
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005 1561

Adaptive OFDM Synchronization Algorithms Based
on Discrete Stochastic Approximation
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Abstract—This paper presents discrete stochastic approxima-
tion algorithms (DSA) for time synchronization in orthogonal
frequency division multiplexing (OFDM) systems. It is shown
that the discrete stochastic approximation algorithms can be
effectively used to achieve a significant reduction in computational
complexity compared to brute force maximum-likelihood (ML)
methods for OFDM synchronization. The most important prop-
erty of the proposed algorithms is their recursive self-learning
capability—most of the computational effort is spent at the global
or a local optimizer of the objective function. The convergence
of the algorithms is analyzed. An adaptive version of the discrete
stochastic approximation algorithm is also presented for tracking
time-varying time delays and frequency offsets in time-selective
fading channels. Detailed numerical examples illustrate the per-
formance gains of these DSA-based synchronization algorithms.

Index Terms—Computational efficiency, discrete stochastic ap-
proximation, fading channels, frequency synchronization, OFDM,
time synchronization.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
is a promising technique for high-bit-rate wireless com-

munications [3], [7], [14], [16]. Multipath immunity, bandwidth
efficiency, and resistance to narrowband interference and im-
pulse noise are the key advantages of OFDM. It has been em-
ployed for digital audio/video broadcasting (ZW95) and wire-
less LAN (IEEE 802.11a and Hiperlan/2) standards [14]. How-
ever, a major drawback of OFDM is its relatively high sensitivity
to time and frequency synchronization errors compared with a
single carrier system [3], [7], [16]. The time synchronization
error refers to the incorrect timing of OFDM symbols at the
receiver introducing subcarrier phase rotation and possible in-
tersymbol-interference (ISI) and intercarrier-interference (ICI).
Frequency synchronization error is caused by the misalignment
in subcarrier frequencies due to fluctuations in receiver radio
frequency (RF) oscillators or the channel’s Doppler frequency.
This frequency offset can destroy the subcarrier orthogonality of
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the OFDM signal introducing ICI. Both ISI and ICI cause degra-
dation of the bit-error-rate (BER) performance of the OFDM
systems.

The synchronization problem considered here is an instance
of a stochastic optimization problem of the form:

Compute (1)

where is an unknown parameter, and is a sequence
of i.i.d. random variables parameterized by . For continuous
parameter stochastic optimization problems, i.e., when the pa-
rameter set is some compact subset of the Euclidean space,
continuous stochastic gradient algorithms [12], [19], such as the
Least Mean Squares (LMS) and Recursive Least Squares (RLS),
have been studied ad nauseam in the signal processing literature.
They have the form

where denotes a small step size (matrix valued step size in the
RLS case).

However, in the OFDM synchronization problem addressed
in this paper, the underlying parameter set of possible time de-
lays (symbol timings) is discrete valued. Thus, maximizing
the expected value of an objective function (e.g. likelihood
function) cannot be achieved by stochastic gradient algorithms
such as LMS since the concept of a gradient does not exist for
such a discrete valued optimization problem. An obvious brute
force approach to solve such a discrete stochastic optimization
problem is to approximate for each as

. For large , by the strong law
of large numbers, this approximation becomes accurate. Then,
simply pick the that maximizes . This brute
force procedure is computationally inefficient since evaluating

for a particular value of says nothing about
for the optimal value of .

What one needs to devise is an adaptive resource allocation
scheme that dynamically decides at each time instant which
sample to pick to evaluate in order to con-
verge to the optimum with minimum effort. This paper presents
novel low-complexity time and frequency synchronization algo-
rithms for OFDM based on the recently proposed discrete-sto-
chastic approximation algorithms [1], [2] appearing in the oper-
ations research literature. Like the LMS algorithm, the discrete
stochastic approximation algorithm recursively generates a se-
quence of parameter estimates , where each new parameter

1053-587X/$20.00 © 2005 IEEE



1562 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 4, APRIL 2005

estimate is obtained from the old one by moving in a good direc-
tion. However, instead of a instantaneous derivative to guide the
evolution of the algorithm, a randomized sampling and accep-
tance step is used. The most important property of the proposed
algorithms is their recursive self-learning capability—most of
the computational effort is spent at the global or a local opti-
mizer of the objective function. Since the algorithm is recursive,
it can be used online to adaptively synchronize time-varying
time delays (symbol timings) and frequency offsets caused by
time-selective fading channels. The self learning capability is
equivalent to the statistical efficiency of the algorithm and is
important in discrete stochastic optimization algorithms since
an obvious brute force approach would involve an exhaustive
trial of all possible parameter values (as outlined above).

There are several different classes of methods that can be used
to solve discrete stochastic optimization problems of the form
(1); see [2] and [21] for a recent survey. When the feasible set

is small (usually two to 20 elements), ranking and selection
methods and multiple comparison methods can be used to locate
the optimal solution. However, for large , the computational
complexity of these methods becomes prohibitive. It is for this
reason we have chosen the discrete stochastic approximation al-
gorithms in [1] and [2] as our basis for designing synchroniza-
tion algorithms. In addition, see [20] for a unified introduction
to stochastic search and optimization.

The synchronization algorithm presented in this paper is
cyclic prefix (CP) based. CP-based techniques [3], [8], [16]
and reference symbol (training sequences) based techniques
[13], [18] have been proposed for OFDM synchronization in
the literature. Among these, CP-based techniques are consid-
ered more advantageous because the use of reference symbols
lowers the achievable data rate (bandwidth inefficient). In this
paper, we propose low-complexity synchronization techniques
that are useful for frequency-selective (multipath) and slowly
time-varying channels. Such fading channels are generally
encountered when there is zero or very little relative movement
between the transmitter and the receiver, i.e., zero Doppler
frequency. Wireless local area networks (LANs) and digital
describer lines (xDSLs) are examples for time-flat fading
situation. Indoor environments where the receiver mobility
is naturally limited also provide slowly time-varying channel
conditions. In such channels, it is reasonable to assume that the
time and frequency offsets are constant over a large number
of OFDM symbols and that they change slowly after a large
number of OFDM symbols.

The organization and main results of this paper are as follows.
In Section II, the synchronization problem is formulated for

an OFDM system. In addition, a brute force maximum likeli-
hood estimation algorithm (which involves exhaustive enumer-
ation) presented in [8] is briefly outlined.

In Section III, the discrete stochastic approximation algo-
rithm is presented for solving the synchronization problem. It
is shown that the algorithm can be interpreted as a decreasing
step-size stochastic approximation algorithm in tandem with a
adaptive search/sampling scheme.

In Section IV, convergence and efficiency of the proposed al-
gorithm is shown. In order to show this, we verify the stochastic
ordering conditions of [1] for the OFDM model.

In Section V, a novel adaptive version of the discrete sto-
chastic approximation synchronization algorithm is given for
OFDM systems in time-selective fading channels. This algo-
rithm can track time-varying delays and frequency offsets. A
mean square analysis of the tracking properties of the algorithm
based on our recent work [10] is briefly outlined.

Finally, Section VI presents numerical examples that illus-
trate the performance of the synchronization algorithms in fre-
quency-selective and time-selective fading channels. In partic-
ular, the performance of the adaptive synchronization algorithm
for tracking time-varying time delays (symbol timings) and fre-
quency offset is illustrated for time-selective fading channels.

II. TIME AND FREQUENCY SYNCHRONIZATION

A. Synchronization Task

Let denote the total number of subcarriers. The transmitted
OFDM signal sequence is obtained by performing the
inverse fast Fourier transform (IFFT) operation over consecutive
blocks of data of length , where the data comprises of quadra-
ture amplitude modulation (QAM) or phase shift keying (PSK)
symbols. The front of the resulting -block IFFT sample is aug-
mented with a block CP to form a transmitted OFDM
symbol comprised of samples. Note that the data
samples are assumed to be i.i.d., whereas the length cyclic
prefix sequence is a copy of the last data samples of the
OFDM symbol.

In an OFDM system, the complex discrete time signal
at the receiver is modeled as [3]–[16]

(2)

Here, denotes the integer-valued channel delay (timing
information), where

denotes the set of possible timing delays. The carrier frequency
offset (normalized using the subcarrier spacing ) lies in the
closed interval [0,0.5]. denotes a complex-valued addi-
tive white Gaussian noise (AWGN) process statistically inde-
pendent of the process . The real and imaginary compo-
nents of are also assumed to be statistically independent.

For a multipath (time-dispersive) channel, in (2) is re-
placed by the multipath signal

(3)

In the frequency-dispersive case, the coefficients are time
invariant.

Denote the sequence of received OFDM symbols as
. Here, denotes symbol time. The

sample-received OFDM symbol is
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Note that in each received OFDM symbol, both the cyclic
prefix samples as well as the data samples are corrupted by
noise.

The synchronization task at the receiver involves the estima-
tion of two parameters: the integer-valued delay and
the frequency offset . Accurate and efficient recovery of these
parameters is critical for accurate OFDM demodulation, which
uses the FFT operation.

B. Brute Force CP-Based Maximum-Likelihood
Synchronization

An obvious synchronization method given a block of
received OFDM symbols is to compute the

maximum likelihood estimate of the timing delay as

where

(4)

denotes the log likelihood function. Due to the Gaussian noise,
it is straightforwardly shown (see [3]) that the log likelihood
(omitting constant terms that are independent of and the en-
ergy term [3, Eq. (4)] that is approximately a constant for large

) is

(5)

where for each

(6)

Here, the superscript indicates complex conjugate. Notice
that is merely the sum of consecutive empirical cor-
relations between pairs of samples spaced samples apart, as
shown in Fig. 1. Thus, computing the MLE involves brute force
enumeration of the log likelihood for all , which
can be very expensive for large sets and large .

It is well known that the MLE is strongly consistent, i.e.,
as , with probability one (w.p. 1.), where

in (2) denotes the true delay. Indeed, since the noise samples
are i.i.d., the strong law of large numbers (SLLN) ap-

plied to (5) yields , which is
the Kullback-Leibler information measure [11]. This, and the
finiteness of , implies that as

(7)

At the true delay , samples of the cyclic prefix and their copies
in the current OFDM symbol are perfectly aligned in the sum-
mation window. As an example, Fig. 2 shows the simulated
magnitude plot of for two consecutive OFDM symbols,
with (true delay), (frequency offset),

, and under a AWGN channel with SNR dB.

Fig. 1. Computation of the correlation function G (�) using a shift register
of length N . It calculates the correlation of two sequences of N samples
length, separated by N samples, in the received sample sequence r(n).

The frequency error is estimated using the phase of the
correlation function at the MLE delay [8] and is given by

(8)

The above brute force MLE algorithm is an offline algorithm
and assumes that the true time delay and frequency offset

are constants. It is not suitable for adaptive synchronization
where the time delay and frequency offset vary with time
due to fading channels. Furthermore, the complexity of the al-
gorithm is , which can become expensive for
large and .

III. DISCRETE STOCHASTIC APPROXIMATION BASED

SYNCHRONIZATION ALGORITHMS

In this section, we formulate the synchronization problem as
a discrete stochastic optimization problem and present a recur-
sive discrete stochastic approximation algorithm for solving it.
Two versions of the algorithm are given; one is locally conver-
gent, and the other is globally convergent. Implementation de-
tails of these algorithms for low-complexity OFDM synchro-
nization and the associated computational complexity are also
discussed.

A. Discrete Stochastic Optimization

As demonstrated in (7), the task of determining the optimal
delay can be formulated as the following discrete stochastic op-
timization problem:

Estimate (9)

Let denote the set of global optimizers of (9). The unique-
ness and strong consistency of the MLE [see (7)] implies
that .

The MLE of Section II-B can be viewed as an obvious brute
force method to compute the estimate , and for large ,
the estimate is consistent, i.e., (7) holds. However, the method
is highly inefficient since needs to be evaluated for each

. The evaluations of for are wasted because
they contribute nothing to the estimation of . The idea of
discrete stochastic approximation [2] is to design a recursive al-
gorithm that is both consistent and attracted to the maximum.
That is, the algorithm should spend more time obtaining obser-
vations in areas of the state space near the minimizer
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Fig. 2. Simulated magnitude plot jG (�)j for two consecutive OFDM symbols (T = 128, 
 = 0:3, N = 512,N = 64, and SNR = 10 dB). Peaks of the
jG (�)j plot provide estimates of the symbol timing. (a) G (�), � 2 � for OFDM symbol m = 1. (b) G (�), � 2 � for OFDM symbol m = 2.

and less in other areas. Thus, in discrete stochastic approx-
imation, the aim is to devise an efficient [15, Ch. 5.3] adaptive
search (sampling) plan that allows us to find the maximizer with
as few samples as possible by not making unnecessary observa-
tions at nonpromising values of .

B. Discrete Stochastic Approximation Algorithm for
Synchronization

The discrete stochastic approximation algorithm presented
below is consistent (like the brute force MLE) but also attracted
to the maximum of (9). In addition, it is recursive in that it yields
an updated estimate with each new OFDM symbol. The algo-
rithm resembles an adaptive filtering, e.g., least mean square
(LMS) algorithm in the sense that it recursively generates a se-
quence of parameter values where each new parameter value is
obtained from the old one by moving in a good direction and in
the sense that it converges to the global (or a local) optimizer of
the objective function.

In the algorithm below, the following notation is used:
random variable generated by the algorithm
at symbol time that can be thought of as
the state of the algorithm at symbol time ;

, counter that yields at any symbol time
the number of times the algorithm state se-
quence , has visited any
point ;
estimate of the time delay generated by the
algorithm based on the observed symbols.
It is the main output of the algorithm.

The globally/locally convergent discrete stochastic approxi-
mation algorithms given below are based on [1] and [2]. They
operate with different search neighborhoods at each symbol

. For the globally convergent algorithm . For
the locally convergent algorithm if ,

if , and ,
otherwise, where is a sequence generated by the algo-
rithm below.

Algorithm 1: Decreasing Step Size
Synchronization Algorithm

Step 0 : Initialization. Select a
starting point . Set

and for all
, . Set and
. Go to Step 1.

Step 1 : Sampling Step. At symbol time
, given the value of the cur-

rent state , generate the
candidate state ac-
cording to a uniformly dis-
tributed independent random
variable. Go to Step 2.

Step 2 : Evaluation and Acceptance.
Given the values of the current
state and the candidate
state , generate the obser-
vation

where is defined
in (6).
If , then update state

as .
Otherwise, let . Go

to Step 3.
Step 3 : Timing and Frequency Offset Up-

date. Update occupation times
as

for

Compute the timing and
frequency offset esti-
mates: ,

. Set
and go to Step 1.
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Fig. 3. Schematic of synchronization Algorithm 1.

The random variable
is used to compare the current state with the candidate state

. If , then the candidate state is better
than the current state , and Step 2 of the algorithm chooses
this candidate state as the new state.

The key difference between the globally and locally conver-
gent algorithms is the neighborhood structure . For the lo-
cally convergent algorithm, only the two neighbors of are
members of , whereas for the globally convergent algorithm,
all points in are possible neighbors.

The main idea behind the above algorithm is that the finite-
state sequence generated by Steps 1 and 2 is a homoge-
neous Markov chain with state space . As long as conditions
C1) and C2) of Section IV hold, this Markov chain will spend
more time at the set of global maximizers (or local maxi-
mizer, depending on the choice of neighborhood ) than any
other . In Step 3, is a counter that measures the
number of times the sequence until symbol has vis-
ited . Finally, the maximization in Step 3 yields the value

, where the sequence has spent the most time. In
Section IV, we prove that the above algorithm is consistent and
attracted to the set of global (or local) maximizers.

Decreasing Step Size Interpretation of Step 3: It is conve-
nient to map the finite-state sequence generated by
Algorithm 1 to the sequence of unit vectors, where

(10)

Here, is the dimensional unit vector with 1 in the
th position and zeros elsewhere.

Now, consider Step 3 of Algorithm 1. The counters ,
can be normalized as follows: Define the -di-

mensional vector , where
. Then, is an empirical measure of

the occupation probability of . The update of Step 3 is
straightforwardly expressed as

(11)

where represents a decreasing step size.
Then, the time delay estimate of Step 3 is given by

, i.e., the state with the maximum
occupation probability.

Hence, Algorithm 1 can be viewed as a decreasing step size
algorithm that involves an LMS algorithm (with decreasing step
size) in tandem with a random search step and evaluation (Steps
1 and 2) for generating . Fig. 3 shows a schematic diagram
of the algorithm with this LMS interpretation for Step 3.

Implementation Details: In Step 0, the initial point in the
search space can be initialized as the MLE (4) based on
the first two received OFDM symbols , .

Since does not directly feed back into the algorithm (see
Step 3), it does not have to be computed at each time instant. In
addition, it is clearly not necessary to store the sequences
and for all . They can be overwritten at each symbol
time . The main memory overhead required for the algorithm
is storing the local variables , , which requires

memory.

C. Computational Requirements

The number of complex multiplications to be performed is
used as the measure of complexity. The correlation function

in (6) has to be evaluated for all points within the window
of size . According to (6), evaluation of for a
given involves complex multiplications. However, when

is evaluated for consecutive points within the window
, it can be performed as depicted in Fig. 1

using a buffer of size . This reduces the computational cost
of evaluating to one complex multiplication for each .
Therefore, the complexity of the ML technique becomes

multiplications per symbol.

per symbol (12)

In the proposed synchronization techniques based on discrete
stochastic approximation, correlation function has to be
evaluated for only two points within a window of

. For the globally convergent algorithm with neigh-
borhood , these two points can generally be
far apart within the window, and therefore, the evaluation of

will cost multiplications. For the locally conver-
gent algorithm with neighborhood , the
two points are adjacent, and therefore, the evaluation of
will cost only multiplications. Therefore, the complexi-
ties and of the global and local search
DSA algorithms become

per symbol

per symbol (13)

respectively. In Section VI, we present numerical examples that
illustrate the attraction (self learning) property of the discrete
stochastic approximation algorithm in terms of accuracy for a
fixed computational cost.

IV. CONVERGENCE ANALYSIS OF

SYNCHRONIZATION ALGORITHM

A. Convergence Theorem and Stochastic Ordering Conditions

The main convergence results in [1] for the discrete sto-
chastic approximation based synchronization Algorithm 1 of
Section III-A can be summarized as follows:
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Let denote the set of global optimizers so that the true
time delay . Consider the following stochastic ordering
assumption. For each , , , , :

satisfies the following.

C1) or equiva-
lently .

C2) .

As described below, C1) and C2) are conditions that ensure that
the synchronization Algorithm 1 is more likely to jump toward
the optimum set than away from it.

The following theorem summarized from [1] states that under
conditions C1) and C2), Algorithm 1 is attracted to a global
optimum in the sense that the state sequence of estimate
generated by the algorithm will spend more time in the set
than any other point .

Theorem 4.1 ([1]): Under assumptions C1) and C2) and for
the neighborhood choice , the sequence of es-
timates generated by Algorithm 1 converges with prob-
ability 1 (w.p. 1) to the global optimizer . Under assump-
tion C1), for the local neighborhood choice defined in Sec-
tion III-B, converges w.p. 1 to a local optimizer.

Remark: Recall that is obtained from the maximum oc-
cupation time of the state of Algorithm 1. In terms of this
state sequence , the above theorem can be interpreted as
follows: The sequence generated by the synchronization
Algorithm 1 is attracted to the global optimizer set , i.e.,

(or, equivalently, the estimates visit
the set of optimizers more often than ). Thus, the
above algorithm is consistent and attracted to the global max-
imum. As explained earlier, this attraction (efficiency) property
is crucially important in discrete stochastic optimization prob-
lems where consistent estimators can easily be designed by ex-
haustive computation. In comparison, the brute force maximum
likelihood algorithm spends equal computational effort at each

, meaning that only of its computational
effort is spent at the true time delay.

The following interpretation is useful in understanding why
the above theorem works; see [1] for the formal proof. The
state sequence generated by the discrete stochastic ap-
proximation Algorithm 1 of Section III-A is a homogeneous
Markov chain on the state space . (This follows directly from
Steps 1 and 2 of the algorithm.) Let denote the

transition probability matrix of this
Markov chain. Providing it is aperiodic irreducible, it is well
known from the strong law of large numbers for Markov chains
that w.p. 1, where is
the Perron Frobenius eigenvector (invariant state distribution) of
the Markov chain , i.e, is a probability vector satisfying

, . The assumptions C1) and C2)
shape the transition probability matrix and, hence,
the invariant distribution as follows: C1) imposes the condi-
tion that for , , i.e., it is
more probable to jump from a candidate outside to a can-
didate in than the reverse. C2) says that for

, , , i.e, it is less probable to jump out
of the global optimum to another state compared to any
other state . Intuitively, one would expect that such a transition

probability matrix would generate a Markov chain with a net in-
flow toward the set of global maximizers , i.e., the algorithm
spends more time in than other states, i.e., ,

, . This indeed is what Theorem 4.1 says and is
proved in [1] using algebraic arguments.

B. Verification of Stochastic Ordering Conditions C1) and C2)
for the OFDM Model

We now verify the stochatic ordering conditions C1) and C2)
for the OFDM model (2). Given the fact that for the OFDM
model (2), is a finite state random signal, and
is a complex-valued Gaussian noise process, it follows that the
received signal is a complex-valued Gaussian mixture
distribution. Then, given that is a windowed average of

multiplied with a shifted complex conjugate of , it is
difficult (if not impossible) to verify analytically the conditions
C1) and C2) for finite . (For example, there is no analyt-
ical formula for the distribution even for the product of two
dependent Gaussian random variables.) Hence, there are two
ways of proceeding: i) Verify C1) and C2) empirically by nu-
merical simulations (see Section IV-C), and ii) show that C1)
and C2) hold asymptotically. This leads to a two-time scale al-
gorithm—a fast time scale over which the received samples
are obtained and a slower time scale over which the observa-
tions are computed in Algorithm 1. For stochastic
gradient algorithms, such two-time scale behavior has been ex-
tensively studied, e.g., [12], [19].

In Theorem 4.2 below, we show asymptotically (for suffi-
ciently large ) that the a much stronger condition than C1)
and C2) holds.

Theorem 4.2: Let , such that ,
, where and in (0,1) are fixed constants.

Then, as for the OFDM model (2), the following in-
equalities hold with probability one (w.p. 1) for , which
is defined in Step 2 of Algorithm 1:

(14)

Remarks:

1) Condition C1) requires that
, whereas the above theorem states

that , which obvi-
ously implies C1). Similarly,
w.p. 1 implies C2).

2) The choice of ,
allows us to pick points in away from , depending
on the choice of and . It is for these points ,
that we verify C1) and C2). Actually, using a similar
proof to that given below, C1) and C2) can be shown
to hold for the following less restrictive condition on

, ,
.

3) The condition can be replaced by the equiv-
alent condition: , and is a bounded
constant, i.e., large OFDM block size with fixed ratio
of prefix samples to data samples.
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Proof: For notational convenience, for any , denote
the quantities in (2) as

Since the cyclic prefix samples of a symbol are a replica of
the last samples of the symbol , there are three classes of

, we need to consider in order to prove (14).

Case 1) Both the candidate points and are within
points of the true delay , i.e., and

, where , . In this case, the
contributions of and in
are correlated since contains the last few
samples of symbol , and contains the
cyclic prefix samples of symbol , which is a copy
of the last samples of the symbol . The corre-
lation of these samples need to be accounted for and
is similar for .

Case 2) The candidate points and are more than
points away from , i.e., and ,
where , . In this case, the contributions
of and to are i.i.d. since
they do not contain cyclic prefix samples; this is
much easier to handle and is similar for .

Case 3) Either is within points of and is more than
points away from or vice versa. Showing (14)

for this case straightforwardly follows from cases i)
and ii).

Case 1: We start with this more difficult case where
and where . Recall that in (6) is com-

puted using two OFDM symbols and that each OFDM symbol
has cyclic prefix samples and i.i.d. data samples. Thus,

of the terms involving in the summation (6) cor-
responding to the cyclic prefix samples and data samples of
symbol are identical, i.e.,

, whereas the remaining terms , ,
and , corresponding, respectively,
to the data samples from symbol and cyclic prefix samples
from symbol , are statistically independent. Hence, with

denoting complex conjugate

(15)

Expanding out , we define the following variables for
notational convenience:

where we have used the fact that the cyclic prefix samples are
identical to the last samples of the OFDM symbol, i.e.,

.
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Then

It therefore follows that

Below, for any real number , denotes the smallest in-
teger that is greater than or equal to .

Lemma 1: For any fixed , in (0,1), as , the
following inequalities hold with probability 1 (w.p. 1); these
imply (14):

(16)

Proof: Using Kolmogorov’s strong law of large numbers
for i.i.d. sequences (since the data samples are i.i.d.), we have

w.p.

where

Therefore

a.s.

Similarly

Case 2: The proof for the case when , where
, is simpler. For this case, and in

(15) are independent since they only comprise i.i.d. data samples
and do not include any cyclic prefix samples. Thus,

as , which trivially implies C1) and C2).
Finally, if is within points of and is further than

points of , the same reasoning as above yields
, whereas , which

implies that (16) holds. (A similar proof holds if is further
than points of and is within points of .)

C. Empirical Verification of C1) and C2)

Here, we empirically verify C1) and C2) for small . We
chose , , which is a multipath Rayleigh
fading channel (as specified in Example 3 of Section VI) so that
the delay spread is four times , and SNR dB.

To empirically verify C1), Fig. 4 plots empirical estimates of
based on 1000 independent replications for

each , . As can be
seen from Fig. 4, , thus empirically
verifying C1).

To empirically verify C2) we chose
, , and (see Fig. 5) and

(see Fig. 6), respectively. Each empirical probability es-
timate was computed based on 1000 independent replications.
It can be seen from Figs. 5 and 6 that

, or equivalently,
, thus empirically verifying C2).

V. ADAPTIVE SYNCHRONIZATION ALGORITHM FOR TIME AND

FREQUENCY SELECTIVE FADING CHANNELS

So far, we have presented discrete stochastic approximation
algorithms for estimating the time delay and frequency offset

when these parameters are fixed constants. Here, we con-
sider the case where due to time- and frequency-selective fading
channels, the true time delay and the frequency offset are
time varying. We denote these as and , where
denotes the symbol time. Then, the aim is to devise an adap-
tive discrete stochastic approximation algorithm that dynami-
cally tracks these time-varying parameters and, hence, achieves
synchronization. Note that since is a finite set, is a finite
state process.

Our aim is to devise an adaptive algorithm to adaptively track
the time-varying discrete-valued parameter (delay) by recur-
sively maximizing the Kullback–Leibler information measure

. Formulation of tracking algorithms based on re-
cursively optimizing the Kullback–Leibler information measure
are well known, and they have been used for recursive max-
imum likelihood parameter estimation of slowly time-varying
state space models in [22] and hidden Markov models in [11]. Of
course, the key difference is that whereas these papers formulate
stochastic gradient algorithms for tracking the parameter, here,
we are dealing with a discrete-valued parameter for which gra-
dients do not apply. We present an adaptive (tracking) version
of Algorithm 1 to recursively minimize the Kullback–Leibler
information measure. Naturally, since we are in a discrete op-
timization domain, the efficiency (attraction property) of the
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Fig. 4. Empirical verification of C1) forN = 16, � 2 [T�10; . . . ; �+10],
and T = 128.

Fig. 5. Empirical verification of C2) forN = 16,� 2 [T�10; . . . ; �+10],
T = 128, and � = � + 1.

adaptive algorithm in tracking the time-varying parameter is of
key importance.

A. Adaptive Synchronization Algorithm

We propose the following constant step-size discrete sto-
chastic approximation algorithm for tracking the time-varying
parameter.

Algorithm 2: Constant step-size
Synchronization Algorithm

Steps 0,
1, and 2: Identical to Algorithm 1.
Step 3: Adaptive Tracking of Timing

and Frequency Offset. Up-
date occupation probabilities
using the following fixed

Fig. 6. Empirical verification of C2) forN = 16,� 2 [T�10; . . . ; �+10],
T = 128, and � = � + 2.

step-size LMS algorithm (cf.
(11)):

(17)

where the step-size is
a small positive constant.

Set .
Set and go to Step 1.

Remark: As long as the step size satisfies ,
is guaranteed to be a probability vector. To see this, note that

, implying that .
In addition, rewriting (17) as implies that
all elements of are non-negative.

The constant step size essentially introduces an exponential
forgetting of the past occupation probabilities and permits us to
track slowly time-varying time delays and frequency offsets. Its
schematic is as in Fig. 3 but with now a fixed step size in the
LMS algorithm. Thus, Algorithm 2 can be viewed as a discrete
sampling and evaluation step in tandem with a fixed step-size
adaptive filtering algorithm.

Unlike Step 3 of Algorithm 1, which only requires 1 real mul-
tiplication, Step 3 of Algorithm 2 requires real multi-
plications at each time instant. In practical implementation, the
following asynchronous version of Algorithm 2 can be used:
Replace in Algorithm 2 with , where is updated as

diag (18)

Here diag denotes the diagonal matrix with diagonal el-
ements . Thus, only one component of is updated at
each time instant, which requires one real multiplication. Note
that the update times of the th component of occur at the
(random) time instants when the Markov chain visits the
state ; thus, the algorithm can be viewed as an asynchronous
implementation of Algorithm 2; see [12] and the references
therein. Clearly, the components of are non-negative but
do not sum to one. Let be the normalized version of ,
i.e., the elements of add to one. It can be shown [9] that
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satisfies the same mean square error results as below. In
numerical examples, both Algorithm 2 and its asynchronous
implementation (18) yielded virtually identical behavior.

B. Assumptions for Mean Square Tracking Analysis

In stochastic gradient schemes (e.g., LMS), a typical elemen-
tary method for analyzing the tracking performance of an adap-
tive algorithm is to examine how the algorithm with a con-
stant step size hovers around a constant (time-invariant) pa-
rameter; see, for example, [6]. A more advanced analysis ap-
proach, e.g., [19], postulates a hypermodel (usually a contin-
uous-valued random walk) for the variation in the true param-
eter and then analyzes how the adaptive algorithm tracks this
hypermodel. In this section, we extend this tracking analysis to
discrete stochastic approximation Algorithm 2. We postulate a
discrete-valued hypermodel, namely, a finite state Markov chain
for the time-varying delay , and then present mean square
convergence and probability of error results for the adaptive Al-
gorithm 2. It is also important to note that the hypermodel as-
sumption is only used for our subsequent tracking analysis; it
does not enter the actual implementation of Algorithm 2.

The time-varying delay has two properties.

i) is integer valued and belongs to the finite state
space . Hence, the sequence

is a finite state discrete time stochastic process.
ii) Due to the correlated nature of the fading channel,

is a correlated finite state process.
Hence, it is natural to model as a finite-state Markov chain
that nicely captures both of the above properties.

In the tracking analysis of continuous stochastic gradient al-
gorithms, e.g., Least Mean Squares (LMS) adaptive filtering al-
gorithms [4], [6], it is assumed that the parameter varies slower
than the adaptation speed of the tracking algorithm. Here, we
make a similar assumption for our mean square convergence
analysis: We assume that the time evolution of is a
slow Markov chain.

We now formalize the above description as the following as-
sumptions:

M1) Fading Hypermodel: Assume that there is a small pa-
rameter and that is a discrete-time homogeneous
Markov chain, with state space . The transition probability
matrix is given by

(19)

where denotes the identity matrix,
and is a matrix that is
the generator of a continuous-time Markov chain. That is,
satisfies for and for each
(thus, ). Assume for simplicity that the initial distribution

is independent of for each , where
and .

Remark: The parameter specifies the degree of “slowness”
of the Markov chain dynamics, i.e., it characterizes how slowly
the hypermodel evolves with time; see [24] and references
therein for the motivation and extensive discussion of two-time
scale and singularly perturbed Markov chains. Note that for suf-
ficiently small , is a valid transition probability matrix

(i.e., each element is non-negative). Then, the corresponding
Markov chain is irreducible. It is clear from Theorem
4.1 that Algorithm 1 generates an irreducible aperiodic Markov
chain. In what follows, we put this in M2) for convenience.

M2) Dynamics of Discrete Stochastic Approximation Al-
gorithm: Given , then [or equivalently ;
see (10)] generated by Algorithm 1 is a Markov chain with
the transition probability matrix

, where the elements

(20)

Assume the transition matrix is irreducible and aperiodic.
Let denote the invariant distribution of , i.e.,

, .
Remark: The quantity is small to ensure that the Markov

chain and, thus, the true optimum has slow dynamics,
i.e., it jumps infrequently. Note that is the step size of the
adaptive algorithm for estimating . Typically, for an adaptive
algorithm to successfully track a time-varying optimum, the rate
of change in the true optimum (i.e., ) should be smaller than
the tracking speed of the tracking algorithm (i.e., ). A Markov
chain with transition matrix (20) is known to belong to the class
of singularly perturbed Markov chains. It is a Markov chain with
two time scales.

C. Mean Square Tracking Analysis and Probability of Error

The following theorem gives a mean-squared bound on the
tracking error of the occupation probability estimate gener-
ated by Algorithm 2.

Theorem 1: Under the conditions C1), C2), M1), and M2)
for a sufficiently large number of OFDM symbols , the mean
square error of the estimate generated by the tracking Algo-
rithm 2 satisfies

(21)

The proof is given in [23]. Looking at the order of magni-
tude estimate, to balance the two terms and , we need to
choose . That is, the rate of change of the true param-
eter can be as fast as the adaptation of the tracking algorithm for
the algorithm to successfully track the time-varying parameter.

Due to the discrete nature of our problem, it makes sense
to give bounds on the probability of error of the estimates
generated by Step 3 of Algorithm 2 rather than the mean squared
error. Define the error event and the probability of error
as

(22)

Clearly, depends on ; we suppress the here for notational
simplicity. Based on the mean square error of Theorem 1, the
following result holds; see [10] for the proof.

Corollary 1: Under the conditions C1), C2), M1), and M2),
if , then for sufficiently large , the error probability
of the estimate generated by the adaptive Algorithm 2
satisfies

(23)
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Fig. 7. Mean square symbol timing error versus the average channel SNR
comparing the brute force MLE and discrete stochastic approximation
Algorithm 1. The MLE estimate T̂ has the same computational complexity as
the discrete stochastic approximation algorithm (DSA-local). Yet, DSA-local
yields an order of magnitude reduction in mean square error. This is due to the
attraction (self learning) property of Algorithm 1.

where is a positive constant independent of and , and
is an arbitrary constant.

The main use of the above corollary is as a consistency check:
As , the probability of error of the tracking algo-
rithm goes to zero.

VI. NUMERICAL EXAMPLES

We present two examples that illustrate the efficiency and
adaptive learning properties of the discrete stochastic approx-
imation Algorithms 1 and 2. The first example considers a sce-
nario similar to that in [8], where as a result of a frequency-se-
lective fading channel, the timing delay and frequency offset do
not change with time. The second example deals with an ac-
tual simulation of a time- and frequency-selective channel. In
both examples, the FFT implementation of the complex-base-
band OFDM modulation process with quadrature PSK was used
for simulations [7].

Throughout this section, the number of subcarriers is
, and the cyclic prefix length is . In all cases below,

the discrete stochastic approximation algorithms were initial-
ized with [which is the MLE based on two OFDM symbols;
see (4)]. The normalized frequency offset was set to .

A. Example 1: Frequency Selective Fading Channel

In this example, we consider a time-invariant wireless
channel with frequency selective fading (FIR channel) in
AWGN. We consider an FIR channel model with multi-
paths

(24)

The values , , , , ,
and approximate the impulse response of a wireless

Fig. 8. State occupancy probabilities �̂�� [see (11)] at symbol timeM = 256

for SNR = 20 dB. For clarity, only a subset of � = f1 � � � 576g
containing high occupation probabilities is shown in the x-axis. These
occupation probabilities illustrate the attraction property of Algorithm 1. The
algorithm spends more computational effort near the true time delay T = 60

than other values of � 2 �.

Fig. 9. Sample path time delay estimate �̂ generated by locally convergent
version of Algorithm 1 for SNR = 20 dB.

channel in a warehouse-type indoor environment [7], [8]. The
synchronization example considered here is similar to that in
[8], and the parameters and are assumed to be constant over
an arbitrary large number of OFDM symbols.

In Section IV, we proved the efficiency (attraction property)
and consistency of the discrete stochastic approximation Algo-
rithm 1 of Section III-B—both are asymptotic properties. Here,
we examine, via numerical examples, the behavior of Algorithm
1 for short data lengths by comparing the tradeoff between com-
putational complexity and estimation accuracy between Algo-
rithm 1 and the brute force MLE algorithm. To make a fair com-
parison of the algorithms, we compare their synchronization ac-
curacy for a fixed computational budget; see [5] for an insightful
discussion on how to compare simulation based optimization al-
gorithms. From (12) and (13), computing the brute force MLE
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Fig. 10. Estimated time delay �̂ generated by adaptive discrete stochastic approximation Algorithm 2. The sample path of time-varying true symbol timing
sequence fT g is also shown. The sequence fT g is obtained by simulating the time-varying multipath channel with parameters described in Section VI-B. (a)
� = 0:001. (b) � = 0:02. (c) � = 0:03.

based on OFDM symbols has equal complexity to com-
puting the locally convergent Algorithm 1 estimate using
OFDM symbols, where

OFDM symbols

In the simulations, we chose ; hence, .
In Fig. 7, we plot the mean square error in the symbol timing
estimate versus average channel SNR for

i) the brute force MLE ;
ii) the locally convergent version of Algorithm 1 estimate

;
iii) the two symbol MLE [see (7) and (8)];
iv) the brute force MLE .

The average channel SNR was computed as

SNR

where and are defined in (2) and (3), respectively. The
mean square error in the symbol timing estimate was computed
by averaging over 25 600 OFDM symbols. The main
point to note in Fig. 7 is that while i) and ii) have the same com-
putational cost, the attraction (learning) property of Algorithm 1
results in a remarkable decrease in mean square error. Plot iii) of

serves as an obvious upper bound for the mean square error.
Plot iv) of the brute force MLE serves as a lower bound for
Algorithm 1 in the sense that if the algorithm had spent all its
effort only at the true delay (i.e., the state for all ),
then its MSE would coincide with .

To further illustrate the attraction (learning) property of Algo-
rithm 1, Fig. 8 shows the normalized occupation time

, computed by Step 3 of Algorithm 1 for
an SNR of 20 dB. It shows that the algorithm spends most of its
time in the neighborhood of the true time delay and does
not waste computations at values far away from the true delay.
From Fig. 8, it follows that for the first 256 OFDM symbols, the
state of the algorithm spends roughly half its computational
effort at the true time delay . In comparison, the brute
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force MLE spends only 1/256 of its computational effort at the
true time delay . Thus, the average SNR performance of Algo-
rithm 1 is similar to the brute force MLE , yet Algorithm 1
requires only approximately one fifth of the computational cost.

In Fig. 9, we plot a sample path of the estimated time delay
sequence generated by the locally convergent version of Al-
gorithm 1 from symbol times for an SNR of
20 dB. The algorithm rapidly converges to the true timing delay.

B. Example 2: Multipath Time-Varying (Rayleigh Fading)
Channel

Here, we consider a multipath time-varying (i.e. both time-
and frequency-selective) wireless channel. The channel was im-
plemented as an FIR filter with time-varying filter coefficients.
Each propagation path is characterized by a fixed delay
and a time-varying amplitude . Here, ,
where denotes the amplitude, and denotes the Rayleigh
fading process. The impulse response of the channel model can
be given as

(25)

where is the total number of propagation paths. The fading
function is a complex Gaussian process that is independent
for different paths. The function is assumed to be normal-
ized, i.e., .

The OFDM system and the channel parameters are as follows.

• The total number of OFDM subcarriers .
• The cyclic-prefix length is samples.
• Each OFDM subcarrier is modulated using random

data from a 16-QAM constellation.
• The wireless channel has paths, with path de-

lays samples. The amplitude
of each path varies independently of the others, ac-
cording to a Rayleigh distribution with an exponential
power-delay profile.

for

where the RMS delay-spread was set to
samples. The phase shift on each path is uniformly dis-
tributed over (0, ).

• The normalized frequency offset was set to .

Thus, the multipaths are sample-spaced and cover the whole
cyclic-prefix length of the OFDM system.

Fig. 10 shows a sample path of the time varying true delay
for the above multipath fading channel. Note that this true delay
evolves very similarly to the delay modeled as a slow Markov
chain in (19). Fig. 10 illustrates the tracking properties of the
adaptive discrete stochastic approximation algorithm for fixed
step sizes of , , and . Again, it can
be seen that with larger step size, the algorithm tracks faster but
jump around the true delay.

Fig. 11 shows snapshots of the occupation probability vector
(see Step 3 of Algorithm 2) for symbol times

Fig. 11. State occupancy probabilities �̂�� at symbol times m = 200 and
m = 400. For clarity, only a subset of � = f1 � � � 576g containing
high occupation probabilities is shown in the x axis. These two snapshots of the
occupation probabilities illustrate the fast tracking capability of Algorithm 2 for
tracking the time delay sequence fT g of Fig. 10 generated by a time-varying
multipath channel.

and . The -axis of these figures have been magnified
around the (the value of , which has the highest occupancy
probability ) for clarity. As can be seen from Figs. 10 and
11, the algorithm satisfactorily tracks the rapidly time-varying
symbol timing of Fig. 10. In addition, note that the algo-
rithm spends substantially more time at the true symbol timing
than any other value of —this is reflected by the fact that oc-
cupation probabilities are substantially higher for near

than other values of . This illustrates the adaptive
learning capability of the discrete stochastic approximation al-
gorithm.

VII. CONCLUSIONS AND EXTENSIONS

We have presented low-complexity discrete stochastic
approximation algorithms for time and frequency synchro-
nization of OFDM systems. Due to their recursive nature,
the proposed algorithms are useful in slowly varying channel
situations, where the synchronization parameters ( and ) to
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be estimated are slowly time varying. Simulation results were
presented to illustrate the performance of the algorithms.

Due to the fact that the received signals are Gaussian mix-
tures, our verification of the stochastic ordering conditions C1)
and C2) for convergence of the algorithms required to be
large. For such large , we obtained much stronger results
than needed by C1) and C2). It is of interest to examine how
to verify these conditions for small . It is worthwhile to ex-
amine other recently proposed discrete stochastic approxima-
tion algorithms such as nested partition methods [21]. Finally, it
is also of interest to examine the sensitivity of the OFDM system
performance and bit error rate degradation due to time synchro-
nization and frequency offset errors; see [7] and [17].
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