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Recursive Algorithms for Estimation of Hidden
Markov Models and Autoregressive Models With
Markov Regime
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Abstract—This paper is concerned with recursive algorithms for  the realization of a finite-state Markov chain, which are widely
the estimation of hidden Markov models (HMMs) and autoregres- ysed in econometrics [15]-[17], statistical signal processing,
sive (AR) models under Markov regime. Convergence and rate of and maneuvering target tracking (see [21] and the references

convergence results are derived. Acceleration of convergence by av- . Do
eraging of the iterates and the observations are treated. Finally, therein). For such models, the distribution of the observaljles

constant step-size tracking algorithms are presented and exam- depend not only o, but also onY;,_p, ..., ¥, —q. Equiv-
ined. alently, Y,, is obtained by a regression df,_1, ..., Y,_a,
Index Terms—Convergence, hidden Markov estimation, rate of whered is the orFier Of regression. The regressi(_)n fgnc_tions in-
convergence, recursive estimation. volved can be either linear or nonlinear. Our objective is to de-
sign and analyze the properties of recursive estimators for the
parameters of such autoregressive (AR) processes with Markov
regime. Strong consistency of the maximum-likelihood (ML)
OTIVATED by many important applications in signalestimator for AR processes with Markov regime was recently
processing, speech recognition, communication sygroved in [21]. Compared with that reference, our effort here is
tems, neural physiology, and environment modeling, in th@ the analysis of asymptotic properties of recursive algorithms
paper, we consider recursive (online) estimation of the parafar parameter estimation.
eters of hidden Markov models (HMMs) and jump Markov Recently, Rydén [35], [36] proposed a batch recursive
autoregressive systems (also known as autoregressive procesiggsithm for parameter estimation of standard HMMs. His
with Markov regime), and develop stochastic approximatiomain idea is to use a stochastic approximation type algorithm
algorithms to carry out the estimation task. Our main effo@n batches of data of length 2. He proved the consistency
is to prove the convergence and rate of convergence of th&yeusing the classical result of Kushner and Clark [22]; he also
recursive estimation algorithms. suggested an averaging approach in light of the recent develop-
An HMM is a discrete-time stochastic process with two comment due to Polyak [33] and Ruppert [37] (see also [24] and
ponents X,,, Y,,} suchthat X,,} is afinite-state Markov chain [44]). LeGland and Mevel [29] have proved the consistency of
and given{ X,,}, {Y,,} is a sequence of conditionally indepena stochastic approximation algorithm for parameter estimation
dent random variables; the conditional distributionYof de- of HMMs called the recursive maximum-likelihood estimation
pends only ofX,,. It is termed a hidden Markov chain since(RMLE) algorithm. The RMLE algorithm in [29] has the
{X,.} is not observable and one has to rely {n,} for any advantage over the recursive-batch approach in [35] in that it is
statistical inference task. Such models have been widely uggdy recursive. In Dey, Krishnamurthy, and Salmon-Legagneur
in several areas including speech recognition and neurobiologl}] and Holst, Lindgren, Holst, and M. Thuvesholmen [19],
see [34] and the references therein. stochastic approximation algorithms are presented for esti-
In this paper, we consider both the standard HMMs and theating the parameters of AR processes with Markov regime.
more general autoregressive models under Markov regime Hawever, these papers only provide simulation results of
which the autoregressive parameters switch in time accordinghiese algorithms and no proof of convergence or asymptotic
normality is given. For the special case when the observations
Y, belong to a finite set (i.e.Y,, is a probabilistic function
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is because the algorithm in [35] requires precise knowby f(y.|yn—1, ---, ¥n—a; €). Let p be the dimension of the
edge of the distribution of the state given past measuneector-valued parametes. Other than Section V (where we
ments at time instants:, 2m, 3m, ..., wherem > 2. consider tracking algorithms), we assume that there is a fixed
In the RMLE algorithm presented in this paper, the initiab* € &, which is the “true” parameter. Our objective is to de-
distribution of the state (at tinf® given past observations sign a recursive algorithm to estimaté.

is forgotten exponentially fast and hence is asymptotically In the HMM case, the observed real-valued prod@ss;2

negligible. is defined by
In Section 1, we study the convergence and rate of
convergence issues. Different from that of [29] and [35], Yo = g(en; Ox.. ()

we use state-of-the-art techniques in stochastic appro&irea”y'
mation (see Kushner and Yin [25]). As a result, the as-
sumptions required are weaker and our formulation andRemark 2.1: For notational simplicity, we have assumed that
results are more general than that of Rydén [35], [36F+} and{Y3} are scalar-valued. The results straightforwardly
and LeGland and Mevel [29] because we are dealing wigeneralize to vector-valued processes.
suitably sca_lled sequences of the iterates that are treated o+ation: For notational convenience let
as stochastic processes rather than random variables. Our dof
approach captures the dynamic evolution of the RMLE Zn= (Yn, o Yoa)- (1)
algorithm. As a consequence, using weak convergenger the HMM cased = 0, i.e., Z,, = Y,,. In the subsequent
methods we can analyze the tracking properties of tidlevelopment, we often useas a generic positive constant; its
RMLE algorithms when the parameters are time varyingalues may change for different usage. For a function, we
(see Sections lll and V for details). use both(9/9¢)h andh,, to denote the partial derivative with
2) In Section IV, a modified version of the RMLE algorithmrespect tap. For a vector or a matrix, " denotes its trans-
that uses averaging in both the observations and thef@se. For an integef, let 1, and O, respectively, denote the
erates for accelerating the convergence rate is given ghelimensional column vector in which each elemerit &ndo0,
analyzed. respectively.
3) In Section V, a constant step size version of the RMLE, D€fin€ ther-dimensional vectog(z;.; ¢) andr x r matrix
for tracking variations in the parameters of HMMs an (zx; ) by

it is a special case of the above AR model with 0.

AR processes with Markov regime is analyzed. [z ) = [f1(zrs @), -5 folzns )]
4) In Section VI, numerical examples are presented that #nd
lustrate the performance of the algorithms for both linear F(z; @) =diag[f1(zr; @), -, folk, ©)]

and nonlinear AR processes with Markov regime. where

filzes @) = F (Wrlyk—1, - - ye—a; 0:()),
Il. PROBLEM FORMULATION i1 . @

A. Signal Model for HMM and AR Model With Markov Regime Let the conditional probability distribution dt7, ..., Y;,)

Our signal model is defined on the probability spacenderP, be defined as
(@, F, P) as follows. Let{ X}, be a Markov chain with
finite state spacé = {1, ..., »}, wherer is fixed and known.
Foré, j = 1, ..., r, the transition probabilities =L, (Yo €dyn, .., Y1 €dunly-a1, -+, %0)-

It is straightforward to show that [21]

Pn Y1y oo YnlY—as1s -5 Y05 ©)

a5 = PX,=j|lXn_1=1%)= aij(<,0)

Py, - Ynly—at1, -5 Yo @)
are functions of a parameter (vectgr)in a compact subsei " a
of an Euclidean space. Writé(p) = (a;;(¢)). =Y Pe(Xi=mlyo, - yav1) [T Flaws 0)Al0)1,
For the AR model with Markov regime, for > 1, the ob- =l k=1 o
served real-valued proce§¥; }3> ., is defined by The initial choice of,,(Xy = z1yo, .. ., y—a+1) is unimpor-
tant since it does not affect the convergence analysis of the es-
Yo=9gn_1, ..., Yu_u, en; 6x,(¢)) timators—it may be taken as an arbitrary stochastic vector with

positive entries. (The idea of substituting the true likelihood by
where{g(-; §):6 € ©} is a family of real-valued functions on the conditional likelihood given an initial sequence of observa-
R, indexed by a parametér € ©, {e,} is a scalar se- tions goes back to Mann and Wald [31].)
quence of independent and identically distributed (i.i.d.) randompreliminary AssumptionsThroughout the rest of the paper,
variables,d > 0 is a fixed and known integer, artd is a Eu- we assume the following conditions hold.

clidean space with coordinate projectiaghsi = 1, 2, ..., 7, . . R o
whered,: & — ©. We will discuss the distribution of the ini- C1) The transition probability matrid(¢") is positive, i.e.,
tial vector (Y_q41, ..., Yy) below. Assume that at each time aij(¢*) =z cforalls,j € {1,2,...,r} for some

n > 0, each conditional distribution has a density with re- knowne > 0.The process

spect to (w.r.t.) the Lebesgue measure and denote this density {Ov} ={Xk, Zu} ={Xi, Ya, ..., Yy}
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is a geometrically ergodic Markov chain on the state C2) The mappingey — A(y) is twice differentiable

spaceS x R*T! undery*. Let v denote the unique with bounded first and second derivatives and
invariant measure of(); }. Lipschitz continuous second derivative. For any
Remark 2.2: For the HMM case, C1) can be relaxed to the U Uk—1, - o Yk—d+1, (e mappingp — f(zi; @) is

three times differentiablef(z; ¢) is continuous on

condition that the transition probability matrix(¢*) is aperi- R for eachd € O,

odic and irreducible, see [27].
For the AR model with Markov regime, in general, it is diffi- C3) For each =1, ..., r, the conditional probability cor-
cult to verify the geometric ergodicity @p;, for a given param- responding to the true parameter,
etery. In [43], it is shown that for the model .
e In 23] P (X =i|Yio1, ..., Ya—a)

Yo, = g(Yn—b L) Yn—d; eXn (90)) +en

Q,, is V-uniformly ergodic under the following conditions (note
thatV-uniform ergodicity implies geometric ergodicity).

is continuous iMyx—1, - .., Ys—d) € IR and is strictly
positive w.p.1.

) ) L . Remark 2.3: Assumption C3) is a sufficient condition for
i) Sublinearity: Ther mappings identifiability of ¢* for linear AR models with Markov regime
Yoet, ..o, Yo_al = (Y1, ..., Y_a; 6:()), whene;, are normally distributed; see Remark 2.10 below.

t=1,...,7 Example 2.4 (Linear AR Model With Markov Regim@he

are continuous and there are positive constan&nd3; fully parameterized linear case with Markov regime may be de-
such that for some norin | on R? scribed by lettingA4 be the set ofr x » stochastic matrices

@:{(bl,...,bd, O’) GIRdX(O, OO)}

|9 (Y15 -5 Yn—a; 0i())]
< oy |[yn—17 . yn—d]/| + Bz g(ynflv <oy Yn—dy Cn; 9) = _bl Yn—1—"""— bdynfd + 0—(6373
i) For somes > 1, Ele,|* < oo for s > 1. The spectral and® C A x © with a;;(-) andé;(-) being the coordinate pro-
radiusp(A4,) < 1 where jections, thatisa;;(¢) = a;; andb;(¢) = (bi1, - .., bia, 77).
ot W The innovationge,, } may have, for example, a standard normal
_ Lot o distribution, in which casé¢(y, |yn—1, -- -, ¥n—_q; 8) isthe den-
Ay = : : : sity of the normal distribution with meanbyy, 1 — --- —
afarn o QG bayn—_a and variance?. C1) holds under conditions ii) and iii)

of Remark 2.2. C2) is satisfied if the marginal densityepfis
continuous and has bounded derivatives wg.tFinally, C3)

The V-uniform ergodicity in turn implies that the following holds if C1) holds and the marginal density &f is positive,
strong law of large numbers and central limit theorem holds fopntinuous, bounded, and has bounded derivatives y;Idee
Q,.. Lety: S xR — IR denote a Borel measurable functiorthe examples provided in [21] and also [6] and [7] for further
with ¢ € B(s) where fors > 1, (z, z) € § x R*™! details.

iii) The marginal density o¢,, is positive.

B(s)% {1y 9p(z, 2) < const (1 + |2|°)}. Example 2.5 (HMM):Using similar notation as in the

. above example, this is straightforwardly described witras
A) The following strong law of large numbers holds forypove and = {(g, o) € R x (0, 00)}

b € B(s):
glen; 0) = g+ oe,

1 n
- > p(Xe, Vi) = () whereq = (q1, . ... ¢;) and wherey;, i = 1, ..., r are often
k=1 referred to as the “state levels” of the HMM.

déf/ P(z, z)dy(z, z), Pg as.
SxReTL B. HMM Prediction Filter

B) Definey = ¢ —~(¢)) and In the sequel, our RMLE algorithm will be based on predic-
Sy = B[ *(Xo, Zo)] tion filters for the state of the Markov chain. For all > 0,
o0 - _ define ther-dimensional column vector
+2 ) E[p(Xo, Zo)p(Xk, Z1)]-
; ! un(®) = [uni(9), - um’(‘P)]/
Then for allyy € B(s/2), 3, is well defined, nonneg- Where
ative, and finite. If¥,, > 0 then the following central Uni(@) =Po (X = |Yn—1, -+ Y—dt1)

limit theorem holds: denotes the predicted density of the Markov chain at time

1 < . . - . -
— W Xn, Zi)—~()]— N(0, 3y)in distribution ~ 9iven observations until time— 1. Itis straightforward to show
\/ﬁkz,l[z/( b Z) = (0) (0. %) that this predicted density can be recursively computed as
For simplicity, sometimes we write(Qy) in lieu of A(Q)F (25 @)un()
n = =T Zny Unj 4
(X, Zi). w +1(('0) F(2n; @) un() (7 U ‘P) (4)




KRISHNAMURTHY AND YIN: ALGORITHMS FOR ESTIMATION OF HMMS AND AR MODELS

461

initialized by someuy(y). The above equation is commonly C4) UnderP,-, the extended Markov chain

referred to as the HMM prediction filter, “forward” algorithm,
or Baum’s equation [34]. Le®(.S) denote the simplex in which
u, (@) resides.

Let wg)(w) = (3/9¢1)un(p) denote the partial derivative of
u, () with respect to théth component of the-dimensional
parameter vectap. Define ther x p matrix

wa() = (WP (), -, wP ().
Clearly,w, () belongs tcE defined by
E={weR”:1.w=0,}.

Differentiatingw,,+1 () with respect tap; yields

wl o) = 22te)
=Ry (2n, un(p), ©) () + R (2, un(9), @)
(5)
where

Rl (Zn, un(‘ﬁ)v 90)

A |1

F(zn; @)
I (Zns @)un(@)

F(2; ) un(p)1,,
F'(Uns @) un(p)

Rél) (va Un (‘P) ) ‘P)

[ F(zs ¢)un(¢)1’x}
:Al SO I ? 7
( ) L f/(zrﬁ (P)U'n(()a)
aAl((p)/a(pl F(Zrﬁ 90) U’n(()a) )
F'(zn; @)un(e)
Under the measureP,-, the extended Markov chain
{(Xhn, Zn, un(v), wy(p))} has the transition kernel
(2, u, w, dz, di, d)

= P(r,;* (Xn+1 =7, Zn+1 € dz, Un41 € d, Wnit1 € dw

OF (25 @)/ Opiun(p)
(s @ un(p)

| Xn =4, Z, = 2, up = u, w, =w).
For any positive integer, each: € S, and any real-valued
functionh = (h%) onIR*! x P(S) x Z, define
(II"R)* (2, u, w)
=E - WXy, Zy, tn, wp)| Xo=1, Zo=2, ug=1u, wo=1w}.

Let L denote the set of locally Lipschitz continuous function
he = (ki) onS x R x P(S) x Z in the sense that there

exist nonnegativiip (h’,, z) andK (b, z) satisfying

@, )| <Lip(h, 2) [lw—d] + [u - 4l
(1 fw] + [w])]
2) (1 +12) (6)

for anyu, % € P(S) and anyw, @ € =, such that

/ Lip(h;, 2)fi(z, 9" )dz < 00
]Rd+1

|h;(z, u, w) —h;(z,

hi

%23

[Pz, w)| < K(

L. h,« = d
ip(hy) = max

K A~} = d
(h,) = max

[ Kb )iz )z < (D)
]Rd+1

We now make the following assumption.

{Xns Zn, un(), wnl(e)}

that resides ir§ x R x P(S) x = is geometrically
ergodic. Consequently, it has a unique invariant proba-
bility distribution ., under the measurB,-. Thus, for
any¢ € 5 x R x P(S) x = and for any function
h, = (i) in L, we assume

pn

|(ths¢)(£) - )\| < O[Lip(he) + K(hy)] T (8)

where the constant is defined as

A= Z/h;(z, u, w)u;(dz, du, dw).

1CS

Due to the above geometric ergodicity, the initial values
uo(p) andwg () are forgotten exponentially fast and are hence
asymptotically unimportant in our subsequent analysis.

Remark 2.6 (HMM Case)Recall that in this case,
Z, =Y, andd = 0. The geometric ergodicity of

Xy Zns un(p), wale)}

is proved in [27]. We briefly summarize their results here.
Define forany. > 0ands =0, 1, 2, 3

max ‘321,___,k5 iz )

§4)(z) = sup max

oc® b1, o ko€lL, ., p} min f;(z; ¢)
iCS

AW = supmae [ [60)]" s 9 s
%’E‘I) 1ES R
r,= a ax|log f;(z; (72 ") d2
iléglggg/ﬂ {ngglogfw w)l} filz @) dz
Y, = sup lnax/ |2|* fi(z; @) dz 9)
ped €S JR

wherey* denotes the true parameter. It is shown in [27] that for
a locally Lipschitz functior: the followng holds.
A sufficient condition for geometric ergodicity of

{Xn, Zn;, un(), wnl(e)}

is that C1) holds, and the mapping— Rél)(z, u, @) is locally
Lipschitz for anyz € R%t! [27, Assumption C] and\” is
fsinite. A sufficient condition fors — Rél)(z, u, @) to belocally
Lipschitz isAgo) is finite (see [27, Example 4.3]). Note that if
the noise density;(z; ), ¢ € S, is Gaussian, theﬂ;ﬁs), r,,
andY’, are finite for. > 0.

Remark 2.7 (AR Model With Markov Regimé)he above
conditions onA, do not directly apply to AR models with
Markov regime. In [13], weaker sufficient conditions are
given for the exponential forgetting af, (). We summarize
this result and outline how it can be used to show geometric
ergodicity of (X, Zy, un(¢), wn(®)).

As in [13, Assumption Al], assume in addition to C1) that
fory € R, £ € RY, andz = (y, &)

0 < min inf fi(z; ¢) and maxsup fi(z; ¢) < oo.
t @cd )

ped
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Suppose:,,(¢) andu,, () are predictors with initial conditions ~ For the HMM case, under assumptions C1) and C4), [27, Ex-
uo(¢) andig (), respectively. Then it is proved in [13, Corol-ample 3.4] shows that tHeg( f'(zx; ¢)ui () is locally Lips-

lary 1] that chitz if A§°> andI'; are finite. This and the geometric ergodicity
() — i ()] < o e inf,ce min, ; a;;(p) . (10) yield that the following strong law of large numbers holds.
SUD,cp MAX;,j i () Proposition 2.8 (HMM Case):Under assumptions C1),

Compared with the results of [27]is observation independent.C2), and C4), ingo) andT'; are finite, then for anyy ¢ &
As a consequence, starting from (10) one can obtain the gétere exists a finité(¢) such that
metric ergodicity of(X,,, Z,,, u,(¢), w,(¢)) along the lines

of [27, Secs. 3 and 5] as follows. n(9) = Up), P Wp.1 asn — oo

« By exactly the same steps as the proof of [27, Proposmgv pere
3.8], one can establish that for any locally Lipschitz func- I(p) = / log [ (25 @)un(@)] vp(dz, du)
tionh = (h), i€ S RXP(S)
' T . . andy, denotes the marginal density of the invariant meagyre
/R - / | (s wn(9)) = R4 (2t n(90))] defingd onR x P(S). P

i (s ©F) fzn“ (Znt1; ©F) Q-+ - Aty For the AR case with Markov regime the following strong law
of large numbers holds—see [13, Proposition 1] for proof.
< Lip(h) / / |tn (@) — tn(©)]
Proposition 2.9 (AR With Markov Regimelinder C1),

i (Zmi 0%) - S, 1 (771-1-17 ) Ay - Ay C2), and C4), withe = (y, &) if sup, supe filz; ) < o0
(11) andE..(log(inf, fi(z; <p))) < oo forall i € S then for any

In [27], the exponené(y) for the exponential forgetting peo there exists a finité(y) such that

of |u,(¢) — 4, (p)| depends on the observations—hence L(p) = 1), P, w.p.1l asn — oo
integrability conditions such a&; < ~ are required. In
comparison with the exponential forgetting (10), it follows"
from (11) that [27, Proposition 3.8] holds. (p) = / log [f'(z; e)u(@)] ve(dz, du)

« The proof of geometric ergodicity ofX,., Z,., un(¢)) RATIXP(S)
then follows along the lines of [27, Theorem 3.6], but th@ndz,, denotes the marginal density of the invariant meaguyre

d+1

argument is much simpler becaysés observation inde- defined onR“™" x P(S).

pendent. Recall thaty* is the true parameter that we are seeking. Under
* Asin [27], assume tha(z, u(y), ¢) is Lipschitz con-  C1)-C4), define for any € & the Kullback—Leibler informa-

tinuous inu. Assuming C1) and (10), the geometric ergodtion as

icity of (X,., Z,., u.(p), w,(yp)) follows along the same

lines as [27, Sects. 4 and 5]. In particular, for= (y, &) K(p) =—[l{¢) = U(¢")] 2 0.

where¢ € RY, defined (9 (z) = max; sup,, fi(z; ¢)

andé W(z) = max; sup,, |9, fi(#; ©)||. Then the inte-

grability conditions

where

We have proved in [21] that* belongs to the sdty;. of global
minima of K (¢)

Ly = a K 13
masp [ [50)] it o)y <o 1 = atg it K (). 13)
and s In addition, the ML estimator (MLE)
max sup / [5(1)(2)} filz; @) dy < oo ¢1\4L=arglgggln(<p)
e JR

. . - is strongly consistent.
for all ¢ € IR? are sufficient for geometric ergodicity of oy

(X, Zns un(p), wa(e))- Remark 2.10 (Identifiability in Linear AR Casefonsider

the linear AR process with Markov regime of Example 2.4.

C. Kullback-Leibler Information Assume ¢;, is normally distributed. Assume that the true
The conditional log-likelihood function (suitably normal-(renaocdhe;V?ﬁé?gs{éigs' .é’pbé(ilr’m(;)};:l art—;d|st)|nc€t, ?Rodthsitcfr?r

ized) based on the observations11, ..., ¥, is ' n—ly -5 In—d; =
) oo Un that {(b}yyn—1 +--- + b yun—a, 07 ) }i—, are distinct. Then
I.(o) = logpn (Y1, -+, YnlyY—at1s -+, Yo; ©)- using C3, it is proved in [21, Example 3] that is uniquely
+1 identifiable, in the sense thd(¢) = 0 implies thaty = ¢*

It is straightforward to show that the conditional log likeli- up to a permutation of indices.
hood can be expressed as the sum of terms involving the obser-

vations and thebserved statepredlcnon filter) as follows: D. RMLE Algorithm
L) = Z log [/ (zx; ©)ur(9)]. (12) To esti_matap_*, one can search for_ the minima_of the _KuII-
n+1 back—Leibler divergenc&(¢). Assuming the functiod((-) is



KRISHNAMURTHY AND YIN: ALGORITHMS FOR ESTIMATION OF HMMS AND AR MODELS 463

sufficiently smooth, the parameter estimation problem is coascapes front- (see [25, p. 89] for more discussion). For future
verted to finding the zeros §b/d¢) K (-). In this paper, we use use, denote by, thes algebra generated Hyeo, Y, j < n},
a recursive algorithm of stochastic approximation type to carand let£,, denote the conditional expectation with respect to

out the task. Fu.

Recalling that the symbdldenotes transpose and differenti- Constraint Set:Letg;(-),¢ =1, ..., p, be continuously dif-
ating the terms within the summation in (9) with respecpfo ferentiable real-valued functions &¥. Without loss of gener-
yields thep-dimensional “incremental score vector” ality, let (3/9¢)q;(¢) # 0if ¢;(¢) = 0. Let the constraint set

- - - ’ be
S(Yo; 9) = (5(1)(Yn; @), ey SV, w))
G={p;q(p)<0,i=1,...,p}

with
TN M G <p)w§f)(<p) [(0/0¢) f (zn; ©)]un(p) and assume it is connected, compact, and nonempty. A con-
SY(Yn; @)= 7' (2n; ©)tn () F(2n; @)un() straintg;(-) is active aty if ¢;(¢) = 0. Define A(y), the set of
(14) indexes of the active constraints@tby A(p) = {4; q:(¢) =
where 0}. DefineC(y) to be the convex cone generated by the set of
< def outward normalgy; ¢ = (8/9¢)qi(¢), i € A(p)}. Suppose
Y= (Zns un(0), walp)) (A9 for eachy, {(8/0¢)a;(¢), i € A(p), Alp) # 0} is linearly

with u,, andw,, defined by (4) and (5), respectively. The RmLENdependent. Ig;(«0) # 0 for all £, thenC{¢) contains only the

algorithm takes the form zero element. .
g To prove the convergence of the algorithm, we use the ODE

ont1 = lg (wn + e,V wn)) . (16) approach (see Kushner and Clark [22]); the following devel-
opment follows the framework setup in [25]). Take a piece-

andy" e, — oo, G is a convex and compact set, afid: wise-constant interpolation ¢f,, as follows. Defingq = 0 and

A ) tn = S0 &, and
denotes the projection of the estimate to the(seMore pre- =0 _
cise conditions will be given later. Note that in (13), following m(t) = { uniquen; t, <t <itp41, fort>0
the usual approach in stochastic approximation, we have col- 0 fort < 0.
lected(Z,,, w,, wy,)in Y,,. This enables us to tre}, as a noise Let
process. Our task to follow is to analyze the asymptotic proper- 0(t) = { ©o, fort <0
ties of (13). Moreover, we also examine its variant algorithms. 1 on, fort, <t <tn,q1, fort>0.

Define the sequence of shifted procegg-) by

©"(t) = @ (tn + 1), fort € (—o0, 00).
The objective of this section is to analyze the convergence and . o n
rate of convergence of the RMLE algorithm proposed in the pr efine M°(-) and M™(-) by
vious section. In what follows, we use the results in [25] when- m(t) -1
ever possible with appropriate references noted. For the conver-  M%(¢) = > e, t=20

In (13),{e,.} is a sequence of step sizes satisfying =, — 0

7

I1l. A SYMPTOTIC PROPERTIES

gence analysis, we use the ordinary differential equation (ODE) OZ_O fort < 0

approach that relates the discrete-time iterations of the RM ’

algorithm to an ODE. For rate of convergence, we present a MO(t, + 1) — MO(t) fort> 0

weak convergence analysis to examine the dependence of the ’ ’ -

estimation errofy,, — ¢*) on the step size,. We answer the M™M(t) =9 _ nz_:l e: M. t < 0.

question for what real number, %(y,, — ¢*) converges to a i=m(t,+t) Y

nontrivial limit. Using such interpolations, one then aims to show

Note that our formulation and results are more general than~(.) A/7(.)} is equicontinuous in the extended sense
that of Rydén [35], [36] because we are dealing with suitablgs p. 73] and uniformly bounded. By the Ascoli-Arzela
scaled sequences of the iterates that are treated as stochastiGR&@rem, we can extract a convergent subsequence such that its
cesses rather than random variables. Our approach capturesi#hig satisfies a projected ODE, which is one whose dynamics
dynamic evolution of the RMLE algorithm. As a consequencgye projected onto the constraint gét

we can analyze the tracking properties of the RMLE algorithms Projected ODE: Consider the projected ODE
when the parameters are time varying, which is done in Sec- . - -
P ying p=H()+m,  90)=pome—-Clp) (18

tion V.
whereH (¢) = (8/0¢) K (y), andrn(-) is the projection or con-
A. Preliminaries straint term. The termi(-) is the minimum force needed to keep
First rewrite the first equation in (13) as ¢(-) € G. Let L = {¢; ¢ be alimit point of (15)¢0 € G}},
B - andlg = {p € G; H(p) +m = 0}. The points inL¢ are
Prt1 = Pn +enS(Yas on) +en My A7) termed stationary points. Whene G°, the interior ofG, the

where M,, is the projection or correction term, i.e., it isstationary condition i§3/8¢)K(y) = H(yp) = 0, and when
the vector of shortest Euclidean length needed to bring € 9G, the boundary of7, H(¢) € C(y). For more dis-
en + e.5(Yn; @) back to the constraint se¥ if it ever cussion on projected ODE, see [25, Sec. 4.3] for details. A set
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Acaqis locally asymptotically stable in the sense of Liapuno&R case with Markov regime. Such conditions also guarantee

for (15), if for eaché > 0, there is &; > 0 such that all trajec- the uniform integrability of{.S(Y;; ¢)}.

never leaveV,(A) and ultimately stay Lemma 3.2: Under the conditions Al) and A2), for eagh

tories starting inVs, (4)
in Ns, (A), whereN, (A) denotes am neighborhood ofd. eachy > 0, and somel” > 0

B. Convergence lim P
Assume the following conditions are satisfied. (T -1 )
Al) Conditions C1)-C4) hold. sup max | > e (S(Y;; @-H(@) > 4% =0.
A2) For eachy € G, {S(Y;; ¢)} is uniformly integrable, IZn PSR iemG)

ES(Yj; ) = H(p) = (0/09)K(p), H(-) is contin- (20)
uous, and5(Y’; -) is continuous for eacl’. There exist

nonnegative measurable functiofé) and 4(-) such Remark 3.3: To prove the consistency of stochastic approxi-

that3(-) is bounded on boundeg set, and mation algorithms, a crucial step is to verify that condition (17)
holds. Such conditions were first brought in by Kushner and
‘S(Y; @) — S(Y; 9)| < ple —)p(Y) Clark in [22]; it is summarized in the current form and referred
to as “asymptotic rate of change” in [25, Secs. 5.3 and 6.1].
such thatp(¢) — 0 asy — O and These conditions appear to be close to the minimal requirement
m(tn+s) needed, and have been proved to be necessary and sufficient
P <lim sup Z g:p(Yi) < OO) =1, forsomes>0. conditionin certain cases [42]. To verify this condition, we use
n F—y the idea of perturbed state or perturbed test function methods.

Note that our conditions are weaker than that of [35]. Only finite

In the above, the expectation is taken w.r.t.¢ghparam- first moment is needed

eterized stationary distribution.

A3) Suppose thaLg is a subset of.; and Ly, is locally
asymptotically stable. For any initial conditiopy, ¢
L., the trajectories of (15) goes four..

Remark 3.1:For the HMM case, A2) holds if the marginal
density ofe;, is Gaussian. A sufficient condition for the uniform B. —
integrability and Lipschitz continuity in A2) is thak$", ¥, "
andl'; in (8) are finite; see [29].

Consider the AR case with Markov regime: A2) is easily ve
ifiable for the AR(1) linear case (i.ed,= 1 in (3)) vo(p) =0

Vi1 = —bx, Yi +er, wherelby|<1,i=1,2... Unt1(p) =vn(p) +en (S(Yn; ¢) — H(<P)) , n20

Proof of Lemma 3.2:We use a discounted perturbation.
The use of perturbed test function for stochastic approximation
was initiated by Kushner, and the discounted modification was
suggested in Solo and Kong [39]. For future use, define

li[(l—sk), i>n

k=n
1, t < n.
fror eachy, definev,(y) as

oo

Suppos€ e, } is a sequence of i.i.d. Gaussian random variables _ B. E (S(Vi-o)— H
with zero mean and finite varianeé. It is easily seen that for n(e) = Z cii(nt1)En ( (Y55 ¢) (@)
each(Yy, Yp—1) € R?, f(2x; ) is continuously differentiable () =n(9) + Svn(y)
w.r.t. # with bounded derivatives and hence it is Lipschitz con- " " "

=n

tinuous. It is also clear that the Lipschitz constant depends 8Hd oo
(Y, Yi—1). Thus, by using (4), (5), and (11), A2) is verified. s 0) = €: Bitnaon En S(Yi; ¢) — H(p
Higher order linear AR models with Markov regime (i€ 1) 2 i;ﬂ;rl Pilnt2) S0t ( (¥is ) ( ))
can be treated in a similar way with more complex notation. -

Regarding the uniform integrability, suppose that for each _ Z &:Binsn)E (S(Y» 0)— H(w))-

¢ € G, E[S(Yj; 9)|'t2 < oo for someA > 0. Then the I
uniform integrability is verified. If{.S(Y}; ¢)} is bounded by Then by noting thaB
an integrable random variabié in the sense

P(IS(Yj; o) > @) < P(|U] > «)

i(n+2) — Bitn+1) = ent1Bint2)
Tnt1(0) — Tnlep)

N = (Un+1(()0) - Un(‘)a)) + (6vn+l (90) - 61}71(90))
then{S(Y}; ¢)} is also uniformly integrable. More specifically, —c, (S(Yn- ) — H(<p))

if ~ satisfies the condition (6) with((h?, 2) verifies 7

lneasx/ [K(hi, z)]2 filz, ©") dz < o0, (29) + Z eiBitny2)Ent1 (S(ﬁ? ®) — H(‘P))
7 Ré+1 i=n+1

inlieu of (7), and{ Z,, } given by (1) is uniformly integrable, then o0

the desired uniform integrability can be verified via the use of - Z €iBitm11)En (S(Yi; w) — H(<p))

Cauchy-Schwarz inequality. In[13, Theorem 2 and Lemma 10] i=n
sufficient conditions are given faE|S(Y;; ¢)|? < oo for the = ONp (@) + ent1 Enbvnyi(p).
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Note that by telescoping

Supz€i+1Bi(n+1) =sup » (Bin — Bi(n41)) < 0.

n .

=N
It yields that
sup Z €iBi(ny1) = sup Z i €i+1Bi(nt1)
n — n —n £i4+1
o>
+SUPZ €i+1Bi(n41) < o0,
" i=n
Therefore,
o>
Z &;Bin — 0asn — oo.
="
Owing to A2)

Z g;Bj1 < oo and Z By E ‘S(Ym 90)‘ <0

=0 =0
S0
i e:B;15(Y;; ¢) converges w.pl
and :0
Z €iBitnt1) ‘S(Y;7 <P)‘ — O0w.p.1.
Similarly, -
f: e;BiE ‘S(Yi; ) — H(@‘ <
1=0
> eiBigu) SOV ) = H(@)| = 0wp. 1
and -

Z EiBi(n+1) ‘E,,S(Y;, ) — H((p)‘ — Ow.p. 1.
Consequently$v,,(¢) — 0 w.p.1 asn — oo. Likewise,

Z €iBitmy2) E ‘En+15(57z‘§ ®) — H(‘P)‘
1=n—+1

+ siBi<n+z>E‘EnS(?;; ¢) — H(w)‘ < o0
1=n+1
and hencé N, (¢) — 0w.p.1 asn — co. As aresult,
ent1Enév,11(@) > 0w.p.1
and
Tn+1() — Tnl(p) — OW.p. 1.
Therefore, the asymptotic rate of change of

m(t)—1

Z € (S(Yi; @) — H(<p)) isOw.p.1 ast — oco.
1=0
The proof of the lemma is concluded. O

(¢(w, -), M(w, -)) denote the limit of some convergent sub-
sequence. Then the pair satisfies the projected ODE (15), and
{¢n} converges to an invariant set of the ODEin

Assume A3). Then the limit points are I}, U Agw.p.1.1f,
in particular,LL UAq = {¢*}, ande,, visit LL, U A infinitely
often w.p.1, theny,, — ¢* w.p.1.

Proof. The prooffollows from Lemma 3.2, [25, Theorems

6.1.1and 5.2.2]. O

Remark 3.5:In view of [22, Theorem 5.3.1], the set of sta-
tionary points of (15) is the set of Kuhn—Tucker points

KT = ¢ ¢; there exist\; > 0 such that

Z A 9q;(¢) -0

—H(p)+ 9y

i q: (¢)=0
As observed in [21], for linear AR processes with Markov
regime, the only global minima ok (¢) are¢* and possibly
also parameters equal ¢ up to a permutation of states.

C. Rate of Convergence

Since our main concern here is the convergence rate, we as-
sume thaty* € G, the interior ofG, and thate,, converges to
¢ w.p. 1. Suppose the following conditions hold.

A4) (e,/ens1)*? =14, where either
a) pn =1/(2n)+0(e,,) or
b) 1, = o(e,).

A5) For eachp € G, E|S(Y}; ¢)|*F2 < oo for someA >0
and{(9/8¢)S(Y;; ¢)} is uniformly integrable.

AB) ¢, — ¢* w.p.1and{(¢, — ¢*)/\/en} is tight.

A7) a) S(Y;-) has continuous partial derivatives for each
Y, H(-) is continuously differentiable, anH,(¢*) =
(8/0¢)H (¢*) is Hurwitz (i.e., all of its eigenvalues
have negative real parts).

b) If A4) a) holds (in this cases,, = O(1/n)), then
H,(¢*) + I/2is also Hurwitz.

A8) DenoteS; =S(Y;; ¢*). Fori>j>n, definer, (i—j)=
E,S!S; andR(i — j)=|Er,(i — j)| such that

> R(i - j) < .

izj

Remark 3.6: Assumption A4) is a condition on the step size.
Strictly speaking, it is not an assumption since the step size is
at our disposal. Typical examples incluge= Aq/n for some
Ao > 0, which satisfies a) in A4), and, = Ag/n” for some
0 < v < 1, which satisfies b) in A4). It also covers a wide
variety of other cases.

Inthe HMM case, a sufficient condition for A5) to hold is that
Vo, A, A andASY are finite, see [29, Assumption'B
These hold for example, wher,, } is a sequence of Gaussian
noises.

Theorem 3.4:Assume conditions A1) and A2). There is a Condition A5) can be verified for linear Gaussian autoregres-
null setN such that for allv ¢ N, {¢™(w, ), M™(w, -)} is sive processes with Markov regime. Consider the AR(1) case
equicontinuous (in the extended sense as in [25, p. 73]). Dét1 = —bx, ., Yn + ¢,, where the meaning and conditions of
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the parameters are as in Remark 3.1. In view of the discussimrse models that of a mixing process. As indicated in [5, p. 168],

in Remark 2.4, it is easily seen that forexample, the mixing condition is satisfied for a Markov chain
Of (2n; 6) that \_/er?fies a Doepl!n cpndition, h_ag one ergodi_c class., and is
T ob, ape.rlodlc; the condition is also satisfied for certain functions of
mixing processes.
_ Yn—1 ( <_(yn + blyn—1)2> The tightness of the rescaled sequence can be verified by
= ———— (Y + b1yn—1) exp - ) ) ) - .
V2ro3 202 using a perturbed Liapunov function method. Sufficient condi-
and tions can be given. In fact, in Section IV, we will prove such an
Af (#n; 6) assertion. We assume this condition here for simplicity.
9o By the smoothness df(-), a Taylor expansion leads to
)2 . . P! .
= o g e (P S ) =S ) + 50505 90— o)
Since a normal distribution has finite moments of any order L 5 _— . .
0 (zn; 6 0 (zn; 6) [FF + oS (e o =) o= )
E‘Tl <oo and E‘T <00.  and ~

. ~ . Y, * aS(Yrm 90*) *
In view of (4), (5), and (11)E|S(Yy,; ¢)|*** < oo. Higher  ¢n+1 =¢n +enS(Yn; ¢7) +en—35 = (¢n = ¢7)
order linear AR models with Markov regime (i.e.,> 1) can 14
be treated in a similar way with more complex notation. The mo- 198 (Y; ©* + s(p, — @-))
ment condition is needed in functional central limit theorem; see +en /
[5], [14]. If the noiseY,, has moment generating function, then 0 O
all moments are finite. In the Gaussian case, it is characterized + e M.

by the first two moments. Sinceyp,, — ¢* w.p.1 andy* € GY, the reflection term can be

Again, we can supply sufficient conditions ensuring the Unise ctively dropped for the consideration of rate of convergence;
form integrability. For example, as in the discussion in Remaka 4o so henceforth. Usifig, = (¢n — ©*)/y/5, We obtain
3.1, inview of (6), if{ Z, } is uniformly integrable and (h, = " "

)
. n n a .
verifies Unt1 = 4/ ; U+ ] ; <5n—a¢ S(Yn; ¢")Uy
. / / n+1 n+1
/ [K(hi, )] G0
Ré+1

max i(%, ¢")dz < oo (21)

7€ ~

in lieu of (16), the uniform integrability can be verified by use tVen (S(Y"; ')~ Hip )) + E"p"> (23)
of Holder inequality. wherep,, = o(|U,|) in probability due by use of the Taylor ex-

Condition A7) ensures the limit stochastic differential equasangion and the uniform integrability 69/9,0)S (Y,., ©). Now
tion (22) is asymptotically stable. That i&, is a stable matrix yefine ’

(see the definition ofz in Theorem 3.9). Such a stability is nec-

ds(‘Pn - 90*)

R . m(t,+1)—1
essary for the rate of convergence study; see the discussion after Wn(t) = Z JESs >0
Theorem 3.9, in particular, the asymptotic covariance represen- — e -
tation (23). )
The smoothness condition &f () is used for convenience _ -
only. Aiming to obtaining local limit result, the only require- - Z VEisi, £<0
ment is thatH () is locally linearizable by a stable matrix. The . i=m(ta +1)
smoothness assumption can be replaced by whereS; = S(Y;; ¢*) — H(¢*). Let U™(-) be the piecewise-
- . . constant interpolation ofU;, ¢ > on [0, 00).
H(p)=H(p —¢") +o(le —¢*]) (22) P AT, ¢ 2 n} on{0, o)

whereH is a stable matrix (the real parts of its eigenvalues are Lemma 3.7:Under Al), AS), and A7), for each

all negative). Under (19), all the subsequent development goes 1 M .
through with H,,(¢*) replaced byH. Note also that the form n Z S(Yj; ¢") — 0w.p.1,asn — oo
of (19) is a standard condition used in stochastic approxima- J=w
tion. Finally, [13] provides a central limit theorem for the score ptn
1 9 .o . 3] .
vector. — 70 S(Y;; ¢*) — %H(ga yw.p.1, asn — oc.

Condition A8) simply says that the correlation decays suffi- " j=x
ciently fas(to.)lt is shown in [27, Example 5.2] that for the HMM Proof: Note
case, ifA;” defined in (8) is finite, thenS(Y’; ¢) is locally S, . - N
Lipschitz. As a resultS(Y}; ¢) is geometrically ergodic. For SO ¢7) = 8907, Vi1, -, Yimays, €5); ¢7).
the AR case if5(Y; ¢) is locally Lipschitz inY’, i.e., (6) holds By A1), {Q} is stationary and ergodic. Thus
thenS(Yj; ) is geometrically ergodic and satisfies (8). For the | B
linear Gaussian AR case with Markov regime, A8) is easily ver- Z Z S(f/j; ©*)
ifiable; see also the remarks about A2). The condition we pro- e
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converges w.pl to where ¥ is given by (21). Therefore, the IimitV () is a
ES(Yj; ¢*) = H(p*) = 0. E}rqwman motion with covarianc& as desired. Since the
limit does not depend on the chosen subsequence, the lemma

The first assertion is verified.

Since{(8/9¢)S(Y;; »)}is uniformly integrable, by A5), the
dominated convergence theorem then yields To carry out the weak convergence analysis, an appropriate
N 8 . 5 way is to truncate the dynamics &f*(-) and works with a trun-

l Z — S(Y}; 9" )= E—— S(Y}; ¢*)=— H(p*) w.p. 1. cated versior/™ M (.) with M < oo first. One then proceeds

N dp dp dp with proving the tightness and weak convergencé/of(-)

The second assertion is also proved. O and finally passing the limit tdZ — oc (see [23], [25] for ref-
erences). Using the lemmas above, carrying out the details as

Lemma 3.8:Under Al), A5), and A8),W"(-) converges i, 25 Sections 10.1 and 10.2], we establish the following the-
weakly to a Brownian motiohV’(-) with covarianceX where e

follows. O

Y =ES S|+ Z ES18) + Z ES;S;. (24) Theorem 3.9:A1), and A4)-A8). Then the sequence
i=2 i=2 {U™(-), W™(-)} converges weakly in
Proof: Note that prir+1) [0, 00) x Dr(r—l—l)(_m’ 0)
n n 2
Bttty Wt +5) = W (1) to (U(-), W(-)), whereW (-) is a Brownian motion with covari-

Mty +tts)—1 anceX andU(-) is stationary such that

<k XL D VEVE B SiSs dU = RU dt + dW (25)

j=m(tatt) i2J where

m(tn+t+s)—1 R H_(¢*), under A4) a)

<k > &Y Ep4nSiS;. Hy(p*)+1/2,  under A4) D).

j=m(ty, >4 . - .

Since sty ! Remark 3.10:1n the sense of equivalence of probability dis-
tribution on D"+ [0, 00) x D"t (—o00, o0), we can write

. t
E Z: Enn(t+0)5755| < ;R('L —J) <k U(t) = / exp (R(t — 5)) dW (s)
() ) —00
by virtue of A8), and which is the stationary solution of (22). The reason for using
m(tntts)—1 D) (—o0, o0) is mainly because it allows us to writé(t)
Z e as in the above representation involving the entire past of the
Jmm (e 1) Brownian motion (see [25, Ch. 10] for further details).

) Note that the above theorem effectively gives the rate of con-
=0(s) lim lim sup EE,, 1, 14) |[W"(t+s)—W"(t)|"=0. vergence result. That s, it gives the order of the scaling, namely,

. L . . and the asymptotic covariance. To further illustrate, rewrite
It follows from the tightness criterion (see [14], [23W,"(-) is (\égas ymptofic covar . " i

tight in D"("+1) (—o0, 00).
By Prohorov’s theorem (see [5], [14]), we can extract a con- dU = RU dt + Y2 di
vergent subsequence. Do so and for simplicity, still index it by
n with limit denoted by (-). For any bounded and continuousyheres(+) is a standard Brownian motion. The asymptotic co-
functionh(-), any integef, any real numbers s > 0, and any varianceX, of the underlying process is a solution of the al-

t; < tforj < k, we have thatV"(t;) are F,,,(;, ++) measur- gebraic Liapunov equatioRY, + Yok = —¥, and has the
able and following representation:
Eh(W"(t;).5 < k) (W"(t +5) = W"(2) o = / exp(RH)S exp(R't) dt. (26)
m(t,+t+s)—1 0
=ER(W"™(t;),5 < k) Emg, +4) Z V€:5; — 0, Animmediate consequence is thatas+ oo
i=m(t,+t) n — * n ™~ N 0, by
as o (n = ©")/v/En ~ N(0, o)

i.e., itis asymptotically normal with asymptotic covariancg
The result we have obtained is more general than that of [35].
Firstit is from a stochastic process point of view, and focuses on

Owing to A5), {|S;|?} is uniformly integrable. This together
with the estimate above and the weak convergence implies

Eh(W(t;), s <k)(W(t+s)—W(t) =0. trajectories of the normalized sequence of the estimation errors.
Thus, W(-) is a continuous martingale. Next consider it$€cond, it coves a broad range of step-size sequences.
quadratic variation. We have Note that the step sizes have a major influence on the rate of

Eh(W™(t),j < k) convergence. This is clearly seen from the representatioRs of
Jad = , corresponding to assumptions A4) a) and A4) b), respectively;
(Wt +s) - WH(t) (Wt +s) - W(1)) see also the related work [45] for the rate results for global op-
— Eh(W(t;),j <k)Xs, asn — oo timization algorithms.
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IV. CONVERGENCEACCELERATION BY ITERATE AND form of the step sizes are selected to simplify the argument and
OBSERVATION AVERAGING notation in the proof. Note that strictly speaking, (25) is not a
ecursion forp,, in the usual stochastic approximation setting.
girst, let us rewrite it in a more convenient form.
In view of the definition in (25), taking difference ¢f,+; —
and using

For designing recursive algorithms, to improve the asym
totic efficiency is an important issue. The effort for analyzin
stochastic approximation type of algorithm in this direction can
be traced back to that of Chung [9]. Suppose that= 1/n7 ¥n

for some0 < v < 1 and that there is a unique asymptotic stable T 1 On — 1 By

pointy* in the interior ofG. Then(y,, — ¢*)/+/€, is asymptot- . n n

ically normal. Among the’s given above, the best onejs= 1 We arrive at

as far as the scaling factor is concerned. If one uges 1'/n, 1 ~ 1= 1

then it can be demonstrated that the best choidg isfthe in-  #n+t = ¥+ 5 5(¥ns ¢n) + (n—17n S(Yi; i)
verse of the gradient dff (-) evaluated ap = *. This quantity ) =t

is normally not available. One could construct a sequence of es- ) Z S(Y; <Pz)+ M

timates, but the amount of computation is often infeasible, espe- (n — ) ’ "

cially for many applications we encounter in the hidden Markov forn>1 (29)

estimation. In addition, from a computation point of view, one o0l
may not wish to use a rapidly decreasing sequence of step si%% erep" = O(1/n?).

decaying as,. — O(1/n) since this produces a very slow move- n [46], dealing with an unconstrained algorithm, we used a
ment in the initial stage. recursive formulation similar as above, and examined an aux-

Taking these into consideration, an approach of using iter%@ry sequence thatis known to converge. Then we compared

e difference of the estimates with that of the auxiliary process,
averaging was suggested in Polyak [33] and Ruppert [37] i
dependently. The idea is that after using a larger that/n) and upper-bounded their difference by means of Gronwall’s in-

step- size sequence in an initial estimation, one takes an aver% allty' Here we use a somewhat different approaCh and treat

of the resulting iterates yielding asymptotic optimality. Their reH dt'r:ecfthlll' De;fmew (i% andM™(.) the same as before. We
sults were extended in Yin [44] for mixing type of signals, an ave the following resut.

generalized further in Kushner and Yang [24] together with an Theorem 4.1:Under the conditions of Theorem 3.4, its con-
explanation on why the approach works well using a two-timgusions continue to hold for (24).

scale interpretation. Meanwhile, Bather [2] suggested another Proof: Define F(-), F™(-), andE™(-) ont € (—o0, o)
approach that requires the use of not only the iterate averagigthe piecewise-constant interpolations of the second, the third,
but also the averaging in the observation. Schwabe [38] exaamd the fourth terms on the right-hand side of the equality sign
ined further this approach. The convergence and asymptotic @p{26); for¢ > 0, these terms are

timality were obtained in Yin and Yin [46] for correlated noise.

Treating the HMM estimation problem, Rydén [35] sug- e — mlEadh)-! -
gested to adopt the iterate averaging to improve the efficiency of (t) = Z v (55 ¢i)
the estimation scheme. In this paper, motivated by the work [2], =
we use an averaging approach with averaging in both iterates ~ m(tnAt)—1 1 _ 1 il
: : . n v
and observations. This approach seems to have a smoothing " (t) = 1)y 7 5
effect that is useful for the initial stage of approximation. i=n j=1
Henceforth, for notational simplicity, we take the initial time of m(tn+1)—1 . im1
the iteration to bex = 1 and consfer an algorithm of the form ) = Z =T p; Z S(Yj; ;).
Pn+1 :HG (Gn + 6nnsn) i=n i=l1
_ _ 1 N 1 Then we have
P+l =Pn = — 1 PnT 7 Pntls
1 1 ~ S
A @ (1) = o+ F(E) + F7 )+ E7(0) 4+ M),
St =S50 = n+1 Snt i n+1 Sntt (27) By applying Lemma 3.2 to each of the functions above, we

where( is the same constraint set as given before. Note that enclude that there i$ a nqll sé:_f such that for alw ¢ N,
algorithm above has the two-time scale interpretation; see [24]" (w, -), M"(w, -)} is equicontinuous (in the extended sense

(see also [4] and [25]). Rewrite the first equation above as  [25, p. 73]). Extract a convergent subsequence with ingdex
and limit (¢(w, -), M(w, -)). We proceed to characterize the

Pt =Py + EnnSn + €0 M, (28) jimit.
where M, is the projection term. We proceed to analyze the Work with a fixed sample path far ¢ N, and suppress the
above algorithm. w dependence. Far > 0, with givené > 0, split F7*(-) into
three terms
A. Convergence Lt/8]—1 m(tn, +j 6+8)—1 1
In what follows, we takes,, = 1/n7 with 1/2 < v < 1. ey = > > = H(e(76)

More general step size sequences can be treated. The particular J=1  i=m(tn, +55)
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Lt/86]—1 m(tn, +56+6)—1

EICED YD

j=1 i=m(tyn, +j6)

1 - - .
= [S(Yu wi) — S (Yu <P(‘15))}
Lt/8]—1 m(ty, +4 6+8)—1
CACED DY
j=1 i=m(tn, +596)
1 - . .
= [ (T eli®) - H(p(16))]
where|b] denotes the integer part 6fc¢ IR. Asé — 0, itis
easy to see that

t
) = [ H o) ds.
0
For L3%(t), by A2), we have

Fr ()] < sup
|£5
j<t/&

ity +5 EY < Sty +5 64+6)—1

plpi —(j6))

rn(tnk —|—t) —1

>

i=rn(tnk )

= p(Y;) — 0, asé — 0 andk — oc.
i

469

addition of the small perturbation is to result in desired cancel-
lations. Define the perturbatiod, and F,, by
- <1 -
Po=3 " & Binin EaS(Yis ¢7)
P, = L BinsE
n — Z L_’Y i(n+1)n

=n

[Sa(Fi ") = Hol")]

oo

1
= Z = Bint1)En&i

=n

P, (30)

respectively, where
1
w=a(1+0(3))
n
n—1

n—1
1 ; il Z S(Ys; i) + pn Z S(Ys; ¢i)-
i=1

=1

and

Cn:

Their use will be clear from the subsequent development.

Theorem 4.2: Assume that A1), A2), and A5)—A8) hold, for
sufficiently smally > 0

We next analyze the third term. In view of Lemma 3.2, foand

each fixedy
rn(tnk +j64+6)—1

> 2[5

i:rn(tnk +36)

- H(@} —~ 0wp. 1.

What we need to do now is to approximatgj ) by some fixed
. To do so, for givem; > 0, let{B}; I <[, } be afinite collec-
tion of disjoint sets with diameter smaller thanandy; € B/
fori < 1,, and{J\", B} = G. Write
rn(t,,,}C +j6+6)—1 1
> Zs(Fee)-H )]
i:nl(tnk +56)

l77 rn(tnk +j (5—1—(5)—1
=> Igoeny 2 = [S(Yi§ <P7)—H(<P7)} :

=1 i=rn(tnk +56)
For fixedn > 0, ask — oo, the above term goes by Lemma
3.2. It then follows that the limit is zero @ — oo and then
n — 0. R
_Using the same technique, we can shbi+ (¢) — 0 and
L+ (t) — 0 ask — oo. The desired limit then follows. O

B. Asymptotic Optimality

£ ‘S(f/"; Pn)| L] o, —pr |<n} <0 (31)
sup E| P, | (1 +1S(Yo; <Pn)|) Iig, —pr1<ny < v
sup B Py (1+15(Vo; on)] + 1S(Frs o))
K
: I[l‘r"‘n*‘r”‘*lén} S n_'y
— K
sup E|P,| (14 [€a] + [€a1%) I1p, — o<y < - (32

ThenElp, — ¢*[* = O(1/n") andE[p,, — ¢*|* = O(1/n"/?)
for n large enough.
Proof. Use a Taylor expansion

S(Y;5 ) = S(Y; ") +S.(Y; " )o—¢")+m(p, V) (p—¢")
where

~ 1 ~
m(p, Y) = /0 |:S<,c (Y; " +s(p — w*)) = Se(Y; w*)} ds.
Rewrite (26) as

1 * * % *
Pr1 =fn+ = [Ho(0")on = 9") + S(Vo; )

+ [Sa (Vs ) = Ho(0")]

(@ = 9"+ 1(pn, Yoo — ¢ +6|  (33)

To proceed, we demonstrate the averaging algorithm isThe w.p.1 convergence of, to ¢*, A2), and the uniform

asymptotically efficient. In what follows, assume that — ©*
w.p. 1, ande* € GU. Thus, the boundary aff, namely,0G,

is reached only a finite number of times. Without loss oNo = N, ., such that for allz >
generality, we drop the reflection terdy,, and assume the

iterates are bounded and .

integrability of {Y,,} imply that¢,, — 0 w.p. 1. Lety > 0
be sufficiently small. Givemy, > 0 small enough, there is an
N,

M0

lon| <n and |&,] < pwp.>1—1n. (34)

Estimate ofF|¢,, — ¢*|?: The estimate is of stability type. By modifying the process on a set of probability at mastwe
We use the perturbed Liapunov function method that is to adwhy suppose that (31) holds for all> ¥, ., and all condi-
a small perturbation to a Liapunov function. The purpose of thiens hold for the modified process. Denote the modified process
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by 0. The tightness ofn/2¢m } will imply the tightness of we obtain
{n"/2¢,}. Thus, for the tightness proof, without loss of gener-
ality, assume the original process itsglf,, } satisfies inequality
31). N o1 \E

SinceH,(¢*) is Hurwitz, by virtue of the inverse Liapunov - a7 (on) + n2v )"
stability theorem, for any symmetric and positive definite ma-

: 1 . 1 .
trix P +m0 < ) lon — " * + ml% — " | Ep Py
QH,(¢") + H(¢")Q = —P

has a unique solution that is symmetric and positive definite.
Choose a pair of symmetric and positive-definite matri€es
+0( 3 ) [ 0n)

EnVn-l—l (‘Pn-l—l) - VTL(()OTL)

- 2
S(Ya; ¢n)

~ 1 " -~
+En|Pn+l| <O <7’L_A/> |(Pn — ¥ |‘S(Yn7 (Pn)

)

and P such thatP? > AQ whereA = (pmax(P)/pmin(Q))
and pipax(A) and pyin (4) denote the maximum and minimal
eigenvalues of a symmetric and positive-definite mattixe- +0 < 1 ) |EnPriillon — ¢
spectively.

Define a Liapunov function by

+E, 0< )‘s Y on)

| Pt

V(p) = (v —¢") Qe —¢"). 1 _ -
+ _|<)0n - <P*|2|EnPn+1| + En|Pn+1|

5
Then " .
(o(5)en-elietro (5 ) 16r). @0
E.V(pnt1) — Vien) . . . . .
9 Taking expectation and using the assumptions, detailed compu-
= (on — @" ) QH(¢")pn — ¢*) tation then leads to
A 1 1
~ EV;I Pn S__EV Pn +)\ —F <,0n—<,0* 2+O<—>
+O< )U%L 1) [on, ¥2) o)== BV A Blon e O
where),, — 0 asn — 0. Recall that|y, — ¢*| < 7 for
2 (on — ™) QS( ©*) sufficiently smally. Using (29),E 6V, (¢,) < x/n7. It follows
v " that for Ay < A
2 * Y, * * * 1
+— (pn ="' Q [Sw(Yn; ¢*) — Hy(p )} (n — %) EVyi1(png1) < <1 - )\1—) EV,(pn)+ O < h)

2 .
+ = (on — ") Qs Iterating on the above inequality

nYy
1 - 2 EV <Pn+1 H <1 - _> EVN (QaNo)
1
Givenn > 0, denoten; to be such that; — 0 asn — 0and +r Z 2 H <1 - —) o <H) .
=Ny Jj=i+1
sup HW(%’ Y| + |§n|} =7. This, in turn, yields tha&'V (¢,,) < x/n" as desired.

n, lpn—@* <7 Thus, the estimate fd|,, — ¢*|? is obtained. The estimate

for E|g,, — ¢*|? can be obtained similarly with the use of the

Define the perturbed Liapunov function by recursion forg,,. O
def Asymptotic Normality:First, we deduce an asymptotic
Val9) = V(en) + 6Valpn) R equivalency which indicates thafn(g,, — ¢*) has a very
=V(pn) +2(¢n — ¢") QPn(0n — ¢*) simple form. Then the asymptotic normality follows.
+ 2(¢n — ") Q[Pn + P Note that the algorithm as a recursion {ayf is
o =T S st
Then in the calculation o, 6V}, 11 (@n11) — Vi (0,), three Pr41 = Pn T n(n+1) 4 (Y35 i)
negative terms cancel that of the terms on the third, the fourth, . o . .
and the fifth lines of (32). Since Define @, = ¢, — ¢ andg, = 3, — ¢*. We then obtain
5 s, Hole") | Hy(o") .
ooor = o+ Fel) 5 Hole")

2on — ¢") QHH(¢")(on — ¢7) nv n7(n 4 1)

PN G ) LS (s a0 00
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Define a matrix-valued product as For the term on the second line of (35), using a partial sum-
" mation
H (I+H, (")), kE<n "1 k N
A =18 50, vy T An Z |:S(Yi§ Pi) — H(%)}
k=1 =1
I k=n.
Writing down the solution of (34) in its variational form leads  _ [~ 1 A 1< SV o) — H
to kz_:_l kv nk n ; |: ( (2] 901) (‘Pz):|
- 1 n—1 [ k K
An = An p1— Y2 RN An ‘Hc VP 1 1 ¥
Vg1 =vndnody \/E; kr(k+1) " F () +vn [ = Ani| |1 > |:S(Yi§ i) H(%)}
k=1 Li=1 =1
n 1 k = 1 k+1
— Ak Y wi)—H{p; R _
+\/ﬁk§_:_l D) nk; [S( i ©i) (%)] P [S(Y;, ©;) H(%)H
n 1 k Since
+Vn ) s A ) O(lee®). (38) G|
kzzl kv (k-+1) ; Z k_wA"k = —H_*(¢")(I — Ano)
k=1
Lemma 4.3: Assume the conditions of Theorem 4.2. Then [ » 1 1 & R
the following assertions hold: [Z = A - Z [S(Yi; ©i) H(%)”
a) Asn — oo k=1 =1
HHe™) & -
5 L —— 4 =———F S(Yi; @i) — H(pi)| +o(1
N f Z[ Vit i)~ H(po)] +o(1) — ;U )= Hg:)] + (1)

whereo(1) — 0 in probability asn — oo. Similarly, we have
whereo(1) — 0 in probability asn — oo. o(1) P y > y

b) Define Vn nz_:l [zk: i Api
Wit = U (G- e),  foree 1] S
vn 1 &
Then [E ; |: i3 901 (‘Pz):|
" |nt] 1
W) = P 3 [$(Ti )~ B et LS st - H(%)”

whereo(1) — 0 in probability uniformly int.

Proof: We prove only the first assertion. The second one = VnHZ(¢%) Z (Anr — Ano)
can be proved analogously. Examine (35) term by term. Let us
begin with the last term. Using Theorem 4.2 and the bounded-
ness of{¢,}

n 1 k .

i=1

Rk + . )zk:[ (YE;%)—H(%)}
1

T GED [S(Yk-l—l? Prt1) — H(<Pk+1)H

— 0in probability.
< MZ = 140 (El6]?) promedty | -
Thus, asymptotically the term on the second line of (35) is given
< Ii\/_O(TL ) — 0, asn — oo. by
We also have (by using Theorem 4.2), H ") & -~
(by using ) S >[5 e = H(gn)] +01). O
E |\/77An0¢1| < ’i\/ﬁ|An0|E|¢l| - 07 asn — oo =1

and Theorem 4.4:Under the conditions of Lemma 4.8/ (-)

s 1 . . . .
VAN A Ho(¢)fk converges weakly to a Brownian motion with the optimal co-
Z kY(k+1) " (27 varianceH ' (¢* )X (H ' (¢*))’, whereX is given by (21).
n Proof: By virtue Lothhe argument as in [24], [25], it can be
1 nt .
< rv/n e |Aw|H (M) E|¢x] — O, shown that1/y/n) > "} S; converges weakly to a Brownian
; Ev(k+1) il Ho (27 Bl motion. Owing toy, — ¢* and the continuity ofH (),
asn — oo. H(p,) — H(p*) = 0. Likewise, it follows from A2) and the
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boundedness of the iteratds|S(Y.,.; ¢n) — S(Yn; ¢*)] — 0 Let {¢° } be a sequence of real numbers such #gat— oo
asn — oo. Therefore, the covariance of the resulting Browniaase — 0. Then for almost ally, ¢(w, -) the limit of ¢(eq. + -)

motion belongs to an invariant set of (15) JIf; is asymptotically stable,
Int] |nt) then the invariant set is if¢. In addition, suppose that* €
lim [nt] 1 Z G* is the unique point such th& (¢) = 0. Thené*(e¢® + -)
noono [nt] ol =1 converges weakly te*.

. . ! Remark 5.2:Note that compared to the w.d. conver-

B [S(Yi; ¢i) _H(‘Pi)} [S(Yj; 2 _H(‘Pj)} gence, the conditions here are much weaker. In fact, only

Lnt] Lnt) weak ergodicity in the form of (37) is needed. If the stronger

_ limti Z Z ES(Y; <p*)S(Y»~ o) = 13, geometric ergodicity holds (see the sufficient conditions given

[nt] = ’ 7 in Section 1), then (37) is automatically satisfied. The proof

) ) of the theorem essentially follows from the development of
Finally, by Slutsky’s theorem, the desired result follows. (I [25, Ch. 8]. Owing to the projectiontys} is bounded, so it

Remark 4.5: An interesting problem to study concerns thé tight. Then all the conditions in [25, Theorem 8.2.2] are
rates of convergence taking into consideration the compuggtisfied. The assertion follows. To proceed, we state a rate of
tional budget devoted to the underlying computation. Su@@nvergence result below.

problems were dealt with in [26]; see also the subsequentrhegrem 5.3:Suppose that the conditions of Theorem 5.1

generalization in [41]. hold, that there is a nondecreasing sequence of real numbers
{t.} satisfyingt. — oo ase — 0 such thaty®(£. +-) converges
V. CONSTANT STEP-SIZE TRACKING ALGORITHMS Weakly to the process with constant VaLUé c GO, that there

existst. > t. such that{(y° =t is tight, and
In this section, we study algorithms with a constant step sizga; A5) ‘A7) a), and Aé)(i?g géfcicsjfied% D)éf\i{wge} g
i.e.,e, = ¢ > 0. These algorithms can be used to track AR ' ’

model with Markov regime whose parameters vary slowly with Us = Plee/elan — ¥
time. The pertinent notion of convergence is in the sense of weak Ve
convergence (see [14], [23], [25]). The algorithm of interestis = (¢) = U, fort € [ne,ne +¢)
Pt = e (wi +&5(Y; wi)) - i Lte/eldltsel=L
Wet)y=ve > S(Y;; ¢*),  fort>0.
Again a constraint set is used for the estimation scheme. In the i=Lt.)

subsequent development, to save some notation, we often Wﬁjﬁeen(Uf(-) W#(-)) converges weakly iD2"+D[0, o) to
wn in lieu of ¢ for simplicity, and retain the dependence ! 9 y T

. . J(- .
whenever necessary. To proceed, rewrite the recursion as (), W()), and
dU = H (¢")Udt + dW

#nt1 = ¢n+eS(Yas gn) + eMn (39) wherelV (-) is a Brownian motion having covariang with ¥
whereM,, is the reflection or projection term. given by (21).
Define the piecewise-constant interpolations by
- VI. NUMERICAL EXAMPLES
- ©g, fort <0

() = {<pr, fort > 0 andt € [ne, ne +¢) We refer the reader to [10] for several numerical examples

and that illustrate the performance of the RMLE and the recursive

0, fort <0 expectation—maximization (EM) algorithm for HMM parameter
ME(t) = Lt/e]—1 estimation. Also [11] presents several numerical examples that

e > Mg, fort >0 illustrate the performance of the recursive EM algorithm in es-

=0 timating AR processes with Markov regime. (The recursive EM

where|t/e] is the integer part of/e. algorithm is identical to the RMLE algorithm apart from the fact

. that it uses a different step size). Our aim here is to illustrate
Theorem 5.1:Suppose thatyj converges weakly 100  the performance of the RMLE algorithm for parameter estima-
ase_— 0, that for eachM > 0, the stationary sequenceijon of AR models with Markov regime in two numerical exam-
{5(Y); ¢); el < M} is uniformly integrable, thas(Y;-) is  ples. In [21], off-line ML parameter estimation was performed
continuous for each’, that ES(Y;; ¢) = H(w) andH(¢) IS gp these two numerical examples.

continuous, and that for eaghand each:, asn — oo
Example 1: Linear AR Model With Gaussian Noiggon-

1 pn4n—1 B - B . _ -
1 Z E,S(Yi: ¢) — H(s) in probability (40) sider a second-ordet (= 2) AR model of the type
n =g Yn = _bXn, IYn—l - bXn, 2Yn—2 + 0X,.Cn-

Theny*(-) converges weakly tg(-) that is a solution of the Letr =2,n = 20000, and let the true parameters be
ODE (15), provided the ODE has a unique solution for each ,, [0.95 0.05 0 0.5 05 o |03
S o A= B = o= .
initial condition. 0.05 0.95 —-0.5 0.8 0.8
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TABLE |
LINEAR CASE WITH NORMAL ERRORS
. an .
Algorithm B &
a2z
0.3/k 0.8987 (0.0178) 0.4793 (0.0187)  0.4718 (0.0185) 0.2841 (0.0055)
Er = U.
0.9189 (0.0096) —0.5023 (0.0152) 0.8020 (0.0141) 0.7862 (0.0115)
Averaging 0.9408 (0.0052) 0.5009 (0.0118)  0.5003 (0.0131) 0.2955 (0.0050)
(ex = 0.1/k°'7) 0.9440 (0.0053) —0.5014 (0.0101) 0.7993 (0.0103) 0.7957 (0.0083)

TABLE I
NONLINEAR AUTOREGRESSIONWITH NORMAL ERRORS

Algorithm

B

g

ex = 0.1/k (for A and B)
10-%/k for &

0.8962 (0.0060)
0.9035 (0.0085)

0.4022 (0.0187)
0.8953 (0.0179)

0.1002 (0.0016)
0.1006 (0.0025)

Averaging

ex = 1072/k%7,1073 /K08

0.8987 (0.0040)
0.9010 (0.0039)

0.4009 (0.0051)
0.8965 (0.0089)

0.1002 (0.0009)
0.1005 (0.0013)

The parameter vector can be taken as where{e; } isani.i.d. sequence of standard normal random vari-
ables.

Letr = 2, n = 40000, and the true parameters be
i.e.,p = 8. Fifty independent sample paths based on the above

model were generated. For each sample path, the RMLE algo-A° = [0'9 0'1} BY = [0'4} oY = [0'1 .
rithm was run initialized at 0.1 09 0.9 0.1

0o = [0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.1, 0.2]. The initial parameter estimate

Table | gives the sample means and standard deviations €ih= (11, @22, b1(1), b2(1), 01(1), 02(1))
parenthesis) over these 50 replications for various step sizes was chosen af).5, 0.5, 0.7, 0.3, 0.5, 0.5).
with and without averaging.

Y= (an; @22, b1y, bia, ba1, boo, 0102)

Table Il gives the sample means and standard deviations (in

Comments: The best results were obtained fpr= 0.7. We  parenthesis) over these 50 replications for various step sizes
found that for the algorithms with iterate averaging and stepith and without averaging.
sizes of the formk”, v < 0.6, the RMLE algorithm became Hereb, is more difficult to estimate thaby , which might be
numerically ill-conditioned for some sample paths. Averagingxplained by the inequality», > b,; the exponential function
of both observations and iterates appears to have better transiept —b;y?) decays faster and is thus smaller in comparison to
characteristics. the noise for = 2.

Fixed-Step Size TrackingThe following time-varying linear By conducting several numerical experiments for the above
AR model was simulated: nonlinear autoregressive model we noticed that the convergence
40— {0_95 0_05} B — { 0.5 0_5} o_ [0_3} of the RMLE algorithm was sensitive to initialization 8f,. The

~10.05 0.95 105 08 7 =108 closer the initial valué, (1) was picked td» (1), the slower the
initial convergence of the algorithm. For initializations

n < 25000
0 {0.6 0.4} B0 [ 0.1 —0.4} o [0.1} [b1(1) = b2(1)] > 0.05
- 102 08 “|1-09 02 7 7|03 and in the regiord < b;(1) < 2 and0 < by(1) < 2 the algo-

25000 < n < 50000 rithm converged to the true parameter values within 40 000 time
o i points.
. Fig. 1 |Ilustra_tes the tracklr;g performance ogthe RMLE algo- Fixed-Step Size TrackingThe following time-varying ver-
rithm for step sizes of = 107 ande = 3 x 107°. The RMLE 5o of the above nonlinear AR model was simulated:

algorithm was initialized at
g 40 _ 0.90 0.10 B — 0.4 o_ |01
wo = [0.5, 0.3, 0.0, 0.0, 0.0, 0.0, 0.1, 0.2]. ~ 1010 0.90 ~ 109 o=

Example 2: Nonlinear Autoregression With Gaussian n < 25000
Noise: Here we consider a first-ordgfd = 1) nonlinear o _ [0.6 0.4} B0 — {0.2} 0 {0.3}

autoregression of the type 0.6 0.4 0.7 T los

Y, =exp(—bx, Y2 ) +ox,en 25000 < n < 60000.
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wansition probability estimates
‘wansition probability estimates

(b) Transition probability estimates ¢ = 3 x
1073

AR coefficient estimates
AR coefficient estimates

0 05 1 15 2 2T5 3 35 4 45 5 0 05 1 15 2 2‘5 3 35 4 45 5
time x 10° sme x 10"
(c) AR coefficient estimates ¢ = 10~3 (d) AR coefficient estimates ¢ = 3 x 103

slandard deviation esimales

b
@

standard deviation estimates

o 05 1 15 2 2{5 3 35 4 45 5
ime x10*
(e) Standard deviation estimate ¢ = 10~3 (f) Standard deviation estimate € = 3 x 10~3

Fig. 1. Tracking performance of RMLE for linear AR model. Step sizes atel0—2 and3 x 102, respectively. The parameters are specified in Section VI.

Fig. 2 illustrates the tracking performance of the RMLE al- VII. CONCLUSION AND EXTENSIONS

gorithm for step sizes of We have focused on developing asymptotic properties of re-

e=10"% and e=3x1073. cursive estimators of stochastic approximation type for hidden
Markov estimation. Convergence and rate of convergence re-
sults are obtained for both decreasing and constant step-size
@ = [0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.1, 0.2]. algorithms. In addition, we have demonstrated that algorithms

The RMLE algorithm was initialized at
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transition probability esiimate

bansition probability estmates

[ 1 2 ; 4 5 6 0 1 2 3 4 s 8
bid x10° time x10*
(a) Transition probability estimates ¢ = 10~3 (b) Transition probability estimates ¢ = 3 x
103
-0.2F
4
; E-O.A ‘ i |
5 b
£ 05 4 %-osfii
g g
8
H H
08 i
b
-1 L s " n " 1. s
o 1 2 4 5 L 0 1 2 3 4 5 L]
time x10° time x10*
(c) AR coefficient estimates ¢ = 10~3 (d) AR coefficient estimates e = 3 x 10~3
0. 0.

o o
5 &

o
=

standard deviation esimaies
slandard devialion astimate

o
@

o
]

01

(e) Standard deviation estimate e = 10~2 (f) Standard deviation estimate e = 3 x 10~3

Fig. 2. Tracking performance of RMLE for nonlinear AR model. Step sizes ard 0—= and3 x 102, respectively. The parameters are specified in Section VI.

with averaging in both iterates and observations are asymptaérest from a practical point of view to consider problems under
cally optimal in the sense they have the best scaling factor agichulation based setting. Recent efforts in this direction can be
achieve the “smallest possible” variances. For future researcHoitind in the work of Ho and Cao [18], Konda and Borkar [8],
is both interesting and important to design continuous-time rigEcuyer and Yin [26], Tang, L'Ecuyer, and Chen [40] among
cursive estimators for hidden Markov estimation. It will be of inethers.
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