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The Optimal Search for a Markovian Target When the
Search Path is Constrained: The Infinite-Horizon Case

Sumeetpal Singh and Vikram Krishnamurthy

Abstract—A target moves among a finite number of cells according to a
discrete-time homogeneous Markov chain. The searcher is subject to con-
straints on the search path, i.e., the cells available for search in the current
epoch is a function of the cell searched in the previous epoch. The aim is to
identify a search policy that maximizes the infinite-horizon total expected
reward earned. We show the following structural results under the assump-
tion that the target’s transition matrix is ergodic: 1) the optimal search
policy is stationary, 2) there exists -optimal stationary policies which may
be constructed by the standard value iteration algorithm in finite time.
These results are obtained by showing that the dynamic programming op-
erator associated with the search problem is a -stage contraction map-
ping on a suitably defined space. An upper bound of and the coefficient
of contraction is given in terms of the transition matrix and other vari-
ables pertaining to the search problem. These bounds on and may be
used to derive bounds on suboptimal search polices constructed.

Index Terms—Markovian target, optimal search, partially observed
Markov decision process, stochastic shortest path problem.

I. INTRODUCTION

A target moves amongL cells according to a discrete-time homoge-
neous Markov chain. At discrete epochs of timek 2 f1; 2; . . .g, the
searcher must choose an action from the setU . The setU may contain
actions that search a particular cell or a group of cells simultaneously.
Assuming actionu is selected by the searcher at epochk, it is exe-
cuted with probability1 � q(u). If the action cannot be executed, the
searcher is said to beblockedfor that epoch. This blocking situation
models the scenario when the search sensors are a shared resource; the
sensor could be shared between a number of searchers acting indepen-
dently. If the searcher is not blocked and actionu searches the cell that
the target is in, the target is detected with probability1� �(u); failure
to detect the target when it is in the cell searched is called anoverlook.
Additionally, the searcher is subject to constraints on the search path,
i.e., if actionuk�1 = u was selected at epochk� 1, then the action at
epochkmust be selected from the setU(u) � U . The aim is to identify
a search policy that minimizes the expected number of searches until
detection or more generally, that maximizes the infinite-horizon total
expected reward earned.

Reference [8] address the two-cell search problem for both the fi-
nite- and infinite-horizon case, but without blocking and search path
constraints. Specifically, optimal search policies that: 1) maximize the
probability of detecting the target inN attempts, and 2) minimize the
expected number of searches for detection were constructed. For the
simple two-cell scenario, the optimal search policy was solved for ana-
lytically for a number of special cases concerning the targets transition
probabilities and the overlook probabilities. TheL cell extension of
[8] with search path constraints was addressed in [3] for criteria (1)
and [6] for criteria (2). LetJ�(�; j) denote the expected number of
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searches needed for detection when the target is initially distributed
among theL according to�, the first action is to be selected from the
setU(j) � U and the search policy is�. LetJ�(�; j) = inf�J�(�; j)
denote the minimal expected number of searches for the pair (�; j)
where the infimum is taken over the set of all possible search policies.
It is shown in [1, Prop. 5.9] thatJ� is the smallest nonnegative fixed
point of Bellman’s optimality equation (i.e.,J� may not be the only
fixed point). AssumingU is finite, thevalue iteration(VI) algorithm
converges pointwise toJ� for any initial iterateJ0 for VI provided
0 � J0 � J�[1, Prop. 5.12 and Prop. 5.13]. With only pointwise con-
vergence, one cannot derive meaningful bounds for sub-optimal poli-
cies constructed by iterating VI a finite number of times or more so-
phisticated procedures as in [5], nor can one assert the existence of
�-optimal stationary policies [1]. In [6], the author demonstrates the
pointwise convergence of VI and how a careful choice ofJ0 can lead
to a closer approximation toJ� in less iterations.

In this note, we extend the search problem to the blocking scenario.
Assuming that the transition probability matrix of the target is prim-
itive, i.e., the matrix raised to some powerl has all elements posi-
tive, we show that the dynamic programming (DP) operator for the
search problem is am-stage contraction mapping on a suitably defined
space. We then give a (conservative) estimates ofm and the coeffi-
cient of contraction� in terms of the transition matrix, the overlook
and blocking probabilities. Them-stage contraction property enjoyed
by the DP operator implies that�-optimal stationary policies can be
constructed in finite time using the VI algorithm, as is shown. Note
that the search problem considered here uses the undiscounted infi-
nite-horizon total expected reward performance criterion. For a dis-
counted infinite-horizon performance criterion, uniform convergence
of the VI algorithm is guaranteed irrespective of the structure of the
Markov chain.

II. OPTIMAL CONSTRAINEDSEARCH FOR AMARKOVIAN TARGET

Let X = f1; . . . ; Lg [ fTg, Y = fF (found); �F (not found);
B(blocked)g andU be the search space, observation space and the
action space, respectively. The search area of interest comprises ofL

cells. StateT is a fictitious state that is added as a means of terminating
the search upon detection. At the start of search epochk 2 f1; 2; . . .g
the location of the target isxk 2 X and an actionuk 2 U is adopted,
for which an observationyk 2 Y is received. The initial state of the
targetx1 is distributed according to the probability distribution

�1 2 �(X) f� 2 L+1 : � � 0;

L+1

k=1

�(k) = 1g

with �1(T ) = 0. Let fU(u)gu2U be anarbitrary family of subsets of
U where eachU(u) is nonempty. The initial actionu1 is selected from
an initial specified subsetU(j)wherej 2 U . Fork > 1,uk is selected
fromU(uk�1). If the actionuk is blocked, thenyk = B. If the action
uk is not blocked anduk searches the cell the target is in, thenyk = �F
with probability�(uk) andyk = F with probability1 � �(uk). The
state of the target at the start of paging epochk + 1, xk+1, is charac-
terized by the observation dependent transition probability matrices

P
F =[0(L+1)�L 1(L+1)�1]

P
�F =P

B =
A 0L�1

0
T
L�1 1

(1)

that isP(xk+1 = jjxk = i; yk = y) = P
y
ij . (1 and0 represent ma-

trices or vectors of 1’s and 0’s, respectively) The target moves among
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theL cells according to sub-matrixA of (1) and transition to the ab-
sorbing stateT occurs only when the target is detected. The law for the
observation process is given by

P(yk =F jxk = j; uk = u)

=
(1� q(u))(1� �(u)) if u searches cellj
0 otherwise

P(yk = F jxk = T; uk = u) = 1

P(yk = �F jxk = j; uk = u)

=
�(u)(1� q(u)) if u searches cellj
1� q(u) otherwise

P(yk = Bjxk = j; uk = u) = q(u) (2)

for all u 2 U andj 2 XnfTg. Note that observationF is always
received when the target is in stateT , regardless of the action taken.

In [8], [3], [6], the action spaceU is taken to beXnfTg, i.e., there
is an action corresponding to the search of each cell. We allowU to
be arbitrary in the sense thatu 2 U may correspond to the search
of particular cell or a group of cells simultaneously. Without loss of
generality, assume that

U = f1; 2; . . . ; Kg: (3)

Following our comments on the arbitrary nature of actions inU , action
j 2 U does not necessarily imply cellj is searched.

The following assumption, which holds throughout this note, effec-
tively asserts that all actions inU areuseful.

Assumption 2.1:For eachu 2 U , q(u) < 1, �(u) < 1, andXu

fx 2 XnfTg : u searches cellxg 6= 0.
If q(u) = 1 in (2), then actionu is not useful as it is always blocked.

Similarly, if �(u) = 1, then we will receive observation�F even if the
target is in the cell serached byu. Finally,Xu = 0 impliesu does not
search any of theL cells; for example, an action that corresponds to the
suspension of search for one epoch.

Leth(xk; uk) denote the instantaneous reward received for adopting
actionuk, while the state of the target isxk. Since the terminal state is
fictitious, we restricth : X � U ! so that

h(T; u) = 0 8u 2 U: (4)

Some examples of the choice of the instantaneous reward are as fol-
lows: 1) to minimize the expected number of searches for detection,
seth(x; u) = �1� IXnfTg(x); 2) to maximize the probability of de-
tection, seth(x; u) = P(yk = F jxk = x; uk = u)�IXnfTg(x); and
3) to minimize the expected search cost for detection, seth(x; u) =
�c(u) � IXnfTg(x) wherec : U ! (0;1) represents the cost
associated with each action. Note that this formulation also captures
the case when rewards depend on the current observation received: let
�h : X�U�Y ! , thenh(x; u)

y2Y
�h(x; u; y)P(yk = yjxk =

x; uk = u).
LetIk denote the information (history) available at the start of paging

epochk and call it theinformation vector, i.e.,

Ik = fu1; y1; . . . ; uk�1; yk�1g k > 1: (5)

The information stateat timek, which is denoted by�k, is defined
as the conditional probability distribution of the target statexk given
the available informationIk, �k(x) P(xk = xjIk) for x 2 X. The
information state can be computed recursively via Bayes’ rule (also
known as the hidden Markov model state predictor) as follows:

�k+1 = ~�(�k; uk; yk)
P y T ~Qu (yk)�k

1TP y T ~Qu (yk)�k
(6)

where ~Qu(y) diag([P(yk = yjxk = 1; uk = u); . . . ;P(yk =
yjxk = L; uk = u);P(yk = yjxk = T; uk = u)]). For conve-
nience, we denote the denominator of~� by ~�(yk; �k; uk).

Let U denote the set ofadmissiblesearch paging policies that are
a function of the information state. A policy� 2 U is a sequence
� = f�kgk=1;2;... where�k : �(X)� U ! U satisfies

�k(�; u) 2 U(u) 8� 2 �(X); u 2 U; k: (7)

We denote byM the space of all such�k that satisfy (7). A policy
� 2 U is said to bestationarywhen�1 = �2= . . .. Any given policy is
executed during search as follows: the initial action isu1 = �1(�1; j).
Fork > 1, given the historyIk, compute�k recursively using (6) and
execute actionuk = �k(�k; uk�1).

Let (
;F ) be the underlying measurable space that is constructed in
the usual manner, i.e.,
 (X�U�Y )1 is the product space, which is
endowed with the product topology andF is the corresponding product
sigma-algebra [4]. For any�1 2 �(X), initial subsetU(j) for u1 and
policy � 2 U , there exists a (unique) probability measureP�

� ;j on
(
;F ) satisfying certainconsistency conditionsconcerning the initial
state distribution, transition (1) and observation laws (2) as well as law
generating the action processfukgk=1;2;... [cf. (7)]; see [4] for details.
Let E�� ;j denote the expectation with respect to the measureP

�
� ;j .

For each initial distribution�1, initial action constraintU(j) and policy
�, the following infinite-horizon cost is associated:

J�(�1; j) lim
N!1

J
(N)
� (�1; j) (8)

where

J
(N)
� (�1; j) E

�
� ;j

N

k=1

h(xk; uk) : (9)

The limits exists and is finite under Assumption 3.1 to follow. Let

J
�(�1; j) sup

�2U
J�(�1; j) for �1 2 �(X); j 2 U: (10)

Then, the aim is to determine a policy� 2 U that satisfies

J�(�1; j) = J
�(�1; j) 8�1 2 �(X); j 2 U: (11)

Such a policy is called optimal.
We conclude this section by stating the DP recursion for calculating

J
(N)
� (�1; j). LetS �(X)�U and letB(S) be the space of bounded

functionsJ : S ! . B(S) is a Banach space under the supremum
norm kJk1 sups2S jJ(s)j. Let 0 denote the constant function in
B(S) with zero norm, i.e., evaluates to zero. Define the functionH :
�(X)� U � B(S) ! as follows:

H(�; u; J)
x2X

h(x; u)�(x)+

y2Y :~�(y;�;u)>0

~�(y; �; u)J(~�(�; u; y); u); � 2 �(X): (12)

The DP recursion (Bellman’s equation) [5] is

J
(N)
�;N(�; j) H(�; �N (�; j);0)

J
(N)
�;k (�; j) H(�; �k(�; j); J

(N)
�;k+1) (13)

for all � 2 �(X), j 2 U andk = 1; . . . ; N�1. Thus,J(N)
� (�1; j) =

J
(N)
�;1 (�1; j).

III. CONSTRAINED SEARCH DP OPERATOR—
CONTRACTION PROPERTY

In this section, we will establish that the constrained search problem
is well defined in the sense that the limit in (8) exists and characterize
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the convergence properties of the VI algorithm. These results are es-
tablished under Assumption 2.1 and the following assumption which
will hold throughout this section.

Assumption 3.1: There exists some positive integerm and � 2
(0; 1) such thatP�

� ;jfxm+1 = Tg � � for all �1 2 �(X), j 2 U
and� 2 U .

We have the following result that is due to the Markov structure in
the dynamics of the search problem: for eachk � 1, there exists some
�0 2 U such that

E
�
� ;jfx(k+1)m+1 =T jIkm+1g

=E�
x ;u fx0

m+1 = Tg (14)

whereE�
� ;u denotes expectation with respect to the proba-

bility measure on (
;F ) that corresponds to the initial distribution
for x1; �km+1 [defined recursively fromIkm+1 using (6)], initial con-
straint setU(ukm) and policy�0; see [4, p. 5] for details.�0 is essen-
tially a shifted versionof policy � with shift proportional tok; see [4,
p. 5] for details on construction of�0. Assumption 3.1 and (14) give
the result, shown in

P
�
� ;jfx(k+1)m+1 6=Tg�(1� �)P�

� ;jfxkm+1 6=Tg�(1� �)k+1

(15)
that is exploited in the proof of Lemma 3.1. (The proof of (15), which
is omitted, also uses the fact that a transition to stateT follows once
observationF is received (1), which impliesIfx 6=Tg is Ikm+1

measureable. For each� 2 M , we define the mappingT� : B(S) !
B(S) by

T�(J)(�; j) H(�; �(�; j); J) 8� 2 �(X); j 2 U: (16)

We also define the (DP) mapT : B(S) ! B(S) by

T (J)(�; j) max
u2U(j)

H(�; u; J) 8� 2 �(X); j 2 U: (17)

For any� = f�1; �2; . . .g 2 U , we denote by (T� T� . . . T� ) the
composition of the mappingsT� ; . . . ; T� , k = 1; 2; . . .. It is obvious
that(T� T� . . .T� )(0)(�; j) = J

(N)
�;k (�; j) for k = 1; . . . ; N .

Lemma 3.1: For every� 2 U , limN!1(T� T� . . . T� )(0)
(�; j) exists and is a real number for each� 2 �(X) andj 2 U .

Proof: It is sufficient to showE�
� ;jf

N

k=1 jh(xk; uk)jg < d,
for somed 2 [0;1), for all � 2 �(X), j 2 U andN > 0. Because
stateT is rewardless

E
�
� ;j

N

k=1

jh(xk; uk)j � max
x2X;u2U

jh(x; u)j

N

k=1

P
�
� ;jfxk 6= Tg:

Now, using (15), it follows that N

k=1P
�
� ;jfxk 6= Tg � m=�.

The following lemma asserts that the mapping (16) is a contraction
mapping on a suitably defined subset ofB(S).

Lemma 3.2: Let �B fJ 2 B(S) : J([0; . . . ; 0; 1]T ; j) =
0 for all j 2 Ug. Then �B is a closed subset ofB(S). For allJ 2 �B,
� 2M , the functionsT�(J) andT (J) belong to �B. Additionally, for
every� = f�1; �2; . . .g 2 U , J; J 0 2 �B

k(T� T� . . .T� )(J)� (T� T� . . . T� )(J0)k1

� (1� �)kJ � J 0k1:

Proof: The fact that�B is a closed set is established upon noting
that anyJ that does not belong to�B by definition cannot be an ac-
cumulation point of�B. The self-map propertyT�, T : �B ! �B fol-
lows sinceH([0; . . . ; 0; 1]T ; u; J) = 0 for all u 2 U andJ 2 �B;
this in turn is true because of (4),~�(F; [0; . . . ; 0; 1]T ; u) = 1 and

~�([0; . . . ; 0; 1]T ; u; F ) = [0; . . . ; 0; 1]T for all u 2 U . To show the
contraction property, note that

(T� T� . . .T� )(J)(�; j)

= E
�
�;j

m

k=1

h(xk; uk) + J(�m+1; um)

where�2 = ~�(�; u1; y1), �k+1 = ~�(�k; uk; yk), k = 2; . . . ;m. So

j(T� T� . . .T� )(J)(�; j)� (T� T� . . .T� )(J0)(�; j)j

�E�
�;jfjJ(�m+1; um)� J 0(�m+1; um)jg

=E�
�;jfjJ(�m+1; um)� J 0(�m+1; um)jIfx 6=Tgg

(because�m+1 = [0; . . . ; 0; 1]T

if xm+1 = T ) � (1� �)kJ � J 0k1:

Now we state the main result for the constrained search problem
under Assumption 3.1. By proving Lemmas 3.1 and 3.2, we have shown
that Assumption C of [2, Ch. 4] is satisfied by mappingsT� andT for
the constrained search problem. Thus, all the results proved in [2, Ch.
4] under Assumption C are applicable. Here, we quote the usual results
of interest.

Proposition 3.1: The following results are true under Assumption
3.1.

i) For every� 2 U , J� = limN!1(T� T� . . .T� )(J) for all
J 2 �B[2, Prop. 4.1 (a)].

ii) The mapping T is an m-stage contraction mapping with
coefficient 1 � �[2, Prop. 4.1 (c)]. The optimal reward
function J�(10) is the unique fixed point ofT in �B, i.e.,
limN!1 kTN (J)� J�k1 = 0 for all J 2 �B[2, Prop. 4.2
(a,c)].

iii) A stationary policy�� = f�; �; . . .g 2 U is optimal if and
only if T�(J�) = T (J�). Furthermore, for every� > 0, there
exists a stationary policy�� = f�; �; . . .g 2 U such that
kJ� � J� k1 � �[2, Prop. 4.3 (a,c)].

(TN denotes the composition ofT with itself N times).�-optimal
stationary policies are constructed in the usual manner: letJ� 2 �B and
� 2 M satisfykJ� � J�k1 � � andT�(J�) = T (J�). Then, the
policy�� = f�; �; . . .g satisfieskJ� � J�k1 � 2�m=�. J� may be
constructed using VI, i.e.,J� = T k(0) for large enoughk where the
value fork itself can be estimated using� andm.

We conclude this section by giving sufficient conditions for Assump-
tion 3.1 to be satisfied. We define the following quantities first:

Qu(y) diag([P(yk = yjxk = 1; uk = u); . . .

P(yk = yjxk = L; uk = u)])

[cf. definition of ~Qu(y) in (6)]. Let minij Aij denote the
smallest element of the matrixAij in (1) and mini(A

l)ij
denote the smallest element of columnj of the matrix Al.
Let Q(F ) min f(Qu(F ))ii > 0 : i 2 XnfTg; u 2 Ug and
Q( �F ) min (Qu( �F ))ii : i 2 XnfTg; u 2 U .

Proposition 3.2: Consider the constrained search problem under
Assumption 2.1. The following conditions are sufficient for Assump-
tion 3.1 to hold.

• If condition C1) is satisfied withl = 1, thenm = 2 and� �
Q(F )minij Aij .

• If condition C1) is satisfied withl > 1, then either C2) or C3)
must hold andm = l + 1. If C2) is satisfied, then

� � min
u2U

q(u)
l

min
u2U

1
TQu(F )

�[min
i
(Al)i1;min

i
(Al)i2; . . . ; min

i
(Al)iL]

T :
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If C3) is satisfied, then

� � Q( �F )
2l

min
u2U

1
TQu(F )

�[min
i
(Al)i1;min

i
(Al)i2; . . . ; min

i
(Al)iL]

T :

C1) A in (1) is primitive, i.e., for somel > 0, (Al)ij > 0
for all i; j.
C2) In (2),q(u) 2 (0; 1) for all u 2 U .
C3) �(u) 2 (0; 1) for all u 2 U .

Proof: Case 1 C1) Withl = 1:

P
�
� ;j(x3 = T; y2 = y0; x2 = j; y1 = y; x1 = i)

= (P y )jT ( ~Q
u (y0))jj(P

y)ij( ~Q
u(y))ii�1(i)

where u = �1(�1; j), u0 = �2(~�(�1; u; y); u). Let u02 =
�2(~�(�1; u; �F ); u), u002 = �2(~�(�1; u; B); u) and u0002 =
�2(~�(�1; u; F ); u). Summing over the realizations(i; y; j; y0) 2
XYXY , we get

P
�
� ;j(x3 = T ) =1TQu (F )ATQu( �F )~�1

+ 1
TQu (F )ATQu(B)~�1

+ 1
TQu(F )~�1 + �1(T )

where ~�1 = [�1(1); . . . ; �1(L)]
T . Note that 1TQu(F )~�1 =

1
TATQu(F )~�1 � 1

TQu (F )ATQu(F )~�1 since Qu (F ) is
a diagonal matrix with elements� 1. Also, for anyu 2 U , by
Assumption 2.1, there exists somei such that(Qu(F ))ii > 0. So

1
TQu(F )AT �(Qu(F ))ii[A1i; . . . ; ALi]

�(Qu(F ))iimin
ij

Aij1
T � Q(F )min

ij
Aij1

T :

So

P
�
� ;j(x3 = T )

�Q(F )min
ij

Aij1
T (Qu( �F ) +Qu(B) +Qu(F ))~�1 + �1(T )

�Q(F )min
ij

Aij :

Case 2 C1) Withl > 1 and C2): Only the sketch of the proof
is given with details on algebraic manipulations omitted. Consider any
�1 2 �(X) with �1(T ) 6= 1 (otherwiseP�

� ;j(xl+2 = T ) = 1)

P
�
� ;j(xl+2 = T ) � P

�
� ;j(xl+2 = T jy1 = B; . . . ; yl = B)

�P�
� ;j(y1 = B; . . . ; yl = B) + �1(T ):

P
�
� ;j(y1 = B; . . . ; yl = B) � (minu2U q(u))l(1 � �1(T )).

P
�
� ;j(xl+2 = T jy1 = B; . . . ; yl = B) = P

�
� ;j(yl+1 =

F jy1 = B; . . . ; yl = B) (because a transition to stateT
is only possible if yl+1 = F ) = ~�(F; �l+1; ul+1) where
�k+1 = ~�(�k; uk; B) and uk+1 = �k+1(�k+1; uk) for
k = 1; . . . ; l. Let ~�1 = [�1(1); . . . ; �1(L)]

T . It is easy to
show that�l+1 = [~�T1 A

l=1T ~�1 0]
T . So

~�(F; �l+1; ul+1) =1
TQu (F )(AT )l

~�1
1T ~�1

�1TQu (F )[min
i
(Al)i1; . . . ; min

i
(Al)iL]

T

�min
u2U

1
TQu(F )[min

i
(Al)i1; . . . ;min

i
(Al)iL]

T :

Case 3 C1) Withl > 1 and C3): Similar arguments to Case 2.
Consider any�1 2 �(X) with �1(T ) 6= 1

P
�
� ;j(xl+2 = T ) � P

�
� ;j(xl+2 = T jy1 = �F ; . . . ; yl = �F )

�(P�
� ;j(y1 =

�F ; . . . ; yl = �F ) + �1(T )):

One may showP�
� ;j(y1 = �F ; . . . ; yl = �F ) + �1(T ) � (Q( �F ))l.

Also, one may show

P
�
� ;j(xl+2 = T jy1 = �F ; . . . ; yl = �F ) � (Q( �F ))l

�min
u2U

1
TQu(F ) [min

i
(Al)i1; . . . ; min

i
(Al)iL]

T :

The basic idea in the proof of the case 2 ( and similarly for case 3)
is very simple. To establish that there is a minimum probability of ter-
mination, one shows that there is a positive probability that the firstl
actions will be blocked and this probability is independent of the initial
distribution and the choice for the firstl actions. Afterl transitions un-
observed, the probability the target is in cellj is larger thanmini(A

l)ij .
Thus, any action taken at epochl+1will yield a probability of termina-
tion larger thanminu2U 1

TQu(F )[mini(A
l)i1; . . . ; mini(A

l)iL]
T .

IV. DISCUSSION

We have analyzed the constrained path search problem for general
U and blocking by assuming that for any policy, the probability of not
terminating diminishes at a rate of1 � � afterm search epochs [cf.
Assumption 3.1 and (15)]. We have shown that the mappingsT� and
T arem-stage contraction mappings on a suitably defined space with
coefficient1��; thus, value iteration converges to the optimal reward
function in sup-norm. As shown in the proof of Lemma 3.1, the ex-
pected number of searches until termination is upper bounded bym=�.
We then quoted in Proposition 3.1 results that are standard whenever
the contraction mapping property holds. In Proposition 3.2, conserva-
tive estimates form and� were given under an ergodicity assumption.

An equivalent formulation to ours is to express the constrained
search problem as apartially observed Markov decision process
(POMDP) (see [5] for a definition of a POMDP) by enlarging the
state space to cope with the search path constraints; the POMDP
will have the augmented process (uk�1; yk�1; xk) as its state at time
k. Once again, one may show that the DP operator for the POMDP
is a contraction mapping on a suitable defined space. However, the
enlargement of the state–space leads to less convenient expressions
than presented here.

When Assumption 3.1 is not satisfied, one needs to impose an addi-
tional restriction on the reward structure. Assumingh � 0, then, using
the techniques in [1, Ch. 5], it may be shown thatJ� is a fixed point of
T (not necessarily unique). Specifically,J� is the largest nonpositive
fixed point ofT . [Note that the problem of minimizing the expected
number of searches until detection is the same as maximizingJ� when
h(x; u) = �1 � IXnfTg(x)]. Additionally, T k(J0) converges only
pointwise toJ� for anyJ� � J0 � 0. Whenh � 0, although the limit
in (8) exists, it may be thatJ�(�; j) is equal to�1 for some policies
� and pairs (�; j). Thus, one may also haveJ�(�; j) = �1. There
is nothing much that can be done about the possibility ofJ� andJ�

being extended real-valued functions in this general setting. One way
to establishJ� is bounded below is to show that there exists at least one
policy for whichJ� is bounded below, since by definitionJ� � J�.

A search problem can be cast into the framework of apartially ob-
served stochastic shortest path problem(POSSP), and we refer to the
reader to the recent work in [7] for the convergence properties of the VI
algorithm for a POSSP. Note though that the work in [7] does not con-
sider a setting with state-action (\search-path) constraints as we have
here. In [7], the VI algorithms is shown to converge pointwise under
a “weaker” assumption than Assumption 3.1; see [7, Ass. C]. We use
“weaker” because while Assumption 3.1 need not be satisfied by all
policies, any policy that fails to satisfy Assumption 3.1 must satisfy a
divergence condition for the sequence of iterates generated by the DP
recursion.
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A Remark on Partial-State Feedback
Stabilization of Cascade Systems

Using Small Gain Theorem

Wei Lin and Qi Gong

Abstract—This note points out that input-to-state stability of zero dy-
namics having a continuously differentiable (instead of locally Lipschitz
continuous) gain function suffices to guarantee the existence of globally
stabilizing, smooth partial-state feedback control laws for cascade systems,
without imposing any extra condition. This conclusion is proved via the small
gain theorem and a novel variable separation technique combined with
feedback domination design.

Index Terms—Global stabilization, input-to-state stability (ISS), partial
state feedback, small gain theorem.

I. INTRODUCTION

In this note, we revisit the problem of global stabilization bypartial
statefeedback for a class of cascade systems of the form

_z =f0(z; x1)

_x1 =x2 + f1(z; x1)

...

_xr�1 =xr + fr�1(z; x1; . . . ; xr�1)

_xr =u+ fr(z; x1; . . . ; xr) (1.1)

wherex = (x1; . . . ; xr) 2 IRr is the measurable state,z 2 IRn�r

the unmeasurable state andu 2 IR the control input, respectively.
The functionsfi : IRn�r+i ! IR, i = 1; . . . ; r, areC1 with
fi(0; . . . ; 0) = 0, and f0 : IRn�r+1 ! IRn�r is C1 with
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f0(0; 0) = 0. Throughout this note, it is assumed that (1.1) satisfies
the following input-to-state-stable (ISS) condition.

Assumption 1.1:Suppose the system

_z = f0(z; x1)

with x1 being the input andz the state, is ISS, i.e., there exists a
K1 function(�) which is known such that the responsez(�) to any
boundedx1(�) satisfies

kz(t)k1 �max f�(kz(0)k; t); (kx1(�)k1)g

lim
t!1

sup kz(t)k �( lim
t!1

supkx1(t)k)

for some classKL function�(�; �).
For the class of cascade systems (1.1) satisfying Assumption 1.1,

global asymptotic stabilization bypartial statefeedback has received
considerable attention. Indeed, the problem has been studied, for in-
stance, in [1]–[4], under someextra conditionsimposed on (1.1) such
as growth hypotheses or gain-type matching conditions. These results
were derived either by a Lyapunov-based design method combined
with the idea of changing supply rate [7], or by using the small-gain
theorem [3], [2] in a recursive manner. Note that both feedback design
methods require certain ISS conditions on thez-subsystem of (1.1).
Moreover, the Lyapunov-based design method needs to impose a sort of
matching conditions between the driven system (i.e.,z-subsystem) and
the driving system (i.e.,x-subsystem), while the small gain argument
requires the crucial conditions iii)–iv) described in [2, Lemma 11.4.1]
be fulfilled, as outlined in [2]. More specifically, it has been remarked in
[2] that if at every step of the recursive design, the assumptions iii)–iv)
of Lemma 11.4.1 are satisfied, a smooth virtual controller can be con-
structed in such a way that the resulted system is ISS and satisfies the
small gain condition. To guarantee that the recursive design procedure
can be carried out step by step, some extra conditions have been intro-
duced. For example, in [3] it was assumed that the linearized system
of the zero dynamics is asymptotically stable, i.e., the zero-dynamics
must belocally exponentially stable. Recently, a consequence of [4] has
indicated that a bit stronger ISS condition than Assumption 1.1 (basi-
cally, (GAS + LES)-type ISS condition) is enough for the solvability of
the partial state feedback stabilization. More recently, the authors of [1]
have proved that for a class of polynomial systems of the form (1.1),
all the conditions of Lemma 11.4.1 can be rendered satisfied at each
step by designing a suitable virtual controller. This, in turn, leads to the
conclusion that global stabilization of thepolynomialsystem (1.1) is
solvable by partial state feedback under Assumption 1.1.

The purpose of this note is to point out that Assumption 1.1, together
with the gain function(�) beingC1, suffices to guarantee the existence
of a smooth partial-state feedback control law

u = u(x) = u(x1; . . . ; xr); with u(0; . . . ; 0) = 0 (1.2)

such that the closed-loop system (1.1) and (1.2) is globally asymp-
totically stable at the equilibrium(z; x) = (0; 0). That is, with As-
sumption 1.1, there isno need to introduce any extra conditionsuch as
those in [3], [4], and [1] for achieving global stabilization of the cas-
cade system (1.1) viapartial statefeedback.

This conclusion will be proved in the next section, by effectively
combining a small gain argument, the feedback domination design
technique and a novel variable separation technique (Lemma 2.2 ).
The proof that follows also offers a simplified design method which
only needs to use explicitly the small-gain theorem once, rather than
to use it repeatedly at every step of the recursive design.
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