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Integrated Voice/Data Call Admission Control for
Wireless DS-CDMA Systems
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Abstract—This paper addresses the call admission control ~ When a user desires access to the network for communicating
problem for multiservice wireless code division multiple access yopijce or data, the base station (BS) decides whether to admit or
(CDMA) cellular systems when the physical layer channel and .y (reject) the new user:; this is known as CAC. Assuming
receiver structure at the base station are taken into account. . . .
The call admission problem is formulated as a semi-Markov that users have stringent SIR requirements, the new user will be
decision process with constraints on the blocking probabilities blocked if the BS is unable to simultaneously accommodate the
and signal-to-interference ratio (SIR). By using recent results SIR requirements of all presently active users and that of the new
:_” large lr‘?me“:j matrices, (tjh‘;-‘ dSIR %O“Stralli”tf/v inC?]rporart]e usert Consider a network in which users are partitioned iito
tlr?ee agp{?ngjg;usaeﬁ adert:i:fi(rnsn ?)rcl)ﬁcya C":r? bce é(i:rg)rr]\?psljtedevisa gV\Ilir:eZ: servic_e classes. In addition to satisfying the SIR requirement of
programming-based algorithm. all active users, the network also seeks to guarantee that all users

in a particular service class will experience a blocking proba-
bility of no larger than a particular maximum value. In order
to satisfy the SIR and worst-case blocking probability require-
ments, it will be necessary to admit or block new users as a func-
tion of the current profile of active users in the BS. Such an ad-

Index Terms—Call admission control, CDMA cellular system,
fading, semi-Markov decision process.

I. INTRODUCTION

ODE-DIVISION multiple-access (CDMA) implementedmission mechanism is called a CAlicy, and the problem of
with direct-sequence (DS) spread-spectrum signaling genstructing optimal CAC policies subject to SIR and blocking
among the most promising multiplexing technologies for ceprobability constraints are addressed in this paper.
lular telecommunications services such as personal communiExisting Approaches:Most existing papers in the literature
cations, mobile telephony, and indoor wireless networks. Theay be broadly characterized as follows.

advantages of DS-CDMA include superior operation in multi-
path environments, flexibility in the allocation of channels, the
ability to operate asynchronously, increased capacity in bursty
or fading networks, and the ability to share bandwidth with nar-
rowband communication systems without undue degradation of
either system’s performance [10].

This paper studies the problem of call admission control
(CAC) for an integrated voice/data wireless DS-CDMA
system. In the integrated voice/data scenario, users transmit at
different bit rates and have different quality-of-service (QoS)
requirements, which is usually characterized in terms of a
signal-to-interference (SIR) constraint or a bit error proba-
bility (BEP) constraint. A multicode (MC) CDMA system is
proposed in [4] for integrating users of varying transmission
rates. In MC-CDMA, a signature sequence is used to transmit
information at abasic bit rate. Users that require higher
transmission rates use multiple signature sequences in parallel.
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i) Complete sharingA policy that accepts a new user ifand

only if the BS has sufficient capacity to simultaneously
accommodate the SIR requirement of all presently ac-
tive users and the new user is knowrcamplete sharing
(CS) policy. (The term CS applies when a new user is al-
ways offered access to the network provided that there
is sufficient bandwidth at the time of request [17].) The
CS policy, which is the simplest policy, is proposed and
investigated in [6], [11], and [13]. The approaches of [6],
[11], and [13] differ in how the BS evaluates tresidual
capacity which is defined as the additional humber of
users that can be admitted such that SIR constraints of
all active users are satisfied. (Obviously, the residual ca-
pacity is a function of the current profile of active users in
the BS.) Inthe case of [6], the residual capacity is defined
in terms of the so-calledoise rise conditionsee [6, eq.
(5)]. Because the admission and rejection of a new user is
based on the SIR constraints, the approaches in [6], [11],
and [13] are effectively integrating the network level call
admission problem with the performance of the physical
layer. However, the shortfalls of [6], [11], and [13] are
a) the evaluation of the residual capacity is heuristic as
there is no mention of the receiver structure that will be
used to demodulate the users received signal at the BS;
it is well known that the achieved SIR is maximized by
the LMMSE receiver [20] (among the class of linear re-

1The term active user here is used for users that have been admitted by the

1053-587X/02$17.00 © 2002 IEEE



1484

ii)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

ceivers), and therefore, the residual capacity depends on
the receiver structure as well; b) the admission policy
used is the simple CS policy, and they do not consider
the problem of optimizing the admission policy to mini-
mize the probability of rejecting a new user.

SMDP approach:In [5], [17], and [21], the theory

of semi-markov decision processes (SMDPs) is used
to construct optimal CAC policies. In [17], a circuit
switched network is considered, whereas[5] and [21] -
consider a cellular network. Not only are policies con-
structed via the SMDP approach are optimal, the SMDP
approach can cope with blocking probability constraints.
The shortcomings of [5] and [21] are that the admission
control problem is treated purely as a network layer
problem by ignoring the physical layer aspects such
as the CDMA modulation scheme, the channel fading
characteristics, receiver structures, SIR, etc.

Threshold policy: Several papers have studied the
problem of access control for an integrated voice/data
CDMA system; see [12], [18], and references within.
Access control differs from CAC in the following
regard: In access control, the BS admits more users
than it has the capacity to accommodate simultaneously.
The access control strategy will then regulate the use
of the channel by each active user (decide on the bit
periods that an active user can transmit) to satisfy a)

and a fading channel using results on the spectrum of
large random matrices [8]. By ensuring all active users
have a minimum SIR level, not only are we ensuring
a maximum value for the BEP, but we also indirectly
guarantee a maximum outage probabdityAs in [5],

[17], and [21], the LP-based algorithm for constructing
the optimal CAC policy is derived using the the theory of
SMDPs.

In this paper, we address the problem of congestion by
generalizing the CAC problem to account for the scenario
in which a new data user can be rejected, admitted as an ac-
tive user (i.e., allocated a signature sequence and allowed
to commence transmission immediately), or queued in a
finite buffer at the BS. In the work of all previous authors
mentioned, when a new user arrives and there is insuffi-
cient capacity to supportit (i.e., the network is congested),
the new user is rejected outright. The option of queuing
prevents the new user from being lost to the system, which
would be the case if the user was rejected. The queued user
is then admitted at a later time when there is sufficient ca-
pacity. In numerical examples, we demonstrate significant
reductions in the blocking probability of data users when
gueuing is employed with moderate buffer sizes. Queuing
of data users is typical in multiservice wireless networks
for data users engaged in nonreal-time services such as
e-mail, file transfer, store and forward facsimile, etc.

maximum end-to-end delay for real time voice users arglnally, we mention that [5] constructs an optimal CAC policy
b) SIR constraints for both voice and data users. ThRat minimizes the probability of dropping handoff calls. We re-
CAC policy used in conjunction with access control ifiark that the formulation of the CAC problem in Section Ill and
[12] and [18] is a simplethreshold policy i.e., @ new the LP algorithm in Section IV-B is general enough to straight-
classk user is accepted if the number of active class forwardly account for the handoff call blocking probability as a
users is less than a threshdlyl. Thresholds are then performance criterion; see Section V for details.

optimized empirically to achieve desired maximum |imitations: The CAC policy constructed in this paper is op-

blocking probabilities for the various classes. Althouglimal when data and voice users arrive according to Poisson
simple to implement, it is well known that thresholdyrocesses and have exponential holding (service) times. Under
policies cannot satisfy blocking probability constraintthese assumptions, the CAC problem is a SMDP, and one can
in general [16]. Additionally, thresholds must be optiuse a LP algorithm to construct the optimal CAC policy. If
mized empirically and can perform poorly in practiceyve drop the Poisson arrival and exponential holding time as-
see [16] for examples. In any case, if the optimal CAGumptions, then the CAC problem igi@neralized semi-Markov
policy turns out to be a threshold policy, the SMDRyrocesgGSMP). The optimization of a GSMP is considerably
approach (being the most general) will identify it. more difficult and is not solved by a LP algorithm, as in the
Contributions: The contributions of this paper are asSMDP case. In the .GSMP case, our CA(.: PO“Cy can be viewed
follows. as suboptimal solution to an otherwise difficult problem.
Notation: For a complex-valued matrix or vectar a”', a*,
« Unlike [5], [6], [11], [13], [17], and [21], we study the anda'?, denote the transpose, conjugate, and Hermitian trans-
interplay between the physical layer interference suppregggse, respectively,, denotes the identity matrix of orderx n.
sion algorithms (linear multiuser detectors for the COMA&+ andZ_ denote the set of non-negative reals and integers, re-
system), the QoS constraints for the various user classgpectively. is the indicator function, i.e., for a nonempty skt
and the network layer throughput (blocking probability)l.4(xz) = 1if € A, Is(x) = 0if = ¢ A.|A| denotes the car-
Specifically, we present a linear programming (LP)-basetinality of the setd. The functioné : R, — {0,1} is defined
algorithm for computing the CAC policy that minimizesby é(z) = 1 if > 0, §(0) = 0. For two random variableX
the blocking probability (or maximizes the networkand}’, X~Y implies thatX andY have the same probability
throughput) of a specific service class subject to satigistribution.P denotes probability, anE {} is the expectation
fying constraints on i) the minimum SIR (or maximumoperator. With probability 1 is abbreviated as w.p. 1.
BEP) for all active users and ii) the maximum blocking , ,
i An outage occurs when the instantaneous SIR falls below the threshold for a
prObab'“ty for all the other classes of users. In the SIB’olonged period of time and the outage probability is defined as the percentage
constraints, we account for LMMSE receivers at the B& time the instantaneous SIR lies below the threshold [6].
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Fig. 1. Call admission for a BS; nonreal-time data users maybe buffered for delayed admission; SIR evaluation is fed back to CAC policy.

Il. CAC FOR AN INTEGRATED VOICE/DATA If the parameters of a voice user are quantized to
DS-CDMA CELLULAR SYSTEM (Pb.,i,hv?i,g,fyi), the voice user is said to belong to thin
ass. In order to base CAC on the performance of the physical

the uplink (mobile station to BS) of a synchronous DS-CDM ayer (e.g., SIR), it is essential that the admission control policy
S an indication of transmit power, channel gain, and variance

cellular system that integrates both voice and data service, a . : . A X
the user requesting connection; see item iv) in the following

lustrated in Fig. 1. The signal-model, the receiver structure at t k L
9 9 X_more details. (In [8, Sec.4], the problem of estimating the

BS, and the corresponding SIR expression are detailed. In S& d th . h | fadi ¢ h
tion 111, the CAC problem is formulated and solved as a SMpp€an an € variance channef lading process of each user
considered using data that is available during the training

The motivation of the model in Fig. 1 stems from the ain © q duri he decision-di d de) Th b
of studying the interplay between the physical layer interfepSrod or during the decision- Irecte _mo e) € numoer
quantization levels in (1) will determine the cardinality of

ence suppression algorithms (linear multiuser detectors), ttie : X
QoS constraints for the various user classes, and the net tate spaceaf.the OP“'T“"" CAC problem. (See Section Ill.)
layer throughput (blocking probability). The ingredients of th ewer levels will result n a smaller state space a}nd, hence,
model schematically illustrated in Fig. 1 are as follows. require feW(_er cpr_nputatlons to compute the OP“”?""' CAC
i) Multiservice user requests to access the wirele 80I|Cciy.t For simplicity, we assume only olne quantization level
DS-CDMA voice/data network. r data users requesting scirV|ce, namely
ii) An admission controller then decides whether to admit {(Py,ha, E2)}. 2

the user. The admission controller seeks to optimize tlﬁe development that follows may be easily generalized to situ-

throughput (i.e., minimize the. blocking probability) Ofation where there are multiple quantization levels as in the voice
a specific class of users subject to two types of con-

S ; fase; see Section V for more details.
straints: a) network level constraint on the throughput o In this paper, we design CAC independently of power con-
other user classes and b) physical level constraint on tt}? '

X o 61 and access control; this is a practically feasible and widely

tSOIFéO(Oé S’VEE )ch]tr:eest\i/grr\IOtL;\Zruesg aC:]azsﬁih'zdfdtlﬂ?fgﬁlr?ﬁsed methodology [6]. The resulting CAC is a static optimiza-

peW 9 ’ ption ¢ flon problem since it is only concerned with a user’'s power
nonreal-time data users for delayed admission.

i}y If admitted, the user transmits over a fading channel Rnd channel parameters at admission request time. Due to time
' 9 _variation in the channel characteristics, these parameters will

LMMSE multiuser detector demodulates each user. TI&?\ange after admission. Itis the role of access control and power

interference suppression capability of the LMMSE mul- . :
. ! o control to dynamically ensure that the SIR requirements of users
tiuser detector is measured by the SIR, which is a sur y ically ensu qut u

"Qre satisfied in real time, as is also proposed in [6].
iv) '?’ﬁteeef\?glhhaete%ESPI.R is passed back to the admission cq AS in [5], we assume that data and cla'_ssome calls are .
troller, which will determine whether or not to admitnewq nerg;ed according to homogeneous Poisson processes with
’ . . Intensities
users. In this way, the performance of the physical layer
interference suppression algorithms (LMMSE detectors) A and A, ()
affects the admission of new users. _ _
Details of items i)-iv) follow. Item ii), i.e., Admission Con- respectively. Furthermore, the duration of a data and a ¢lass

In this section, we formulate and solve the CAC problem f

trol, is dealt with entirely in Section Il . voice call: € {1,..., K,} are exponential random variables
1) Multiservice User Requestin an integrated voice and With means

data scenario, some of the active users may be engaged in a 1 q 1 4

voice call, and the remaining users will be transmitting data to g an Lo i )

the BS, i.e., usek is either transmitting voice or data. At con-

nection request, we quantize the transmit power, channel ga{ﬁﬁépeCtiV?IV' _
and variance of voice users into a value from the finite set ) Fading DS-CDMA Wireless Channel and LMMSE De-
tector: The signal model we use is the “standard” model for a

{(Py 4, ﬁm,gﬁ?i), i=1,...,K,}. (1) synchronous (or asynchronous) DS-CDMA system in a fading
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environment [8], [14]. Consider the uplink of a synchronous 3) Evaluated SIR:The BEP is the main QoS (performance)
K-user DS-CDMA communication system. Assume that thimeasure in wireless networks. In this paper, BEP constraints are
system transmits binary symbols through an additive whigecounted for by introducing SIR constraints. It is well known
Gaussian noise channel in a single-path (flat) fading envirotiat SIR is a surrogate measure for the BEP; intuitively, this is
ment. The chip-sampled discrete-time model for the receivbdcause the BEP is degraded by the interference introduced by
baseband signal (at the BS) during tkth bit interval is the multiaccess users and the background channel noise. One

« a more technical note, it has been established that in a “large

+$ . .
system” (K and N in (5) are large), the BEP monotonically

r(n) = v Plbl(”)hl(”)sl"'z VPbi(n)hi(n)si+ow(n).  gocreases as the SIR increases [22, Th. 3.3].

k=2 Let SIR, denote signal-to-interference (SIR) ratio for the es-

ThereK active users’, by (n) andhy(n) denote the transmit timatec;’r(n), with i given in (7). Then, as shown in [8]

power, thenth transmitted bit, and channel gain for tkéh _ p 7. 12T T 2 2. JTy-1

user, respectivelys, € RY is the signature sequence for SIR = Pill[ sy (S1D180 + 07Uy + Pilisisy) “s1. (8)

the kth user, whereN is the processing gain (spreadingVhen a new user requests to be admitted into the network, the

gain); w(n) is additive noise, an&@ > 0 determines its BS must ensure that the SIR constraints of all presently active

variance. It is assumed thdb.(n)}.cz, is a sequence if users and that of the new user can be simultaneously satisfied.

independent and identically distributed (i.i.d.) equiprobabMote that the SIR (8), amongst other factors, is a function of the

+1 random variables and thafhi(n)}nez, is @ com- signature sequence of the user of interest and that the remaining

plex-valued random process satisfyilg{/.(n)} = hi K — 1 active users. By recourse to the exact expression for the

and E {hi(n)hi(n)} — E{h(n){E {h1(n)})* = &. The SIR(8),itisimpossible to design an optimal CAC algorithm that

additive noise{w(n)}ncz, is a circularly symmetric complex is computationally feasibland, hence, of practical interest. This

white Gaussian random process wlw(n)} = [0,...,0]* is because the definition of the state space of the CAC problem

andE {w(n)w*(n)} = Iy. Itis further assumed that the sto{see Section Ill) must includéne set of all possible signature

chastic processef(n)}nez, » {he(n)}ncz,» & = 1,... K sequencegThis is the set from which users transmitting in the

and {w(n)}ncz, are mutually independent. As in [8], wecell are allocated signature sequences from.) As in [8], [9], [20],

assume that the path delays induced by the fading chanrestsl [22], we assume that signature sequences ofthesers

are negligible compared with the bit duratidfil,., whereZ. (5) arerandomly and independentthosen on admission; this

is the chip-period, i.e., intersymbol-interference is negligiblémplies that the signature sequence for usean be modeled

Extension to the intersymbol-interference case is possible aamls;, = (1/\/N)[uk1, ...,vgn]T, wherery,’s are i.i.d. with

is remarked in Section V. mean zero and variance 1. [A candidate f@f could be the
Assume that user 1 is the user of interest and that we wishuiprobablet1 random variable. The normalizatioh/¢/N)

to “recover” the transmitted bit; (n) from r(n) defined in (5). ensures {s% s;} = 1.] Under this assumption, it was shown

A linear demodulator for user 1 is a vector € CV (N-di- [8] that the SIR can be closely approximated by an expression

mensional column vector with complex elements) that is uséat only depends on the transmit powers of all active users as

to obtain an estimate of the transmitted bit as folloly$n) = well as the first- and second-order statistics of the channel gain

sgn(Re[cfr,]). For user 1, the LMMSE detector [14] choosegrocesses

the vectorc; € C¥ that minimizes the mean squared error

E {(by(n) — cl'r(n))(bu(n) — e'r(n))* }, which is given by SIR, ~ §TR.2 P’ ©)
¢t = E {r(n)r(n) )T E {bi(n)r(n)}. (6)

whereg is the unique fixed point in (0yxo) that satisfies
(In this section, when the expectation operator is invoked, we
always condition on the information that is assumed available 8=
at the LMMSE receiver; we abbreviak{.|Z} toE {.}, where
7 represents knowledge of the transmit power, the mean and

-1

1 K o,
02+N21(Pk<sz+|hk| m)] (10)

variance of the channel, and the signature sequence of all m%ﬁ-d

tiple-access users.) I(p, B)2 b (11)
Write the parameters of the signal model (5) compactly as ’ 1+pp

follows:

For the special case whéti = 1, i.e., only the user 1 is active,

Dy =diag PoE {ha(n)hi(m)}. . .., PeE {hsc(n)hie(n)}) SN IS approximated by ]
D:[PlE{hl(TL)hT(TL)},Dl], Sl = [82,...,8[{] A PIJT;?'
SIR2 &
S 2[81751]. 1 + g

o2

12)

Using the independence assumptions on the various stochas@t the case when the channel mean is 1 and the variance is
processes in the previous paragraph, as well as the first- #hde., there is no fading, [20] presents numerical examples that
second-order statistics given therein, we have verify the accuracy of the above approximations; see also [9] for
an analysis of the SIR based on the spectrum of large random

& = V/Pihi(SDST + 02Iy) " 'sy. (7) matrices. In [8, Th. 1], a convergence result is presented that
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shows|SIR; — SIR;| converges (almost surely) to 0 a6 is
increased to infinity, whereas the ratid/N is held fixed at
some positive value. This convergence result, loosely speaking,
states that the approximation is accurate for “large system,” i.e.,
when K and NV are large or for a system with large spreading
gainhN.

The expression for the SIR in (9) is independent of the sig-

x(t) = [za(t), 26 (t), 2o 1 (t), Tu 2(2), - - ., Tu ke, (t)]T

1487

An SMDP is characterized by the following ingredients.
1) State Spacetet X denote thestate spaceand z(t) €

X c 7,*¥ thestateof the BS attime, wheret € R
The state vector is given by

(15)

nature sequences and depends only on the transmit power, the where z4(t) denotes the number of active data users,

channel mean, and the channel variance of all active users. This
approximate expression will be used to construct the state space
of the optimal CAC problem in Section Ill. If user 1 has a spec-
ified SIR lower threshold, say SIRthen as shown in the fol-
lowing proposition, one need not solve for the fixed pginf
(9) to verify SIR; > SIR,.

Proposition I1.1: Suppose SIRis a specific lower threshold
for SIR, defined in (9). ThenSIR; > SIR, if and only if
-1

>

K

o+ 5 DT (P& + [hal®),)
k=2

(13)

where
SIR,
Y= 5
P1|h1| - Si?lplé’l

(14)

I1l. FORMULATION OF THE CAC PROBLEM AS A SMDP

The aim of this section is to formulate the CAC problem for
the uplink (see Fig. 1) as an SMDP. The methodology presented
here still applies if admission control is to be performed based
on both theuplink and downlinkcapacity or thedownlink ca-
pacity alone.

The SMDP formulation below proceeds in three steps.

1) First, a discrete-valued (finite) state space for the profile

of active users in the network is specified. The SIR con-
straints are incorporated by truncating the state space to

2(t) denotes the number of data users in the buffer, and
Zvi, ¢ = 1,..., K, denotes the number of active class
1 voice users, wherd(, is the total number of voice
classesX is a finite set [see (17)]. We assume the buffer
for data users is a finite buffer of lengf,. The vector

B = 184,801 Bu,2s - Burc, 1" (16)
characterizes the minimum SIR that all active data and
voice calls of each class type must satisfy. For the current
statex(t) = =z, let ¥4(z) denote the SIR value for all
active data users, and ¥gt, ; (=) denotesthe SIR value for
all active class voice users. By convention, sét;(x) =
> (\Ijb,l(x) = OO) if z = [xdv Lhy Ly 1y Ly,25 0+, x'v,KU]
is such thatry = 0 (z,,; = 0). (TheseSIR functionsire
defined in Section IV-A.) The state spa&eis defined as

X = {]; :[]}d, Tyy Ty Ly ey .T,UJ(U]T € Z+2+KU :
xy <Ba, Y4(z) > fa,

V,i(x) >, :,i=1,..., K,}. a7)

X comprises of the data buffer states together with all

combinations of data and voice users that satisfy the SIR

thresholds (16). For the SIR functions defined in the fol-

lowing, X is a finite set. Additionally, since the arrival

and departure of calls are random, adt)},cr, is a

finite-state stochastic process.

those points that satisfy the SIR constraints. A SMDP 2) Decision Epochs, Actions, and State Dynamiden

is then defined over this truncated state space. From an
implementation point of view, constructing the truncated
state space can be difficult as it would involve exhaustive
enumeration. We show that the SIR constraints induce a
convex SMDP state space and give that a simple proce-
dure exists for constructing it in Section V.

2) The actions and the state dynamics of the SMDP are then
defined. The arrival process for each user class is assumed
to be a continuous-time homogeneous Poisson process.

The duration of data and voice calls are assumed to be tx denote the:-th transition time o z () }ier, -

exponentially distributed. The class of admissible CAC
policies are then defined.

3) The performance criterion for minimizing the blocking
probability is specified. We show i) that the blocking
probability is captured by an additive cost function (via
the PASTA theorem [7]) and ii) that all CAC policies
within the admissible arenichain By virtue of i) and
i), the standard approach for solving a SMDP via the
linear programming method applies [1, Ch. 5]. In partic-

an arriving data or voice user desires to be admitted into
the system, the BS will make a decision as to whether or
not to grant admission. Thus, a “natural” definition for the
decision epochs are tlagrival instancesf the data and
voice users, asis donein[15, Ch. 11]. However, asin [17],
we define the decision epochs as the instances when the
stochastic process:(t) }:cr, Changes state, i.e., arrivals
and departure are taken into account. Formally, let

(18)

By convention, set, = 0. The decision epochs are taken
to be the instances,, £ = 0,1,2,... At each decision
epoch, an admit or block decision is made for each pos-
sible type of arrival that may occur in the time interval
(tx, tx+1]- These decisions are collectively referred to as
anaction The set of all possible actions (action spade)

is defined as

. . . . 2+ K,
ular, one may write a LP whose solution is the optimald = 3@ = (aa, s, @y 1,00 2,- -+, 0 i,) : @ € {0, 1} }

CAC policy. Blocking probability constraints for the var-
ious user classes are accommodated by merely adding ad-
ditional linear constraints to this LP.

(19)
where the action8g, as, ¢, 1, - - - , @y i, are defined in te
following. Assumingz(¢;) = «, the action at decision
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epocht,, which is denoted by:(¢;), must be selected
from the state-dependent subsetffi.e.,

al(ty) € Ay C Aif x(ty) = =. (20)

Action a(ty) = (a4, a,0p1,.... 0y x,) € A s inter-
preted as follows.
e If a4 = 1, a data user that arrives in the interval
(tx, tr+1] is admitted as an active user. Otherwise,
it is placed in the buffer, provided the buffer is not
full. If the buffer is full, the user is blocked. 7.(a)
* If a4 = 0, no data users that are queued in the
buffer are made active in the intervid, t541]. If
ap = 1 and the buffer is not empty, admit the data
user at the head of the buffer as an active user if
ty, + ¢ € (tr,tpy1], Wwheree > 0 is a randomly
generated delay.is called thebuffered data admit
latencyand is intentionally introduced. Note that
need not be random and could be a (arbitrarily small
but positive) deterministic delay. See Remark n.£
* If a,; = 1, admit a classg voice user that ar-
rives in the interval?,, tx41]. Otherwise, the user
is blocked.

Note that an arriving data or voice user that is
blocked does not cause a state transition in the process
{x(t)}+cr, (15); a state transition occurs when an ar-
riving data or voice user is admitted, a data user in the
buffer is made active, or an existing active user departs
the system.

For a given state € X, define the admissible action
spaced, C A as follows:

A, ={a€A:a,=0ifz, >00rz+e; ¢ X
ap =0if z, =00rz+e; —e2 ¢ X
ay; =0if x+eqp ¢ X, fori=1,...,K,} (21)

wheree; € R?*T5» denotes the vector of all zeros except
for theith component, which is 1. Essentially,. is com-
posed of all those actions ih that do not result in a tran-
sition to a state; ¢ X (17). Additionally, the restriction

aq = 0if z; > 0 ensures data users are made active on a
first-come-first-serve basis. (This restriction is not neces-
sary but is imposed for “fairness.”) Although not explic-
itly stated in (21), action(;0, ..., 0) is excluded while

in state[0, By, 0, ...,0]T. Clearly, such an action is un-
desirable in the sense that new users are never admitted
into the system and, therefore, may be excluded.

The state dynamics of an SMDP [1], [15] are com-
pletely specified by stating the transition distributions
Quy(T,)2P(tip1 — te < 7,2(tig1) = ylo(ta)
z,a(ty) = a)foralz,y € X,a € A, andr € Ry; ¢
are defined in (18). However, from the point of view of
the solution methodology, it is sufficient to deal with the
transition probabilities of the so-callembedded chain
p=y(a) and the expected sojourn time (holding time)
T.(a) for each state action pair instead [1, Ch. 5]:

Pay(@) ZP(2(trs1)

3)

=yl|z(ty) = z,a(ty) = a) (22)
Tm(a) éE{t;H_l — tk|$(tk)
=z, a(ty) = a}. (23)

(a) =

Let the buffered data admit latency be generated ac-
cording to the exponential distribution, i.e.,

e~exp | —
A

where);, > 0. (See Remark 111.1.) Then, for eaahy <
X (15) anda € Az (21), the quantities in (22) and (23)
can be expressed as

(24)

= [)\dad + )\d(l — ad)é(Bd — a:b) + 5(371,)@1,)\1,
K., -1
+xdud + Z (a'v,i)\'v,i + x'v,iu'v,i)] (25)
=1
( Aty (a), ify=x+e;
pa (), ify=x—e¢;
Ad(l — ag)6(Bg — xp)1(a), fy=x+e
Av.iGyiTz(a), ify=x+e¢
i=3,... 24K,
N'v,ix'v,i"_x(a)v if Y= —c¢
i=3,...24K,
8(zp)ap A2 (0), ify=xz+4+e —es
\ 0, otherwise.

(26)

Note thaty = x + ¢; (respectivelyy = = — ¢;) corre-
sponds to an arrival of a new (respectively, departure of an
existing) user whose type is made specific from the value
of i. y = x + e; — e IS the successor state that results
when a data user from the buffer is made active. The ex-
pressions in (25) and (26) can be explained as follows: If
x(tx) = x anda(t,) = a, then the new state(t,,) and
holding time in the current statg; — ¢ is determined

by a superposition of mutually independent Poisson pro-
cesses. The resulting process consists of one departure
process with ratg,, ; for each active classuser, one de-
parture process with raje; for each active data user, an
arrival process with ratg,, ; if action ¢ admits a class
voice user (i.e.q is such that,, ; = 1), an arrival process
with rate \, if a; = 1 or the buffer is not full and finally,
and a Poisson process with ratg if action a admits a
data user from the buffer as an active user. In addition,
note that if a stochastic proceg&(¢) }1cr, is a superpo-
sition of n independent Poisson processes with rates

i1 =1,...,n, theni) the expected interarrival time of the
process{Z(t)} is 1/(A1 + A2 + --- + Ay), and ii) the
probability that thekth event of{ Z(¢)} is generated by
the jth Poisson process ¥s; /(3 ; ;) [3, Sec.6.7.3]. For

a more rigorous derivation of (25) and (26), one can write
the CAC problem as atochastic timed automata with a
Poisson clock structurand use the resultin [3, eq. (6.50)]
for (25) and the resultin [3, eq. (6.68)] for (26).

Policy: Letl{ denote the class admissibleCAC policies,
which is defined as follows:

U={i: X — A|u(z) € A, Vo € X}. (27)
Note that the definition in (27) includes threshold policies
as a special case [16]. Given afiye U/, call admission
is performed as follows: For the intervély, tx+1], the
action (20) chosen ig(ty) = w(x(tx)).
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4) Performance Criterion:We consider the so-calledv- to construct the CAC policy that yields the minimum data
eragecostcriterion[1, Ch. 5]. Let (or classi voice) blocking probability.
X x AR (28) P_roposition III_.1 (3I0cking Probability as Avage Cost):
i) Data: Definec in (28) to be
be uniformly bounded. The performance criterion con-
sidered, which includes data user blocking probability as ¢(*, @) = (1 —a4) (1 = Ix(z +e2)), Vo€ X,Va€ A

a special case is given as follows: For ahye U/ and . i ) . i ) (32)
zo € X, define whereaq is defined in (19), and- is defined in (26).
. Then, for anyi € U, B(xo) = Ja(zo) w.p. 1 for all
o1 zo € X, WhereJy(xo) is defined in (29) andBg(x,)
Ja(wo) = Thi%o TE {/0 o(x(t), a(t)) dt} (29) is defined in (31). Moreover, for alk € U, Jz(xp) is
independent of.

wherea(t) = w(x(ty)) for ¢ € [tx,trr1), 2(0) = wo. ii) Voice: Similar to the data case, setting

The aim is to compute the optimal poliegy € U that

satisfies cz,a) =1—ay; (33)
Jar (z0) = min Jy(zo) forallzg € X (30) yields the minimum blocking probability for clagsoice

ueu users.
i.e., &* has the minimum cost for all initial states. The iii) Multiservice: Choosing
limit in (29) exists for anyz, € X andz € U and may K,

be verified using the theory asénewal reward processes (1 _ , o

[19. p. 219]. In fact, for anyi < 2/, the limit in (20) is ¥ = 1(1=aa)d Ix(wren))+ rin(l-a.i) (34)
independent ok (see Proposition Ill.1.). The indepen- ) ) ) i
dence of the limit, which holds because all the policies in for some weights/; € R, yields the policy that min-

U areunichain is the basis the LP solution methodology imizes a weighted sum of the data and voice classes
in Section IV-B [1] (see the proof of Proposition I11.1. blocking probabilities.

for details). A policyw is said to be unichain if the cor- (All proofs are in the Appendix.)

respondingembedded Markov chaimas no two disjoint ~ Remark 111 (Buffered Data Admit Latency (24)Jo ensure
closed sets of states. The embedded Markov chain corfeta) > 0 forall z € X anda € A,, the data user from the
sponding tai is the controlled discrete time Markov chairPuffer has to be admitted after some nonzero delay with positive
{x(t1)}rez, [t defined in (18)] with transition probabil- probability. (The condition,.(a) > 0 is needed to be able to

ities p.., (4i(z))(22). A nonempty sek C X is said to be apply the LP solution methodology in Section IV [1, Ch. &].)
closed ifp,, (a(x)) = 0 whenz € X andy ¢ X; see could even be selected to be an arbitrary positive deterministic

also [1] and [19]. delay. Everything remains the same, except for changes to the

We now state the form of the functiansuch that the Particular expressions for,., (a)(26) andr.(a)(25).
data-blocking probability corresponding to a CAC polic% Remark 111.2 [Semi-Markov (SM) Property]tf the data
@ is given by.Jz(x0) in (29). Consider an arbitrary CAC uffer admit latency is an exponential random variable (24),
policy @ € ¢/ and an initial state:, € X for the process then the length of ti_me (holding tir_‘ne) between Fwo decision
{z(t)}er, . Let {Nu(t)}er, denote thecounting epochsy1 —t,,(18) is an exponential random variable as well
processghat counts the number of data user arrivals in tHiith rate depending on the stai€t, ) and actiom(t); hence,
interval (0, £]. Let N4(t) denote the number of data userd/€ have the expression in (25). In this case, the CAC problem
that are blocked in the intervaD, ]2 The empirical is a special case of a SMDP, which is@ntinuous time Markov
data-blocking probability corresponding @ and o, decision proces§CMDP). Whene is a positive deterministic
B(xo) is “defined” as constant, the length of time between two decision epochs

“ tx+1 — tr IS nO longer an exponential random variable, and
the CAC problem is a SMDP. See [1] and [15] for background
theory on SMDPs.

=1

B(x) = lim Nal(T)

d Jim (31)

At first sight, B¢(xo) does not appear to be of the form]
in (29), i.e., an expected value of the sample path avera:
of e(x(t), a(t)). The aim of the following proposition is A. SIR Constraints

to show the following ergodicity type r_esult: m_inimizing The SIR functionsl, and¥
the average cost performance criterigp(xzo) in (29)
whene(z,a) = (1 —aq) (1 — Ix(z+e2)) is equiva-
lent to minimizing the blocking probability3<(x¢). (The
Poisson assumption for the arrival process of data user
crucial for this result to be true; see the proof of Proposi- 5  xg—1 ) .
tion I11.1. for details.) Given this equivalence, we can theha(, 3) = {ff + 1 (Palq + Pulhal”, B)

use any of the several available algorithms that solve (30) X _1
i
— Lv g —
30bviously, V', (t) is a function ofi: and the initial state, ; the dependency + E #I(P,;jiﬁf’i + P, ilhv |2, 3) (35)
is not made explicit in the notation, however. i=1 N

ge SIR CONSTRAINTS AND THELP SOLUTION METHODOLOGY

»,; that were used to define the
state space in (17) are taken from the approximate expression for
the SIR given in (9). Define the function : Z. >t x R —
Rofi: 2" xR - R,i=1,...,K, as follows:
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and is achieved by a process caliedformization (See [1] for

‘ Za ~ a detailed discussion.) Essentially, one defines and solves
folx,B) = [02 + NI(PdSZ + Pulhs?, B) an “equivalent” discrete time-average cost Markov decision

Tpi—1 _ process (MDP) in lieu of the original SMDP; the discrete

+ ’TI(Pu,iéf,i + Py ilhil?, ) time MDP is equivalent in the sense that the solution to its

X, -1 Bellman equation coincides with that of the Bellman equation

Ty, j 2 ARt for the original SMDP. Thus, algorithms for solving discrete

+ j:%:# N L8080+ Lol sl B) time MDPs, such as value iteration, policy iteration, and linear

(36) programming, are applicable to SMDPs as well. We will use
the LP approach in the following.

where N is the processing gain, anfl is defined in (9).  'he optimal CAC policyi*(30) is obtained by solving the

Equations (35) and (36) are derived from (9) by taking int®!owing LP.

account the structure of the multiaccess interference for the

integrated voice and data scenario, i.e., an active data user Losoln S e, a)e(a)zra
suffers interference from the remaining — 1 active data users r€X a€d,
and Zf‘;l x,; active voice users. Now, the SIR functions are subject toz Zya — Z Z Py (@) zza =0
defined as follows: a€A, 2EX a€A,
if 24 = 0 yex
o0, Tg —
Palhal® e > m(a)za =1 (39)
Uy(z) =4 +PS if 2 = e1 +mey (37) 2€X aC A,
Pallea|”8
! 1'1,55'2118, B>0:3=fux,p)else

The decision variables arg,, + € X, anda € A,. Let 2},

0 ifz,, =0 . . . .

Oﬁ’ NAE I . denote the optimal solution to the above LP. The optimal policy
U, i(x) = P +P€ if 2 = ey +mey (38) u*is tEen constructed as follows [19, p. 224]: For each X,

ﬁ’};lh.”éélé’g, B>0:8=fi(r,p) else W*(x)=a for anya € A, such that:%, > 0. If 2%, = 0 for all

a € A, choose an arbitrary € A,, and seti*(z) = a.

w* With Constraints on Data and Voice Blockindeet
(z,a), which is defined in (28), be some suitably defined
ost function that reflects the rate at which the BS incurs
administrative costs when it chooses actionwhile in state
) x. Minimizing the continuous average cost (29) subject to
not degrade the SIR. In consiructing the state spa(e), for constraints on the maximum allowable data and voice blocking

; 2+ K, :
agenz € Z , one needs to verify thaly(z) > fa, robability (for each voice class) is easily addressed by adding

v, :(x) > B.1 and so on. There is no need to compute tlf% . . ; )
: ’ e following (sample path) constraints to the LP in (39):
fixed points as indicated in (37) and (38). As is shown in Propo- 9( ple path) (39)

sition 11.1, one merely verifies the inequality in (13).

wherem is any non-negative integer such that< B,. Note ‘
that in (37),5 is the unique positive fixed point that satisfie%
8 = fu(z,) and similarly for/ in (38). In the above defi-
nition, Wy(e; + mez) = Wy(ey) since users in the buffer do

The following proposition states that the state spacan- Yo > calw, a)Te(a)zee <y (40)
duced by the SIR functiong, and¥,, ; is convex. wEXacds ‘

Proposition IV.1: X in (17) satisfies the following two prop- S @ a)r(@)zme <, i=1,..., K, (41)
erties for anys € 7,2, 2EX a€A,

i) If ; € X for somey, then X, . . . . . .
) I te € J v e wherecy is defined in Propaosition Ill.1y, is the maximum al-

h") It ¢ def thzr?x J; N # Xforallj lowed data-blocking probability? (z, @) = 1 — a, ; [see (33)],
wherec; 1S defined in (_ _)' o i i and~’ is the maximum allowed blocking probability for voice
Property i) of Proposition IV.1 implies that if all active US€r%assi. [Thisis a nice feature of the LP approach for solving the

satisfy their _SlR requwemgnts, then the depart_ure of any aCtMAC admission problem (29) and (30) that is not available with

user results in the remaining users still satisfying their SIR rgs jic iteration and value iteration methods. | kpf denote

quirements. Property ii) implies that if the current profile of aGhe optimal solution to the LP. When sample path constraints

tive users does not satisfies the SIR constraints, then the s included, the optimal policy will in general besmdomised

will be true if a new user is_ made ag:tive. These properties m:glgtionary p(;licyThe optimal action for state is the controk

;he tTSk of constructingC in (17) simple; see Section VI for o sen from the set,. probabilistically according to the prob-
etails. abilities 7, (a)zza/ 3 pc 4, T(@)22as @ € Ay If 25, = 0 for

. . . _ alla € A,, choose an arbitrary € A,,, and seti*(z) = a. See

B. Constructing the Optimal CAC Poliay - LP Formulation [19] for details

#* Without Blocking Probability ConstraintsSMDPs ) ] o
4See [1, Ch. 5] and [19, Ch. 3] for a discussion on the value iteration and

a_re usua_IIy analyzed and solved W'th'r_] _the framework (Bt_nlicy iteration approaches. In [17], the computational savings are examined
discrete-time average cost Markov decision processes; thign themodified value iteratiomlgorithm is used instead of the LP approach.
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V. IMPLEMENTATION |SSUES ANDEXTENSIONS =
Constructing the State Space\s described in Section IlI, aoif\°'2°25
the SIR constraints define the state space ofthe SMDP (17). Due 3
to Proposition V.1, the procedure for constructiigis simple Bot
and is as follows. E: .
Step 1) Construct an upper boufdfor X, i.e., X ¢ X as §°" Q0971
follows: Let M= max{zy € Zy : Vylzger) > s )
Balt, M,f.é max{z,, € Zy : V¥, ;(zyiciy2) > © ool 00317
Buihi =1,...,K,. [e; is defined in (21).] Note *el 0.0045
thatWl 4(z4e; ) and¥, ;(x, ;¢;42) are monotonically o 1 et LU S
decreasing iy andx,, ; respectively; this follows Buffer size

by _Corollary A.2. M, is the maximum numper of Fig. 2. Data-blocking probability versus buffer size—Values indicated
active data users that can be supported simultangacent.

ously, whereag/! is the maximum number of ac-

tive classi users that can be ;quortgfk%&{x ~ new and handoff calls. The definition of the state space remains
[£a, 20, 20,1, 20,2, - "x'v:l?'v] € L4777 174 S the same as in (17). This is because we do not distinguish be-
Mg, @y < Ba, @y < M0 =1,... Ko} USING  yeen an active new clasand an active handoff classs the
I?‘ropo;qtlon IV.1, one may verify thaf C X. same bandwidth (SIR requirement) is consumed. To explicitly
Step 2) “Trim”.X down to.X" as follows: For eack € X, ninimize the handoff call blocking probability, we need to re-

if Wo(z) 2 faandW, () 2 Bus, i =1,.-. Ku,  gefine the action space in (19) as follows:
thenz € X. By Proposition IV.1, ifzr € X, then all

x’ € X such that’ < xare also inX. Similarly, if

z ¢ X, thenallz’ € X suchthat’ > x are also not . 0. 1132
in X. Step 2 involves a finite number of evaluations cs oK G K hof £) 2 @ € {0, 1 12
that is bounded above By |.

) o . a.ihopf = 1 implies that we accept an arriving handoff class
Computational ComplexityTo construct the optimal CAC ; ca1- otherwise, we reject it. (There is a similar interpreta-

policy w*(30), one needs to first i) construct the state Spaggy, for an arriving handoff data call. There is no buffering for

X(17) and theniii) solve the LP in (39). The task of constructing, nqoff gata calls.) Because the action space has been rede-
the optimal CAC policy is entirely offline as i) and ii) are offlinegne g the set of feasible state-action pairs in (21), the transi-

procedures. The computational complexity of construcing i, probabilities in (26), and the mean holding time in (25)

the computational complexity of procedures i) and ii). As indizi|| have to be changed accordingly; compare with [S], (8) and

cated in Step 2, constructing involves a finite number 08IR 15y 74 minimize the handoff call blocking probability, we set
feasibility evaluationshat are bounded above h¥ |; note that crg/x ) = 1 — Gy poss i (29).

this is the W_ors_t-gase scenario. Although one r_1eeds to veri Multiple Data Classes:We may generalize the CAC
that each point in¥’ also belongs tot, the convexity property nqpiem to the case when the transmit power, channel gain,

in Proposition IV.1 greatly simplifies this procedure, as detaile&ind variance of data users are quantized to one of a fixed set
in Step 2. The cardinality ok itself depends on the dimension; K, different values:{(Pyi, hai,€2,), i = 1,...,Kqg}.

of the state vectar(#)(15), the size Ofith? data buffés, and  he pasic idea to performing optimal CAC for this scenario is
the particular value of constanidy, M, = 1,..., K, 9VeN jy,qirated in Fig. 2. An arriving data user is admitted into a
in Step 1. The complexity of procedure ii) is polynomial in the oy mon puffer, provided that there is space. (Note that all data

number of decision variables of the LP (39), and the number of.,5 are buffered by default.) The state of the BS in (15) is
decision variable in the LP are bounded aboveby A|. (Note 0\ redefined as follows:

that an LP may be solved in polynomial time by so-cailed
terior point method9 The main approach to reducing the com. 4y _ [£a1(), ...z, (t), 21 (t),
plexity of procedures i) and ii) would be to reduce the cardinality ' ' ' T
of X and the state spacé, respectively|.X | and|X| are simul- SRE T AQSIONENE S 0]

taneously reduced by reducing the dimensions of the state ve%r

x(t)(15). This, in turn, can be achieved by reducing number 0 er€rq,; andz,,; de_note the number of active clasdata an‘d
. . voice users, respectively, ang ; denotes the number of class
user classe&’,, under consideration. ’

Minimizing the Dropping Probability of Handoff CallsAs data users in the buffer. The CAC problem may then be refor-

in [5], we can construct an optimal CAC policy that minimizegnulated to admit queued data users, as was done in Section III.

the probability of dropping handoff calls or including handoff
calls dropping probability as a constraint. The basic idea is a
follows: As in [5], we assume handoff calls from adjacent cells In the section, the performance of the optimal CAC policy
arrive according to Poisson processes with raigs, ;s and is studied by addressing the following issues: i) Is there a no-
Avinoffr t = 1,..., K. Note that the total rate of incomingtable reduction in the data-blocking probability if a nonzero
calls class is now A, ; + Ay s nos . i-€., the sum of the rates of buffer size is employed? ii) For a finite data buffer size, does the

A={a=(ad,0d,horf> O Cv 1,001 hofs
(42)

VI. NUMERICAL EXAMPLES



1492 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

Ad,1 TABLE |
. INTERPLAY BETWEEN DATA-BLOCKING PROBABILITY AND WAITING TIME
L] — -
w 3 iy
. — Data block- Av.ezjage .
Ao [, v2, V3] ing probabil- waiting time
1 cAC |, 1,¥2,%3 . in data
. : ity buffer (s)
/\v K L ] L ]
v f— 2,4, 4 0.0629 1.5748
4,.3,.3 0.0490 1.2289
6,.2,.2 0.0335 1.0952
Fig. 3. Call admission for multiple voice and data classes. 8,.1,.1 0.0176 0.8846
.9, .05,.05] | 0.0092 0.8167
. s . - . 1,0,0 8e-08 1.1892
policy that minimizes the data-blocking probability also mini- ] ©
mize the average waiting time in the buffer? The problem of
minimizing the data-blocking probability subject to constraints TABLE |l
on the maximum voice blocking probability for each class igNTERPLAY BETWEEN DATA-BLOCKING PROBABILITY AND VOICE-BLOCKING
also considered CONSTRAINTS BLOCKING PROBABILITY OF PREMIUM USERSIS HELD AT
. . ) . . 0.05 BELOW STANDARD USERS
Simulation Parametersin all the simulations that follow, the . i
parameters used in the integrated voice/data DS-CDMA system Voice  blocking | . . blocking
model are as follows: two classes of voice uséfs [= 2 in (1)] probability  con- | b ability
) : . straints [y, 73]
with transmit powerg P, 1, P, o} = {1.2,1.7} and minimum 0.07 0.19] 1963
SIR thresholds (16)/3,1, 8,2} = {110,150}. The transmit 015 0:1] 0.0001
power and SIR threshold of data users the: 2.5andg; = _ .13 0.08 0.0001
200, respectlyely. Th.e d:?\ta SIR threshold is larger thaq the voice 0.110.06 0.0097
thresholds since voice is more tolerant to transmission errors. 0.09 0.04 0.8887

Class 2 voice users apremiumusers, whereas class 1 users
arebasic The arrival and departure rates of the voice and data
users are as follows (3, 43¢ = 1, {A\, 1, \v 2} = {0.5,0.5}, policy that minimizes the data-blocking probability. We demon-
pa = 2, {pw1, w2y = {1.1,1.1}. The buffered data admit strate this to be untrue in the simulation that follows.

latency rate\, = 200(24). The parameters of the signal model The CAC policy that minimized a weighted sum of the data
in (5) are as follows:N = 32, > = 0.01. In (1) and (2), and voice-blocking probability was constructed for various
ha = hyy = hyo = land&l = &2, = &2, = 0, i.e., the values of the weighting factors, 1, andw; by solving LP (39)

channel is assumed to be known perfectly. with ¢ defined in (34). Table | records the values used for the
weighting factors as well as the corresponding data-blocking
A. Data-Blocking Probability versus Buffer Size probability and average waiting time in the data buffer. The

average waiting time was obtained by simulating a BS where

This section considers the effect of buffer length on the daigata and voice users arrived, sojourned, and departed according
blocking probability. The CAC policy that minimized the datazg their appropriate processes. The CAC policy obtained by

blocking probability subject to the following values for the maxggjying the LP was used to control admission. The average
imum voice-blocking probability was constructed for variougaiting time was obtained by averaging the waiting time of all
values of the data buffer sizB, (17): class 1 blocking prob- a5 ysers that were admitted into the data buffer.

ability < 0.1, class 2 blocking probabilitg 0.1. In effect, The solution to the LP whem, = 1 corresponds to the CAC

the LP in (39) was solved witk given in Proposition IIl.1 hojicy that yields the minimum data-blocking probability. Note
and sample path constraints (41). The minimum value for they; the average waiting time decreasesasincreases to 0.9

data-blocking probability aB, is varied is presented in Fig. 3. 504 then increases. The policy correspondingito= 1, al-

The results point to the improvements yielded with buffering,qgh yielding minimum data-blocking probability, does not
Note the geometric reduction in blocking probability; this imninimize the waiting time in the data buffer.

plies that beyond a particular size for the buffer, the reduction
in data-blocking probability that can be expected is marginal Data-Blocking Probability versus Voice-Blocking
Probability

In this section, the CAC policy that minimizes that
This section considers waiting time in the queue. Itis not podata-blocking probability subject to constraints on the voice
sible to write the waiting time in the data buffer as an additivelocking probability is constructed, i.e., LP (39) is solved
cost function, as was done for the data-blocking probability imith ¢ given in Proposition Ill.1 and sample path constraints
Proposition Ill.1. Therefore, the LP in (39) cannot be used {d1). The data buffer size is held at 5. Table Il records the
construct a policy that minimizes the average waiting time iminimum data-blocking probability that can be had for various
the data buffer. However, since the data buffer is finite, it seenaalues of[y%,+2]. As the maximum allowed voice blocking
reasonable to expect that the CAC policy that minimizes the gwobability for both the premium and standard class users are
erage waiting time in the data buffer would correspond to thieecreased, as expected, the data-blocking probability increases.

B. Waiting Time in the Data Buffer
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Note, however, as indicated in the results of Section VI-A, Case 2)B, > 0. Fori € {0,1,..., By}, letX; = {z €

that the data-blocking probability can be further decreased by
increasing the buffer size.

VII. CONCLUSIONS

Within the SMDP framework, the CAC problem was solved
for a multiservice DS-CDMA cellular system transmitting in a
fading environment with LMMSE receivers at the BS. Blocking
probabilities (data and voice) were shown to be represented
by additive cost functions. The optimal CAC policy was con-
structed using an LP, and blocking-probability constraints for
the various user classes were accommodated by merely adding
additional linear constraints to this LP. A buffering scheme was
proposed to cope with congestion. In numerical examples, the
gains, in terms of the reduction of the data-blocking probability,
were demonstrated to be significant, even for small buffer
sizes. Suboptimal algorithms (for complexity reduction) for
solving SMDPs based on state aggregration is a subject for
future research.

APPENDIX
PROOFS

__Proof: [Proposition I1.1]: Using (9), write the constraint
on SIR; as a constraint of¥ as follows:
IR
FRp— :
Pyi|hy|” = SIR, P &7
(Assume_the denominator is positive or else the co
straint SIR; > SIR, cannot be satisfied since, from (9)

(43)

X : x = i}, = [0,4,0,...,0]%. Clearly,

X = Ufz“o X;. We will show that state:, is ac-
cessible from all states itX' and, therefore, that
no two disjoint closed set of states can exist. As
in Case 1, it may be shown that — x; for all

x € Xz\-Tm 1 € {0,...,Bd}. In addition,z; —
i1, ¢ € {1,...,By4 — 1}. To see why, from (22),
P (W(2i) = Aa(l — aq)6(Ba — )7, (4(2:)).
Sincei > 0, (1 — aq) = 1, by virtue of (21).
8(Bg — i) = 1 sincei < By. Thus,r,, (4(z;)) > 0
(25), and thereforep,. ., , (4(z;)) > 0. Finally,
one must show that there exists some X; such
thatzo — . [If for somez € Xo andy ¢ X,
pzy(x)) > 0, obviously,y € X; as transitions
are only possible to neighboring states (26)] Let
Xo = {z € Xo\wo : zo — =}. If Xo = 0, then
Paox, (W(xo)) = 1,1.€.,20 — x1. Therefore, assume
X # 0. If there existse € X such thafi(x) satis-
fiesay = 0, then, from (26)pe(oe,) (@(x)) > 0. If

for all # € Xo, u(x) satisfiesaq = 1, from (26),
the statey = [24,0,0,...,0]7 € X, such that
y—+ e ¢ X (y corresponds to the state that has the
maximum number of permissible active data users)
is accessible fronx,. From 4, (21) and (26), we
note thaw,,4.,)(u(y)) > 0. Thus,zo — y +c2. M

Proof: [Proposition Ill.1]: The proof that follows is for
Case i). Cases ii) and iii) follow similar arguments.
" The sample paths of the procelsst)}+cr, arecontinuous
'on the right and have limits on the I€ftorlol) w.p. 1. This fol-

SIR; < |hy|*/€2.) Now, to verify that the fixed poing in (9)  |ows because of the following.

satisfies the constraint in (43), use the following necessary andy) New data and voice users arrive according to homogeneous

sufficient condition that is given in Lemma A.1: Foramy> 0 pgisson processes (3), which isanexplosive point process
K (see [2] for a definition of a nonexplosive point process).

B2y = o7+ ST (P& + Rl 2

b) We have adopted the convention that the occurrence of a

k=2 trigerring eventat some time will cause a state transition in the
(44) process{z(t)}icr, at times itself; triggering events here are

B the arrival of a data or voice user that is admitted, a data user in

_The following proposition is needed in the proof of Propogg pyffer is made active at the service completion of an active
sition 111.1. The limit in (29) is independent afo wheni is a | ger

unichainpolicy. A policy % is said to be unichain if the corre- Sincea(t) = a(z(t)) (29), it follows that sample paths of
spondingembedded Markov chainas no two disjoint closed {a(t)}rcr, are also corlol w.p. 1. Fos > 0, let a(s—) and
sets of states. The embedded Markov chain correspondiiag Q(s—) denote the left-hand limit of(¢) andz(t)
is the controlled discrete time Markov chaim(tx) brez, (tx tively, i.e.,a(s—) = limy, ., r<s a(h). Seta(0—) = a(0) and
defined in (18)) with transition probabilities., (i(x)) (22). A 2(0=) = z(0). Let {t%}kez; denote the arrival instance of the

nonempty seft’ C X is said to be closed i,y (d(x)) = 0 gata users witht¢ = 0 by convention. Note that by (31)
whenz € X andy ¢ X; see also [1], [19].

at s, respec-

Proposition A.1: All % € ¢ are unichain. _ Na(T) . .
Proof: Consider anyi, € 4. We write z — y if Ny(T) = > ela(ti-) alti-)) (45)
k=1

state y is accessible fromz, i.e., there exists a sequence

of statesz,zs,...,2x € X for some finitek such that since an arriving data user is blocked if and only (! —) € A

Paay (U(T))Pay s (W(21)) - - - Py oy (W(Z1—1))Piy (W(@x)) > is such thatay = 0 and the data buffer is full, i.e5(t¢—) +

0. ez ¢ X. Note that samples paths ¢&(z(t—), a(t—))}icr,

Case1)B; = 0. Consider anyz € X such thatx # are left continuous and have limits on the right w.p. 1. Since

[0,0,...,0]". Sincep,(z_e)(@(x)) > O for all {Ny(t)}ier, is a Poisson process (Nu(t + s) — Nu(t) :
t€{1,3,...,24+ K,} such thatt — ¢; € X, we s> 0}isindependentofz(s):0 < s < t}forallt > 0. This
havex — [0,0,...,0]*. Thus, statg0,0,...,0]" is true due to thenemorylessproperty of Poisson processes.
is accessible from all states &, and therefore, no Thus, {Nq(t + s) — Ng(t) : s > 0} is also independent of
two disjoint closed set of states exist. {c(z(s—),a(s—)) : 0 £ s < ¢t} asa andc are measurable
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functions ofz; this property is called th&ack of anticipation
assumption(LAA); see [7, Def. 7.2]. (Note that the sigma al-
gebras{c(z(s—),a(s—)) : 0 < s < ¢} C o{c(z(s),a(s)) :
0<s<t}Cofx(s):0< s <t})Because LAA holds, by
[7, Th. 7.3], the well-knowrPoisson arrivals see time arages
property holds, which asserts that

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002

of X, Wy(e; + meo + ¢;) > By. It suffices to show
that Wy(er + mea) > Wu(er + mes + ¢;). Let
B > 0 satisfys = fq(e1 +mea+e;,3). Obviously,
1/0? > j3, and thereforel 4(e; +mea) > Uy(e; +
mez + ¢;).

Case 3) This involves any not covered by Cases 1 and 2.

Nu(T) It suffices to showly(z) > Wy(x + ¢;). Let 3
Y oa(ti-),a(ti-)) andg satisty = fu(x,8), ' = fala + ¢;, ).
lim _F=1 - By Corollary A.2,5 > (#, and therefore¥(x) >
T—oo Nd(T) \I/d(l’ + Cj) > Ba.
lim _/T cla(t),alt)) dt wp.1 (46) Partii): The proof follows similar arguments to those used
T—co T J ’ in Part i). [
provided either limit exists, i.e., existence of one limit implies
existence of the other, and both limits are the same. The proof REFERENCES
is complete by noting the following properties of unichain
policies [19, Th. 3.5.1]: Fil’St,{ﬂU(tk)}kEL has a unique [1] D. P. Bertsekas, Dynamic Programming and Optimal Con-

stationary distributioq 7 (), z € X }. Second, for each initial
statexo, limyp_,oo 1/T fOT (x(t),a(t))dt = Jz w.p. 1, where

2, o, a(x))re (i) ma(x)

(2]

Ji = - 47
> (i) ma() 5
zCX
Third, .J;(xo) = J; for all . [ ]
Lemma A.1:Considerp,, po, ..., pi > 0, N > 0,02 > 0.

6
There exists a unique positivethat satisfies ol

—1
1 k

if o2 > 0or(k—1)/N > 1; I is defined in (9). Furthermore,
forany~y > 0

(71
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Jéi (48)

9]

3 -1

L&

2

AT I )

o+ ; (pisy)
A consequence of this lemma is the following.

Corollary A.2: Considerpy,pa,...,pr >0,k > 1, N >0,
o2 > 0. Let B,_1 and 3, be the unique positive fixed points
that satisfy

B> — > . (49) [10]

(11]

(12]

-1

k—1
1 [13]
Bt = |0 + I Zf(pmﬁk—l)]
Zzl 3 [14]
9 1
.= — I{p;, B .
Bk o° + N 722; (pzvﬁk)‘| (50) [15]

Then,ﬁk_l > ﬁk
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Proof of [Proposition IV.1] Part i): The result is obvious
whene; = ez. In the following, we consider any; # ¢.. To
showz € X, by the definition ofX (17), we must show

\I/d(a:) 2 ﬁd, \I/,Uﬂ‘(x) 2 /j'u,ia 1= 1, . ,KU. (51)
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peated to show,, ;(z) > 3, ;.
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Case 2)x = ¢; + meg Wherem is any non-negative integer
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