking other methods. In
a numerical example, the method was compared with
two adhoc resource allocation policies. Thereby, the
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power of the method as an offline reference in radar
design has been demonstrated.
The techniques in this paper can be generalized

to other resource allocation applications in which
dynamic stochastic effects are important, and where
similar simplifications apply. In future work it
is interesting to study the method in a scenario
with two adaptive airborne radars, or with one
radar supported by ground sensors. Modelling of
tracking performance using Markov chains can be
developed further. Moreover, it is worthwhile studying
efficient algorithms for solving the optimization
problem, particularly for online applications. It is also
worthwhile consider a game theoretic version of the
above problem where multiple radars are allocated to
multiple targets–see [11] for a similar problem.

REFERENCES

[1] Bar-Shalom, Y., and Li, X.
Estimation and Tracking, Principles Techniques and
Software.
Norwood, MA: Artech House, 1993.

[2] Bertsekas, D.
Dynamic Programming and Optimal Control (2nd ed.).
Belmont, MA: Athena Scientific, 2000.

[3] Blackman, S., and Popoli, R.
Modern Tracking Systems.
Norwood, MA: Artech House, 1999.

[4] Castañon, D.
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