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Controlled Hidden Markov Models for Dynamically
Adapting Patch Clamp Experiment to Estimate

Nernst Potential of Single-Ion Channels
Vikram Krishnamurthy�, Fellow, IEEE, and G. George Yin, Fellow, IEEE

Abstract—This paper presents novel kernel-based stochastic
learning algorithms for controlling the kinetics of single-ion
channels in a patch clamp experiment. The algorithms yield
efficient estimates of the equilibrium (Nernst) potential of an ion
channel. The equilibrium potential of an ion channel is the applied
external potential difference required to maintain electrochemical
equilibrium across the ion channel. The algorithm adaptively
controls the exploration of the learning algorithm to achieve an
optimal balance between exploration and exploitation. An impor-
tant feature of the resulting algorithm is that it is guaranteed to
minimize the experimental effort. We illustrate the efficiency of
the algorithms for the experimentally determined current voltage
curve of a bi-ionic single potassium ion channel.

Index Terms—Adaptive exploration, discrete stochastic opti-
mization, equilibrium potential, hidden Markov model (HMM),
ion channel, patch clamp experiment.

I. INTRODUCTION

CELL membranes of all animal, plant, and bacterial cells
are composed of a lipid bilayer (two layers of lipid

molecules) making them impermeable to ions. Ion transporta-
tion into and out of cells is mediated by large membrane protein
molecules called ion channels. Ion channels are biological
nanotubes whose opening and closing may be intrinsic or
gated. Their primary function is to facilitate the diffusion of
ions across the cell membrane.

The measurement of ionic currents flowing through
single-ion channels in cell membranes has been made possible
by the giga-seal patch clamp technique [1], [2] for which the
authors of [1] won the 1991 Nobel Prize in medicine. Defects in
ion channel functions is the cause of several physiological and
degenerative diseases, see [3]. Understanding the functioning
of ion channels is a fundamental problem in biology. There are
two broad classes of problems that study the dynamics of ion
channels—we refer the reader to [4] and the special issue [5]
for a tutorial exposition. At the femtosecond time scale and
angstrom unit spatial scale, the permeation problem deals with
modeling the dynamics of individual ions propagating through
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the protein nanotube [6]. At the millisecond time scale, the
kinetic model of an ion channel deals with probabilistic models
for the gating of the ion channel. In this paper we focus on
controlling the kinetic behavior of ion channels. Typically a
gated ion channel has two states—a “closed” state that does
not allow ions to flow through, and an “open” state that does
allow ions to flow through. In the open state, the single-ion
channel current denoted by , where denotes the applied
external voltage to the patch clamp experiment, is typically
of the order of picoamps (i.e., 10 amps). The measured
single-ion channel current (obtained by sampling at 10 kHz) is
obfuscated by large amounts of thermal noise. In several recent
papers [7], [8], hidden Markov models (HMMs) have been
used to model these ion channel currents and obtain an estimate

of the open-state current level .
In characterizing different types of ion channels, cur-

rent–voltage (I–V) curves are widely used by neurobiologists,
since they yield a unique signature of a particular ion channel,
revealing its operating characteristics. The I–V curve repre-
sents the variation of the open-state current level of the
single-ion channel as a function of the applied voltage value

. The zero point of the I–V curve, i.e., the voltage at
which the open-state current level is zero, is known as
the equilibrium potential (Nernst potential). The equilibrium
potential gives information about the relative concentrations at
the two faces of the ionic channel. The value of the open-state
current level is described by the Nernst–Planck equation
that combines Ohm’s and Fick’s laws. Once the equilibrium
potential is determined, by computing estimates of the
current at several values of around , the experimenter
can straightforwardly determine if the I–V response of the
single-ion channel is ohmic (linear) or not.

In this paper, we present novel learning algorithms to adap-
tively control the applied voltage of a patch clamp experiment
in order to dynamically learn the equilibrium potential of a
single-ion channel with minimum experimental effort. We for-
mulate the problem as the solution of a discrete stochastic
optimization problem of the form

Compute

where is a discrete set of possible applied voltages to the patch
clamp experiment, and for any fixed voltage , de-
notes the maximum likelihood estimate obtained from experi-
mental observations in a patch clamp experiment.
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We also use the learning algorithm to estimate the applied
voltage at which the operating signal-to-noise ratio of the
single-ion channel current is maximized. With denoting
the estimate of the measured ion channel noise variance ,
we use the learning algorithm to estimate the potential at
which the is minimized.

There are several methods that can be used to solve the above
discrete stochastic optimization problem; see [9] for a recent
survey. In our recent paper [10], we presented a discrete sto-
chastic approximation algorithm for estimating the equilibrium
potential. The idea of discrete stochastic approximation [9], [11]
is to dynamically control (schedule) the choice of voltages at
which the patch clamp experiment operates to provide more ob-
servations near and less in other areas efficiently obtain the
equilibrium potential.

However, a key issue with the discrete stochastic
approximation algorithms in [9] and [11] is that they are
designed for simulation-based optimization and not control of
real-life experiments. That is, they make the assumption that
there is no effort involved in evaluating for any chosen

. In estimating the equilibrium potential of an ion channel,
each evaluation of is expensive, since it involves running
a patch clamp experiment. Thus, what is needed is a stochastic
approximation algorithm that optimally trades off exploration
with exploitation, as we now explain.

Exploration refers to the fact that the learning algorithm needs
to examine other candidate solutions compared to its current so-
lution in order to determine if these candidates are better than the
current solution. However, to estimate the equilibrium potential,
exploration is expensive, since evaluation of an alternative can-
didate involves running a patch clamp experiment on this alter-
native candidate. While exploration is expensive, the advantage
of exploration is that it allows the algorithm to rapidly converge
to the vicinity of the optimum . This is intuitively clear, since,
the more one explores, the quicker one gains information about
which candidates are good. Hence, there is a tradeoff between
convergence rate (advantage of exploration) versus exploration
cost (disadvantage of exploration). Exploitation refers to the fact
that if one is confident that the current estimate is close to the
optimum, then it is better to exploit this estimate—i.e., keep
running experiments at this estimate to keep the system perfor-
mance close to optimal.

All learning algorithms have an inherent tradeoff between
exploration and exploitation. Typically during initial iterations
of a learning algorithm, it is desirable to aggressively explore
more candidates, since one is uncertain how good the current
estimate is. After more confidence has been obtained about the
candidates, it is desirable to reduce exploration and exploit the
best candidates. The key idea of this paper is to introduce a the-
oretical framework and practical algorithms that determine an
optimal tradeoff between exploration and exploration in control-
ling patch clamp experiments to determine the equilibrium po-
tential of single-ion channels. Fig. 1 schematically illustrates
our kernel-based learning algorithm—details are presented in
Section III-D. The key idea is to adaptively update the explo-
ration probabilities based on the ion channel behavior via a
kernel-based function. As the learning algorithm gains confi-
dence of the ion channel behavior, the exploration probability

Fig. 1. Schematic setup of kernel-based learning algorithm for controlling
single-ion channel patch clamp. The variable  2 f0; 1g is randomly
generated according to exploration probabilities (� ; 1 � 2� ), respectively.
Algorithm 2 in Section III-D presents details.

decreases to zero, so that exploration is minimized and the
best estimate is increasingly exploited to optimize the behavior
of the patch clamp experiment.

The rest of this paper is organized as follows. Section II de-
scribes the patch clamp experiment setup and formally presents
a stochastic signal model (HMM) for a channel ion current.
In Section III the learning algorithm is described. Finally,
Section IV illustrates the performance of these algorithms in
computer simulations. These simulations show that using the
learning algorithms result in a remarkable improvement in
overall efficiency. To ease the presentation, all proofs of results
are placed in an appendix at the end of the paper.

II. ION CHANNEL MODEL AND CURRENT VOLTAGE (I–V)
CURVE OF SINGLE ION CHANNEL

In this section we give a precise formulation of the ion
channel current signal model and the experimental setup.
This allows us to formulate the equilibrium potential learning
problem in Section III mathematically.

A. I–V Curve, Equilibrium Potential

The single-ion channel current measurement from a patch
clamp experiment (after anti-aliasing filtering and sampling) re-
veals a piecewise constant discrete time ion channel current that
randomly jumps between two values—zero amperes, which de-
notes the closed state of the channel, and amperes, which
denotes the open state. is called the open-state current
level. The open-state current level depends on the voltage

that is applied by the experimenter to the ion channel.
Fig. 2 shows the experimentally determined I–V curve of a

potassium ion channel. In patch clamp experiments, the applied
voltage is usually chosen from a finite set, i.e.,

denotes the finite set of possible voltage values that the exper-
imenter can choose. For example, for the experimentally de-
termined I–V curve for the potassium ion channel of Fig. 2,

and are uniformly spaced in 10-mV steps from
mV and mV. The shape of the

I–V curve illustrated in the figure incorporates several features
observed in many experimentally observed I–V curves: linear
and nonlinear segments, a saturation of current with increasing
driving force (voltage), and an asymmetry between outward and
inward currents (i.e., the I–V curve for and ,
respectively). The equilibrium potential (voltage at which ver-
tical broken line intersects the axis) is mV.
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Fig. 2. Experimentally determined I–V curve of potassium ion channel in
bi-ionic condition with 100 mM K external and 100 mM Tl (Thallium) internal.
The � represents I–V experimentally determined values of I(v) versus v at
10-mV intervals ranging from�150 mV to 150 mV. The equilibrium potential
is the voltage v at which I(v) is closest to zero—approximately 30 mV (dashed
lines).

Markov Model for Ion Channel Current: Suppose the patch
clamp experiment is conducted with a voltage applied across
the ion channel. Then, as described in [7], [8], the ion channel
current , can be modeled as a three-state homogeneous
first-order Markov chain. with state space corre-
sponding to the physical states of gap mode, burst-mode-closed
and burst-mode-open. For convenience, we will refer to the burst
mode closed and burst-mode-open states as the open and closed
states, respectively. In the gap mode and the closed state the ion
channel current is zero. In the open state, the ion channel current
has a value of . The transition probability matrix of
the Markov chain has elements

. Note that in general, the applied voltage af-
fects both the transition probabilities and state levels of the ion
channel current .

Before describing our adaptive learning and control method-
ology, we briefly outline two existing methods for estimating
the equilibrium potential and I–V curves.

1) Filtered trace brute force approach: This method is
widely used by neurobiologists to estimate the I–V
curve and determine the equilibrium potential. First,
several possible candidate voltages are chosen. For
each of these voltages , a patch clamp experiment is
run for a long time—typically several minutes. The
measured ion channel current sequence is then
heavily low-pass filtered—and an estimate of the cur-
rent level is determined visually. The equilibrium
potential is typically deduced by measuring the current
levels near its vicinity and then linearly extrapolating
the data points. This approach is highly unreliable when
the signal to noise ratio is low—which is almost always
the case in typical patch clamp experiments. It is also
very expensive, since the experiments are not controlled
to extract maximum information about the equilibrium
potential.

2) HMM Brute Force Approach: Let denote the
measured noisy ion channel current at the electrode
when conducting a patch clamp experiment:

(1)

Here is thermal noise and is modeled as zero
mean white Gaussian noise with variance . The
ionic channels can be modeled extremely well by an
HMM [7], [8] parameterized by

(2)

Hence, an obvious improvement to the above approach
is to replace the visual estimation step by an HMM pa-
rameter estimation algorithm. For each possible voltage

, run an independent patch clamp experiment
to gather the sample path
for a very large batch size . Compute the MLE

via an HMM parameter estimator. Finally pick
. Since for any fixed ,

the MLE is strongly consistent [12],
w.p. 1, as the batch size . This and the finiteness
of imply that as ,

w.p. (3)

Thus in principle, the above brute force simulation
method can solve the discrete stochastic optimization
problem (6) for large batch size and the estimate is
consistent, i.e., (3) holds. However, the method is highly
inefficient, since needs to be evaluated for each

. The evaluations of for are wasted
because they contribute nothing to the estimation of the
ion channel current at the equilibrium potential

. Also the brute force approach does not exploit the
fact that the I–V curve is monotonically increasing.

For , the brute force approach to compute the equi-
librium potential requires conducting a total of 80 experiments,
one at each value of . For a typical sampling rate of 100
kHz and 10 min of data per experiment, 6 10 observations
are obtained per experiment which need to be processed by an
HMM MLE estimator.

Examples: To illustrate the ad hoc nature of approach 1)
above, we used the potassium channel I–V curve in Fig. 2 to
generate computer-simulated ion channel currents (denoted
as ), and the noisy measured ion channel current (de-
noted as ) from a patch clamp experiment for 500 time
points—Section IV contains precise details. Figs. 3, 4, and
5 show the plots of the sequences and for
three different applied voltages mV, mV,
and mV, respectively. For each of these voltages ,
the ion channel current was simulated as Markov chain)
with state levels 0 (off-state) and (on-state). The on-state
level is chosen using the I– curve of Fig. 2. From the
traces of the measured currents in Figs. 3, 4, and 5,
it is virtually impossible to determine the on-state level
by merely eye-balling the plots. However, as demonstrated in
[7] and [8], accurate maximum likelihood estimates of
for various values of applied voltage can be obtained using
HMM signal processing methods. Then using the HMM brute
force approach 2) above, the equilibrium potential i.e., the
voltage at which can be determined by exhaustive
experimentation and computation over all possible voltages .
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Fig. 3. Synthetic generated patch clamp currents for bi-ionic potassium
channel with 100 mM K external and 100 mM Tl internal. Applied voltage
v = �30 mV, I(v) = 0:11 pA.

Fig. 4. Synthetic generated patch clamp currents for bi-ionic potassium
channel with 100 mM K external and 100 mM Tl internal. Applied voltage
v = 0 mV, I(v) = 1:39 pA.

Fig. 5. Synthetic generated patch clamp currents for bi-ionic potassium
channel with 100 mM K external and 100 mM Tl internal. Applied voltage
v = 30 mV, I(v) = 2:38 pA.

Our Approach: In Section III we present a novel algorithm
that dynamically learns the equilibrium potential with minimum
effort. The key feature of the algorithm is its tradeoff between
exploration and exploitation. The adaptive learning algorithms
we propose are based on a novel extension of discrete stochastic
approximation algorithms that have recently been developed in
the operations research literature [9], [11]. The basic idea is to
generate a reversible homogeneous Markov chain taking values
which spends more time at the zero point than at any other
voltage and to control how much exploration this Markov
chain does to minimize the experimental effort.

B. Measurements of Ionic Channel Current

The measurement of ionic currents flowing through
single-ion channels in cell membranes has been made possible
by the giga-seal patch clamp technique [1], [2]. A tight seal
between the rim of the electrode tip and the cell membrane
drastically reduces the leakage current and extraneous back-
ground noise, enabling the resolution of the discrete changes
in conductance, which occur when single-ion channels open
or close. To record currents from single-ion channels in the
cell attached patch configuration, the tip, an electrode with
the diameter of about 1 m, is pushed against the surface of
a cell, and then a tight seal is formed between the rim of the

electrode tip and the cell membrane. A patch of the membrane
surrounded by the electrode tip usually contains one or more
single-ion channels. The current flowing from the inside of
the cell to the tip of the electrode through a single-ion channel
is monitored. This is known as “cell-attached” configuration
of patch clamp techniques for measuring ion channel currents
through a single-ion channel.

The ionic strength in the electrode is made the same as that
in the outside of the cell. Let and , respectively, denote
the resting membrane potential and the potential applied to the
electrode. If is identical to the membrane potential, there will
be no potential gradient across the membrane patch confined by
the tip of the electrode. Let denote the intracellular ionic con-
centration and the ionic concentration in the electrode. Here
the intracellular concentration inside the cell is unknown as
is the resting membrane potential . and are set by the
experimenter and are known. Let denote the po-
tential gradient. Both the potential gradient and concentration
gradient drive ions across an ion channel resulting in an
ion channel current .

The potential (and hence potential difference ) is ad-
justed experimentally until the current goes to zero. This
voltage at which the current vanishes is called the equi-
librium potential and satisfies the Nernst equation

mV (4)

where C denotes the charge of an electron,
denotes Boltzmann’s constant, and denotes the absolute tem-
perature. The Nernst equation (4) gives the potential difference
required to maintain electrochemical equilibrium when the con-
centrations are different on the two faces of the membrane.

Another widely used configuration is the excised patch
experiment. In this excised configuration of patch clamp
technique, both and , as well as and , are known.
Again it is important to determine the reversal potential
accurately. For example, the ionic solutions in the electrode
and the bath may contain a mixture of ionic species, such as
Na , Cl , and K . The ion channel contained in the membrane
patch may be permeable to, for example, Na and K , as the
case with the acetylcholine receptor or Na and Cl as the
case with certain mutant glycine receptors. It is important to
deduce the permeability ratio of the ion channel, namely, the
ratio between the number of Na ions and K ions that move
across the ion channel per unit time. This ratio can be deduced
by accurately determining the equilibrium potential using the
Goldman–Hodgkin–Katz voltage equation [13] of the form

Na Cl
K Na Cl

(5)

Here , , and refer to the permeability of K , Na ,
and Cl , respectively.

III. PATCH CLAMP CONTROL ALGORITHMS FOR ESTIMATING

EQUILIBRIUM POTENTIAL

Here we formulate the ion channel control problem as a
discrete stochastic optimization problem. A novel discrete
stochastic approximation algorithm is presented for efficiently
solving this problem.
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A. Formulation as Discrete Stochastic Optimization Problem

As explained in the HMM formulation above, due to the pres-
ence of large amounts of thermal noise, cannot be exactly
evaluated and only unbiased estimates are available. Thus,
computing the equilibrium potential is equivalent to the fol-
lowing discrete stochastic optimization problem:

Compute (6)

where is the MLE of the parameter of the HMM.
Note that the equilibrium potential (zero crossing point) does
not necessarily belong to the discrete set —instead we will
find the point in that is closest to (with resolution

). With slight abuse of notation we will denote the element
in closest to the equilibrium potential as . Our choice of
using a quadratic objective function (instead of, for example,

) is because it allows us to conveniently re-
formulate the optimization problem to be linear in the expected
value—see (11) below.

The most popular way of computing the maximum likelihood
estimate (MLE) is via the expectation maximization (EM)
algorithm (Baum–Welch equations). Let denote MLE of

based on the -point measured channel current sequence
. For sufficiently large batch size of ob-

servations, due to the asymptotic normality of the MLE for an
HMM [14]

(7)

where is the Fisher information matrix. Thus, asymptot-
ically is an unbiased estimator of , i.e.,

where denotes the mathematical expectation oper-
ator. Since for an HMM, no closed form expression is available
for in (7), the above expectation cannot be evaluated an-
alytically. This motivates the need to develop a simulation based
(stochastic approximation) algorithm [15].

B. Learning Algorithm for Controlling Patch Clamp

In this subsection we present a generic learning algorithm
for estimating the equilibrium potential . We use the term
“generic,” since the algorithm has a parameter where

that determines how much the algorithm explores the
candidate solutions. Later, we will denote as the exploration
probability. Algorithm 1 below is described for a fixed . In sub-
sequent sections we will show how the exploration probability

can be chosen and dynamically adjusted as the response of
the ion channel is better learned. It is important to note that for
the special case , the algorithm specializes to that pro-
posed in [10] and [11]. However, as described below, is
expensive from an experimental point of view in the sense that
patch clamp experiments need to be conducted at each iteration
on alternative candidate solutions.

Let denote discrete time. The generic learning
algorithm described below is recursive and requires conducting
patch clamp experiments on batches of data. Since the patch

clamp experiments will be conducted over batches of data, it is
convenient to introduce the following notation. Group the dis-
crete time into batches of length —typically in
experiments. We use the index to denote batch
number. Thus, batch comprises the discrete time instants

.
In the algorithm below, the process de-

notes the state of the algorithm. Indeed, as shown later, is
a finite-state Markov chain on the state space . The most im-
portant feature of the learning algorithm below is that its state

spends more time at the global optimum than any other
value in —indeed this feature will be used to estimate . To
quantify the amount of time the algorithm state spends
at each candidate value in , define the vector of empirical oc-
cupation probabilities of as ,

. The elements of this occupation
probability vector are

of times visits state in batches to

For the state , define the neighborhood set

if
if
otherwise

(8)

Finally, denote the -dimensional standard unit vectors by
, , where

(9)

with 1 in the th position and zeros elsewhere.
It is convenient to formulate the cost function to be mini-

mized as . Equation (6) can be converted to
this form as follows. Let , be two statistically in-
dependent HMM-ML estimates of , each obtained from a

length patch clamp experiment batch of HMM observations.
Then assuming that the ML estimates are unbiased, defining

(10)

it straightforwardly follows that for any fixed

(11)

The discrete stochastic approximation algorithm we propose
is as follows.

Algorithm 1: [Constrained Exploration Cost Stochastic
Approximation Algorithm for Estimating Equilibrium
Potential]

• Step 0: (Initialization.) At batch time , initialize
state of the algorithm randomly.
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Initialize state occupation probabilities .
Initialize equilibrium potential estimate as .

• Step 1: (Adaptive Sampling and Exploration.) At
time , given current algorithm state , apply voltage

to patch clamp experiment and evaluate
. Then perform the following two-level sampling

procedure: simulate a Bernoulli random variable
with probabilities and

, where .
— If , perform exploration as follows: generate an

alternative candidate state by sampling uniformly
from the neighborhood of current state .
Apply voltage to patch clamp experiment
and evaluate and go to Step 2.

— If (perform no exploration), go to Step 3.
• Step 2: (Conditional Acceptance Test.) If

, set , else, set .
• Step 3: Update empirical state occupation probabilities

as

(12)

• Step 4: (Update estimate of equilibrium potential.)
where ,

set , go to Step 1.

Processing a batch size takes negligible time
compared to the data acquisition time. Actually in the theorem
below, we only require that , have symmetric
probability density functions with mean . We assume the
following.

(A) The batch size is sufficiently large (e.g )
so that due to (7), the MLE estimates , are

Gaussian random variables.
(B) For any

The following theorem proved in the appendix shows that the
above algorithm is convergent to the equilibrium potential
of the ion channel irrespective of the choice of the exploration
parameter .

Theorem 1: Under conditions (N) and (O), the sequence
generated by Algorithm 1 is a homogeneous, aperi-

odic, irreducible, and reversible Markov chain with state space
. The stationary distribution of the Markov chain is

independent of , and the occupation probabilities converge
to geometrically fast. Furthermore, Algorithm 1 is attracted
to the equilibrium potential , i.e., for sufficiently large ,
the sequence spends more time at than any other
states. (Equivalently, if , then for

.)

C. Constrained Exploration Equilibrium Potential Estimation

Our aim is to choose the exploration probability in Algo-
rithm 1 above so as to maximize the exploration reward while
satisfying a constraint on the exploration cost. The exploration
reward and exploration cost are defined as follows.

Exploration Cost: In each iteration of the above algorithm
if in Step 1, exploration of an alternative candidate is
performed. Define the average exploration cost of the algorithm
over iterations as (with shown as an explicit function of )

(13)

The summation denotes the number of times ,
, i.e., the number of times in iterations

that exploration is performed. Hence, the above cost reflects
the average exploration cost per iteration of running a patch
clamp experiment on an alternative candidate voltage. Since
the sequence consists of independent identically dis-
tributed (i.i.d.) Bernoulli random variables, by the strong
law or large numbers, the right-hand side of (13) converges
to . Thus, the average exploration cost per
iteration of the algorithm is

(14)

Exploration Reward: As shown in Theorem 1, converges
as to the invariant distribution of the Markov chain

. As is standard in statistical inference, the asymptotic
rate of convergence of to is measured by the asymptotic
covariance

(15)

The smaller this asymptotic covariance, the faster the estimate
generated by Algorithm 1 converges to . Thus, in

(15) defines the exploration reward of Algorithm 1 when the
exploration parameter is set to with .

We now consider two schemes for choosing . In the first
scheme, the exploration cost is constrained as

(16)

Here denotes a user defined exploration cost.
Thus, we have the following constrained exploration discrete
stochastic optimization problem: Consider Algorithm 1 with its
attraction property for to

Compute (17)

Optimize the following exploration/exploitation optimization
tradeoff of Algorithm 1

subject to (18)



KRISHNAMURTHY AND YIN: CONTROLLED HIDDEN MARKOV MODELS FOR DYNAMICALLY ADAPTING PATCH CLAMP EXPERIMENT 121

Theorem 2: The asymptotic covariance of generated
by Algorithm 1 is a decreasing function of . Thus, for

, the exploration reward is maximized by choosing .
The above theorem states that the exploration reward is an

increasing function of . On the other hand the exploration cost
in (14) is an increasing function of . Thus, there is an

inherent tradeoff between the exploration cost and exploration
reward in choosing .

D. Kernel-Based Adaptive Exploration Learning Algorithm

Section III-C presented an exploration constrained algorithm
for estimating the equilibrium potential where the explo-
ration probability was held constant. A natural extension of
idea is to vary dynamically over time. This is consistent with
the idea that for early iterations, should be chosen close to 0.5
to maximize exploration, while after several iterations once con-
fidence has been gained about the behavior of the patch clamp
experiment, the exploration probability can be decreased to
reduce the exploration cost. The aim in this section is to dy-
namically adapt the exploration probability with time. This
adaptation of is done via a kernel-based learning algorithm.
The key idea is Step 3 below, where a kernel-based update on

is used.

Algorithm 2: [Kernel-Based Adaptive Exploration/Exploitation
Stochastic Approximation Algorithm for Estimating
Equilibrium Potential]

• Step 0: Identical to Algorithm 1.
• Step 1: (Adaptive Sampling and Exploration.) At

time , given current algorithm state , apply voltage
to patch clamp experiment and evaluate

. Then perform the following two-level sampling
procedure: simulate a Bernoulli random variable

with probabilities and
, where .

— If , perform exploration as follows: generate an
alternative candidate state by sampling uniformly
from the neighborhood of current state .
Apply voltage to patch clamp experiment
and evaluate and go to Step 2.

— If (perform no exploration), go to Step 3.
• Step 2: (Conditional Acceptance Test.) If

, set , else, set .
• Step 3: (Kernel-based exploration probability

update and empirical state occupation probabilities
update.)

(19)

(20)

(21)

where , , and as .
[In the actual implementation, we often choose to be a
small constant to simplify the computation.]

• Step 4: (Update estimate of equilibrium potential.)
where ,

set , go to Step 1.

In the above algorithm, for any the kernel

if
otherwise

The intuition in the above kernel-based learning in Step 3 is
as follows: in early iterations as the algorithm knows little about
the behavior of the ion channel. Hence, the average error be-
tween and the empirical occupation is large. When this
average error is large, then is close to 0 and

given in (21) is close to 0.5. Thus, in early iterations the al-
gorithm is forced to explore the space of candidate solutions.
As the iterations progress and the algorithm learns the behavior
of the ion channel, the average error is getting smaller, then

is close to 1 and . As a result as the algo-
rithm becomes more confident about the ion channel behavior,
it reduces the exploration probability to reduce the exploration
cost. To proceed, we present a theorem that reveals the conver-
gence of the algorithm presented in Step 3 above.

Theorem 3: Assume that the conditions of Theorem 1 are
satisfied. Then

• the sequence given in Step 3 above converges
to w.p. 1. Also

• Algorithm 2 is attracted to the equilibrium potential , i.e.,
for sufficiently large , the sequence spends more
time at than any other states. (Equivalently, if

, then for .)
Remark: Let us comment on the rate of convergence of the

algorithm under consideration. For Algorithm 2, the rate of
convergence can be studied by use of diffusion approximation
methods. The basic ideas and technical details are in [15,
Ch. 10] and we only outline the main ideas below.

Define

(22)

Then using the martingale averaging method, we can show that
the following limit result holds.

Theorem 4: Under the conditions of Theorem 3, the scaled
sequence of errors converges weakly to a limit
process such that the limit process is a solution of
the following system of stochastic differential equations:

(23)

where is given by the limit

w.p.
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Remark: The convergence rates of may be ob-
tained by the error bounds in the sense. In fact, it is easily
seen that

and

provided we choose for some . The above
result gives further insight on the asymptotic distribution

. In fact, we have converges in distribu-
tion to a normal random variable where is given by

diag

and with being the identity matix.

Note that is in fact, the stationary covariance of the diffusion
process.

IV. NUMERICAL RESULTS—BI-IONIC POTASSIUM ION

CHANNEL EQUILIBRIUM POTENTIAL ESTIMATION

Using computer generated synthetic data for the potassium
ion channel I–V curve, we illustrate the efficiency of the adaptive
exploration algorithm compared to the nonadaptive exploration
algorithm. the performance of the performance of Algorithms 1
and 2.

Sample paths of the potassium ion channel current as
a Markov chain with transition probability matrix and open-
state current level . Here

(24)

and was generated using the experimentally determined
I–V curve of Fig. 2. The choice of in (24) implies that the
steady state probability vector of the Markov chain is

. This is consistent with patch clamp ex-
perimental data which shows that typically the ion channel cur-
rent spends about 80% of its time in the gap mode, and about
10% of its time in each of the closed and open states. Note that
the I–V curve of the potassium ion channel in Fig. 2 it is a dif-
ficult case to handle, since it is nonohmic (nonlinear) and has
asymmetric behavior for positive and negative currents.

The observed channel current at the electrode was simulated
by adding white Gaussian noise with standard deviation

to the simulated ion channel current sequence , re-
sulting in the HMM sequence (see (1)). Given the sim-
ulated ion channel current for the potassium ion channel with
I–V curve in Fig. 2, we used Algorithm 1 and Algorithm 2 to es-
timate the equilibrium potential . Experiments were run over
batch sizes .

Both algorithms were initialized with , i.e., initial
applied voltage mV. In Step 2, the EM algorithm
was run for 200 iterations on each -length batch of HMM
observations. As described at the end of Section III-B, this takes
only about 0.001 secs on a 2 GFlop Pentium 4. The resulting

Fig. 6. Total normalized time Algorithm 1 and Algorithm 2 spend at various
candidate potentials. The efficiency of the algorithms are the normalized amount
of time spent at the equilibrium potential v . Efficiency of Algorithm 2 is 89%
while the efficiency of Algorithm 1 is 54%. (a) Algorithm 1. (b) Algorithm 2.

Fig. 7. State evolution of adaptive exploration Algorithm 2 and fixed explo-
ration Algorithm 1. For the adaptive exploration algorithm the exploration prob-
ability � evolves as shown in Fig. 8. For the fixed exploration algorithm,
� = 0:5. (a) Algorithm 1. (b) Algorithm 2.

Fig. 8. Evolution of exploration probability � versus batch time n of Algo-
rithm 2. In comparison with Algorithm 1, � is kept fixed at 0.5.

MLEs for the 4 batches, namely , , and
were used to determine and .

The most important comparison between Algorithms 1 and
the adaptive exploration Algorithm 2 is the total amount of
experimental effort used to estimate the equilibrium potential.
This total effort (normalized by the number of batch iterations)
is depicted in Fig. 6. It is seen from Fig. 6 that the adaptive
exploration algorithm results in an overall efficiency of 89%
compared to the fixed exploration algorithm with efficiency of
54%. That is, Algorithm 2 conducted 35% fewer experiments.
Over 5000 batch iterations the savings amount to 1750 patch
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clamp experiment batches which is an enormous saving in
experimental effort. Fig. 7 shows how the state of the
fixed exploration algorithm jumps around with batch iterations
whereas the state of the adaptive exploration algorithm remains
relatively constant after the first 1500 iterations. Again this
illustrates the considerable experimental savings in the adaptive
exploration algorithm. Finally, Fig. 8 shows how the exploration
probability in Algorithm 2 evolves with time. It can be seen
that initially is large so that the algorithm explores the set
of candidate voltages aggressively. As the algorithm learns
more about the equilibrium potential, it reduces the exploration
probability and gets close to zero for large .

V. CONCLUSIONS AND EXTENSIONS

In this paper we presented two learning-based discrete sto-
chastic approximation algorithms for learning the behavior of
nerve cell membrane ion channels and controlling the patch
clamp experiment. The main idea was to take into account the
cost of exploration of the learning algorithm. We gave two per-
formance criteria—the exploration reward (asymptotic covari-
ance) and exploration cost—and showed how the exploration
probability can be chosen as a tradeoff between these criteria.
In simulation studies we showed that the adaptive exploration
algorithm achieves a significant efficiency improvement over
earlier simulation based learning algorithms. Indeed for a 5000
batch length patch clamp experiment, the savings were shown
to be 1750 patch clamp experiment batches. In future work we
will explore the use of similar learning-based control algorithms
for controlling Gramicidin biosensors [16].

APPENDIX

A. Proof of Theorem 1

Proof: By construction of Algorithm 1, the transition prob-
ability matrix for results in being an
irreducible aperiodic (ergodic) Markov chain with a unique in-
variant distribution . The invariant distribution of the Markov
chain with transition probability matrix is straightfor-
wardly computed as

(25)

which is independent of the exploration probability . In other
words, the stationary distribution of the Markov chain with
transition probability matrix is independent of the choice of .
Since is an ergodic finite-state Markov chain, the empirical
occupation probabilities converge geometrically fast to .
From (25) we also have

From Assumption (O) it then follows that if
, then , if
, then . Hence, the algorithm

converges to the local set of minimizers.

Finally, since is a strictly convex function (as the I–V
curve is strictly increasing), it has a unique minimum which
is the global minimum. Therefore, the algorithm converges to
the global minimum which by definition is the equilibrium po-
tential .

To check that is reversible it is sufficient to verify that
satisfies . This condition is

straightforwardly verified. Hence, is a reversible Markov
chain.

B. Proof of Theorem 2

As shown in Theorem 1, irrespective of the ex-
ploration probability . Thus, we can apply Theorem 7.2 [17,
p. 299] which states that if , are two transition
matrices for reversible ergodic Markov chains on a finite-state
space with the same stationary distribution . If all off-diag-
onal terms in are greater than the corresponding terms in

, then . The nonzero diagonal terms are
and . So if , the off-diagonal terms in are

greater than the corresponding terms in . Thus, is a
decreasing function of . Hence, is minimized for .

C. Proof of Theorem 3

The second assertion can be established as in the proof of
Theorem 1. Thus, we shall concentrate on the proof of the first
assertion. The proof is divided into two parts.

Part 1: We first consider the vector . To prove the
convergence, we use a different approach than that of Theorem
1, namely, the ODE approach [15]. For future use, define

(26)

Step 1: We shall show that is bounded w.p. 1. From
(21), the recursion for can be written as

(27)

That is, the algorithm that we are dealing with is
a linear stochastic approximation algorithm. It is
easily seen that

Note that although is not symmetric, obviously
, where and and that

for any quadradic form . That is, the
antisymmetric part does not contribute anything
to the value of . For our case,
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which has eigenvalues 1/2 and 3/2. Since
for suffi-

ciently small , we have

Since , , where

An application of the Grownwall’s inequality im-
plies that

Moreover, the bound holds uniformly. That is,
sup . Consequently, by virtue of
Theorem 6.7.2 [15, p. 192], is bounded w.p.
1.

Step 2: We work with a piecewise constant interpolation of
. Define

for

Then is uniformly bounded.
Note that is a sequence of uniformly bounded
random variables. This boundedness, the linearity
in , and the interpolation imply that is
equicontinuous in the extended sense [15, p. 102].
[Note that since we do not use a truncation al-
gorithm, we work with the interval than

.] By virtue of [15, Theorem 4.2.2], we
can extract a convergent subsequence and still de-
note it by for notational simplicity. Denote
the limit by . Then w.p. 1 and the
convergence is uniform on any bounded interval.

Step 3: Using the ODE method for stochastic approximation,
we can show that the limit satisfies the following
system of ordinary differential equations

(28)

Note that (28) can be written equivalently as

(29)

Step 4: It is readily seen that is a unique asymp-
totic stable point of (28). As ,

. Consequently, the ODE
method in [15] enables us to conclude that

w.p. 1.
It now remains to deal with the sequence . By virtue of

the structure of the kernel , as . As
a result, w.p. 1 as .
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