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The Optimal Search for a Markovian Target When the searches needed for detection when the target is initially distributed
Search Path is Constrained: The Infinite-Horizon Case among thel. according tar, the first action is to be selected from the
setlU(j) C U and the search policy js. Let J*(w, j) = inf . J,.(m, )
Sumeetpal Singh and Vikram Krishnamurthy denote the minimal expected number of searches for the paji) (
where the infimum is taken over the set of all possible search policies.

o ] It is shown in [1, Prop. 5.9] thal* is the smallest nonnegative fixed
_ Abstra_ct—A target moves among aflnl_te number of ceII_s accqrdmg toa point of Bellman’s optimality equation (i.e/* may not be the only
discrete-time homogeneous Markov chain. The searcher is subject to con- . . I . . .
straints on the search path, i.e., the cells available for search in the current fixed point). Assuming’ s finite, thevalue iteration(V1) algorithm
epoch is a function of the cell searched in the previous epoch. The aim is to Converges pointwise td* for any initial iterateJ, for VI provided
identify a search policy that maximizes the infinite-horizon total expected () < .J, < J*[1, Prop. 5.12 and Prop. 5.13]. With only pointwise con-
reward earned. We show the following structural results under the assump- vergence, one cannot derive meaningful bounds for sub-optimal poli-

tion that the target's transition matrix is ergodic: 1) the optimal search . - - . .
policy is stationary, 2) there existse-optimal stationary policies which may cies constructed by iterating VI a finite number of times or more so-

be constructed by the standard value iteration algorithm in finite time. ~ Phisticated procedures as in [5], nor can one assert the existence of
These results are obtained by showing that the dynamic programming op- e-optimal stationary policies [1]. In [6], the author demonstrates the
erator associated with the search problem is an-stage contraction map-  pointwise convergence of VI and how a careful choicgotan lead

ping on a suitably defined space. An upper bound ofn and the coefficient to a closer approximation t6* in less iterations

of contraction « is given in terms of the transition matrix and other vari- ’

ables pertaining to the search problem. These bounds om and o may be In this note, we extend the search problem to the blocking scenario.
used to derive bounds on suboptimal search polices constructed. Assuming that the transition probability matrix of the target is prim-
itive, i.e., the matrix raised to some powkehas all elements posi-

Index Terms—Markovian target, optimal search, partially observed . . .
Markov decision process, stochastic shortest path problem. tive, we show that the dynamic programming (DP) operator for the

search problem is&-stage contraction mapping on a suitably defined
space. We then give a (conservative) estimates:and the coeffi-
I. INTRODUCTION cient of contractionv in terms of the transition matrix, the overlook
A target moves among cells according to a discrete-time homogefjlnd blocking probab?litie_s. Thm'Stage contrgction proPe_”y enjoyed
neous Markov chain. At discrete epochs of tiles {1,2,...}, the PY the DP operator implies thatoptimal stationary policies can be
constructed in finite time using the VI algorithm, as is shown. Note

searcher must choose an action from thdsethe sef’ may contain - : o
actions that search a particular cell or a group of cells simultaneougﬁ'f.’1t the search problem considered here uses the undiscounted infi-

Assuming action: is selected by the searcher at epdclit is exe- nite-horizon total expected reward performance criterion. For a dis-
cuted with probabilityl — ¢(«). If the action cannot be executed thecounted infinite-horizon performance criterion, uniform convergence

searcher is said to Helockedfor that epoch. This blocking situation of the VI algorithm is guaranteed irrespective of the structure of the

models the scenario when the search sensors are a shared resourc¥3HgV chain.

sensor could be shared between a number of searchers acting indepen-

dently. If the searcher is not blocked and actiogearches the cell that 1l. OPTIMAL CONSTRAINED SEARCH FOR AMARKOVIAN TARGET

the target is in, the target is detected with probability 3(u); failure Let X = {1,..., LY U {T}, Y = {F(found), F(notfound.

to detect the target when it is in the cell searched is callenl/ariook B(blocked } and U be the search space, observation space and the
Additionally, the searcher is subject to constraints on the search pa&@tion space, respectively. The search area of interest compriges of

i.e., ifactionuy—; = u was selectedvat epouﬁtl— L, th?” _the a}ction_ al cells. Statd’ is a fictitious state that is added as a means of terminating
epochk must be selected from the €étw) C U. The aim s to identify the search upon detection. At the start of search epogh{L, 2. ...}

a search policy that minimizes the expected number of searches location of the target ig; € X and an actioni; € U is adopted
detection or more generally, that maximizes the infinite-horizon totfgr which an observatiop,, € Y is received. The initial state of tk;e

expected reward earned. targets; is distributed according to the probability distribution
Reference [8] address the two-cell search problem for both the fi-

nite- and infinite-horizon case, but without blocking and search path 41
constraints. Specifically, optimal search policies that: 1) maximize the mel(X) 2z eR' x>0, Z (k) =1}
probability of detecting the target iN attempts, and 2) minimize the k=1

expected number of searches for detection were constructed. For the

simple two-cell scenario, the optimal search policy was solved for ariith 71 (7) = 0. Let{U(«) }.er be anarbitrary family of subsets of

lytically for a number of special cases concerning the targets transitibrivhere eact/ («) is nonempty. The initial action, is selected from

probabilities and the overlook probabilities. Thecell extension of an initial specified subsét(;) wherej € U. Fork > 1,uy is selected

[8] with search path constraints was addressed in [3] for criteria (Ipm U (ux—1). If the actionuy, is blocked, thery, = B. If the action

and [6] for criteria (2). Let/, (7, j) denote the expected number ofu: iS not blocked and, searches the cell the target is in, then= F
with probability 3(ux) andy, = F with probabilityl — 3(uy). The
state of the target at the start of paging epb¢ch 1, x4, is charac-
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the L cells according to sub-matri® of (1) and transition to the ab- WhereQ“(y)édiag([P(yk = yler = Lur = w),....P(yr =
sorbing statd” occurs only when the target is detected. The law for thglzx = L,ux = v),P(yx = ylzx = T,ux = w)]). For conve-

observation process is given by nience, we denote the denominatodoby ¢ (yx, 7k, us ).
Let 2/ denote the set afidmissiblesearch paging policies that are
P(ye =F|ar = j,ur = u) a function of the information state. A poligy € i/ is a sequence
_ { (1 —q(u))(1—3(u)) if usearches cell 1= {prte=12,.. wherep, : II(X) x U — U satisfies
P((?)/k = Flay =T, up = 18’[162\/\”5(3 p(m,u) € U(u) vr € I(X),u € U, k. (7)
P(ye = Flay = joue = u) We de_note. byM the space of all such; that satisfy_(?). A poli_cy
B(u)(1 - q(u)) if u searches celf j € U is said _to bestationarywhen;i; = 2= Any_glven pO|IC¥ is
= { 1— q(u) otherwise executed during search as follows: the initial actiomis= p (71, J).

Fork > 1, given the history;., computer;. recursively using (6) and
execute actiom, = pg(mg, uk—1).
Let (€2, F) be the underlying measurable space that is constructed in
the usual manner, i.eﬁ,é(X x U xY)* is the product space, which is
In [8], [3], [6], the action spacé is taken to beX'\ {7}, i.e., there e_ndowed with the product topology W?.the correqundlng product
. - . sigma-algebra [4]. For any; € II(X), initial subse®’ () for v, and
is an action corresponding to the search of each cell. We dilaw . : ; .
policy 1 € U, there exists a (unique) probability measitg, , on

be arbitrary in the sense that € U may correspond to the search; e . . o . ;o
. . . ), F) satisfying certairconsistency conditionsoncerning the initial
of particular cell or a group of cells simultaneously. Without loss o(fg o o .
enerality, assume that State distribution, transition (1) and observation laws (2) as well as law
9 ' generating the action proce§s; } x—12,... [cf. (7)]; see [4] for details.
Let E; . denote the expectation with respect to the meaR\fe; .
For each initial distributionry , initial action constraint’ () and policy
1, the following infinite-horizon cost is associated:

P(yr = Bl = jyur = u) = q(u) 2

forallu € U andj € X\{T}. Note that observatiof' is always
received when the target is in st&feregardless of the action taken.

U={12....K}. (3)

Following our comments on the arbitrary nature of actions jaction

j € U does not necessarily imply cellis searched. Ju(m, )2 lim J(,N)(Wh].) 8)
The following assumption, which holds throughout this note, effec- / N—oo !

tively asserts that all actions i areuseful where
Assumption 2.1:For eachu € U, q(u) < 1, 3(u) < 1,andX, = N

{x € X\{T'} : usearches cell} # 0. T NAEr W wr 9
If ¢(u) = 11in (2), then action: is not useful as it is always blocked. wo (M D)=E kz::l e ur) ©)

Similarly, if 3(u) = 1, then we will receive observatioR even if the
target is in the cell serached by Finally, X, = 0 implies« does not The limits exists and is finite under Assumption 3.1 to follow. Let
search any of thé cells; for example, an action that corresponds to the
suspension of search for one epoch.

Leth(xx,ur ) denote the instantaneous reward received for adopti
actionuy, while the state of the targetis,. Since the terminal state is
fictitious, we restrict: : X x U — R so that Ju(m,j)=J"(m,j) Vm €I(X),jeU. (12)

J (mq ,j)é sup Ju (71, 7) form € II(X),j € U. (10)
neu

I:H’1en, the aim is to determine a polipyc U/ that satisfies

MT,u) =0 Yu e U. 4) Such a policy is called optimal.
We conclude this section by stating the DP recursion for calculating
Some examples of the choice of the instantaneous reward are as A1 (71, j). Let S2I(X) x U and letB(S) be the space of bounded
lows: 1) to minimize the expected number of searches for detectidipctionsJ : 5 — R. B(S) is a Banach space under the supremum

seth(x,u) = —1 x Ix\(7}(x); 2) to maximize the probability of de- norm ||J||mésupses |7(s)|. Let O denote the constant function in
tection, seb(z, v) = P(yx = Flar = @, ux, = u) X Ix\yry(2);and  B(S) with zero norm, i.e., evaluates to zero. Define the functibn
3) to minimize the expected search cost for detectionéetu) = II(X) x U x B(5) — R as follows:

—c(u) x Ix\yry(xz) wherec : U — (0,00) represents the cost A
associated with each action. Note that this formulation also captu@é”"’ u, J)= Z h(z, w)m(x)+

the case when rewards depend on the current observation received: let vex B
h: X xUxY — R, thenh(x,u)= doyey @ uw, y)P(yr = ylaw = Z oy, mou)J(R(m,u,y),u), € INX). (12)
T, U = u). yeY:5(y,m,u)>0

LetI;. denote the information (history) available at the start of paginghe pp recursion (Bellman’s equation) [5] is
epochk and call it theinformation vectori.e., - N
T )EH (7, v (7, 1), 0)

fe={woyn ot ppa} k> 1 ®) T Y EH (. 0) T ) (13)

The information stateat time k, which is denoted by, is defined ¢or 51 7 € 11(X), j € U andk = 1,..., N — 1. Thus,J5"(
as the conditional probability distribution of the target stategiven J(N)(7T1 7).

the available informatiody,, 7 (2)2P (xx = x|I;) forz € X. The ™' "

information state can be computed recursively via Bayes’ rule (also
known as the hidden Markov model state predictor) as follows:

7717.7) =

I1l. CONSTRAINED SEARCH DP OPERATOR—
CONTRACTION PROPERTY
s PUETQu (y) Tk

7 = ®(mp, ur, Y )2 . 6
Tk+1 (Tks ks Yi) ]_TPy’\'TQuk(yk)ﬂ'k (6)

In this section, we will establish that the constrained search problem
is well defined in the sense that the limit in (8) exists and characterize
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the convergence properties of the VI algorithm. These results are @${0.....0,1]7,u, F) = [0....,0,1]7 forall « € U. To show the
tablished under Assumption 2.1 and the following assumption whiclentraction property, note that
will hold throughout this section. ‘ ‘ .

Assumption 3.1: There exists some positive integeand « € (Tur Ty - L)) ()

(0.1) such thatP” {r,,y1 =T} > aforalm € I(X),j €U I SN |
andy € U. =E,, l;h(u, wg) + J(Trng1, U )
We have the following result that is due to the Markov structure in o

the dynamics of the search problem: for each 1, there exists some wherers = &(w, u1,y1), Tap1 = S(m, ur, yx), k = 2,...,m. S0

p' € U such that . .
(T Ty - o T I, ) = (T Ty - T )(Jl)(ﬂ'v]ﬂ

Eil,‘]‘{l’(k+1)m+1 =T\ Iim+} SEﬁE]'{|v](Wm+1, wm) — I (g1, wm )|}
=E!\ i { =T @4 =B A T ) = (s ) L, 201

(becauser,, ;1 = [0....,0,1]"

whereE,,mﬂﬂm denotes expectation with respect to the proba-
bility measure on {, F) that corresponds to the initial distribution
for @1, Trm41 [defined recursively frondy.,.,+1 using (6)], initial con- m
straint set (ux,.) and policyy'; see [4, p. 5] for detailg:’ is essen-  Now we state the main result for the constrained search problem
tially a shifted versiorof policy 1 with shift proportional tot; see [4, under Assumption 3.1. By proving Lemmas 3.1 and 3.2, we have shown
p. 5] for details on construction gf'. Assumption 3.1 and (14) give that Assumption C of [2, Ch. 4] is satisfied by mappifgsandT for
the result, shown in the constrained search problem. Thus, all the results proved in [2, Ch.
4] under Assumption C are applicable. Here, we quote the usual results

Pﬁl,j{x(kJrl)erl #T} < (1 - O()P:—Ll j{’vk'VVL+1 #T} < (1 - “)kJrl 01 interest. P PP a

(15) Proposition 3.1: The following results are true under Assumption
that is exploited in the proof of Lemma 3.1. (The proof of (15), WthIé 1.
is omitted, also uses the fact that a transition to sfafellows once
observationt’ is received (1), which implies;,, . 27} iS Ikmt1
measureable. For eaghe M, we define the mapping,, : B(S) —

if g =T) < (1= a)||J = J'||..

i) Foreveryu € U, J, = limn—oo (L, Ly, - .. Tuy )(J) for all
J € B[2, Prop. 4.1 (a)].

B(S) by ii) The mappingT is an m-stage contraction mapping with
coefficient 1 — «f[2, Prop. 4.1 (c)]. The optimal reward
Tu(J) (7, )Y2H (7, (7, §).J) Vr € I(X).j € U. (16) function .J*(10) is the unique fixed point of” in B, ie.,
limy—oo |[TY(J) = J*||, = 0 forall J € B[2, Prop. 4.2
We also define the (DP) mdp : B(S) — B(S) by (a,c)}
A ' ii) A stationary policy* = {u,p,...} € U is optimal if and
T(J)(/TWJ):UIQL&(X) H(w,u,J) vaell(X).jeU  (17) only if T,,(J*) = T(J*). Furthermore, for every > 0, there
! exists a stationary policy,. = {u.p,...} € U such that
For anyp = {u1, p2,...} € U, we denote byI,‘,lT,‘,z. T,.,) the [T — Jullo, < €[2, Prop. 4.3 (a,c)].
composition of the mappinds,, , . . . Tuk Jk=1,2,.. . ltis obwous (T™ denotes the composition @ with itself NV times).e-optimal
that (T, Tyupyy - Tuy )(0)(m, 5) = I (“ j) for L =1,. stationary policies are constructed in the usual mannef; let B and
Lemma 3.1: For everyp € U, hm\ﬁﬁx,(iﬂ,lT,,,_,.. ,,N)(O) p € M satisfy||lJ. — J||, < eandT,(J.) = T(J:). Then, the
(w,j) exists and is a real number for eacte II(X) andj € U. policy pe = {pt, i, ...} SatISerSHJ#( —J"||, <2em/a. J. may be
Proof: It is sufficient to showE% j{Zﬁ:l |h(xr,ur)|} < d, constructed using VI i.eJ. = T"(0) for large enough: where the
for somed € [0,00), forallm € II(X), j € U andN > 0. Because value fork itself can be estimated usingandm.
stateT is rewardless We conclude this section by giving sufficient conditions for Assump-
tion 3.1 to be satisfied. We define the following quantities first:
B {ZW“ k) }— e [, ””Z Q" (y)=diag([P(yx = ylok = Lug = u),.
P! {an £ T} P(yk = 1/|Ik =L.up = u)])

~ [cf. definition of Q“(g) in (6)]. Let min;; A;; denote the
Now, using (15), it follows thad ., Py, {r # 7'} < m/a. W smallest element of the matrix4;; in (1) and min;(A"),;
The following lemma asserts thatthe mapping (16) |sacontra(:tltgjlgnote the smallest element of column of the matrix A’

mapping on a swtably defined subset®(S). A . .
Lemma 3.2: Let B2{J € B(S) : J([0.....0.1T.}) = Let Q(F) min {(Q*(F))ii >0:i € X\{T},u€e U} and

_ _ = ’ ]
Oforall j € U}. ThenB is a closed subset @(S). For all.J € B, Q(F) min {(Q"(F))ii : i € X\(T},u € U}.

1 € M, the functionsT,, () andT(.J) belong toB. Additionally, for . -'0Position 3.2: Consider the constrained search problem under
A Assumption 2.1. The following conditions are sufficient for Assump-
everypu = {p1,po,...} €U, J,J € B

tion 3.1 to hold.
Wi Ty o T YT = (T Ty - T V(I o « If condition C1) is satisfied with = 1, thenmn = 2 anda >
<(L—a)|J = T. QUF) ming; Agy. .
> « If condition C1) is satisfied with > 1, then either C2) or C3)
Proof: The fact thatB is a closed set is established upon noting ~ must hold andn = I + 1. If C2) is satisfied, then
that any.J that does not belong t& by definition cannot be an ac- 1
cumulation point ofB. The self-map propert§,,, T : B — B fol- « > <min q(u)) min17Q"(F)
lows sinceH ([0....,0.1]",u,.J) = 0 forallu € U andJ € B; ver ey
this in turn is true because of (43(F,[0,....0,1]",u) = 1 and '[n1iill(z4l)i1,miiﬂ(Al)iz,.--, miin(Al)iL]T'
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If C3) is satisfied, then
=\ 27 . T ~u
a > (Q(F))" min1”Q"(F)

'[IIliIl(Al)il, 111i11(441[),-2. cees IIliIl(r’ll)ij_,]T.
C1) A4 in (1) is primitive, i.e., for somé > 0, (4");; > 0
foralli,j.
C2) In(2),q(u) € (0,1)forallu € U.
C3) B(u) € (0,1)forallu € U.
Proof: Case 1 C1) Withh = 1:

Pi\fl,j(‘ri‘ = T>y2 = yl:wz =jy1 =y, = 1)

= (P"),;r(Q" (4')5(P")is(Q" (y))uim (i)
Whe~re U = pi(m,j), v = //;2(<i>(7r1.,1l,.,_1/).,u). Let u, =
p2(®(mi,u, F),u), wy = pa(®(7i,u, B),u) and uy’

p2(®(m1,u, F),u). Summing over the realizations, y,j,y') €
XY XY, we get

P! (a3 =T)=1"Q"2(F)A" Q"(F)r,
+1°Q" (F) A" Q" (B)7
+17Q"(F)7y + m (T)
where 71 = [mi(1),...,m(L)]". Note that1”Q"(F)i; =
17ATQ"(Fyx, > 17Q"z (F)ATQ"(F)#, since Q"2 (F) is

a diagonal matrix with elements 1. Also, for anyu € U, by
Assumption 2.1, there exists somsuch that Q“(F')):; > 0. So

17Q"(F)A" >(Q"(F))ii[Avi..... AL
>(Q"(F))imin A;;1" > Q(F)min 4;;1".
1) - 1]
So
Pﬁl,]‘(l’f% =T)
>Q(F) min 4,17 (Q"(F) + Q"(B) + Q" ()i + mi(T)
2 Q(F) min Aij.
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One may showP’ (y1 = F.....y1 = F) + m(T) > (Q(F))".
Also, one may show

P! (e =Ty =F....,yr=F) > (QF))
.111€i111 17Q"(F) [min(AYi1, ..., min(A4"),.]".

|

The basic idea in the proof of the case 2 ( and similarly for case 3)
is very simple. To establish that there is a minimum probability of ter-
mination, one shows that there is a positive probability that thelfirst
actions will be blocked and this probability is independent of the initial
distribution and the choice for the firsactions. Afterl transitions un-
observed, the probability the target is in giils larger thannin; (A');;.
Thus, any action taken at epach 1 will yield a probability of termina-
tion larger thannin ¢/ lyl'Q“(F)[min,- (A[),-l, ..., min; (A[),-L]T.

IV. DISCUssION

We have analyzed the constrained path search problem for general
U and blocking by assuming that for any policy, the probability of not
terminating diminishes at a rate of— « afterm search epochs [cf.
Assumption 3.1 and (15)]. We have shown that the mapplngand
T arem-stage contraction mappings on a suitably defined space with
coefficientl — «; thus, value iteration converges to the optimal reward
function in sup-norm. As shown in the proof of Lemma 3.1, the ex-
pected number of searches until termination is upper bounded/by
We then quoted in Proposition 3.1 results that are standard whenever
the contraction mapping property holds. In Proposition 3.2, conserva-
tive estimates fom anda were given under an ergodicity assumption.

An equivalent formulation to ours is to express the constrained
search problem as partially observed Markov decision process
(POMDP) (see [5] for a definition of a POMDP) by enlarging the
state space to cope with the search path constraints; the POMDP
will have the augmented process.(,yr—1, %) as its state at time
k. Once again, one may show that the DP operator for the POMDP
is a contraction mapping on a suitable defined space. However, the
enlargement of the state—space leads to less convenient expressions
than presented here.

When Assumption 3.1 is not satisfied, one needs to impose an addi-

~ Case 2C1) Witli > 1 and C2): Only the sketch of the proof jqnq) restriction on the reward structure. Assuming 0, then, using
is given with details on algebraic manipulations omitted. Consider ae techniques in [1, Ch. 5], it may be shown thatis a fixed point of

71 € II(X) with 71 (T') # 1 (otherwiseP*

mgte =T) =1)
PL 2 =T) > P (xiy2 =Ty =B, ...

H ; —
-Pﬂ—lvj(y1 = B, .

,y1 = B)
s Y1 :B)+7T1(T)

B) > (minser ¢(u))'(1 — w1 (T)).
PL (@i B.....yw = B) = P_ (g1 =
Flyys = B,...,yu = B) (because a transition to stafg
is only possible ifyi .1 = F) = &(F, 741, ui+1) where
Th+1 = @(Wk.,uk,B) and Uk+1 = Ilk+1(7fk+lguk) for
E o= 1,....1 Let 7y = [m(1),....,m(L)]. It is easy to
show thatr1 = [#] 4'/17%, 0]". So

P;l-l,j(yl = B,

S
=
|

T
177
>17 QUi+ (F)[m’_in(A’)il, <o, min(AN;z]"

F(Fmipa, ) =17 QU+ (F)(A”)!

> IIliLI} 17 Q" (F)[min(AYi, ... min(A")]".
ue [3 T

Case 3 C1) With > 1 and C3): Similar arguments to Case 2.

Consider anyr; € II(X) with 7, (T) # 1
| 8

n,]’(l’lJrZ = T) > Pﬁlyj(l"l+2 = T|y1 = F:"'vyl = F)
(P sy =F,....yi=F)+m(D)).

T1:J

T (not necessarily unique). Specifically; is the largest nonpositive
fixed point of T'. [Note that the problem of minimizing the expected
number of searches until detection is the same as maximizinghen
h(z,u) = —1 x Iy\(ry(2)]. Additionally, T*(.Jo) converges only
pointwise toJ* for any.J* < Jo < 0. Whenh < 0, although the limit

in (8) exists, it may be thaf, (., j) is equal to—cc for some policies

p and pairs £, j). Thus, one may also havE (r,j) = —oc. There

is nothing much that can be done about the possibility ,ofand J*
being extended real-valued functions in this general setting. One way
to establisk/™ is bounded below is to show that there exists at least one
policy for which.J,, is bounded below, since by definitiai > .J,,.

A search problem can be cast into the framework pégtially ob-
served stochastic shortest path probl@©SSP), and we refer to the
reader to the recent work in [7] for the convergence properties of the VI
algorithm for a POSSP. Note though that the work in [7] does not con-
sider a setting with state-action (\search-path) constraints as we have
here. In [7], the VI algorithms is shown to converge pointwise under
a “weaker” assumption than Assumption 3.1; see [7, Ass. C]. We use
“weaker” because while Assumption 3.1 need not be satisfied by all
policies, any policy that fails to satisfy Assumption 3.1 must satisfy a
divergence condition for the sequence of iterates generated by the DP
recursion.
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A Remark on Partial-State Feedback
Stabilization of Cascade Systems
Using Small Gain Theorem

Wei Lin and Qi Gong

Abstract—This note points out that input-to-state stability of zero dy-
namics having a continuously differentiable (instead of locally Lipschitz
continuous) gain function suffices to guarantee the existence of globally
stabilizing, smooth partial-state feedback control laws for cascade systems,
without imposing any extra conditionThis conclusion is proved via the small
gain theorem and a novel variable separation technique combined with
feedback domination design.

Index Terms—Global stabilization, input-to-state stability (ISS), partial
state feedback, small gain theorem.

. INTRODUCTION

In this note, we revisit the problem of global stabilizationgartial
statefeedback for a class of cascade systems of the form

Z :fo(zwl’l)
T =x2 + fl(z,;L’l)

Ere1 =@ + fro1(2,21, 00y Xro1)
e =u+ fr(z,21,...,2) (1.2
wherexz = (1,
the unmeasurable state ande IR the control input, respectively.
The functionsf; : R"~"7 — TR, ,...,7, areC" with
£i(0,...,0) 0, and fo R~ T! R" " is C' with

global asymptotic stabilization hyartial statefeedback has received
considerable attention. Indeed, the problem has been studied, for in-
stance, in [1]-[4], under sonmextra conditiongmposed on (1.1) such
as growth hypotheses or gain-type matching conditions. These results
were derived either by a Lyapunov-based design method combined
with the idea of changing supply rate [7], or by using the small-gain
theorem [3], [2] in a recursive manner. Note that both feedback design
methods require certain ISS conditions on theubsystem of (1.1).
Moreover, the Lyapunov-based design method needs to impose a sort of
matching conditions between the driven system (i.esubsystem) and
the driving system (i.e;-subsystem), while the small gain argument
requires the crucial conditions iii)—iv) described in [2, Lemma 11.4.1]
be fulfilled, as outlined in [2]. More specifically, it has been remarked in
[2] that if at every step of the recursive design, the assumptions iii)—iv)
of Lemma 11.4.1 are satisfied, a smooth virtual controller can be con-
structed in such a way that the resulted system is ISS and satisfies the
small gain condition. To guarantee that the recursive design procedure
can be carried out step by step, some extra conditions have been intro-
duced. For example, in [3] it was assumed that the linearized system
of the zero dynamics is asymptotically stable, i.e., the zero-dynamics
must bdocally exponentially stabldrecently, a consequence of [4] has
indicated that a bit stronger ISS condition than Assumption 1.1 (basi-
cally, (GAS + LES)-type ISS condition) is enough for the solvability of
the partial state feedback stabilization. More recently, the authors of [1]
have proved that for a class of polynomial systems of the form (1.1),
all the conditions of Lemma 11.4.1 can be rendered satisfied at each
step by designing a suitable virtual controller. This, in turn, leads to the
conclusion that global stabilization of th®lynomialsystem (1.1) is
solvable by partial state feedback under Assumption 1.1.

The purpose of this note is to point out that Assumption 1.1, together
with the gain functiony(-) beingC*, suffices to guarantee the existence
of a smooth partial-state feedback control law

z,). with  u(0,....0)=0 (1.2)

uw=u(z) =u(z,...,

such that the closed-loop system (1.1) and (1.2) is globally asymp-
totically stable at the equilibriumiz, ) = (0,0). That is, with As-
sumption 1.1, there iso need to introduce any extra conditisach as
those in [3], [4], and [1] for achieving global stabilization of the cas-
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technique and a novel variable separation technique (Lemma 2.2 ).
je proof that follows also offers a simplified design method which
only needs to use explicitly the small-gain theorem once, rather than
to use it repeatedly at every step of the recursive design.
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