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Gramicidin Ion Channel-Based Biosensors:
Construction, Stochastic Dynamical Models,
and Statistical Detection Algorithms
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Abstract—This paper deals with the experimental construction,
stochastic modeling, and statistical signal processing of a novel,
artificially constructed biosensor comprised of biological ion chan-
nels. Such nanoscale biosensors have been built by incorporating
dimeric gramicidin A (bis-gA) ion channels into bilayer mem-
branes of giant unilamellar liposomes, and then excising small
patches of the membrane loaded with ion channels. We present a
stochastic model for the response of the biosensor and present sta-
tistical model validation tests to verify the adequacy of the model.
We show that in the presence of specific target molecules, the sta-
tistics of the gating mechanisms of the gA channels are altered. By
capturing the change in real time, we devise a maximume-likelihood
detector to detect the presence of target molecules. To test the sen-
sitivity of this model, we conducted patch-clamp experiments with
two compounds known to inhibit conduction of the gA channels.
We found experimentally that the real-time detection algorithm
was able to accurately identify the addition of the compounds
even when the alterations in the patch-clamp recordings were very
small. This algorithm provides the sensitive detection system for
ongoing development of lipid-based nanosensors.

Index Terms—Biosensor, estimation, gramicidin A, lipid mem-
brane, maximume-likelihood detection.

1. INTRODUCTION

IOLOGICAL ion channels are protein molecules com-
monly found in cell membranes that form water filled
nanotubes, typically a few Angstrom units in radius. In bi-
ological systems, ion channels selectively regulate the flow
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of ions into and out of a cell and, thus, regulate the cell’s
electrical activity. By exploiting the selective conductivity of
ion channels in the presence of target molecules, biosensors
have been developed to detect molecular species of interest
across a wide range of applications. These include medical
diagnostics, environmental monitoring, and general biohazard
detection. In particular, a novel biosenor, which incorporated
monomeric gramicidin A ion channels into a tethered lipid
bilayer membrane and exploited the changes in the association
and disassociation probabilities of the Gramicidin dimers, was
published by a coauthor of this paper in Nature [1]. For a
detailed NMR analysis of the monomeric gA channels, please
refer to [2].

This paper deals with the construction, modeling, and statis-
tical signal processing associated with a new type of ion channel
based biosensor.

1) Construction of Biosensor: The biosensor constructed

in this paper comprises engineered dimeric gramicidin
A ion channels incorporated into a lipid bilayer mem-
brane, supported over a 1-ym diameter opening of a
micropipette, which was excised from a giant lipid vesicle.
In a giant lipid vesicle, covalent dimeric gramicidin A
ion channels were incorporated by codispersion with the
vesicle forming lipids. This type of artificially constructed
biosensor mimics the naturally occurring ion transport
processes of a living cell.

2) Stochastic Dynamical Models for Biosensor: Having con-
structed the biosensor, we formulated a stochastic dynam-
ical model to capture its experimental behavior. The engi-
neered dimeric gA channels provided the conducting pore
for the vesicle membrane, but not with the normal kinetics
of simple monomeric gA that normally diffuses in the inner
and outer leaflets of a bilayer membrane. The gating mech-
anism of the dimeric gA ion channels in the biosensor is
thought to arise from the random movement of excess lipid
lenses in the liposome that diffuse over the membrane sur-
face and block the conducting channels. In experiments,
we found that a hidden Markov model (HMM) [3], which
takes into account of the 1/f noise in the biosensor’s re-
sponse, is an adequate model for the biosensor currents.

3) Statistical Detection Algorithms for Target Molecules: In
the presence of target molecules, the stochastic behavior
of the biosensor current changes. By using a sequential
maximum-likelihood detector, we show that the biosensor
can be used in real-time target molecule detection. We
illustrate the use of the biosensor in detecting two types
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Fig. 1. Fluorescence image (left) of biosensor’s horizontal optical section
shows the bis-gA channels labeled using FITC and identified by the green
color. Phase-contrast image (right) of the same horizontal slice shows the
overall shape of the biosensor.

of target molecules, methylbenzthonium chloride (MBC)
and 2-methyl-4-tert.-octylphenol (MTOP). The experi-
mental data presented shows that the detection algorithm
performed remarkably well even when it was difficult to
visually identify the model change. Thus, the system we
present in this paper provides a sensitive platform for the
development of artificially constructed biosensors that
better mimic the function of living cells.

The remainder of this paper is organized as follows. Section II
describes the construction of the biosensor. Section III presents
a HMM to describe the dynamical behavior of the biosensor.
We also present model validation methods to verify the good-
ness-of-fit of the HMM to the biosensor response and sequential
detection algorithms for detecting target molecules in real-time;
and finally, in Section IV, we demonstrate the experimental de-
tection of two target moecules, MBC and MTOP. Both com-
pounds are known to inhibit the conduction of bis-gA channels.

II. EXPERIMENTAL CONSTRUCTION OF THE bis-gA MODEL
BIOMIMETIC ION CHANNEL BIOSENSOR

The biosensor considered in this paper was constructed
by incorporating bis-gA ion channels into the lipid bilayer
membrane of giant unilamellar liposomes,, and then excising
small patches (1 pym in diameter) of the lipid membrane using
a patch-clamp micropipette. The bis-gA was synthesized at
the Ambri laboratories. Fig. 1 shows the fluorescence and
phase-contrast image of the optical section through the diam-
eter of the biosensor. The solutions and chemicals used for
the model biosensor was purchased from Sigma Chemical
Company (St. Louis, MO) and included DL-alpha-phos-
phatidylcholine (PC) from soybean, cholesterol, chloroform,
sucrose, glucose, sodium chloride, potassium chloride, and
4-(2-Hydroxyethyl)piperazine- 1-ethanesulfonic acid (HEPES).
Giant unilamellar liposomes were prepared using our recent
protocol [4] that was modified from a standard hydration pro-
cedure [5]-[7]. In brief, a dried lipid film was prepared from
100 L of 10 mg - mL™" PC with 10% (w/w) or 40% (w/w)
cholesterol in chloroform in a glass test tube, as described ear-
lier. Bis-gA (1:100 mole/mole) was added and rehydration of
the lipid was made at 45 °C by the addition of a small amount
of pure water (5 pL) to the tube for a few minutes followed
by the addition of 5 mL of an aqueous solution of 0.1 M or
0.2 M sucrose. The tube was incubated at 45 °C for 2-3 h.
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Fig. 2. Photo of glass micropipette and liposome with block diagram of the
experimental setup.

After gentle rocking overnight at room temperature, the lipid
film dispersed uniformly and a white cloud was floating in the
middle of the solution, which contained giant liposomes. The
obtained liposomes were approximately 20 pm in diameter and
were stable up to four days at 4 °C.

Patch-clamp electrophysiology was used to record the ionic
currents from the model biosensor that resulted from the
permeation of ions through the bis-gA ion channels incorpo-
rated in the lipid membrane patches that were excised from
the giant unilamellar liposomes. To perform the patch-clamp
recordings, the liposomes were allowed to settle on the bottom
of a recording chamber, which was either a 35-mm plastic
tissue-culture dish or a purpose-built recording bath fitted with
the glass cover-slip (Warner, RC13). Patch-clamp pipettes
with a tip opening between 0.9 and 1.5 pm were fabricated
from borosilicate capillary glass tubing (Modulohm A/S,
Denmark, Vitrex 1601) using an automated puller (Sutter, P97).
The patch-clamp pipette was used to excise patches of lipid
membrane from the giant unilamellar liposomes. The bis-gA
channel currents from these membrane patches were amplified
and filtered at 1 kHz (four-pole Bessel) using an Axopatch
200B amplifier (Axon Instruments) and sampled online at
10 kHz. Fig. 2 shows a schematic of the experimental setup.

III. STOCHASTIC MODELING AND STATISTICAL MODEL
VALIDATION OF BIOSENSOR RESPONSE TO TARGET MOLECULES

In this section, we discuss estimation techniques to extract the
model parameters of the biosensor response. Statistical model
validation tests are introduced to verify the goodness-of-fit of
the model. With the biosensor response fitted to the dynamical
model, we present the maximum-likelihood detection algorithm
for detecting target molecules.

A. Stochastic Modeling of Biosensor

Suppose a patch clamp experiment is conducted with (N —1)
gramicidin A channels in the biosensor. At each discrete time
instant k, each bis-gA channel can be either in the “open” or
“closed” state and each open channel conducts a fixed current.
Thus, the total current due to all (N — 1) ion channels at any
given time can take on one of N possible levels {ju1,..., un}
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Fig. 3. Power spectral density of biosensor response clearly shows the 1/f open
channel noise and the anti-aliasing effect in the samples.

and can be modeled as a N-state Markov chain. Write as . =
(p1s .-, pun). Let Xy denote the total channel current at dis-
crete time k. Let

aij = P(Xp = pj| Xp—1 = pi), i,5€{l,...,N} (1)

denote the transition probabilities of the Markov chain. Also, let

WO(Z):P(XIZNL) Le{llvN} )
denote the initial distribution of the Markov chain. Write A =
[aij]nxn and mg = [m(2)]nx1. The measured current from
the biosensor is a distorted version of the signal Xj. The dis-
tortion arises from thermal noise, the anti-aliasing effect from
sampling and an open channel noise with its power proportional
to the inverse of frequency. Thus, this is also known as 1/f noise
and is discussed in other studies of bis-gA ion channels [8], [9].
Fig. 3 shows the power spectral density of a typical sequence
of biosensor recordings and clearly shows that the power de-
creases at a rate of —10 dB/dec at low frequencies and has a
sharp cutoff at approximately 1 kHz. To model this correlated
noise process, we can use an auto-regressive (AR) Gaussian
process that comprises white Gaussian noise process Wi, fil-
tered by an all-pole filter. We represent the filter with transfer
function H(q~ '), where ¢! denotes the unit delay operator

Wy
Yi=Xe+ 57—
H(q™1)
or equivalently
H(q )Y = H(g™") Xi + Wi 3)

where

HgY=14hiqgt+. .. +hyqg ™.
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However, the 1/f noise is a long memory process and requires
choosing the filter order M to be large. The state space of
H(q~ ') X}, in (3) increases exponentially with M, thus making
it computationally infeasible to model long memory processes
like 1/f noise. We observe that in our current setup, the gating
mechanism of the bis-gA channels is a much slower process
relative to the sampling rate and most of the power of the sto-
chastic process resides at DC. Therefore, we argue that we can
closely approximate the behavior of the gramicidin channels
with our model in (4), provided that the filter H(z) has unity
DC gain. We redefine the response of the noisy observation as

X+ W

BTG

“

We show with model validation methods in Section III-B that
the model in (4) accurately describes the biosensor response.
Write h = (1,hy,...,hyr)T. It is convenient to model the
noise corrupting the state of the biosensor as state dependent
noise—that is the noise variance at any given time instant is de-
pendent on the state of the biosensor at that time instant. Let

o? be the variance of state i, i = (1,...,N). Write 02 =
(02,...,0%). As a result, the observations can be formulated

as a HMM sequence. Let § = (A, 7, i, 02, h) be the HMM that
characterizes the output measured current from the biosensor.

The use of stochastic modeling as part of a biosensing plat-
form eliminates the majority of electrical and mechanical inter-
fering effects. The approach further offers the ability to enhance
the specificity and affinity of biosensor through the use of re-
ceptor combinations in conjunction with analysis by stochastic
modeling.

B. Maximum-Likelihood Estimation (MLE) of Biosensor
Parameters

Given an observation sequence {Y%} of length T, we define
L(0) as the log-likelihood of our model at discrete time k. The
estimation of the model 6 involves processing {Y} through a
HMM maximum-likelihood estimator (MLE). The system in (4)
can be rewritten as

W'Y, = X + Wy 5)

where Yy = (Y&, Yi_1,...,Ye )T, This formulation is
analogous to a standard HMM, except that the observation
sequence is filtered by a finite-impulse response (FIR) filter.
The expectation maximization (EM) algorithm is an iterative
procedure that solves for local maximum of the likelihood
function. The E-step evaluates the log-likelihood, which is
defined as

t=1 {=1

: —(hTY, — 1)
Lk(g):ZZ%(i)log (J;T?GXP( (h ;;kz ) ))
N N

k
+D 30> G g) log(ai)  (6)

t=1 i=1 j=1
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and the M-step maximizes the log-likelihood with respect to the
model parameters as follows:

Shy G )
> et (1)
o = Ek 1’7k( )(hTYk—M)
' > ke ()
ke (BT Y

Zk 1’Yk()

The coefficients of the filter H(q™!) can also be estimated by
taking first-order derivatives of the likelihood function. Alterna-
tively, the estimation can be implemented with the Yule—Walker
type equations. For details about HMM estimation and the EM
algorithm, please see [10]-[13].

Qi =

Wi =

C. Statistical Model Validation of Biosensor Model

Statistical model validation is of key importance for the
biosensor since, once a satisfactory stochastic model is deter-
mined, an appropriate molecular detection algorithm can be
constructed. The MLE estimates the most likely model for a
fixed topology, but we need to statistically validate the adequacy
of the estimated model by analyzing the autocorrelations of the
residuals, which are generated via a HMM one-step predictor

Chlk—1 = Y — E E aijo—1(i)pj —

=1 j=1

Zh Yien (1)

where oy is the forward variable of the forward—backward pro-
cedure. [10] The residuals of an adequately fitted model should
be uncorrelated and the autocorrelation should approach O as
T — oo. The lag-l autocorrelation function of the residual is
defined as

Yierpa(ex = @)(ext — @)
> i (er — €)?

where € is the mean of the residual process. Rather than exam-
ining the autocorrelation at each lag [, the standard procedure
is to compute the Ljung-Box Q-statistic defined in (9), which
computes the cumulative sum of autocorrelations at the first L
lags. The Ljung-Box test is used as a portmanteau lack of fit test
for model adequacy [14]

r(l) = ®)

7.

L
Q=N(N+2) Z )
=1

It is shown in [15] that for an adequate model, the Q-statistics
of the residual is approximately distributed as x?(L). We will
report on the validity of the model on the biosensor experimental
data in Section IV.
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Fig. 5. Chemical structure of MTOP.

D. Target Molecule Detection Algorithm

After the design and validation of the dynamical models, in
this section, we discuss model validation algorithms for the
detection of analytes that are known to change the statistics of
bis-gA channel conductance. MBC and MTOP are two analytes
that are known to inhibit conductance of bis-gA channels.
The chemical structure of MBC and MTOP are shown in
Figs. 4 and 5, respectively. The MBC used in the experiments
was purchased from Sigma Laboratories (Product Number:
M7379-10G) and MTOP was prepared from MBC. The in-
teraction of MBC and MTOP with gA channels is described
in the manuscript [16]. The binding affinity of MBC to gA
in tethered lipid bilayers and monolayers is determined to be
close to 1 um in phosphate buffered saline (PBS). MTOP has a
similar affinity.

Given a measured sequence observed in an unknown con-
dition, the detection problem involves the identification of
the condition that most likely contributes to the biosensor’s
response. This is a model classification problem and can be
solved by comparing the likelihood of each known model. Let
Y = (Y1,...,Yr) be a sequence of observed responses of the
biosensor and let © = (f,...,605) denote the set of model
parameters that characterizes the biosensor’s response for
known conditions. It is assumed that at each time point k, the
sequence Y behaves according to one of M possible models in
0.

The model parameters © are estimated and the log-likelihood
at each time point L can be computed from (6). To make the de-
tection more robust to nonstationary disturbances and outliers in
the measurements, we apply a geometric moving-average filter
to the log-likelihood. Let p be the forgetting factor 0 < p < 1.
Define the filtered likelihood of model 6 at time &

_ Ll(e),
Sk(0) = { (1= p)Sk_1 + pLr(0),

The filtered likelihood is a weighted sum of the likelihood of the
entire sequence {Y7, ..., Yy}, with higher weights on the recent
observations.

The a priori probabilities of each model is generally un-
known, so we devise a maximum-likelihood detector which

fork=1

for2<k<T" (10)
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Fig. 6. Three seconds of biosensor response was recorded at an applied voltage
of 50 mV and an amplifier gain of 200. The giant liposome was constructed from
PC with 10% cholesterol in chloroform.

picks the most likely model at time k given the measured
sequence Y7,..., Y%

b1 = arg max (Si(0)) (11)

where ék is the maximum-likelihood detection of the model at
time k.

IV. EXPERIMENTAL RESULTS OF BIOSENSOR

Here, we report on the goodness-of-fit of the dynamical
model presented in Section III-B and the performance of the
detection algorithm presented in Section III-D on actual exper-
imental data. We recorded output from the model biosensor by
measuring the activity of the bis-gA ion channels incorporated
into the small lipid membrane patches that were excised from
the unilamellar giant liposomes. Bis-gA ion channels were
incorporated into the unilamellar giant liposomes at a concen-
tration of 1/100 from a 66 nM stock solution. We used 0.5 M
KClI solution in the recording pipette with the microparticles
suspended in a 0.5 M NaCl solution.

A. Model Estimation and Validation for Biosensor

We recorded the biosensor response at an applied voltage of
50 mV and an amplifier gain of 200. Fig. 6 shows a 3-s recording
of biosensor response. Notice that the bis-gA current measure-
ments obtained here are more noisy compared to the ones ob-
tained from a solvent sealed black lipid membrane (BLM). The
quality is typical of patch clamp recordings in which a mem-
brane patch is captured on the tip of a 1 ;m pipette. The seal ob-
tained using the patch clamp technique is generally poorer than
that obtained from a BLM, resulting in a worse signal-to-noise
ratio for the measurements. A further potential difficulty is the
possibility of multiple lipid layers being present in the patch as
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TABLE 1
MLE oF HMM PARAMETERS OF THE BIOSENSOR RECORDING IN FIG. 6

Transition Conductance Level | Variance
Probabilities (pA) (pA)?
0.9964 | 0.0036 5.831 0.513
0.0006 | 0.9994 3.057 0.371
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Fig. 7. Maximum-likelihood estimate of an individual conductance level
was extracted from the forward—backward procedure in the HMM estimation
algorithm.

compared with the BLM geometry which is thinned to a single
bilayer. When recording from multiple lipid membrane stacks,
the signal-to-noise ratio of the individual conduction events is
reduced by noise arising from the complex impedance of the se-
ries elements.

We fitted the sequence with two-state HMM and a twelfth-
order AR filter. The model parameters were estimated with the
MLE and listed in Table I. The most likely conductance level
sequence is extracted from the HMM procedure and is plotted
in Fig. 7.

To verify that the two-state HMM outlined in Table I provides
sufficient statistics to model the response of the biosensor, we
computed the Q-statistics of the residuals, using (7)—(9). It can
be seen in Fig. 8 that the Q-statistics are below the critical values
of the chi-square distribution at 0.05 significance level for the
first 13 lags. Therefore, the hypothesis that the residual is a white
process cannot be rejected.

It is interesting to note that the estimated state levels, at
approximately 3 and 6 pA, are rather large for a low applied
voltage. One plausible explanation for this observation is that
the activity of some of the bis-gA channels are correlated. In
other words, the level switch from 3 to 6 pA may be contributed
by several coupled channels opening at the same time.

B. Real-Time Detection of Target Molecules

In this section, we illustrate the performance of the algorithm
in detecting the presence of target molecules in real-time. We
present experimental results of the biosensor in detecting two
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Fig. 8. For the first 13 lags, the Q-statistics of residuals are below critical value
of Ljung-Box test at significance level =0.05. Thus, the hypothesis that the
residual is a white process cannot be rejected. Therefore, the two-state HMM
provides sufficient statistics to model the biosensor behavior.
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Fig. 9. The biosensor recordings with and without MBC. MBC was added after
k = 57.793 s.

analytes, MBC and MTOP. Both compounds are known to in-
hibit conduction of the bis-gA channels. Patch-clamp experi-
ments are conducted with and without MBC in the bath solu-
tion. Let

#; = with MBC in the bath solution
f> = with no MBC in the bath solution.

Assuming a four-state HMM, the parameters of §; and 6> are
estimated with the EM algorithm. To simulate the addition of
MBC into the bath solution, we merged together sequences
recorded with and without MBC. The merged sequence is
plotted in Fig. 9. The filtered likelihood of each model is shown
in Fig. 11. Since the stochastic model successfully captures
the dependencies in the biosensor’s response, the detection
algorithm quickly and accurately estimates the model switching
point. The detection trace in Fig. 12 indicates a switch in the
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Fig. 10. The biosensor recordings with various concentrations of MTOP.
50 pM of MTOP was added to the solution every 50 s.
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Fig. 11. The filtered likelihoods Sx(61) and Si(62) computed with
p = 0.0001. The plot shows that the filtered likelihoods Sk (61) and Sk (62)
were able to track the presence of MBC in the bath solution.

most likely model from 6, to 65 at k = 59.865 s, approximately
0.2 s after MBC is added.

In the second example, we test the algorithm’s performance
in identifying the concentration of MTOP in the bath solution.
Let

#1 =no MTOP in the bath solution
f> =50 uM MTOP in the bath solution
A3 =100 uM MTOP in the bath solution.

The parameters of 1, 5, and f3 were estimated offline with
the EM algorithm. We simulated the change in concentration
of MTOP by merging channel recordings independent from the
training sequences. The merged sequence is plotted in Fig. 10.
The filtered likelihood and the detection trace are plotted in
Figs. 13 and 14, respectively. The algorithm performs extremely
well in identifying the correct concentration of MTOP in the
solution.
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Fig. 13. The filtered likelihood S (81), Sk(62), and Sy (63) computed with
p = 0.0001. The plot shows that the filtered likelihoods are able to track time-
varying concentrations of MTOP in the bath solution.
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Fig. 12. Maximum-likelihood detection 6 is generated using the likelihoods in
Fig. 11. While itis difficult to visually identity the transition from the recordings,
the detection algorithm detected a model change shortly after MBC was added
to the solution.

V. CONCLUSION AND EXTENSIONS

The system we present in this paper provides a platform
for the development of artificially constructed biosensors that
more closely mimic the function of living cells. The biosensor
comprised of engineered dimeric gramicidin A ion channels
incorporated into small patches of bilayer membranes that were
excised from giant unilamellar liposomes. For various exper-
imental examples, we showed that by applying the stochastic
modeling and Bayesian signal processing to detect alternations
in the patch-clamp recordings, we can accurately identify
additions of known analytes even when the variations are very
small. This detection algorithm provides a sensitive means
of detecting alterations in ion channel activity, and allows
further development of this lipid-membrane-based biosensor
that utilizes ion channels as the readout for binding of analytes
to the biosensor.

In future work, we will construct a more robust biosensor by
incorporating bis-gA channels into a BLM, where we can ob-
serve the activity of a single bis-gA channel and investigate in
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Fig. 14. Detection trace 8, generated using the likelihoods in Fig. 13, showing
the most likely condition. The algorithm performed very well even when three
different experimental conditions were involved.

more detail biological properties of the bis-gA channels. In par-
ticular, we will study the gating mechanism and whether cou-
pling exists between neighboring channels.
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