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Game Theoretic Cross Layer Transmission Policies
in Multipacket Reception Wireless Networks

Minh Hanh Ngo, Vikram Krishnamurthy

Abstract— We study the structure of the optimal transmission
policies for non-cooperating nodes in a finite-size random access
wireless network, where the medium access control (MAC) proto-
col is a variant of the time slotted ALOHA protocol. It is assumed
that the network has the multipacket reception capability and
every node knows its channel state information (CSI), which
is continuously distributed, perfectly at the beginning of each
transmission time slot. The objective of each node in the network
is to find a transmission policy mapping CSI to transmission
probabilities to maximize its individual utility. The problem is
formulated as a non-cooperative game of a finite number of
rational players and actions with a continuous channel state
space. We prove that if the probability of success of a node
is a non-decreasing function of its CSI, there exists a threshold
transmission policy that maximizes its utility. It is then showed
that there exists a Nash equilibrium at which every node adopts
a threshold policy. The optimality of threshold policies strongly
simplifies the problem of optimizing the transmission policy for
a node. We propose a stochastic gradient based algorithm that
exhibits the best response dynamic adjustment process for the
transmission game. The theoretical results of the paper as well
as the performance of the proposed algorithm are illustrated via
numerical examples.

Index Terms— Multipacket reception, channel state informa-
tion, threshold transmission policy, Nash equilibrium, best re-
sponse dynamics.

I. INTRODUCTION

Classical random access protocols including ALOHA are
designed based on the idealized collision channel model: if
only one node transmits, its packet is received correctly with
certainty but if more than one node transmit at the same time,
all packets are lost due to collision. However, the collision
channel model does not hold in many important practical
communication systems. For example, CDMA systems or
systems with multiple antennas at the base station allow one
or more packets to be received correctly in the presence of
simultaneous transmissions [1].

In [2], the Multipacket Reception (MPR) model was pro-
posed. The MPR model allows modelling systems where
one or more packets can be received correctly with fixed
probabilities when multiple nodes transmit simultaneously. A
limitation of the MPR model is that channel states do not
affect the reception of packets directly and all nodes are
indistinguishable. In [3], [4] and [5] it is shown that using
the MPR model, a non-zero asymptotic system throughput
can be obtained. In addition, a decentralized transmission
control algorithm that achieves the best asymptotic system
throughput was proposed in [3]. A generalization of MPR to
the asymmetrical model is given in [6].
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Fig. 1. Threshold structure of the optimal transmission policy proved in this
paper: p∗(γ) = I(γ > θ∗). This optimal threshold θ∗ can be estimated using
(34).

The focus of [7], [8], [9] is on time slotted ALOHA
systems with selfish nodes that are allowed to select their own
transmission policies, which map the numbers of nodes con-
tending the channel to transmission probabilities, to maximize
their individual utilities using a game theoretic approach. The
existence of a symmetric Nash equilibrium is proved for the
collision channel model in [7], [10] and the MPR reception
model in [9].

In [11], the Generalized Multipacket Reception (G-MPR)
model was proposed. In the G-MPR model, the probability
of receiving a packet correctly depends on the channel states
of the transmitting nodes. Hence, the G-MPR model includes
the MPR model of [3] as a special case. The G-MPR model
provides a framework for exploiting channel state information
(CSI) for optimal power or transmission control. In other
words, the G-MPR model is a reception model that is suitable
for exploiting information from the physical (PHY) layer for
Medium Access Control (MAC) layer protocol design.

Early work on exploiting CSI includes [12], [13] and
[14], which considered exploiting multi-user diversity in the
collision channel model via a variant of the ALOHA protocol
namely the channel-aware ALOHA protocol. Using the G-
MPR model, [11] proposed a variant of the ALOHA protocol
where transmission probability is allowed to be a function of
CSI. This is the MAC protocol we consider in this paper.
In [11], the problem of optimal transmission control for
the spatially homogeneous slotted ALOHA network where
all nodes deploy the same transmit probability function is
formulated. The structure of the optimal transmission policies
for spatially heterogeneous and homogeneous slotted ALOHA
networks is studied in [15].

In this paper, the problem of optimal decentralized transmis-
sion control is formulated as a non-cooperative transmission
game and the structure of the optimal transmission policy is
studied. The main difference between the work of this paper
and early work on the application of game theory to ALOHA
networks [7], [8], [10], [9] is the exploitation of CSI via the G-
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MPR model and the relaxation of the assumption that all nodes
are symmetric. In comparison, the main difference between
this paper and other work on exploiting CSI for optimal trans-
mission control [11], [15] is the formulation of the problem
as a non-cooperative game as well as the introduction of the
transmission and waiting costs. The transmission and waiting
costs are necessary for the formulation of the game but they
also offer a means to take into account factors such as battery
constraints and performance requirements. The waiting cost
can be adjusted to enhance long-term fairness in the network
and can be increased to reduce transmission delays.

The main results of this paper include:

1) We prove that if the probability of correct reception of
a packet from a node given the transmission policies of
other nodes is a non-decreasing Lebesgue measurable
function of its CSI, there exists a threshold transmission
policy that maximizes the expected reward of the node.
See (1) for the definition of a transmission policy and
see Fig. 1 for the structure of the optimal policy.

2) Assuming the nodes select their transmission policies in
the set of Lebesgue measurable functions, we proved
that the non-cooperative transmission game has at least
a Nash equilibrium at which every player (node) deploys
a threshold transmission policy. See Fig. 1.

3) The symmetric network model where the nodes are
equi-distant from the base station and have the same
transmission and waiting costs is also considered. For
this special case we prove that under verifiable, mild
conditions, there exists a symmetric Nash equilibrium
profile at which all nodes deploy the same threshold
transmission policy. In addition, the symmetric Nash
equilibrium transmission threshold is a non-decreasing
function of the number of active nodes.

4) We study the best response dynamics algorithm and
prove its convergence for two-node transmission games.
We explicitly characterize the best response functions
for the general multi-node transmission game, where
channel state is exponentially distributed. This character-
ization allows us to verify deterministically (but numer-
ically) local asymptotic stability of a Nash equilibrium.

5) At each iteration of the best response dynamics algo-
rithm, a node has to solve the stochastic optimization
problem (see (23)) for its best response transmission pol-
icy. We propose an algorithm that converges to the best
response dynamic adjustment process for the transmis-
sion game, where each player updates its policy while
keeping fixed the strategies of other players. The core
of this algorithm is a stochastic gradient algorithm with
a constant step size (see (34)), which can be deployed
by any node to adaptively estimate its best response
transmission policy without knowing the policies, or the
channel distribution functions of other nodes.

The paper is organized as follows: Section II describes
the wireless network model, Section III is the formulation
of the decentralized transmission control problem as a non-
cooperative transmission game. Section IV presents the the-
oretical results on the structure of the optimal transmission

policies as well as the existence of a Nash equilibrium. In
Section V, the existence of a symmetric Nash equilibrium for
the symmetric game is proved. An algorithm for estimating the
optimal transmission policy and Nash equilibrium is proposed
in Section VI. Section VII contains numerical examples.

II. THE MULTIPACKET RECEPTION NETWORK MODEL

In this section we define the wireless network and the
reception model that are considered in the paper. Section II-A
describes the wireless random access network model with the
MAC protocol being a variant of the time slotted ALOHA
protocol, where instead of fixed transmission probabilities,
each node in the network has a transmission policy mapping
its CSI to transmission probabilities (see (1) for the definition
of a transmission policy). Our network model is similar to
the model considered in [11]. The G-MPR model, which was
proposed in [11], is mathematically described in the Section II-
B.

A. The Network Model

Consider a time slotted wireless network of K nodes (e.g.,
sensors in a wireless sensor network), where K is a finite
positive integer. Transmission is synchronized at the beginning
of each time slot. We consider the uplink communication
channel where the nodes communicate with a common base
station. Let i = 1, 2, . . . ,K index the nodes in the network
and the random variable γi denote the channel state of node
i. Assume that γi ∈ [0,M ], for some finite M ∈ R+, which
is the set of non-negative reals. M can be arbitrarily large so
that [0,M ] includes the entire range of CSI that is of practical
interest. Denote the probability distribution function of γi by
Fi(·). Assume that Fi(·) is continuous for all i = 1, 2, . . . ,K.
Furthermore, it is assumed that at the beginning of each
transmission time slot, node i knows its instantaneous CSI,
γi, perfectly. Any parameter that influences the reception of
packets can be chosen as channel state, for example, channel
gain or position of a node with respect to the base station
can represent channel state. If channel gain represents channel
state, a node can estimate its individual CSI by measure the
strength of a beacon signal, which is broadcasted by the base
station to all nodes.

In the network, a node that does not have any packet to
transmit is referred to as an inactive node. In contrast, a node
with at least one packet to transmit is referred to as an active
node. At each time slot, inactive nodes perform no action while
active nodes must either transmit or wait, i.e. not transmit. The
probability with which an active node transmits is determined
by its instantaneous CSI and its transmission policy, which is
a function that maps CSI to transmit probabilities.

The reception model of the system, which is the G-MPR
model, is described in the next subsection. The key difference
between the G-MPR model and the conventional collision
model is the fact that in the G-MPR model, the reception
of packets depends on the current channel states (e.g., Signal
to Noise Ratios, distances from the base station) of all trans-
mitting nodes. This is usually the case in CDMA wireless
networks. In some cases, it is also possible to abstract the



3

reception of an uplink, where the base station uses multiple
antennas, into the G-MPR model [11]. In the G-MPR model,
the concept of collision is redundant, even though it includes
the collision channel model as a special case.

The objective of each node in the network is to find a trans-
mission policy mapping channel states to transmit probabilities
to maximize its individual utility. In other words, each node
has to solve a function optimization problem, i.e. an infinite
dimensional optimization problem. A function optimization
problem needs to be defined over a function space. In this
paper we consider transmission policies that are Lebesgue
measurable and the definition of a transmission policy is given
below.

Consider the normed linear function space L∞[0,M ], which
is the space of all Lebesgue measurable functions defined on
[0,M ] that are bounded almost everywhere (a.e.). The norm
of a function in L∞[0,M ] is its essential supremum [16].
Let BL∞[0,M ][0, 1] be the set of all functions in L∞[0,M ]
that have norms in the range [0, 1]. Define a transmission
policy to be a function mapping channel states of a node to
its transmission probabilities:

pi(.) : [0,M ] → [0, 1] (1)

for i ∈ {1, . . . ,K}. A transmission policy is sometimes
referred to as a transmit probability function. We only consider
transmission policies that are in BL∞[0,M]

[0, 1]. We now define
pure, randomized and threshold transmission policies.

Definition 1: A pure transmission policy is a transmit prob-
ability function p(.) : [0,M ] → [0, 1] such that p(γ) ∈ {0, 1}
for all γ ∈ [0,M ] except for possibly a zero measure set (with
respect to the probability measure F (·) of the channel state γ)
of values of γ.

Definition 2: A randomized transmission policy is a trans-
mission policy that is not pure. Equivalently, a randomized
policy is a transmit probability function p(.) : [0,M ] → [0, 1]
such that 0 < p(γ) < 1 for some non-zero measure set (with
respect to the probability measure F (·) of the channel state)
of values of γ.

Definition 3: A threshold transmission policy is a transmis-
sion policy p(·) : [0,M ] → [0, 1] such that

p(γ)
a.e.
=

{
0 γ < θ
1 Otherwise

(2)

for some θ ∈ R+, 0 < θ ≤M .
Notation: We now define the notation that is used in the paper.

A superscript or a subscript i indicates that the node being
referred to is node i. In comparison −i is used to refer to the
set of nodes indexed by {1, 2, . . . ,K}− {i}. This notation is
standard in game theory [17], [18].
AK

k is any unordered set of k integers selected from
1, 2, . . . ,K, AK

k ⊆ {1, 2, . . . ,K}. In the paper, AK
k is used to

specify the set of all transmitting nodes.
~γAK

k
=
(
γi : i ∈ AK

k

)
is a vector representing channel states

of the group of nodes indexed by AK
k .

The expected reward (or utility) of node i is denoted by
Ti (pi(·), {p−i(·)}) where pi(·) is the policy played by node
i and {p−i(·)} denotes the set of transmission policies of
all other nodes. Throughout the paper, I(·) is the indicator

function and EF [·] represents the expected value of a random
variable with respect to some distribution F (·).

B. The Generalized Multi-Packet Reception Model

The G-MPR model, proposed in [11], provides explicit
incorporation of CSI into the reception of packets. It is also
the reception model considered in [19], [15], [20].

In the G-MPR model, the outcome of a transmission time
slot where k nodes indexed by AK

k transmit belongs to an
event space where each elementary event is represented by a
binary k-tuple ΘAK

k
=
(
ϑi : i ∈ AK

k

)
, where ϑi = {0, 1} for

each i ∈ AK
k . ϑi = 1 indicates that the packet sent by node i

is correctly received and ϑi = 0 indicates otherwise.
The reception capability of the system is described by a set

of K functions, where the k-th function Φ(~γAK
k

; ΘAK
k

) assigns
a probability to the outcome ΘAK

k
when k nodes indexed by

AK
k with channel state ~γAK

k
transmit:

Φ(~γAK
k

; ΘAK
k

) = P(ΘAK
k
|k nodes transmit, ~γAK

k
) (3)

Equation (3) means that the distribution of the possible out-
comes {ΘAK

k
} is determined by the channel states of the

transmitting nodes. Consider the CDMA time slotted system
with matched filter receivers and the Signal to Interference
Noise Ratio (SINR) threshold reception model as an example.
Assuming Signal to Noise Ratio (SNR) represents the channel
state, the k-th function Φ(~γAK

k
; ΘAK

k
) is given by:

Φ(~γAK
k
,ΘAK

k
) =

{
1 if ΘAK

k
= Θ

0 otherwise
(4)

where Θ = (ϑi : i ∈ AK
k ) and

ϑi = I(
γi

1 +

�
j 6=i,j∈AK

k
γj

N

> β),

where γj is the SNR of node j, N is the spreading gain and
β is the quality of service requirement (QoS) parameter. The
derivation of the SINR threshold reception model for CDMA
systems with linear multiuser detectors is given in [21].

It is assumed that the reception model (3) is symmetric.
Mathematically, this can be expressed as:

Φ(~γAK
k

; ΘAK
k

) = Φ(Pk(~γAK
k

), Pk(ΘAK
k

)) (5)

for any permutation Pk of a k-element vector. This symmetric
property is satisfied by the SINR threshold reception model
(4) as well as most non-trivial system models. It is also an
assumption in [11], [19].

In the network, the nodes do not cooperate and each node
is only concerned about its individual utility. Therefore, given
the reception model (3), the only bit of information that can
be used by node i in the process of estimating its optimal
transmission policy is the probability of correct reception of its
packet during a time slot, which is determined by the following
set of functions:

ψi(γi, ~γAK
k
−i) = EΦ[ϑi|k nodes transmit, γi, ~γAK

k
−i] (6)
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for some AK
k ∈ ΩK and i ∈ AK

k . For the CDMA time slotted
system with matched filter receivers and the SINR threshold
reception model, (6) can be rewritten as:

ψi(γi, ~γAK
k
−i) = I(

γi

1 +

�
j 6=i,j∈AK

k
γj

N

> β). (7)

Throughout the paper it is assumed that ψi(γi, ~γAK
k
−i) defined

by (6) is a Lebesgue measurable function of γi. Besides
Lebesgue measurability, the assumptions listed below are used
throughout the paper. These assumptions are satisfied by most
non-trivial systems, e.g., the SINR threshold reception model
(7).

1) The probability of success of node i defined by (6) is a
non-decreasing in its channel state γi:

ψi(γi, ~γAK
k
−i) ≥ ψi(γi, ~γAK

k
−i) ∀γi > γi

⇔ E[ϑi|k nodes transmit, γi, ~γAK
k
−i]

≥ E[ϑi|k nodes transmit, γi, ~γAK
k
−i] ∀γi > γi. (8)

Some of the analytical results in this paper can be
strengthened if the inequality in (8) is strict, i.e.

E[ϑi|k nodes transmit, γi, ~γAK
k
−i]

> E[ϑi|k nodes transmit, γi, ~γAK
k
−i] ∀γi > γi. (9)

Unless it is stated otherwise, in the paper we assume
that (8) holds, but not (9).

2) The success probability of a node is lowered when one
more node transmits. This is also a condition in [15].

ψi(γi, ~γAK
k
−i) ≥ ψi(γi, (~γAK

k
−i, a)) ∀a > 0

⇔ E[ϑi|k nodes transmit, γi, ~γAK
k
−i]

≥ E[ϑi|k + 1 nodes transmit, γi, (~γAK
k
−i, a)], (10)

for all channel state a > 0.
3) When the channel state of a node is 0, its success

probability is 0:

ψi(0, ~γAK
k
−i) = 0 (11)

III. FORMULATION OF THE DECENTRALIZED OPTIMAL

TRANSMISSION CONTROL PROBLEM AS A

NON-COOPERATIVE GAME

In this section we formulate the problem of decentralized
optimal transmission control for a random access network of a
fixed number of active nodes as a non-cooperative transmission
game, where each node is selfish and rational. In Section III-A,
we define the non-cooperative game. The utility function and
the optimization problem that must be solved by each node
are derived in Section III-B.

A. Formulation of the non-cooperative optimal transmission
game

Formally, the problem of optimal decentralized transmission
control for the network model defined in Section II can be
formulated as a non-cooperative game with a continuous state
space as follows:

• The set of players I is the set of active nodes indexed by
i = 1, 2, . . . ,K.

• At each time slot node i can choose an action ai ∈ Ai =
{W,T}, where W means to wait, T means to transmit. A
node can also choose to transmit with some probability.

• A strategy is a transmission policy, defined by (1).
Pure and randomized transmission policies are defined in
Definitions 1 and 2 respectively. Since the space of pure
policies is not finite, the existence of a Nash equilibrium
is not straightforward.

• Define a profile to be a set of strategies deployed by all
nodes in the network: σ = {p1(·), . . . , pK(·)}

• A mathematical expression for the utility function (ex-
pected reward) of a node given the policies deployed by
other nodes is derived in Section III-B.

B. Utility Function and the Decentralized Optimization Prob-
lem

In a transmission time slot, if node i does not transmit a
waiting cost c(i)w is recorded, if it transmits it has to pay a
transmission cost c(i)t . At the end of a transmission time slot,
if a packet is received correctly the node receives a reward of
1 unit. The instantaneous reward of node i is then determined
as follows:

ri =





1 − c
(i)
t If ai = T, ϑi = 1

−c
(i)
t If ai = T, ϑi = 0

−c
(i)
w If ai = W , i.e. node i did not transmit.

(12)
The condition that ensures a successful transmission is more
preferable than no transmission, and no transmission is more
preferable than an unsuccessful transmission is

1 > c
(i)
t > c(i)w > 0 ∀ i = 1, 2, . . . ,K. (13)

By the symmetric property of the reception model (6), the
expected reward of node i, denoted by Ti(pi(·), {p−i(·)}), can
be easily derived:

Ti(pi(·), {p−i(·)}) =

∫ M

0

pi(γi)

[∫ M

0

. . .

∫ M

0

K∑

k=1

∑

AK
k

:i∈AK
k

∏

l∈AK
k

,l6=i

pl(γl)
∏

j 6∈AK
k

(1 − pj(γj))

(
(1 − c

(i)
t )ψi(γi, ~γAK

k
−i)

− c
(i)
t (1 − ψi(γi, ~γAK

k
−i))

) K∏

j=1

j 6=i

dFj(γj)

]
− (1 − pi(γi))c

(i)
w dFi(γi)

=

∫ M

0

pi(γi)

[∫ M

0

. . .

∫ M

0

K∑

k=1

∑

AK
k

:i∈AK
k

∏

l∈AK
k

l6=i

pl(γl)
∏

j 6∈AK
k

(1 − pj(γj))

ψi(γi, ~γAK
k
−i)

K∏

j 6=i

j=1

dFj(γj) − c
(i)
t + c(i)w

]
dFi(γi) − c(i)w .

(14)

Let Ψi(γi, {p−i(·)}) : [0,M ] → [0, 1], i = 1, 2, . . . ,K be
a function mapping channel states of node i to the (average)
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probability of receiving its packet correctly given the policies
of other nodes. Ψi(γi, {p−i(·)}) can be calculated from (6) as

Ψi(γi, {p−i(·)}) = E{F−i}

[
K∑

k=1

∑

AK
k
⊃i

∏

l∈AK
k

l6=i

pl(γl)

∏

j 6∈AK
k

(1 − pj(γj))ψi(γi, ~γAK
k
−{i})

]
. (15)

For example, for the SINR threshold reception model (7) for
CDMA systems we have

Ψi(γi, {p−i(·)}) =
K∑

k=1

∑

AK
k
⊃i

∫ M

0

. . .

∫ M

0

∏

j∈AK
k

,j 6=i

pj(γj)

∏

l6∈AK
k

(1 − pl(γl))I

(
γi

1 + 1
N

∑
j∈AK

k
,j 6=i

(γj)
> β

)∏

j 6=i

dFj(γj).

(16)

Using the expression (15) for the success probability of node
i, (14) can be rewritten as

Ti(pi(·), {p−i(·)}) =

∫ M

0

pi(γi)
(
Ψi(γi, {p−i(·)})

− c
(i)
t + c(i)w

)
dFi(γi) − c(i)w (17)

In the paper, (14) and (17) are used interchangeably as the
utility function of node i. The problem of maximizing the
utility for node i can be formulated as

sup
pi(.)∈BL∞[0,M][0,1]

Ti(pi(·), {p−i(·)}), (18)

where Ti(pi(·), {p−i(·)}) is given by (14) and BL∞[0,M ][0, 1]
is defined in Section II-A.

In the remaining of the paper, we focus on Nash equilibrium
profiles. A Nash equilibrium profile is a profile at which no
player can benefit by unilaterally deviating from its current
policy [18], [17].

Definition 4: A profile σ∗ = {p∗1(·), . . . , p
∗
K(·)} is a Nash

equilibrium if and only if for all players i = 1, 2, . . . ,K
we have Ti(p

∗
i (·), {p

∗
−i(·)}) ≥ Ti(pi(·), {p

∗
−i(·)}) ∀pi(·) ∈

BL∞[0,M ][0, 1].
From the above definition of a Nash Equilibrium profile it

is clear that at a Nash equilibrium point (18) must hold for all
nodes. One observation that can be made at this point is that
the allowance for different channel state distributions, Fi(·),
can lead to unfairness in resource allocation unless the trans-
mission and waiting costs are designed to meet some fairness
requirement. The designing of transmission and waiting costs
is beyond the scope of our paper. In the next section, we focus
on proving the existence of a Nash equilibrium at which every
player adopts a threshold transmission policy.

IV. OPTIMALITY OF THRESHOLD POLICIES AND

EXISTENCE OF A NASH EQUILIBRIUM

Having formulated the problem of optimal decentralized
transmission control as a non-cooperative transmission game
in the previous section, in this section we study the structure

of the Nash equilibrium transmission policies. We follow a
common technique in game theory to prove the existence of
a structured Nash equilibrium profile. This technique consists
of three steps 1:

1) Showing that a particular class of policies is optimal
(Theorem 1)

2) Proving the existence of a Nash Equilibrium when
the policy space is restricted to this class of policies
(Theorem 2)

3) Proving the existence of a Nash Equilibrium in the
original game by showing that a Nash Equilibrium in
the game with the restricted policy space is also a Nash
equilibrium in the original game (Corollary 2).

Readers are referred to [18], [17] for examples of the early
use of this technique in game theory.

A. Optimality of Threshold Policies

We prove that the utility of a node can always be maximized
by a threshold transmission policy.

Theorem 1: Consider a multipacket reception random ac-
cess network of K < ∞ active nodes where the network
and reception models are described in Section II. Consider the
non-cooperative transmission game formulated in Section III,
where the problem of optimizing the utility for node i =
1, 2, . . . ,K is given by (18). Assume the reception model (6)
of the network satisfies (8) and (11). There exists a transmit
probability function that maximizes node i’s expected reward
(14) and is a threshold policy:

p∗i (γ)
a.e
= I(γ > θ) (19)

for some θ ∈ [0,M ].
Proof:

The proof of this theorem is an application of the bang-bang
principle, presented in [22].

The objective of node i is to maximize its utility, which is
given by (17):

Ti(pi(·), {p−i(·)}) =

∫ M

0

pi(γi)
(
Ψi(γi, {p−i(·)})

− c
(i)
t + c(i)w

)
dFi(γi) − c(i)w

It can easily be seen that if Ψi(·, {p−i(·)}), defined by (15),
is Lebesgue measurable then

p∗i (γi) =

{
1 if Ψi(γi, {p−i(·)}) − c

(i)
t + c

(i)
w > 0

0 otherwise
(20)

is a function in BL∞[0,M ][0, 1], and

T (p∗i (.), {p−i(·)}) = sup
pi(.)∈BL∞[0,M][0,1]

T (pi(·), {p−i(·)}).

In other words, if Ψi(·, {p−i(·)}) is Lebesgue measur-
able then the supremum of T (pi(·), {p−i(·)}) is attained in
BL∞[0,M ][0, 1] at p∗i (γi), which is defined by (20). We now
prove that Ψi(·, {p−i(·)}) is Lebesgue measurable and that
p∗i (γi), defined by (20), belongs to the class of threshold
policies.

1We thank anonymous reviewers for very detailed comments on this point.


