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Abstract—This paper addresses the call admission control
problem for multiservice wireless code division multiple access
(CDMA) cellular systems when the physical layer channel and
receiver structure at the base station are taken into account.
The call admission problem is formulated as a semi-Markov
decision process with constraints on the blocking probabilities
and signal-to-interference ratio (SIR). By using recent results
in large random matrices, the SIR constraints incorporate
linear multiuser detectors and fading channels. We show that
the optimal call admission policy can be computed via a linear
programming-based algorithm.

Index Terms—Call admission control, CDMA cellular system,
fading, semi-Markov decision process.

I. INTRODUCTION

CODE-DIVISION multiple-access (CDMA) implemented
with direct-sequence (DS) spread-spectrum signaling is

among the most promising multiplexing technologies for cel-
lular telecommunications services such as personal communi-
cations, mobile telephony, and indoor wireless networks. The
advantages of DS-CDMA include superior operation in multi-
path environments, flexibility in the allocation of channels, the
ability to operate asynchronously, increased capacity in bursty
or fading networks, and the ability to share bandwidth with nar-
rowband communication systems without undue degradation of
either system’s performance [10].

This paper studies the problem of call admission control
(CAC) for an integrated voice/data wireless DS-CDMA
system. In the integrated voice/data scenario, users transmit at
different bit rates and have different quality-of-service (QoS)
requirements, which is usually characterized in terms of a
signal-to-interference (SIR) constraint or a bit error proba-
bility (BEP) constraint. A multicode (MC) CDMA system is
proposed in [4] for integrating users of varying transmission
rates. In MC-CDMA, a signature sequence is used to transmit
information at abasic bit rate. Users that require higher
transmission rates use multiple signature sequences in parallel.

Manuscript received August 20, 2001; revised February 22, 2002. This work
was supported in part by the Centre of Expertise in Networked Decision Sys-
tems (CENDS), by an ARC large grant and the ARC special research Centre
for Ultra Broadband Information Networks (CUBIN), by the National Science
Foundation under Grant CCR-99, and by the New Jersey Center for Wireless
Telecommunications. The associate editor coordinating the review of this paper
and approving it for publication was Prof. Vahid Tarokh.

S. Singh and V. Krishnamurthy are with the Department of Electrical and
Electronic Engineering, University of Melbourne, Parkville, Australia (e-mail:
ssss@ee.mu.oz.au; vikram@ee.mu.oz.au).

H. V. Poor is with the Department of Electrical Engineering, Princeton Uni-
versity, Princeton, NJ 08544 USA (e-mail: poor@ee.princeton.edu).

Publisher Item Identifier S 1053-587X(02)04385-4.

When a user desires access to the network for communicating
voice or data, the base station (BS) decides whether to admit or
block (reject) the new user; this is known as CAC. Assuming
that users have stringent SIR requirements, the new user will be
blocked if the BS is unable to simultaneously accommodate the
SIR requirements of all presently active users and that of the new
user.1 Consider a network in which users are partitioned into
service classes. In addition to satisfying the SIR requirement of
all active users, the network also seeks to guarantee that all users
in a particular service class will experience a blocking proba-
bility of no larger than a particular maximum value. In order
to satisfy the SIR and worst-case blocking probability require-
ments, it will be necessary to admit or block new users as a func-
tion of the current profile of active users in the BS. Such an ad-
mission mechanism is called a CACpolicy, and the problem of
constructing optimal CAC policies subject to SIR and blocking
probability constraints are addressed in this paper.

Existing Approaches:Most existing papers in the literature
may be broadly characterized as follows.

i) Complete sharing:A policy that accepts a new user if and
only if the BS has sufficient capacity to simultaneously
accommodate the SIR requirement of all presently ac-
tive users and the new user is known ascomplete sharing
(CS) policy. (The term CS applies when a new user is al-
ways offered access to the network provided that there
is sufficient bandwidth at the time of request [17].) The
CS policy, which is the simplest policy, is proposed and
investigated in [6], [11], and [13]. The approaches of [6],
[11], and [13] differ in how the BS evaluates theresidual
capacity, which is defined as the additional number of
users that can be admitted such that SIR constraints of
all active users are satisfied. (Obviously, the residual ca-
pacity is a function of the current profile of active users in
the BS.) In the case of [6], the residual capacity is defined
in terms of the so-callednoise rise condition; see [6, eq.
(5)]. Because the admission and rejection of a new user is
based on the SIR constraints, the approaches in [6], [11],
and [13] are effectively integrating the network level call
admission problem with the performance of the physical
layer. However, the shortfalls of [6], [11], and [13] are
a) the evaluation of the residual capacity is heuristic as
there is no mention of the receiver structure that will be
used to demodulate the users received signal at the BS;
it is well known that the achieved SIR is maximized by
the LMMSE receiver [20] (among the class of linear re-

1The term active user here is used for users that have been admitted by the
BS.
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ceivers), and therefore, the residual capacity depends on
the receiver structure as well; b) the admission policy
used is the simple CS policy, and they do not consider
the problem of optimizing the admission policy to mini-
mize the probability of rejecting a new user.

ii) SMDP approach:In [5], [17], and [21], the theory
of semi-markov decision processes (SMDPs) is used
to construct optimal CAC policies. In [17], a circuit
switched network is considered, whereas[5] and [21]
consider a cellular network. Not only are policies con-
structed via the SMDP approach are optimal, the SMDP
approach can cope with blocking probability constraints.
The shortcomings of [5] and [21] are that the admission
control problem is treated purely as a network layer
problem by ignoring the physical layer aspects such
as the CDMA modulation scheme, the channel fading
characteristics, receiver structures, SIR, etc.

iii) Threshold policy: Several papers have studied the
problem of access control for an integrated voice/data
CDMA system; see [12], [18], and references within.
Access control differs from CAC in the following
regard: In access control, the BS admits more users
than it has the capacity to accommodate simultaneously.
The access control strategy will then regulate the use
of the channel by each active user (decide on the bit
periods that an active user can transmit) to satisfy a)
maximum end-to-end delay for real time voice users and
b) SIR constraints for both voice and data users. The
CAC policy used in conjunction with access control in
[12] and [18] is a simplethreshold policy, i.e., a new
class user is accepted if the number of active class
users is less than a threshold. Thresholds are then
optimized empirically to achieve desired maximum
blocking probabilities for the various classes. Although
simple to implement, it is well known that threshold
policies cannot satisfy blocking probability constraints
in general [16]. Additionally, thresholds must be opti-
mized empirically and can perform poorly in practice;
see [16] for examples. In any case, if the optimal CAC
policy turns out to be a threshold policy, the SMDP
approach (being the most general) will identify it.

Contributions: The contributions of this paper are as
follows.

• Unlike [5], [6], [11], [13], [17], and [21], we study the
interplay between the physical layer interference suppres-
sion algorithms (linear multiuser detectors for the CDMA
system), the QoS constraints for the various user classes,
and the network layer throughput (blocking probability).
Specifically, we present a linear programming (LP)-based
algorithm for computing the CAC policy that minimizes
the blocking probability (or maximizes the network
throughput) of a specific service class subject to satis-
fying constraints on i) the minimum SIR (or maximum
BEP) for all active users and ii) the maximum blocking
probability for all the other classes of users. In the SIR
constraints, we account for LMMSE receivers at the BS

and a fading channel using results on the spectrum of
large random matrices [8]. By ensuring all active users
have a minimum SIR level, not only are we ensuring
a maximum value for the BEP, but we also indirectly
guarantee a maximum outage probability.2 As in [5],
[17], and [21], the LP-based algorithm for constructing
the optimal CAC policy is derived using the the theory of
SMDPs.

• In this paper, we address the problem of congestion by
generalizing the CAC problem to account for the scenario
in which a new data user can be rejected, admitted as an ac-
tive user (i.e., allocated a signature sequence and allowed
to commence transmission immediately), or queued in a
finite buffer at the BS. In the work of all previous authors
mentioned, when a new user arrives and there is insuffi-
cient capacity to support it (i.e., the network is congested),
the new user is rejected outright. The option of queuing
prevents the new user from being lost to the system, which
would be the case if the user was rejected. The queued user
is then admitted at a later time when there is sufficient ca-
pacity. In numerical examples, we demonstrate significant
reductions in the blocking probability of data users when
queuing is employed with moderate buffer sizes. Queuing
of data users is typical in multiservice wireless networks
for data users engaged in nonreal-time services such as
e-mail, file transfer, store and forward facsimile, etc.

Finally, we mention that [5] constructs an optimal CAC policy
that minimizes the probability of dropping handoff calls. We re-
mark that the formulation of the CAC problem in Section III and
the LP algorithm in Section IV-B is general enough to straight-
forwardly account for the handoff call blocking probability as a
performance criterion; see Section V for details.

Limitations: The CAC policy constructed in this paper is op-
timal when data and voice users arrive according to Poisson
processes and have exponential holding (service) times. Under
these assumptions, the CAC problem is a SMDP, and one can
use a LP algorithm to construct the optimal CAC policy. If
we drop the Poisson arrival and exponential holding time as-
sumptions, then the CAC problem is ageneralized semi-Markov
process(GSMP). The optimization of a GSMP is considerably
more difficult and is not solved by a LP algorithm, as in the
SMDP case. In the GSMP case, our CAC policy can be viewed
as suboptimal solution to an otherwise difficult problem.

Notation: For a complex-valued matrix or vector, , ,
and , denote the transpose, conjugate, and Hermitian trans-
pose, respectively. denotes the identity matrix of order .

and denote the set of non-negative reals and integers, re-
spectively. is the indicator function, i.e., for a nonempty set,

if , if . denotes the car-
dinality of the set . The function is defined
by if , . For two random variables
and , implies that and have the same probability
distribution. denotes probability, and is the expectation
operator. With probability 1 is abbreviated as w.p. 1 .

2An outage occurs when the instantaneous SIR falls below the threshold for a
prolonged period of time and the outage probability is defined as the percentage
of time the instantaneous SIR lies below the threshold [6].
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Fig. 1. Call admission for a BS; nonreal-time data users maybe buffered for delayed admission; SIR evaluation is fed back to CAC policy.

II. CAC FOR AN INTEGRATED VOICE/DATA

DS-CDMA CELLULAR SYSTEM

In this section, we formulate and solve the CAC problem for
theuplink (mobile station to BS) of a synchronous DS-CDMA
cellular system that integrates both voice and data service, as il-
lustrated in Fig. 1. The signal-model, the receiver structure at the
BS, and the corresponding SIR expression are detailed. In Sec-
tion III, the CAC problem is formulated and solved as a SMDP.

The motivation of the model in Fig. 1 stems from the aim
of studying the interplay between the physical layer interfer-
ence suppression algorithms (linear multiuser detectors), the
QoS constraints for the various user classes, and the network
layer throughput (blocking probability). The ingredients of the
model schematically illustrated in Fig. 1 are as follows.

i) Multiservice user requests to access the wireless
DS-CDMA voice/data network.

ii) An admission controller then decides whether to admit
the user. The admission controller seeks to optimize the
throughput (i.e., minimize the blocking probability) of
a specific class of users subject to two types of con-
straints: a) network level constraint on the throughput of
other user classes and b) physical level constraint on the
SIR (or BEP) of the various user classes. Additionally,
to cope with congestion, there is an option of buffering
nonreal-time data users for delayed admission.

iii) If admitted, the user transmits over a fading channel. A
LMMSE multiuser detector demodulates each user. The
interference suppression capability of the LMMSE mul-
tiuser detector is measured by the SIR, which is a surro-
gate for the BEP.

iv) The evaluated SIR is passed back to the admission con-
troller, which will determine whether or not to admit new
users. In this way, the performance of the physical layer
interference suppression algorithms (LMMSE detectors)
affects the admission of new users.

Details of items i)-iv) follow. Item ii), i.e., Admission Con-
trol, is dealt with entirely in Section III .

1) Multiservice User Request:In an integrated voice and
data scenario, some of the active users may be engaged in a
voice call, and the remaining users will be transmitting data to
the BS, i.e., user is either transmitting voice or data. At con-
nection request, we quantize the transmit power, channel gain,
and variance of voice users into a value from the finite set

(1)

If the parameters of a voice user are quantized to
( ), the voice user is said to belong to theth
class. In order to base CAC on the performance of the physical
layer (e.g., SIR), it is essential that the admission control policy
has an indication of transmit power, channel gain, and variance
of the user requesting connection; see item iv) in the following
for more details. (In [8, Sec.4], the problem of estimating the
mean and the variance channel fading process of each user
is considered using data that is available during the training
period or during the decision-directed mode.) The number
of quantization levels in (1) will determine the cardinality of
thestate spaceof the optimal CAC problem. (See Section III.)
Fewer levels will result in a smaller state space and, hence,
require fewer computations to compute the optimal CAC
policy. For simplicity, we assume only one quantization level
for data users requesting service, namely

(2)

The development that follows may be easily generalized to situ-
ation where there are multiple quantization levels as in the voice
case; see Section V for more details.

In this paper, we design CAC independently of power con-
trol and access control; this is a practically feasible and widely
used methodology [6]. The resulting CAC is a static optimiza-
tion problem since it is only concerned with a user’s power
and channel parameters at admission request time. Due to time
variation in the channel characteristics, these parameters will
change after admission. It is the role of access control and power
control to dynamically ensure that the SIR requirements of users
are satisfied in real time, as is also proposed in [6].

As in [5], we assume that data and classvoice calls are
generated according to homogeneous Poisson processes with
intensities

and (3)

respectively. Furthermore, the duration of a data and a class
voice call are exponential random variables
with means

and (4)

respectively.
2) Fading DS-CDMA Wireless Channel and LMMSE De-

tector: The signal model we use is the “standard” model for a
synchronous (or asynchronous) DS-CDMA system in a fading
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environment [8], [14]. Consider the uplink of a synchronous
-user DS-CDMA communication system. Assume that this

system transmits binary symbols through an additive white
Gaussian noise channel in a single-path (flat) fading environ-
ment. The chip-sampled discrete-time model for the received
baseband signal (at the BS) during theth bit interval is

(5)
There active users , and denote the transmit
power, the th transmitted bit, and channel gain for theth
user, respectively; is the signature sequence for
the th user, where is the processing gain (spreading
gain); is additive noise, and determines its
variance. It is assumed that is a sequence if
independent and identically distributed (i.i.d.) equiprobable

1 random variables and that is a com-
plex-valued random process satisfying
and . The
additive noise is a circularly symmetric complex
white Gaussian random process with
and . It is further assumed that the sto-
chastic processes , ,
and are mutually independent. As in [8], we
assume that the path delays induced by the fading channels
are negligible compared with the bit duration , where
is the chip-period, i.e., intersymbol-interference is negligible.
Extension to the intersymbol-interference case is possible and
is remarked in Section V.

Assume that user 1 is the user of interest and that we wish
to “recover” the transmitted bit from defined in (5).
A linear demodulator for user 1 is a vector ( -di-
mensional column vector with complex elements) that is used
to obtain an estimate of the transmitted bit as follows:
sgn . For user 1, the LMMSE detector [14] chooses
the vector that minimizes the mean squared error

, which is given by

(6)

(In this section, when the expectation operator is invoked, we
always condition on the information that is assumed available
at the LMMSE receiver; we abbreviate to , where

represents knowledge of the transmit power, the mean and
variance of the channel, and the signature sequence of all mul-
tiple-access users.)

Write the parameters of the signal model (5) compactly as
follows:

diag

Using the independence assumptions on the various stochastic
processes in the previous paragraph, as well as the first- and
second-order statistics given therein, we have

(7)

3) Evaluated SIR:The BEP is the main QoS (performance)
measure in wireless networks. In this paper, BEP constraints are
accounted for by introducing SIR constraints. It is well known
that SIR is a surrogate measure for the BEP; intuitively, this is
because the BEP is degraded by the interference introduced by
the multiaccess users and the background channel noise. One
a more technical note, it has been established that in a “large
system” ( and in (5) are large), the BEP monotonically
decreases as the SIR increases [22, Th. 3.3].

Let SIR denote signal-to-interference (SIR) ratio for the es-
timate , with given in (7). Then, as shown in [8]

SIR (8)

When a new user requests to be admitted into the network, the
BS must ensure that the SIR constraints of all presently active
users and that of the new user can be simultaneously satisfied.
Note that the SIR (8), amongst other factors, is a function of the
signature sequence of the user of interest and that the remaining

active users. By recourse to the exact expression for the
SIR (8), it is impossible to design an optimal CAC algorithm that
iscomputationally feasibleand, hence, of practical interest. This
is because the definition of the state space of the CAC problem
(see Section III) must includethe set of all possible signature
sequences. (This is the set from which users transmitting in the
cell are allocated signature sequences from.) As in [8], [9], [20],
and [22], we assume that signature sequences of theusers
(5) arerandomly and independentlychosen on admission; this
implies that the signature sequence for usercan be modeled
as , where ’s are i.i.d. with
mean zero and variance 1. [A candidate for could be the
equiprobable 1 random variable. The normalization ( )
ensures .] Under this assumption, it was shown
[8] that the SIR can be closely approximated by an expression
that only depends on the transmit powers of all active users as
well as the first- and second-order statistics of the channel gain
processes

SIR (9)

where is the unique fixed point in (0, ) that satisfies

(10)

and

(11)

For the special case when , i.e., only the user 1 is active,
SIR is approximated by

SIR (12)

For the case when the channel mean is 1 and the variance is
0, i.e., there is no fading, [20] presents numerical examples that
verify the accuracy of the above approximations; see also [9] for
an analysis of the SIR based on the spectrum of large random
matrices. In [8, Th. 1], a convergence result is presented that
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shows SIR SIR converges (almost surely) to 0 as is
increased to infinity, whereas the ratio is held fixed at
some positive value. This convergence result, loosely speaking,
states that the approximation is accurate for “large system,” i.e.,
when and are large or for a system with large spreading
gain .

The expression for the SIR in (9) is independent of the sig-
nature sequences and depends only on the transmit power, the
channel mean, and the channel variance of all active users. This
approximate expression will be used to construct the state space
of the optimal CAC problem in Section III. If user 1 has a spec-
ified SIR lower threshold, say SIR, then as shown in the fol-
lowing proposition, one need not solve for the fixed pointof
(9) to verify SIR SIR .

Proposition II.1: Suppose SIRis a specific lower threshold
for SIR defined in (9). Then,SIR SIR if and only if

(13)

where

SIR

SIR
(14)

III. FORMULATION OF THE CAC PROBLEM AS A SMDP

The aim of this section is to formulate the CAC problem for
the uplink (see Fig. 1) as an SMDP. The methodology presented
here still applies if admission control is to be performed based
on both theuplink and downlinkcapacity or thedownlinkca-
pacity alone.

The SMDP formulation below proceeds in three steps.
1) First, a discrete-valued (finite) state space for the profile

of active users in the network is specified. The SIR con-
straints are incorporated by truncating the state space to
those points that satisfy the SIR constraints. A SMDP
is then defined over this truncated state space. From an
implementation point of view, constructing the truncated
state space can be difficult as it would involve exhaustive
enumeration. We show that the SIR constraints induce a
convex SMDP state space and give that a simple proce-
dure exists for constructing it in Section V.

2) The actions and the state dynamics of the SMDP are then
defined. The arrival process for each user class is assumed
to be a continuous-time homogeneous Poisson process.
The duration of data and voice calls are assumed to be
exponentially distributed. The class of admissible CAC
policies are then defined.

3) The performance criterion for minimizing the blocking
probability is specified. We show i) that the blocking
probability is captured by an additive cost function (via
the PASTA theorem [7]) and ii) that all CAC policies
within the admissible areunichain. By virtue of i) and
ii), the standard approach for solving a SMDP via the
linear programming method applies [1, Ch. 5]. In partic-
ular, one may write a LP whose solution is the optimal
CAC policy. Blocking probability constraints for the var-
ious user classes are accommodated by merely adding ad-
ditional linear constraints to this LP.

An SMDP is characterized by the following ingredients.
1) State Space:Let denote thestate spaceand

thestateof the BS at time, where .
The state vector is given by

(15)

where denotes the number of active data users,
denotes the number of data users in the buffer, and

, denotes the number of active class
voice users, where is the total number of voice

classes. is a finite set [see (17)]. We assume the buffer
for data users is a finite buffer of length . The vector

(16)

characterizes the minimum SIR that all active data and
voice calls of each class type must satisfy. For the current
state , let denote the SIR value for all
active data users, and let denotesthe SIR value for
all active class voice users. By convention, set

( ) if
is such that ( ). (TheseSIR functionsare
defined in Section IV-A.) The state spaceis defined as

(17)

comprises of the data buffer states together with all
combinations of data and voice users that satisfy the SIR
thresholds (16). For the SIR functions defined in the fol-
lowing, is a finite set. Additionally, since the arrival
and departure of calls are random, and is a
finite-state stochastic process.

2) Decision Epochs, Actions, and State Dynamics:When
an arriving data or voice user desires to be admitted into
the system, the BS will make a decision as to whether or
not to grant admission. Thus, a “natural” definition for the
decision epochs are thearrival instancesof the data and
voice users, as is done in [15, Ch. 11]. However, as in [17],
we define the decision epochs as the instances when the
stochastic process changes state, i.e., arrivals
and departure are taken into account. Formally, let

denote the -th transition time of . (18)

By convention, set . The decision epochs are taken
to be the instances , At each decision
epoch, an admit or block decision is made for each pos-
sible type of arrival that may occur in the time interval
( ]. These decisions are collectively referred to as
anaction. The set of all possible actions (action space)
is defined as

(19)
where the actions are defined in te
following. Assuming , the action at decision
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epoch , which is denoted by , must be selected
from the state-dependent subset of, i.e.,

if (20)

Action is inter-
preted as follows.

• If , a data user that arrives in the interval
is admitted as an active user. Otherwise,

it is placed in the buffer, provided the buffer is not
full. If the buffer is full, the user is blocked.

• If , no data users that are queued in the
buffer are made active in the interval . If

and the buffer is not empty, admit the data
user at the head of the buffer as an active user if

, where is a randomly
generated delay. is called thebuffered data admit
latencyand is intentionally introduced. Note that
need not be random and could be a (arbitrarily small
but positive) deterministic delay. See Remark III.1.

• If , admit a class voice user that ar-
rives in the interval . Otherwise, the user
is blocked.

Note that an arriving data or voice user that is
blocked does not cause a state transition in the process

(15); a state transition occurs when an ar-
riving data or voice user is admitted, a data user in the
buffer is made active, or an existing active user departs
the system.

For a given state , define the admissible action
space as follows:

if or

if or

if for (21)

where denotes the vector of all zeros except
for the th component, which is 1. Essentially, is com-
posed of all those actions in that do not result in a tran-
sition to a state (17). Additionally, the restriction

if ensures data users are made active on a
first-come-first-serve basis. (This restriction is not neces-
sary but is imposed for “fairness.”) Although not explic-
itly stated in (21), action ( ) is excluded while
in state . Clearly, such an action is un-
desirable in the sense that new users are never admitted
into the system and, therefore, may be excluded.

The state dynamics of an SMDP [1], [15] are com-
pletely specified by stating the transition distributions

for all , , and ;
are defined in (18). However, from the point of view of
the solution methodology, it is sufficient to deal with the
transition probabilities of the so-calledembedded chain

and the expected sojourn time (holding time)
for each state action pair instead [1, Ch. 5]:

(22)

(23)

Let the buffered data admit latency be generated ac-
cording to the exponential distribution, i.e.,

(24)

where . (See Remark III.1.) Then, for each
(15) and (21), the quantities in (22) and (23)

can be expressed as

(25)

if
if
if
if

if

if
otherwise.

(26)

Note that (respectively, ) corre-
sponds to an arrival of a new (respectively, departure of an
existing) user whose type is made specific from the value
of . is the successor state that results
when a data user from the buffer is made active. The ex-
pressions in (25) and (26) can be explained as follows: If

and , then the new state and
holding time in the current state is determined
by a superposition of mutually independent Poisson pro-
cesses. The resulting process consists of one departure
process with rate for each active classuser, one de-
parture process with rate for each active data user, an
arrival process with rate if action admits a class
voice user (i.e., is such that ), an arrival process
with rate if or the buffer is not full and finally,
and a Poisson process with rate if action admits a
data user from the buffer as an active user. In addition,
note that if a stochastic process is a superpo-
sition of independent Poisson processes with rates,

, then i) the expected interarrival time of the
process is , and ii) the
probability that the th event of is generated by
the th Poisson process is [3, Sec.6.7.3]. For
a more rigorous derivation of (25) and (26), one can write
the CAC problem as astochastic timed automata with a
Poisson clock structureand use the result in [3, eq. (6.50)]
for (25) and the result in [3, eq. (6.68)] for (26).

3) Policy:Let denote the class ofadmissibleCAC policies,
which is defined as follows:

(27)

Note that the definition in (27) includes threshold policies
as a special case [16]. Given any , call admission
is performed as follows: For the interval , the
action (20) chosen is .
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4) Performance Criterion:We consider the so-calledav-
eragecostcriterion[1, Ch. 5]. Let

(28)

be uniformly bounded. The performance criterion con-
sidered, which includes data user blocking probability as
a special case is given as follows: For any and

, define

(29)

where for , .
The aim is to compute the optimal policy that
satisfies

for all (30)

i.e., has the minimum cost for all initial states. The
limit in (29) exists for any and and may
be verified using the theory ofrenewal reward processes
[19, p. 219]. In fact, for any , the limit in (29) is
independent of (see Proposition III.1.). The indepen-
dence of the limit, which holds because all the policies in

areunichain, is the basis the LP solution methodology
in Section IV-B [1] (see the proof of Proposition III.1.
for details). A policy is said to be unichain if the cor-
respondingembedded Markov chainhas no two disjoint
closed sets of states. The embedded Markov chain corre-
sponding to is the controlled discrete time Markov chain

[ defined in (18)] with transition probabil-
ities (22). A nonempty set is said to be
closed if when and ; see
also [1] and [19].

We now state the form of the functionsuch that the
data-blocking probability corresponding to a CAC policy

is given by in (29). Consider an arbitrary CAC
policy and an initial state for the process

. Let denote the counting
processthat counts the number of data user arrivals in the
interval . Let denote the number of data users
that are blocked in the interval .3 The empirical
data-blocking probability corresponding to and ,

is “defined” as

(31)

At first sight, does not appear to be of the form
in (29), i.e., an expected value of the sample path average
of . The aim of the following proposition is
to show the following ergodicity type result: minimizing
the average cost performance criterion in (29)
when is equiva-
lent to minimizing the blocking probability . (The
Poisson assumption for the arrival process of data users is
crucial for this result to be true; see the proof of Proposi-
tion III.1. for details.) Given this equivalence, we can then
use any of the several available algorithms that solve (30)

3Obviously, �N (t) is a function of~u and the initial statex ; the dependency
is not made explicit in the notation, however.

to construct the CAC policy that yields the minimum data
(or class voice) blocking probability.

Proposition III.1 (Blocking Probability as AverageCost):
i) Data: Define in (28) to be

(32)
where is defined in (19), and is defined in (26).
Then, for any , w.p. 1 for all

, where is defined in (29) and
is defined in (31). Moreover, for all , is
independent of .

ii) Voice: Similar to the data case, setting

(33)

yields the minimum blocking probability for classvoice
users.

iii) Multiservice: Choosing

(34)

for some weights yields the policy that min-
imizes a weighted sum of the data and voice classes
blocking probabilities.

(All proofs are in the Appendix.)
Remark III.1 (Buffered Data Admit Latency (24)):To ensure

for all and , the data user from the
buffer has to be admitted after some nonzero delay with positive
probability. (The condition is needed to be able to
apply the LP solution methodology in Section IV [1, Ch. 5].)
could even be selected to be an arbitrary positive deterministic
delay. Everything remains the same, except for changes to the
particular expressions for (26) and (25).

Remark III.2 [Semi-Markov (SM) Property]:If the data
buffer admit latency is an exponential random variable (24),
then the length of time (holding time) between two decision
epochs (18) is an exponential random variable as well
with rate depending on the state and action ; hence,
we have the expression in (25). In this case, the CAC problem
is a special case of a SMDP, which is acontinuous time Markov
decision process(CMDP). When is a positive deterministic
constant, the length of time between two decision epochs

is no longer an exponential random variable, and
the CAC problem is a SMDP. See [1] and [15] for background
theory on SMDPs.

IV. SIR CONSTRAINTS AND THELP SOLUTION METHODOLOGY

A. SIR Constraints

The SIR functions and that were used to define the
state space in (17) are taken from the approximate expression for
the SIR given in (9). Define the functions

, , as follows:

(35)
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and

(36)

where is the processing gain, and is defined in (9).
Equations (35) and (36) are derived from (9) by taking into
account the structure of the multiaccess interference for the
integrated voice and data scenario, i.e., an active data user
suffers interference from the remaining active data users
and active voice users. Now, the SIR functions are
defined as follows:

if

if

else

(37)

if

if

else

(38)

where is any non-negative integer such that . Note
that in (37), is the unique positive fixed point that satisfies

and similarly for in (38). In the above defi-
nition, since users in the buffer do
not degrade the SIR. In constructing the state space(17), for
a given , one needs to verify that ,

and so on. There is no need to compute the
fixed points as indicated in (37) and (38). As is shown in Propo-
sition II.1, one merely verifies the inequality in (13).

The following proposition states that the state spacein-
duced by the SIR functions and is convex.

Proposition IV.1: in (17) satisfies the following two prop-
erties for any .

i) If for some , then ;
ii) If , then for all

where is defined in (21).
Property i) of Proposition IV.1 implies that if all active users

satisfy their SIR requirements, then the departure of any active
user results in the remaining users still satisfying their SIR re-
quirements. Property ii) implies that if the current profile of ac-
tive users does not satisfies the SIR constraints, then the same
will be true if a new user is made active. These properties make
the task of constructing in (17) simple; see Section VI for
details.

B. Constructing the Optimal CAC Policy - LP Formulation

Without Blocking Probability Constraints:SMDPs
are usually analyzed and solved within the framework of
discrete-time average cost Markov decision processes; this

is achieved by a process calleduniformization. (See [1] for
a detailed discussion.) Essentially, one defines and solves
an “equivalent” discrete time-average cost Markov decision
process (MDP) in lieu of the original SMDP; the discrete
time MDP is equivalent in the sense that the solution to its
Bellman equation coincides with that of the Bellman equation
for the original SMDP. Thus, algorithms for solving discrete
time MDPs, such as value iteration, policy iteration, and linear
programming, are applicable to SMDPs as well. We will use
the LP approach in the following.4

The optimal CAC policy (30) is obtained by solving the
following LP.

subject to

(39)

The decision variables are , , and . Let
denote the optimal solution to the above LP. The optimal policy

is then constructed as follows [19, p. 224]: For each ,
for any such that . If for all

, choose an arbitrary , and set .
With Constraints on Data and Voice Blocking:Let
, which is defined in (28), be some suitably defined

cost function that reflects the rate at which the BS incurs
administrative costs when it chooses actionwhile in state

. Minimizing the continuous average cost (29) subject to
constraints on the maximum allowable data and voice blocking
probability (for each voice class) is easily addressed by adding
the following (sample path) constraints to the LP in (39):

(40)

(41)

where is defined in Proposition III.1, is the maximum al-
lowed data-blocking probability, [see (33)],
and is the maximum allowed blocking probability for voice
class . [This is a nice feature of the LP approach for solving the
CAC admission problem (29) and (30) that is not available with
the policy iteration and value iteration methods.] Let denote
the optimal solution to the LP. When sample path constraints
are included, the optimal policy will in general be arandomised
stationary policy: The optimal action for state is the control
chosen from the set probabilistically according to the prob-
abilities , . If for
all , choose an arbitrary , and set . See
[19] for details.

4See [1, Ch. 5] and [19, Ch. 3] for a discussion on the value iteration and
policy iteration approaches. In [17], the computational savings are examined
when themodified value iterationalgorithm is used instead of the LP approach.
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V. IMPLEMENTATION ISSUES ANDEXTENSIONS

Constructing the State Space:As described in Section III,
the SIR constraints define the state space of the SMDP (17). Due
to Proposition IV.1, the procedure for constructingis simple
and is as follows.

Step 1) Construct an upper boundfor , i.e., as
follows: Let

,
, . [ is defined in (21).] Note

that and are monotonically
decreasing in and respectively; this follows
by Corollary A.2. is the maximum number of
active data users that can be supported simultane-
ously, whereas is the maximum number of ac-
tive class users that can be supported. Let

. Using
Proposition IV.1, one may verify that .

Step 2) “Trim” down to as follows: For each ,
if and , ,
then . By Proposition IV.1, if , then all

such that are also in . Similarly, if
, then all such that are also not

in . Step 2 involves a finite number of evaluations
that is bounded above by .

Computational Complexity:To construct the optimal CAC
policy (30), one needs to first i) construct the state space

(17) and then ii) solve the LP in (39). The task of constructing
the optimal CAC policy is entirely offline as i) and ii) are offline
procedures. The computational complexity of constructingis
the computational complexity of procedures i) and ii). As indi-
cated in Step 2, constructing involves a finite number ofSIR
feasibility evaluationsthat are bounded above by ; note that
this is the worst-case scenario. Although one needs to verify
that each point in also belongs to , the convexity property
in Proposition IV.1 greatly simplifies this procedure, as detailed
in Step 2. The cardinality of itself depends on the dimension
of the state vector (15), the size of the data buffer , and
the particular value of constants given
in Step 1. The complexity of procedure ii) is polynomial in the
number of decision variables of the LP (39), and the number of
decision variable in the LP are bounded above by . (Note
that an LP may be solved in polynomial time by so-calledin-
terior point methods.) The main approach to reducing the com-
plexity of procedures i) and ii) would be to reduce the cardinality
of and the state space, respectively. and are simul-
taneously reduced by reducing the dimensions of the state vector

(15). This, in turn, can be achieved by reducing number of
user classes under consideration.

Minimizing the Dropping Probability of Handoff Calls:As
in [5], we can construct an optimal CAC policy that minimizes
the probability of dropping handoff calls or including handoff
calls dropping probability as a constraint. The basic idea is a
follows: As in [5], we assume handoff calls from adjacent cells
arrive according to Poisson processes with rates and

, . Note that the total rate of incoming
calls class is now , i.e., the sum of the rates of

Fig. 2. Data-blocking probability versus buffer size—Values indicated
adjacent.

new and handoff calls. The definition of the state space remains
the same as in (17). This is because we do not distinguish be-
tween an active new classand an active handoff classas the
same bandwidth (SIR requirement) is consumed. To explicitly
minimize the handoff call blocking probability, we need to re-
define the action space in (19) as follows:

(42)

implies that we accept an arriving handoff class
call; otherwise, we reject it. (There is a similar interpreta-

tion for an arriving handoff data call. There is no buffering for
handoff data calls.) Because the action space has been rede-
fined, the set of feasible state-action pairs in (21), the transi-
tion probabilities in (26), and the mean holding time in (25)
will have to be changed accordingly; compare with [5], (8) and
(15). To minimize the handoff call blocking probability, we set

in (29).
Multiple Data Classes:We may generalize the CAC

problem to the case when the transmit power, channel gain,
and variance of data users are quantized to one of a fixed set
of different values: .
The basic idea to performing optimal CAC for this scenario is
illustrated in Fig. 2. An arriving data user is admitted into a
common buffer, provided that there is space. (Note that all data
users are buffered by default.) The state of the BS in (15) is
now redefined as follows:

where and denote the number of active classdata and
voice users, respectively, and denotes the number of class
data users in the buffer. The CAC problem may then be refor-
mulated to admit queued data users, as was done in Section III.

VI. NUMERICAL EXAMPLES

In the section, the performance of the optimal CAC policy
is studied by addressing the following issues: i) Is there a no-
table reduction in the data-blocking probability if a nonzero
buffer size is employed? ii) For a finite data buffer size, does the
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Fig. 3. Call admission for multiple voice and data classes.

policy that minimizes the data-blocking probability also mini-
mize the average waiting time in the buffer? The problem of
minimizing the data-blocking probability subject to constraints
on the maximum voice blocking probability for each class is
also considered.

Simulation Parameters:In all the simulations that follow, the
parameters used in the integrated voice/data DS-CDMA system
model are as follows: two classes of voice users [ in (1)]
with transmit powers and minimum
SIR thresholds (16) . The transmit
power and SIR threshold of data users are and

, respectively. The data SIR threshold is larger than the voice
thresholds since voice is more tolerant to transmission errors.
Class 2 voice users arepremiumusers, whereas class 1 users
arebasic. The arrival and departure rates of the voice and data
users are as follows (3, 4): , ,

, . The buffered data admit
latency rate (24). The parameters of the signal model
in (5) are as follows: , . In (1) and (2),

and , i.e., the
channel is assumed to be known perfectly.

A. Data-Blocking Probability versus Buffer Size

This section considers the effect of buffer length on the data-
blocking probability. The CAC policy that minimized the data-
blocking probability subject to the following values for the max-
imum voice-blocking probability was constructed for various
values of the data buffer size (17): class 1 blocking prob-
ability 0.1, class 2 blocking probability 0.1. In effect,
the LP in (39) was solved with given in Proposition III.1
and sample path constraints (41). The minimum value for the
data-blocking probability as is varied is presented in Fig. 3.
The results point to the improvements yielded with buffering.
Note the geometric reduction in blocking probability; this im-
plies that beyond a particular size for the buffer, the reduction
in data-blocking probability that can be expected is marginal.

B. Waiting Time in the Data Buffer

This section considers waiting time in the queue. It is not pos-
sible to write the waiting time in the data buffer as an additive
cost function, as was done for the data-blocking probability in
Proposition III.1. Therefore, the LP in (39) cannot be used to
construct a policy that minimizes the average waiting time in
the data buffer. However, since the data buffer is finite, it seems
reasonable to expect that the CAC policy that minimizes the av-
erage waiting time in the data buffer would correspond to the

TABLE I
INTERPLAY BETWEENDATA-BLOCKING PROBABILITY AND WAITING TIME

TABLE II
INTERPLAY BETWEENDATA-BLOCKING PROBABILITY AND VOICE-BLOCKING

CONSTRAINTS. BLOCKING PROBABILITY OF PREMIUM USERSIS HELD AT

0.05 BELOW STANDARD USERS

policy that minimizes the data-blocking probability. We demon-
strate this to be untrue in the simulation that follows.

The CAC policy that minimized a weighted sum of the data
and voice-blocking probability was constructed for various
values of the weighting factors , , and by solving LP (39)
with defined in (34). Table I records the values used for the
weighting factors as well as the corresponding data-blocking
probability and average waiting time in the data buffer. The
average waiting time was obtained by simulating a BS where
data and voice users arrived, sojourned, and departed according
to their appropriate processes. The CAC policy obtained by
solving the LP was used to control admission. The average
waiting time was obtained by averaging the waiting time of all
data users that were admitted into the data buffer.

The solution to the LP when corresponds to the CAC
policy that yields the minimum data-blocking probability. Note
that the average waiting time decreases asincreases to 0.9
and then increases. The policy corresponding to , al-
though yielding minimum data-blocking probability, does not
minimize the waiting time in the data buffer.

C. Data-Blocking Probability versus Voice-Blocking
Probability

In this section, the CAC policy that minimizes that
data-blocking probability subject to constraints on the voice
blocking probability is constructed, i.e., LP (39) is solved
with given in Proposition III.1 and sample path constraints
(41). The data buffer size is held at 5. Table II records the
minimum data-blocking probability that can be had for various
values of . As the maximum allowed voice blocking
probability for both the premium and standard class users are
decreased, as expected, the data-blocking probability increases.
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Note, however, as indicated in the results of Section VI-A,
that the data-blocking probability can be further decreased by
increasing the buffer size.

VII. CONCLUSIONS

Within the SMDP framework, the CAC problem was solved
for a multiservice DS-CDMA cellular system transmitting in a
fading environment with LMMSE receivers at the BS. Blocking
probabilities (data and voice) were shown to be represented
by additive cost functions. The optimal CAC policy was con-
structed using an LP, and blocking-probability constraints for
the various user classes were accommodated by merely adding
additional linear constraints to this LP. A buffering scheme was
proposed to cope with congestion. In numerical examples, the
gains, in terms of the reduction of the data-blocking probability,
were demonstrated to be significant, even for small buffer
sizes. Suboptimal algorithms (for complexity reduction) for
solving SMDPs based on state aggregration is a subject for
future research.

APPENDIX

PROOFS

Proof: [Proposition II.1]: Using (9), write the constraint
on SIR as a constraint on as follows:

SIR

SIR
(43)

(Assume the denominator is positive or else the con-
straint SIR SIR cannot be satisfied since, from (9),
SIR .) Now, to verify that the fixed point in (9)
satisfies the constraint in (43), use the following necessary and
sufficient condition that is given in Lemma A.1: For any

(44)

The following proposition is needed in the proof of Propo-
sition III.1. The limit in (29) is independent of when is a
unichainpolicy. A policy is said to be unichain if the corre-
spondingembedded Markov chainhas no two disjoint closed
sets of states. The embedded Markov chain corresponding to
is the controlled discrete time Markov chain (
defined in (18)) with transition probabilities (22). A
nonempty set is said to be closed if
when and ; see also [1], [19].

Proposition A.1: All are unichain.
Proof: Consider any . We write if

state is accessible from , i.e., there exists a sequence
of states for some finite such that

.
Case 1) . Consider any such that

. Since for all
such that , we

have . Thus, state
is accessible from all states in, and therefore, no
two disjoint closed set of states exist.

Case 2) . For , let
, . Clearly,

. We will show that state is ac-
cessible from all states in and, therefore, that
no two disjoint closed set of states can exist. As
in Case 1, it may be shown that for all

, . In addition,
, . To see why, from (22),

.
Since , , by virtue of (21).

since . Thus,
(25), and therefore, . Finally,
one must show that there exists some such
that . [If for some and ,

, obviously, as transitions
are only possible to neighboring states (26)] Let

. If , then
, i.e., . Therefore, assume

. If there exists such that satis-
fies , then, from (26), . If
for all , satisfies , from (26),
the state such that

( corresponds to the state that has the
maximum number of permissible active data users)
is accessible from . From (21) and (26), we
note that . Thus, .

Proof: [Proposition III.1]: The proof that follows is for
Case i). Cases ii) and iii) follow similar arguments.

The sample paths of the process arecontinuous
on the right and have limits on the left(corlol) w.p. 1. This fol-
lows because of the following.

a) New data and voice users arrive according to homogeneous
Poisson processes (3), which is anonexplosive point process
(see [2] for a definition of a nonexplosive point process).

b) We have adopted the convention that the occurrence of a
trigerring eventat some time will cause a state transition in the
process at time itself; triggering events here are
the arrival of a data or voice user that is admitted, a data user in
the buffer is made active at the service completion of an active
user.

Since (29), it follows that sample paths of
are also corlol w.p. 1. For , let and

denote the left-hand limit of and at , respec-
tively, i.e., . Set and

. Let denote the arrival instance of the
data users with by convention. Note that by (31)

(45)

since an arriving data user is blocked if and only if
is such that and the data buffer is full, i.e.,

. Note that samples paths of
are left continuous and have limits on the right w.p. 1. Since

is a Poisson process (3),
is independent of for all . This

is true due to thememorylessproperty of Poisson processes.
Thus, is also independent of

as and are measurable
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functions of ; this property is called thelack of anticipation
assumption(LAA); see [7, Def. 7.2]. (Note that the sigma al-
gebra

.) Because LAA holds, by
[7, Th. 7.3], the well-knownPoisson arrivals see time averages
property holds, which asserts that

w.p. 1 (46)

provided either limit exists, i.e., existence of one limit implies
existence of the other, and both limits are the same. The proof
is complete by noting the following properties of unichain
policies [19, Th. 3.5.1]: First, has a unique
stationary distribution . Second, for each initial
state w.p. 1, where

(47)

Third, for all
Lemma A.1:Consider , , .

There exists a unique positivethat satisfies

(48)

if or ; is defined in (9). Furthermore,
for any

(49)

A consequence of this lemma is the following.
Corollary A.2: Consider , , ,

. Let and be the unique positive fixed points
that satisfy

(50)

Then, .
Proof: From Lemma A.1, iff

. The result follows since satis-
fies (50), and .

Proof of [Proposition IV.1] Part i): The result is obvious
when . In the following, we consider any . To
show , by the definition of (17), we must show

(51)

We establish (51) for ; the same idea may be re-
peated to show .

Case 1) is such that . by definition.
Case 2) where is any non-negative integer

such that . By hypothesis and the definition

of , . It suffices to show
that . Let

satisfy . Obviously,
, and therefore,
.

Case 3) This involves any not covered by Cases 1 and 2.
It suffices to show . Let
and satisfy , .
By Corollary A.2, , and therefore,

.

Part ii): The proof follows similar arguments to those used
in Part i).
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