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Algorithms for Optimal Scheduling and Management
of Hidden Markov Model Sensors
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Abstract—Consider a Hidden Markov model (HMM) where a
single Markov chain is observed by a number of noisy sensors.
Due to computational or communication constraints, at each time
instant, one can select only one of the noisy sensors. The sensor
scheduling problem involves designing algorithms for choosing dy-
namically at each time instant which sensor to select to provide
the next measurement. Each measurement has an associated mea-
surement cost. The problem is to select an optimal measurement
scheduling policy to minimize a cost function of estimation errors
and measurement costs. The optimal measurement policy is solved
via stochastic dynamic programming. Sensor management issues
and suboptimal scheduling algorithms are also presented. A nu-
merical example that deals with the aircraft identification problem
is presented.

Index Terms—Hidden Markov models, partially observed
Markov decision processes, sensor scheduling, stochastic dynamic
programming.

I. INTRODUCTION

I N many signal processing applications, several types of
sensors are available for measuring a given process. How-

ever, physical and computational constraints often impose the
requirement that at each time instant, one is able to use only
one out of a possible total of sensors. In such cases, one
has to make the following decision: Which sensor (or mode of
operation) should be chosen at each time instant to provide
the next measurement? Typically associated with each type of
measurement is a per unit-of-time measurement cost, reflecting
the fact that some measurements are more costly or difficult
to make than others, although they may contain more useful
or reliable information. The problem of optimally choosing
which one of the sensor observations to pick at each time
instant is called the sensor scheduling problem. The resulting
time sequence that, at each instant, specifies the best sensor to
choose is termed the sensor schedule sequence.
Several papers have studied the sensor scheduling problem

for systems with linear Gaussian dynamics, where linear mea-
surements in Gaussian noise are available at a number of sen-
sors (see [2] for the continuous-time problem and [16] for the
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discrete-time problem). For such linear Gaussian systems, if the
cost function to be minimized is the state error covariance (or
some other quadratic function of the state), then the solution
has a nice form: The optimal sensor schedule sequence can be
determined a priori and is independent of the measurement data
(see [2], [16] for details). This is not surprising since the Kalman
filter state covariance estimate (given by the Riccati equation) is
independent of the observation sequence and only depends on
the model parameters.
In this paper, we study the discrete-time sensor scheduling

problem for hidden Markov model (HMM) sensors. We assume
that the underlying process is a finite state Markov chain. At
each time instant, observations of the Markov chain in white
noise are made at different sensors. However, only one sensor
observation can be chosen at each time instant. The aim is to
devise an algorithm that optimally picks which single sensor
to use at each time instant, in order to minimize a given cost
function. The cost function is comprised of the sensor usage
costs, together with sensor estimation errors.
There are numerous applications of the optimal scheduling of

sensors. Some applications include [5], [9], [16]
1) finding the optimum channel allocation among various
components of a measurement vector when they must be
transmitted over a time-shared communication channel of
limited bandwidth;

2) finding the optimum timing of measurements when the
number of possible measurements is limited because of
energy constraints;

3) finding the optimum tradeoff between measurement of
range and range rate in radar systems with a given am-
biguity function.

There is also growing interest in flexible sensors such as multi-
mode radar, which can be configured to operate in one of many
modes for each measurement. Unlike the linear Gaussian case,
HMMsensor scheduling is more interesting because the optimal
sensor schedule in the HMM case is data dependent. This means
that past observations, together with past choices of sensors, in-
fluence which sensor to choose at present.
In our recent work [9], we formulated the HMM sensor

scheduling problem and presented the dynamic program-
ming functional recursion for determining the optimal sensor
schedule. However, the dynamic programming equations
(Bellman’s equation) in [9] do not directly translate into prac-
tical solution methodologies. The fundamental problem is that
at each time instant of the dynamic programming recursion,
one needs to compute the dynamic programming cost over an
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uncountably infinite set. An approximate heuristic algorithm
was presented in [9], which was based on discretizing the
dynamic programming recursion to a finite grid.
The main contribution of this paper are as follows.
1) By exploiting and extending results and algorithms in par-
tially observed Markov decision processes (POMDPs),
near optimal finite dimensional algorithms for HMM
sensor scheduling are presented. Unlike the grid-based
approximate solution presented in [9], we determine a
closed-form finite dimensional solution to the dynamic
programming recursion. The finite-dimensional sched-
uling algorithms presented in this paper are similar to
those recently used in the operations research (see [14]
for a tutorial survey) and in robot navigation systems
[5] for the optimal control of the POMDP. However, our
problem has the added complexity that the cost function
is, in general, a nonlinear function (e.g., quadratic func-
tion) of the information state, whereas in all the existing
literature on POMDPs, only costs that are linear in the
information state are considered.

2) We present optimal dynamic programming-based HMM
sensor scheduling algorithms that deal with constraints.
These include sensor estimation error constraints and
sensor management issues that require sensor usage
constraints. In addition, steady-state HMM scheduling
algorithms are presented.

3) For medium to large size problems, the computational
complexity of the optimal dynamic programming-based
algorithms are prohibitive. We present two suboptimal
HMM scheduling algorithms: Lovejoy’s algorithm and a
one-step look-ahead algorithm.

4) In Section II-B, we briefly describe an application of the
HMM sensor scheduling problem in the tradeoff between
prediction and filtering. In Section VI, we illustrate the
performance of the optimal HMM sensor scheduling al-
gorithms proposed in this paper to an aircraft identifica-
tion problem. The scenario involves an incoming aircraft,
where using various forms of sensors available at a base
station, the task is to determine if the aircraft is a threat or
not [5]. The choice of deciding between various sensors
arises because the better sensors tend to make the loca-
tion of the base station more easily identifiable or visible
to the aircraft, whereas the more stealthy sensors tend to
be more inaccurate.

Limitations: Although the optimal algorithms we present
for computing the solution to the HMM dynamic programming
recursion are offline (i.e., independent of the observations), a
major limitation of such algorithms is that they are PSPACE
hard; they have exponential computational complexity [14,
p. 55]. While these algorithms were deemed too expensive
in the 1970s and early 1980s, there has been increasing use
of these methods in the last five years, particularly in the
artificial intelligence and robotics communities; see [5] and
[6]. It is shown in the numerical examples of Section VI that
on a Pentium 2 personal processor, the algorithms are feasible
for up to six states, three sensors, and six observation types in
that the algorithms require in the order of several minutes to

compute the optimal sensor schedule. The recent thesis of [5]
demonstrates that these algorithms can be applied to problem
sizes of up to 15 states and observations. For larger problems,
the time taken can be excessive (several hours or more); for
these cases, the suboptimal algorithms presented are useful.
Existing Works: Here is a brief survey of the literature in

sensor scheduling and HMM control. The general problem of
stochastic control of POMDPs, i.e., stochastic control of hidden
Markov hodels, is treated in [17], [20], [14] (discrete-time), and
[19] (continuous-time), as well as in the standard texts [4] and
[12]. The website [6] and Ph.D. theses [5] and [11] contain ex-
cellent expositions and up-to-date references to the literature on
POMDPs with an emphasis on AI robot navigation problems.
A related problem to HMM sensor scheduling is the problem of
optimizing the observer motion in bearings-only target tracking.
The recent work in [21] formulates such a problem as a POMDP
and seeks to optimize a functional of the Fisher information ma-
trix that measures the information in measurements relative to
target trajectory.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let denote discrete time. Assume that is
an -state Markov chain with state space . Here,
denotes the -dimensional unit vector with 1 in the th po-

sition and zeros elsewhere. This choice of using unit vectors to
represent the state space considerably simplifies our subsequent
notation. Define the transition probability matrix as

where

Denote the initial probability vector of the Markov chain as

where
(1)

A. Sensor Scheduling Problem
Assume there are noisy sensors available that can be used

to give measurements of . At each time instant , we are
allowed to pick only one of the possible sensor measure-
ments. Motivated by the physical and computational constraints
alluded to in the introduction, we assume that having picked this
sensor, we are not allowed to look at any of the other ob-
servations at time .
Let denote the sensor picked at time .

The observation measured by this sensor is denoted as .
Suppose at time , we picked the th sensor, i.e., ,
where . Assume that the measurement
of the th sensor belongs to a known finite set of symbols

. That is, the th sensor can yield one
of possible measurement values at a given time instant. For

, denote the symbol probabilities as

These represent the probability that an output is obtained
given that the state of the Markov chain is and that the th
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Fig. 1. HMM sensor scheduling and estimation problem.

sensor is chosen. The symbol probabilities are assumed known.
Define the symbol probability matrix

diag ...

Finally, for notational convenience, let
denote the

entire parameter vector that is comprised of the transition
probability matrix and all the symbol probabilities of all the
sensors.
Remarks:

1) We have assumed that only one sensor is picked at each
time. This is purely for convenience. It is straightforward to
generalize the model to picking sensors (where ) at
each time instant by merely increasing the dimension of
as follows. Define , where each

. Then, the signal model is identical to
above.

2) We have allowed for different sensors to have different
output symbols and number of quantization levels. This is
reflected in our notation by introducing the in the output
symbols and the number of possible symbols for
the th sensor .
Let so

that represents the information available at time upon
which to base estimates and sensor scheduling decisions. The
sensor scheduling and estimation problem proceeds in three
stages for each , where is a fixed positive
integer (see Fig. 1)
1) Scheduling: Based on , we generate

, which determines the sensor that is to be used at the
next time step.
2) Observation: We then observe , where

is the sensor selected in the previous stage.
3) Estimation: After observing , we compute

the optimal (MMSE) state estimate of the Markov chain
state as

(2)

This is done using an HMM state filter [8] (which is also known
as the “forward algorithm” [18]). Note that is a column vector

of dimension . Because we have assumed that is a unit
vector , it straightforwardly follows that the ele-
ments of are . (This
property of the conditional expectation, being equal to the con-
ditional probability vector, is one of the notational advantages
of depicting the state space by unit vectors). In Section II-C,
will be defined as the “information state” of the scheduling

problem. Note that the state estimate is dependent on the
scheduling sequence of sensors picked from time 1 to , i.e.,

(since it depends on ).
Define the sensor scheduling sequence

and say that the scheduling sequences are admissible if
maps to . Note that is a sequence of functions.
We assume the following cost is associated with estimation

errors and with the particular sensor schedule chosen. If, based
on the observation at time , the decision is made to choose

(i.e., to choose the th sensor at time , where
), then the instantaneous cost incurred at time

comprises of two terms.
1) State estimation error:

(3)

Here, are known positive scalar
weights. The “distance” function is assumed to be a
convex function with . de-
notes the state estimation error (with respect to the dis-
tance function ) at time due to choosing the sensor
schedule . For example, if is the norm,
then denotes the Euclidean distance between

and its estimate . In such a case, the instantaneous
cost is the square error in the state estimate when using
the sensor .

2) Sensor usage cost: Let denote the instanta-
neous cost of using the sensor when the state of
the Markov chain is . For example, in target tracking
applications, active sensors such as radar are more expen-
sive to use than passive sensors such as sonar.

Our aim is to find the optimal sensor schedule to minimize
the total accumulated cost from time 1 to over the set of
admissible control laws

(4)

where .
The above objective (4) can be interpreted as follows. The

minimization of the first summation yields the optimal sensor
schedule that minimizes the weighted error in the
state estimate of the Markov chain state . The weight terms

allow different sensors to be be weighed
differently. The time index in allows us to weigh the state
estimate errors over time. The second summation term reflects



KRISHNAMURTHY: ALGORITHMS FOR OPTIMAL SCHEDULING 1385

the cost involved in using a sensor (i.e., the unit time sensor
charge) when the the Markov chain is in a particular state. The
final term in (4) is the terminal cost at time .
Remark: The above problem is a finite horizon partially

observed stochastic control problem. Such problems are often
plagued by mathematical technicalities. For the cost function
in (4) to be well defined, we assume that , are
uniformly bounded from above and below (see [4, p.54]). With
this boundedness assumption, together with the fact that and

are finite sets, the above partially observed
stochastic control problem is well defined, and an optimal
policy exists; see [4] for details.

B. Example: Optimal Filtering Versus Prediction
Asmentioned in Section I, there are numerous applications of

sensor scheduling in communication and radar systems. Here,
we outline one such application.
Consider the tracking problem of measuring the coordinates

(state) of a target from radar derivedmeasurements. Assume that
the target’s coordinates (state) evolve according to a finite-state
Markov chain with known transition probability matrix .
Assume that at each time instant , we have two choices.
i) : Obtain a radar derived noisy measurement of the
target position . Assume that the noise density
and, hence, the symbol probability matrix
is known. After observing the target’s position
, we compute the best filtered estimate of the target’s

position by using the HMM filter. Let de-
note the cost of obtaining a noisy measurement
using the radar when the target’s true position is .
For example, the cost would typically be large
when the target is close to the radar tracker.

ii) : Do not observe the target state. This is equiv-
alent to choosing as the obser-
vation then contains no information of the state of
the Markov chain . Without using the radar for ob-
serving the target, we can only compute the best predicted
estimate of the target via an HMM state predictor. Let

denote the cost of not using the radar.
In addition to the usage (operating) cost , we also

incorporate into our cost function the mean-square estimation
error of the target’s coordinates. Suppose our aim is to chose
at each time between (obtaining a radar derived ob-
servation and using a HMM filter) versus (not making
a measurement and using a HMM predictor) to minimize the
cost function in (4). Then, the problem is identical to the sensor
scheduling problem posed above. Note that the above cost func-
tion depicts the tradeoff between sensor estimation accuracy and
sensor usage costs; a predictor is cheaper to use than a filter but
incurs a higher state estimation error cost since it is less accurate.
In Section VI, we consider the aircraft identification problem
and present numerical examples.

C. Information State Formulation
As it stands, the above HMM sensor scheduling problem is a

partially observed infinite horizon stochastic control problem.
As is standard with such stochastic control problems, in this

section, we convert the partially observed stochastic control
problem to a fully observed stochastic control problem defined
in terms of the information state [12].
The information state at time is merely the HMM condi-

tional filtered density that was already defined in (2).
Let denote the set of all information states . That is

for all (5)

Note that is a -dimensional simplex and that the HMM
filtered density (information state) lives in at each time .
The Markov chain states are merely the corner
points of , We will subsequently refer to as the information
state space simplex.
The information state is a sufficient statistic to describe the

current state of an HMM (see [4] and [12]). The information
state update is computed straightforwardly by the HMM state
filter (which is also known as the “forward algorithm” [18])

(6)

where represents an -dimensional vector of ones.
Consider the cost functional (4). For notational convenience,

define the -dimensional vector

Using the smoothing property of conditional expectation, the
cost functional of (4) can be rewritten in terms of the information
state as (see [12, ch. 7] or [4, ch. 5] for details)

(7)

where

(8)

In the above equations, denotes the -dimensional “dis-
tance” vector

(9)
We now have a fully observed control problem in terms of

the information state . Find an admissible control law , which
minimizes the cost functional of (7), subject to the state evolu-
tion equation of (6).

D. Stochastic Dynamic Programming Framework
In this subsection, we present the stochastic backward dy-

namic programming (DP) recursion for computing the optimal
HMM sensor scheduling policy. The DP recursion is a func-
tional equation and does not directly translate to practical solu-
tions. In Section III, we will present algorithms for solving the
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DP recursion. Please see [12, ch. 7] or [4, ch. 5] for details of
DP.
Define the “value-to-go” function as

Then, the dynamic programming recursion proceeds backward
in time from to as follows:

and for

for all (10)

Finally, the optimal cost starting from the initial condition
is given by and if minimizes the
right-hand side of (10) for each and each , the optimal
scheduling policy is given by . See [12,
ch. 7] or [4, ch. 5] for proofs of the optimality of the above DP
recursion.
As it stands, the above dynamic programming equations (10)

have two major problems.
1) The information state is continuous valued. Hence,
the dynamic programming equations (10) do not directly
translate into practical solution methodologies. The fun-
damental problem is that at each iteration of the dynamic
programming recursion, needs to be evaluated at
each , which is an uncountably infinite set.

2) If [which is defined in (8)] was a linear
function of the information state , then the above
dynamic programming recursion is an instance of
the well-known POMDP and can be solved ex-
plicitly using the algorithms given, for example,
in [14] and [20]. However, note from (8) that

. The
estimation error cost term is not a linear function
of . It is for this reason that the HMM sensor sched-
uling problem is different from the standard POMDP.
In particular, the above DP recursion cannot directly be
solved in closed form using the POMDP techniques of
[14] and [20].

In Section III, optimal algorithms for solving the above DP
recursion are presented.

III. DYNAMIC PROGRAMMING BASED HMM
SENSOR SCHEDULING

A. Optimal Scheduling Algorithm for Piecewise Linear Cost
Here, we consider the case where the sensor estimation cost

defined in (9) is a piecewise linear and continuous func-
tion of . Examples of such piecewise linear cost functions in
the information state include the following.

i) We have the case when in (4), i.e., the sensor
estimation error cost is zero, and hence, (7) is linear in
. This is the well-known standard POMDP, which is
widely studied in [5] and [14].

ii) is a quantized (discrete) norm. For example, for

if
if
if

where is a fixed constant, and
denotes the norm. This distance measure is particu-
larly useful for subjective decision making, e.g., the es-
timate distance of a target to the base station computed
via an HMM filter is quantized into three regions: close,
medium, and far. [It is easy to check that with this quan-
tized norm, , which defined in (9), is continuous in
.]

iii) Piecewise linear costs can be used to approximate non-
linear cost functions of the information state uniformly
and arbitrarily closely, as will be shown in Section III-B.

Let denote the partition of the information
state space simplex over which is piece-wise linear.
The piecewise linearity implies that there exist vectors

such that can be represented as

(11)

where denotes the indicator function

if
otherwise

Due to the convexity and piecewise linearity, an equivalent
and more convenient representation in terms of the sensor esti-
mation cost (8) is

(12)

The following theorem gives an explicit solution of the dynamic
programming recursion (10). It shows that the solution to the
DP recursion is convex piecewise linear and, thus, completely
characterized at each time instant by a finite set of vectors
(piecewise linear segments).
Theorem 3.1: At each time instant , the value-to-go func-

tion is convex and piece-wise linear. has the ex-
plicit representation

for all (13)



KRISHNAMURTHY: ALGORITHMS FOR OPTIMAL SCHEDULING 1387

where is a finite set of -dimensional vectors.
Proof: The proof is by induction. At time , from (10),

, which is of the form (13).
Assume at time that has the form

. Then, substituting this expression in
(10), we have

(14)

where , and
. The last expres-

sion in (14) is of the form because the sum of
piecewise linear continuous convex functions is also piecewise
linear continuous convex.
Optimal Algorithm: Theorem 3.1 shows that the solution to

the DP recursion (10) is convex piecewise linear and completely
characterized at each time by the finite set of vectors de-
fined in (13). Thus, we need to devise an algorithm for com-
puting the set at each time . Given the piecewise linear
convex nature of the value function, programs for solving stan-
dard POMDP (with appropriate modifications) can be used to
solve the above DP recursion. There are numerous linear pro-
gramming-based algorithms in the POMDP literature such as
Sondik’s algorithm [20], Monahan’s algorithm [17], Cheng’s
algorithm [14], and the Witness algorithm [5] that can be used
to compute the finite set of vectors . See [6] for an excellent
tutorial exposition with graphics of these various algorithms.
Any of these algorithms will equally well, although not with the
same computational efficiency (as discussed later), produce the
desired solution set of vectors , together with the
optimal actions , , where denotes
the number of vectors in the set .

HMM Scheduling Algorithm for Piecewise
Linear Cost
Off-line Dynamic Programming: Run the
POMDP algorithm to compute to-
gether with the optimal actions ,

Real Time Scheduling: Given state estimate
from HMM filter, choose optimal action

Note that the entire dynamic programming algorithm and,
hence, the computing the value-to-go function vectors are
offline and independent of the data.

B. HMM Sensor Scheduling for Quadratic Costs in
Information State

In deriving the optimal scheduling algorithm in Section III-A,
we assumed that the state estimation part of the cost function

was piecewise linear in the information
state . Here, we consider the scheduling of HMM sensors
where the estimation error costs are quadratic functions of the
information state such as the cost, cost, and cost. For
example, optimizing the sensor estimation error cost yields
the the best sensor, which minimizes the weighted mean square
error in the state estimate. We will approximate these costs by
piecewise linear interpolations on the information state space.
Consider the cost function (4) and (7), which is repeated in

the following for convenience:

In this section, we consider the following three distance func-
tions :

cost (15)

cost (16)

cost

(17)

In terms of the information-state formulation, we can re-ex-
press the above cost as follows.
Lemma 3.2: In terms of the information state, the cost (4)

can be re-expressed as (7), where

cost

(18)
cost

(19)
cost

(20)

The proof of the above lemma is straightforward and has been
omitted. Because the , , and estimation error costs are
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Fig. 2. For a three-state HMM ( ), the information state simplex is
an equilateral triangle. The corners are the Markov chain states , , and .
The Freudenthal triangularization regions over which the cost is
approximated by piecewise linear segments is also shown.

identical (modulo a constant scaling factor), subsequently, only
costs will be considered.
With the state estimation cost, the dynamic programming

recursion (10) becomes

for all (21)

Because of the nonlinear term in the above
recursion, it is impossible to find a closed-form solution to the
dynamic programming equation, in particular, the solution is
definitely not piecewise linear! However, because the informa-
tion state resides in a compact space defined by the simplex ,
these nonlinear cost functions can be approximated from above
and below by piecewise linear cost functions arbitrarily closely.
In the following, we construct such piecewise linear approxima-
tions.
Lower Bound Using Freudenthal Triangularization: Given

the simplex structure of the information state space and
because is strictly concave, the most natural
piecewise linear approximation for lower bounding the cost
function is to perform a uniform triangular interpolation of
the terms that arise in the , , and
costs defined previously. In the numerical examples presented
in Section VI, we will use this piecewise linear interpolation.
The uniform triangular interpolation we describe later is called
Freudenthal triangularization after the German mathematician
who introduced it in 1942. Freudenthal triangularization has
been used by Lovejoy [13] to derive efficient suboptimal
algorithms for solving POMDPs; see Section V-B.
To graphically illustrate the procedure, consider the three-

state HMM example (i.e., ). The procedure is trivially
extended to the case . We represent the states of the
three-state Markov chain by the unit vectors . Note that
in the three-state case, the information state space simplex de-
fined in (5) is merely the equilateral triangle depicted in Fig. 2,
where the three corners of the triangle denote the three Markov
chain states , and , respectively.

We construct a piecewise linear interpolation of this cost
on the information state space simplex. For , the th
degree interpolation consists of partitioning the simplex into

triangular patches . As an example, Fig. 2
shows the triangular patches that arise for the
interpolation of a -state HMM. Note that each region ,

is an equilateral triangle simplex.
Let denote the corners of the th patch
.
For each region , the function is approximated by

the piecewise linear cost as follows:

...
...

(22)
It is clear that the above matrix is invertible since any distinct
information states in the simplex are linearly independent;
this fact is straightforward to establish from the definition of
in (5). The resulting piecewise linear interpolation can be

expressed similarly to (11) or (12) as , or
equivalently, .
Because is strictly concave, it is

lower bounded by the above piecewise linear interpolation
, i.e., . The following

result gives an expression for the maximum approximation
error between and the piecewise linear
interpolation .
Theorem 3.3: The maximum approximation error at a corner

simplex of the above piecewise linear Freudenthal approxima-
tion comprising of piecewise linear segments is given by

(23)

Proof: It is easy to show that the approximation error for
any segment error is maximized at

(24)

Because of the symmetry in the uniform Freudenthal triangular-
ization for , the maximum error is achieved in each of the
interpolated regions. Therefore, we need consider only any

one region to evaluate this error. Consider the corner simplex
comprising the information state points

...
... ...

...

Then, is obtained by solving (22). It is not difficult to see that
the solution . Thus, from (24), the
maximum error is attained at . Thus,
the maximum error evaluated at this value of
and is given by (23).
Let denote the value function at time obtained by

replacing in (21) by its lower bound piece-
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wise linear approximation . Clearly, is piece-
wise linear (as shown in Section III-A) and can be computed
explicitly using the POMDP algorithm of Section III-A. In The-
orem 3.4, we will show that , meaning that
the policy obtained by solving the POMDP with value function

forms a lower bound to the optimal scheduling policy.
Upper Bound Using Tangents: Because

is strictly concave, it can be upper bounded by a piecewise
linear interpolation comprising of tangents to at arbitrary
points in . Using elementary computations, it
follows that the tangent at a point is the linear segment

where
(25)

Thus, can be upper bounded by the
piecewise linear function , which is comprised
of tangent vectors, i.e., . Let
denote the value function at time obtained by replacing

in (21) by its upper bound piecewise linear
approximation . Clearly, is piecewise linear
(as shown in Section III-A) and can be computed explicitly
using the POMDP algorithm of Section III-A.
Sandwiching Theorem and Characterization of Optimal

Scheduling Policy: Here, we show that the value functions
and themselves form lower and upper bounds for

the optimal value function . That is, the resulting value
functions and policies form lower and upper bounds for the
optimal sensor scheduling value function and policy.
Theorem 3.4: Let and denote the value func-

tions at time obtained by replacing in (21)
by its lower and upper bound piecewise linear approximations,
i.e., and , respectively. Then, the op-
timal value function of (21) satisfies

for all and (26)

Moreover, the approximation error of the upper bound satisfies

(27)

Proof: The proof is by induction. At time , by construc-
tion of the lower and upper bound approximations seen previ-
ously

Suppose (26) is true at time . It is convenient to introduce the
operator for the right-hand side of (21) so that the DP recur-
sion (21) can be written as

The well-known monotone property of the operator (see [4,
p. 7] or [13]) implies that

However, since by
construction. Similarly, since

by construction. Hence, (26) holds at time .
Finally, (27) follows directly from (23).
We conclude this section by showing that although the op-

timal value function cannot be computed in closed form
(i.e., it is not piecewise linear), the piecewise linear value func-
tion for sufficiently large yields the optimal scheduling
policy. This further justifies the piecewise linear approximation
used above.
Theorem 3.5: There exists a finite integer such that

for all integers , the scheduling policy , which maxi-
mizes the piecewise linear interpolated cost

(28)

is identical to the optimal policy that maximizes the cost
defined in (4) or (7).

Proof: It is clear from (28) and (4) that
. Note that for any finite horizon , there are only a finite

number ( ) of possible scheduling sequences. Therefore, the
convergence is uniform in , meaning that

Uniform convergence in implies that there exists an integer
such that for all

The previous theorem shows that although one cannot deter-
mine the optimal value function , one can determine
the optimal scheduling policy by optimizing the
piecewise linear interpolated cost for a sufficiently large
integer . However, we have been unable to give a lower bound
to .

IV. CONSTRAINTS ON ESTIMATION ERROR, SENSOR
MANAGEMENT ISSUES AND STATIONARY SCHEDULERS

Thus far, we have presented HMM sensor scheduling algo-
rithms for unconstrained finite horizon cost functions. Here, we
consider constraints on the sensor estimation error, sensor man-
agement issues, and infinite horizon problems. The constraints
considered can be formulated as local-in-time constraints and,
hence, are amenable to DP methods. Global constraints (e.g.,
requiring for some bounded mea-
surable function and constant ) are not considered in this
paper. These require the use of Lagrange multipliers (see [1] for
an excellent exposition) and do not have closed-form solutions
for HMMs.

A. Usage Costs With Quadratic Constraints on Estimation
Error
Instead of minimizing the estimation error plus sensor usage

cost, it often makes sense to minimize the sensor usage cost sub-
ject to constraints on the average sensor estimation error at each
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time instant . Here, we consider minimizing sensor usage costs
(which are linear in the information state) subject to quadratic
constraints on the sensor estimation error. Such local constraints
easily fit within the framework of stochastic dynamic program-
ming. For convenience, we consider the norm in the con-
straints.
Let , where denotes the

user specified set of sensors with state estimation error con-
straints, and denotes the set of sensors without constraints.
The sensor usage cost we consider is to compute ,

where

subject to the following average constraints on each of the sen-
sors in :

where are user specified constants. The constraint
says that sensor can only be used at time if the mean square
state estimation error at time is less than the user-specified
constant . Note that the above constraints can be explicitly
expressed as a local constraint at each time in terms of the
information state as

(29)
Let denote the closed subsets of the information state sim-

plex such that

(30)

Let denote the set of admissible sensors at time ,
i.e.,

Then, the dynamic programming recursion is

for all (31)

The finite-dimensional sensor scheduling algorithm of Sec-
tion III-A can be used as follows.

HMM Sensor Scheduling Algorithm With State
Estimation Constraints
Off-Line Dynamic Programming: Run the
POMDP algorithm twice with different ac-
tion sets as follows:
i) Run the POMDP program with action set

. Let , be the vec-
tors and associated optimal actions,

computed by the POMDP pro-
gram.
ii) Run the POMDP program with action set
. Let , be the vectors and asso-

ciated optimal actions, .
Real-Time Scheduling: Given the infor-
mation state from the HMM filter, let

and denote the
corresponding optimal vector and action
pairs.
If , i.e., satisfies (29) for

, then set .
Else set .

Example: Optimal HMM Filtering Versus HMM Prediction
(Continued): Consider the optimal filtering versus prediction
scheduling problem of Section II-B. Assume that the predict
sensor is constrained, i.e., , ,

. Because , constraint (29) on the
predict sensor is (where is a user specified parameter)

or equivalently (32)

This constraint describes a region (30) in the information
state space simplex . It says that the predict sensor can only
be used at time if the resulting state estimate variance at time

lies within .
The feasibility of the above constraint (32) can be checked a

priori as follows.
Theorem 4.1: Assume that is positive definite. The con-

straint (32) is active and holds for some nonempty subset of
the information state space if

If , then the constraint
(32) is always met for all , i.e., , and the
problem is identical to a standard unconstrained POMDP. Fi-
nally, if , then the constraint
(32) is never met for any , i.e., is the null set. (In such a
case, the HMM predictor can never be used.)

Proof: Consider the following quadratic programming
problem:

subject to

From [15, pp. 424—425], it follows that the minimum
value is . Thus, if

, then the constraint (32) is always met for all
.

It can be shown that subject to is
given by . Therefore, clearly, if

, then the constraint (32) is never met for any
, i.e., is the null set.
Finally, for

, the constraint (32) is active and holds for
some subset of the information state space .
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B. Sensor Management With Usage Constraints
The aim here is to derive optimal HMM sensor scheduling

algorithms when there are constraints on the total number of
times particular sensors can be used. Such constraints are often
used in sensor resource management.
Consider an horizon problem where sensor 1 can be used

at most times. For simplicity, we assume that there are no
constraints on the usage of the other sensors. The aim is to derive
a sensor schedule to optimize the cost function (4).
Let denote the set of dimen-

sional unit vectors, where has 1 in the th position. We will
use process to denote the number of times sensor 1 is used.
Specifically, let be a state Markov chain with state space
. Let if sensor 1 has been used times. The dy-

namics of are as follows. If sensor 1 is used (i.e., ),
then jumps to state . If any other sensor is used, then
remains unchanged. It is easily seen that is a deterministic
Markov chain with dynamics given by

(33)

where the transition probability matrix is defined as

...
...

...
. . .

and if

We consider two types of constraints on the number of times
a sensor can be used.
Equality Constraints: Suppose HMM sensor 1 must be used

exactly times. Then, the action space is defined as
follows.
• For , .
• For

if
if
if

Inequality Constraints: Suppose HMM sensor 1 can be used
at most times. The action space is defined as follows.
• For , .
• For

if
if

For both the equality and inequality constraint cases, the op-
timal scheduling policy is given by solving the following sto-
chastic dynamic programming recursion:

and for

(34)

The above dynamic programming recursion can be recast into a
form similar to (10) by the following coordinate change: Con-
sider the augmented Markov chain ( ). This has transition
probability matrix , where denotes tensor (Kro-
necker product). Because is a fully observed Markov chain,
the information state of ( ) is with obser-
vation probability matrix .
Thus, the augmented information state evolves according to
the standard HMM filter (6) with , replaced by , . De-
fine the value function

The DP recursion (34) can be rewritten in terms of as
(10), meaning that the optimal algorithms of Section III can be
applied.

C. Infinite Horizon Scheduling Algorithm
The aim here is to determine the optimal stationary sched-

uling policy to minimize the infinite horizon discounted cost

(35)
where and denotes the discount
factor. (Notice that unlike the finite horizon case, and are
no longer explicit functions of time .) Our aim is to minimize

over the class of stationary policies , where
. It is well known [4] that the optimal stationary

policy exists as long as and
are uniformly bounded from below and above.
The above problem can be expressed in terms of the informa-

tion state as , where is
defined as in (8).
The optimal stationary policy can be determined in prin-

ciple by solving the following DP functional equation called
“Bellman’s equation” for the value function ; see [14]):

(36)

One approach to solving Bellman’s equation is via the value-it-
eration algorithm; see [5] or [13] for details. This is merely a
finite horizon approximation to the infinite horizon cost func-
tion (35). That is, pick a sufficiently large horizon , and run
the following slightly modified version of the finite horizon DP
recursion (10):

and for

(37)
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The finite horizon algorithms detailed in earlier sections can
be used to solve the above value-iteration recursion. It can be
shown [14] that uniformly in . The
obvious advantage of a stationary scheduler is that only the
piecewise linear representation of and its asso-
ciated optimal decision need be stored in memory
for the real-time implementation.

V. SUBOPTIMAL ALGORITHMS

Here, we outline two suboptimal algorithms: a greedy
one-step-ahead algorithm and Lovejoy’s algorithm. See [11]
for other suboptimal algorithms such as the “blind” policy
iteration algorithm.

A. One-Step-Ahead Greedy Algorithm
For large state space problems, the above algorithms can be

prohibitively expensive for real-time implementation. In this
section, we outline a one-step-ahead suboptimal solution to the
HMMsensor scheduling problem. The idea behind the one-step-
ahead algorithm is to compute the expected posterior density for
the target state for each HMM sensor based on the current poste-
rior density and the known measurement models and then make
a measurement using the HMM sensor that gave the best pre-
dicted cost. In [4], these are called limited lookahead policies.
To simplify notation, assume that theweight in (3) and (4) is

a constant. The one-step-ahead algorithm proceeds recursively
as follows: Assume that the HMM filtered density has
been computed at time .
Step 1) Minimize at time the one-step-ahead cost. Using

the dynamic programming recursion (10), the above
cost function is straightforwardly minimized by

(38)

Step 2) Using the observation from sensor , compute
using the HMM filter as

Step 3)
Steps 1 and 2 involve implementing HMM filters at each

time instant; each HMM filter involves a complexity of
computations.

B. Lovejoy’s Approximation
In the worst case, the number of linear segments that char-

acterize the piecewise linear value functions and
(which lower and upper bound the optimal value function

defined in Section III-B) can grow exponentially as
; hence, the associated computational costs of the

near optimal sensor scheduling algorithms for quadratic cost
functions can be prohibitive. It is obvious that by considering
only a subset of the piecewise linear segments that characterize
the upper bound value function [which is defined in

(25)] and discarding the other segments, one can reduce the
computational complexity. This is the basis of Lovejoy’s [13]
upper bound approximation.
Lovejoy’s algorithm [13] operates as follows.
Step 1) Given and the piecewise linear upper bound

costs of (25), compute the set of vectors using
any of the POMDP algorithms described in Sec-
tion III-A.

Step 2) Construct the set by pruning as follows: Pick
any points in the information state
simplex . Then, set

Step 3)
The resulting value function is rep-

resented completely by piecewise linear segments. Further-
more, as shown in [13], is an upper bound to , i.e.,

for all

Note that itself is an upper bound to the optimal value
function , as described in Section III-B
Lovejoy’s algorithm yields a suboptimal HMM sensor

scheduling policy at an assured computational cost of no more
than evaluations per iteration . Lovejoy also provides
a constructive procedure for computing an upper bound to

.

VI. NUMERICAL EXAMPLES–AIRCRAFT
IDENTIFICATION PROBLEM

The scenario involves an incoming aircraft where using var-
ious forms of sensors available at a base station; the task is to
determine if the aircraft is a threat or not [5]. The choice of de-
ciding between various sensors arises because the better sensors
tend to make the location of the base stationmore easily identifi-
able or visible to the aircraft, whereas the more stealthy sensors
tend to be more inaccurate. The sensors give information about
the aircraft’s type and distance, although the distance informa-
tion is generally more reliable than the aircraft type information.
We consider two scenarios.
1) Scenario 1 is a three-state HMM sensor scheduling
problem and comprises two sensors and distance mea-
surements.

2) Scenario 2 is a six-state HMM sensor scheduling problem
and comprises of three sensors. The measurements com-
prise distance and aircraft-type measurements.

A. Dynamic Scheduling Between Active and Passive Sensors
State Space: The state space for this problem comprises how

far the aircraft is currently from the base station discretized into
three distinct distances , , and . We have
chosen a three-state model to graphically illustrate our results.
(Scenario 2 considers a six-state model).
We now specify the transition probabilities of the Markov

chain. Assume that in one unit of time, it is impossible for the
distance of the aircraft to increase or to decrease by more than
one discrete location. The probability that the aircraft remains at
the same discrete location is 0.8. Apart fromwhen the aircraft
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is at a maximum distance or minimum distance , the prob-
ability that the aircraft distance will increase by 1 discrete loca-
tion equals the probability that the aircraft distance decreases by
one discrete location where each probability is 0.1. With these
assumptions, the transition probability matrix of is

(39)

Sensors: Assume that two sensors are available, i.e., .
• Active: This active sensor (e.g., radar) yields accurate
measurements of the distance of the aircraft but renders
the base more visible to the aircraft. Thus, the active
sensor is merely an HMM state filter.

• Predict: Employ no sensor; predict the state of the aircraft.
Thus, the predict sensor is merely an HMMstate predictor.

At any time instant , denotes which
of the above two sensors is used.
Observation Symbols: When using the active sensor, the ob-

servation symbols at each time consists of distance measure-
ments to the base station , , and . In addition, there is
an additional observation symbol: nothing that results when the
predict sensor is used (i.e., no observation is made). In terms
of the notation of Section II, the number of possible observa-
tion symbols is and , , ,

.
We assume that the distance the active sensor reports is never

more than one discrete location away from the true distance. The
active sensor will detect the true distance with probability . The
predict sensor only records the observation nothing with prob-
ability 1. In particular, defining the matrix of symbol
probabilities
, we assign

Costs: Our cost function is given by (4) and comprises two
components.
1) Sensor Usage Costs: The sensor costs are assigned the
following values at each time instant: For

(40)

We assume , , meaning
that the operating cost of using the active sensor is higher
than the predict sensor. In addition, the cost incurred is in-
versely proportional to the distance of the aircraft. This re-
flects the fact that when the aircraft is close to the base sta-

Fig. 3. Finite-horizon HMM sensor scheduling with two sensors: active and
predict. The figure shows that dynamically switching between these two sensors
according to the optimal sensor schedule results in a lower cost than using each
sensor individually.

tion, the threat is greater.We chose the gains
and .

2) State Estimation Error Cost: For the state estimation error
cost component, we consider the cost .
We chose .

Results: With the aforementioned setup, we used the
POMDP program available from the website in [6] to optimally
solve the HMM sensor scheduling problem. The POMDP
program solves the backward DP recursion at each time
instant by outputting the the solution vector set . However,
the POMDP program is designed only for a linear cost. To
deal with the piecewise linear cost function, we wrote a
preprocessing program that, at each time , takes from the
POMDP program and adds our piecewise linear cost function.
The resulting augmented set of vectors is input to the POMDP
program at the next time iteration (and so on).
All our simulations were run on a Pentium-2 400–MHz per-

sonal computer. The POMDP program allows the user to choose
from several available algorithms. We used the “Incremental
Pruning” algorithm developed by Cassandra et al. in 1997 [7].
This is currently one of the fastest known algorithms for solving
POMDPs.
1) We ran the POMDP program for the previous parameters
over a horizon of for different values of (prob-
ability of detection). In all cases, no a priori assumption
was made on the initial distance (state) of the target; thus,
we chose the information state (filtered density) at time 0
as ; see (1). We approximated the
cost function by the piecewise linear interpola-

tion, as illustrated in Section III-B and Fig. 2, i.e., over
triangular patches.

Fig. 3 shows the costs incurred versus detection
probability if only the active or predict sensor is used
alone. The cost incurred by dynamically switching
between the active and predict sensors based on the
optimal sensor schedule is also shown. It can be inferred
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(a)

(b)

Fig. 4. Infinite-horizon HMM sensor scheduling. The optimal stationary
policy is depicted on the information state simplex . The shaded region
denotes values of information state for which it is optimal to use the active
sensor. The clear region denotes values of for which it is optimal to use the
predict sensor. denotes the probability of detection of the active sensor.

from Fig. 3 that when the probability of detection is
low ( ), using the predict sensor alone
does better than using the active sensor. The reason is
that for low probability of detection, the active sensor
(HMM filter) yields inaccurate state estimates. This,
together with the fact that the active sensor has a higher
operating cost than the predict sensor, means that for low
, it costs less to use an HMM predictor and not incur
any cost obtaining extremely inaccurate measurements.
Note that in all cases, the optimal sensor schedule (which
dynamically selects between active and predict) incurs
the smallest cost.

2) Stationary HMM Scheduling: Here, we consider the in-
finite horizon discounted cost function (35) with

.We used the Freudenthal triangularization with
regions for the piecewise linear approximation of the

quadratic cost function. The POMDP program (value it-
eration algorithm of Section IV-C) was run for a horizon

. Fig. 4 shows the stationary scheduling policy
on the information state simplex. The shaded region of the
information simplex depicts usage of the active sensor,

(a)

(b)

Fig. 5. Freudenthal interpolation accuracy for infinite horizon HMM
scheduling. The stationary policy is shown for the and
regions. The shaded region depicts (active sensor).

and the clear region depicts usage of the predict sensor.
Fig. 4(a) shows that when the detection probability

, it is optimal to use the active sensor (HMM state
filter) when the target is closest to the base station (i.e.,
distance 1 or ), whereas when the target is
further away (e.g., or ), it is optimal to use the
predict sensor (HMM state predictor). This makes intu-
itive sense since the closer the target is to the base station,
the threat is greater, and the more accurate active sensor
is used to track the target.
Fig. 4(b) shows that when the detection probability is

, the active sensor is used most of the time; only
when the information state computed by the HMM
filter is very close to or is the predict sensor used.
The increased usage of the active sensor is due to the fact
that the active sensor is now more accurate; hence, the
mean square error state estimate is lower compared with
the case .

3) Interpolation accuracy:We illustrate the performance of
the HMM scheduling algorithm with increasing accuracy
of the Freudenthal interpolation using the piecewise linear
approximation (see Section III-B). We ran the
value iteration algorithm for the interpolation (
regions) and interpolation ( regions).

Fig. 5 shows the optimal stationary scheduling policy as
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(a)

(b)

Fig. 6. Optimal HMM sensor scheduling with quadratic constraints on
estimation error. The cost minimized is the sensor usage cost. The shaded
region depicts (predict sensor), and the clear region depicts
(active sensor).

a function of the information state . Fig. 5 shows that
and regions yield similar stationary

policies. We found that for , the change in the
stationary policy is negligible.

Quadratic Constraints in State Estimation Error: Here, we
consider the setup of Section IV-A with constraints on the mean
square estimation error of the prediction sensor, as in (32). The
cost function, which only includes sensor usage costs, is of the
form (40). The predict sensor can only be used at time , pro-
viding the mean square state estimation error at time is less
than a specified value , i.e.,

. We chose , , ,
and . Fig. 6(a) shows the information simplex
without constraints. The feasibility of the above constraint can
be verified using Theorem 4.1. Fig. 6(a) shows the information
state simplex and the optimal stationary policy for the uncon-
strained case; the shaded region indicates the values of for
which the predict sensor is optimal. When the above constraint
is adopted on the predict region, Fig. 6(b) shows the information
state simplex with the shaded region indicating the values of
for which the predict sensor is optimal, subject to the above con-
straint. It can be seen from Fig. 6(b) that the predict sensor can
only be used at time if the current HMM filtered density is
very close to either or . For these shaded regions, it is guar-
anteed that if the predict sensor is used at time , the mean
square estimation error at time is less than .

B. Dynamic Scheduling Between Active, Coarse, and Passive
Sensors
State Space: The state space for this problem comprises of

two main components:
• Aircraft type: The aircraft is either a friend or hostile.
• Distance: How far is the aircraft currently from the base
station discretized into distinct distances ,

, and ?
Thus, the total number of states are . We repre-

sent the states of the state Markov chain by the unit vec-
tors . Here, the states , correspond to
the aircraft being at at distance and friendly, whereas ,

corresponds to the aircraft being at a distance and
hostile.
Assume that the distance of the aircraft evolves according to

the same transition probabilities as Scenario 1. The aircraft-type
portion of the state never changes with time (i.e., a friendly air-
craft cannot become a hostile aircraft and vice versa; hence, the
transition probability matrix is block diagonal. With the above
assumptions, the transition probability matrix of is

(41)

Sensors: We assume that three sensors are available, i.e.,
.

• Active: This active sensor (e.g., radar) yields accurate
measurements of the distance of the aircraft but renders
the base more visible to the aircraft. The active sensor
also yields less accurate information on the aircraft type
(friend or hostile).

• Passive: This is a passive imaging sensor. It yields accu-
rate information on the aircraft type but less accurate mea-
surements of the aircraft distance. The passive sensor does
not make the base station too visible to the incoming air-
craft.

• Predict: Employ no sensor; predict the state of the aircraft.
Observation Symbols: The observation at each time
consists of two independent components: the aircraft type

(friend or hostile) and its distance to the base station ,
. In addition to these possible symbols, there is

an additional observation symbol; nothing that results when the
predict sensor is used (i.e., no observation is made).
For simplicity, assume that the distance the sensors report is

never more than one discrete location away from the true dis-
tance. The active sensor will detect the true distance with prob-
ability 0.95, whereas the passive sensor detects the true distance
with probability , where is a parameter we will vary.
The remaining probability mass for both sensors are equally dis-
tributed among detecting the distance as being one location too
close and one location too far.
The sensors’ detection of the aircraft type (friend or hostile) is

independent of the distances reported by the sensors. The active
sensor will detect the correct type with probability , and
the passive sensor succeeds with probability 0.95.
Costs: Our cost function is given by (4) and comprises two

components.
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Fig. 7. Finite-horizon HMM sensor scheduling with three sensors: active,
predict, and passive. The figure shows that dynamically switching between
these three sensors according to the optimal sensor schedule results in a
significantly lower cost than using any of the sensors individually.

i) The sensor usage costs are assigned the following values
at each time instant: For

Recall that , denotes a friendly
aircraft at distance , whereas denotes a hos-
tile aircraft at distance . Thus, for a friendly aircraft, the
cost of using a sensor is independent of the distance of
the aircraft and only depends on the sensor. We assume

, meaning that
an accurate sensor costs more than the coarse sensor, etc.
For a hostile aircraft, the cost incurred is inversely pro-
portional to the distance of the aircraft.

ii) For the state estimation error cost component, assume that
, , and in (4).

We consider the state estimate error cost as the following
seven-piece linear interpolation of the cost :

if
otherwise. (42)

Here, is a six-dimensional vector with th element 1
and all other elements 282.333.

For a horizon length of , Fig. 7 compares the perfor-
mance of the optimal HMM sensor scheduling algorithm versus
using the predict, passive, or active sensor alone.

VII. CONCLUSIONS AND FUTURE WORK

We have presented optimal and suboptimal algorithms for the
scheduling of sensors for (finite-state) hidden Markov models
using a stochastic dynamic programming framework. One dis-
advantage of the algorithms proposed is that they require knowl-
edge of the underlying parameters: transition and observation
probabilities of the HMMs. In future work, we will look at effi-
cient simulation-based algorithms based on neuro-dynamic pro-
gramming [3]. In target tracking applications, it is often more
appropriate to use jumpMarkov Linear systems (JMLSs) rather
than HMMs. See [10] for some preliminary results and algo-
rithms.
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