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Abstract— This paper presents novel Q-learning based stochas-
tic control algorithms for rate and power control in V-BLAST
transmission systems. The algorithms exploit the supermodular-
ity and monotonic structure results derived in the companion
paper. Rate and power control problem is posed as a stochastic
optimization problem with the goal of minimizing the average
transmission power under the constraint on the average delay
that can be interpreted as the Quality of Service (QoS) require-
ment of a given application. Standard Q-learning algorithm is
modified to handle the constraints so that it can adaptively learn
structured optimal policy for unknown channel/traffic statistics.
We discuss the convergence of the proposed algorithms and
explore their properties in simulations. To address the issue
of unknown transmission costs in an unknown time-varying
environment, we propose the variant of Q-learning algorithm
in which power costs are estimated in on-line fashion, and we
show that this algorithm converges to the optimal solution as
long as the power cost estimates are asymptotically unbiased.

Index Terms— Q learning, Supermodularity, Monotone Poli-
cies, Randomized Policies, Constrained Markov Decision Process,
Transmission Scheduling, V-BLAST, Delay Constraints, Rein-
forcement Learning

I. INTRODUCTION

This paper addresses the problem of structured learning of
rate and power control policy for transmission over wireless
Multiple Input Multiple Output (MIMO) channel and under the
constraint on transmission latency. Several structural results
on the optimal costs and policies have been derived in the
companion paper [1]. It has been shown in [1] that the optimal
rate allocation action is monotonic increasing in the buffer
occupancy and that control policy optimization can be divided
into two separate problems of low-layer bit-loading and high-
layer total rate allocation. In this paper, we exploit these
structural results to derive computationally efficient stochastic
control algorithms.

Summary of the Contributions: The most important contri-
butions of this paper are:

• Application of online policy learning algorithms for the
computation of the optimal rate scheduling algorithms for
delay-constrained V-BLAST transmission in imperfectly
known channel and traffic environments with simulated
costs.

• Utilizing structural results on the optimal rate scheduling
policy with the goal of improving the convergence rate
of online learning algorithms.
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• Analytical formulation and numerical examination of
three novel algorithms designed to incorporate submodu-
lar linear constraint in the standard Q-learning algorithm
to improve its convergence.

The main ideas of this paper are novel from a communica-
tions perspective as well as learning based perspective.

Communications Perspective: The problem addressed in this
paper is a cross-layer optimization problem as we jointly
consider the statistics of the traffic arriving into the adaptive
V-BLAST transmitter and the transmitter adaptation based on
the channel statistics. The optimization goal is to reduce the
total transmission power over all transmitter antennas, while
maintaining the constraint on transmission delay satisfied. Due
to the consideration of the transmit buffer, this problem is
inherently a dynamic stochastic optimization problem and can
be stated as a Constrained Markov Decision Process (CMDP).

The problem of transmission control optimization for single-
channel systems, with the objective of average power or bit-
error rate minimization under the latency constraints, has
been previously addressed in [2], [3]. Multichannel rate
adaptation for (Orthogonal Frequency Division Multiplexing)
OFDM systems with delay constraint has been addressed
in [4]. However, none of these results discuss the problem
of transmission control adaptation when channel and/or traffic
statistics is unknown. Here, we address this problem and
present several algorithms for adaptive transmission control.
These adaptive learning algorithms are based on the ideas of
stochastic approximation and reinforcement learning [5]. To
the best knowledge of the authors, the structured submodular
Q-learning algorithm proposed in this paper is also novel from
the control-theoretic viewpoint.

From a signal transmission perspective, the importance of
the addressed problem is threefold: (1) We address the adaptive
policy learning, as the wireless channels and traffic statistics
are usually not a priori known. Thereby the static optimization
is not suitable to address the transmission control problem,
(2) We address the MIMO channels as they provide higher
capacities than single channel systems [6], [7]. The MIMO
channel capacity can be further increased by employing per-
antenna power and rate allocation at the transmitter (e.g. see
power adaptation for Bell-Labs layered space-time (V-BLAST)
addressed in [8], [9]), (3) We incorporate the consideration of
real-time traffic in order to reduce the transmission latency and
satisfy different user QoS conditions.

Learning-based Perspective: The problem of policy learning
for the analyzed V-BLAST power and rate adaptation can
be addressed either using discrete stochastic approximation
algorithms by learning the control policy directly (see [10]
and references within) or by using continuous stochastic
approximation algorithms such as Q-learning [5], actor-critic



methods [11] and policy space methods [12]. In this paper
we have decided to pursue the continuous stochastic approx-
imation approach as the discrete version would involve the
search for the optimal policy within a very large set of optimal
policies. Traditionally, both discrete stochastic approximation
and Q-learning were used for unconstrained Markov Decision
Process (MDP) and calculation of pure optimal policies. Due
to equivalence in costs of CMDP and a Lagrangian MDP
formulation of a CMDP [13], Q-learning can be applied to
compute the optimal pure policy for a fixed Lagrangian multi-
plier and active constraint. The optimal randomized policy of
a CMDP can be computed as a mixed policy of two optimal
pure policies for two different Lagrangian multipliers. We
also present an iterative algorithm to find these Lagrangian
multipliers and compute optimal randomized policies.

Each of the pure policies that constitute the optimal ran-
domized policy possesses a known structure, that is, rate
allocation actions are monotonically increasing with the buffer
state. This implies that Q-factors possess a submodularity
property that can be stated as a linear constraint on Q-factors
and easily utilized in Q-learning algorithm1. The rationale
is that by imposing submodularity structure on Q-factors,
Q-learning more quickly searches through the policies and
avoids considering non-structured policies that are known to
be non-optimal. It has been shown in [1] that reduction in
policy space, achieved by considering only structured policies,
can be several orders of magnitude. Further, unlike actor-
critic methods [11], Q-learning algorithm has well-explored
convergence properties that can be shown to carry over to the
structured version of Q-learning.

In practice, costs of such CMDP can be estimated online
during the learning phase and sampled costs can be used
to update the Q-factors. Q-learning converges to the optimal
solution with probability one as long as the cost estimates are
asymptotically unbiased. We discuss how to perform power
cost estimation in case that powers are adapted at a faster
rate than the transmission rates. This approach has an added
advantage that transmission adaptation actions (that have to
be negotiated between the transmitter and the receiver) can
be performed less frequently than the power control actions.
Furthermore, rate control actions can be based on a more
coarse quantization of the channel state than the power control
actions. This results in a more efficient Q-learning algorithm.

Paper outline: The outline of the paper is as follows. We
formulate the V-BLAST power and rate control problem using
stochastic control framework and Constrained Markov Deci-
sion Processes in Section II. Respective costs and transition
probabilities are identified for such a problem in Section III.
Section IV presents a summary of structural properties of
optimal policies. In Section IV we utilize this structure of the
optimal policy and propose several methods to improve the
convergence rate of the Q learning algorithm. This approach
results in novel structured Q-learning algorithms for CMDPs
that are posed as stochastic constrained optimization problem
with linear constraints. We propose three algorithms to solve

1As opposed to the presented structured Q-learning algorithm, it is difficult
to incorporate submodular constraints and ensure convergence to the optimal
discrete policy using policy space search methods discussed in [12].

that constrained optimization problem. Namely, we address
the primal-dual algorithm, primal projection algorithm and the
submodular parameterization algorithm. In Section VI, we nu-
merically explore performances of the proposed structured Q-
learning algorithms for delay-constrained V-BLAST rate and
power control. The simulations show that primal projection
method best utilizes a priori known structure of the optimal
policy for both stringent and relaxed delay constraints.

II. V-BLAST TRANSMISSION MODEL

Notation: A discrete-time slotted model is used throughout
the paper. A time slot n is defined as the time interval
[nT, (n + 1)T ) and controller decision in this time slot is
made at the beginning of that interval at time nT . Let x(n)

denote the discrete-time (in general random) variable x at
time slot n. To avoid cumbersome notation, we will drop the
time-slot superscript designation whenever that does not cause
confusion. Let |C| denote the cardinality of a certain finite set
C, and P[·] denote the probability measure. Let N0 be the set
of integers including 0.

Fig. 1 shows a schematic representation of the V-BLAST
transmitter and receiver model used in this paper. The trans-
mitter is equipped with the transmission buffer of length L.
The task of the controller is to choose rates and powers
for each of the t transmission antennas. Let us denote the
buffer occupancy in bits at the beginning of the n-th time
slot with b(n), where b(n) ∈ B and the buffer state space is
B = {0, 1, 2, . . . , L}.

Fig. 1. MIMO Transmission Model with Q-learning algorithm. ACM stands
for adaptive coding and modulation.

The transmission buffer is continually supplied with the
incoming traffic from a higher layer application. Let f (n)

be the number of packets stored into the transmission buffer
during the n-th time slot. It is assumed that for all n, f (n) is
the element of a finite state space F = {0, 1, . . . , F} and the
packet length is G bits. Furthermore, we assume the following:

In our results to follow we will also use the following
alternative assumption that completely omits the use of flow
controller will be used.
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A 1: The Number of packets stored into the transmission
buffer is an ergodic Markov Chain with transition probabilities
pf (f (n+1)|f (n)) that are independent of the chosen action,
buffer occupancy and channel state.

Consider that traffic e(n) arriving onto the transmission
buffer is Markovian and independent of the buffer occupancy
and actions taken. Out of these e(n) packets, only f (n) packets
are stored into the transmission buffer. Therefore, A1 can not
be satisfied if number of packets f (n) that is stored into the
transmission buffer is dependent on the buffer occupancy or
actions, i.e. A1 can not be satisfied if there are buffer overflows
in the finite transmission buffer.

Markov model for the incoming traffic is sufficient since the
incoming traffic state space F is finite and control decisions
are made periodically at the end of each time slot. Therefore,
it is not necessary to consider the semi-Markov process for
the incoming traffic.

MIMO channel considered in this paper is a point-to-point
wireless channel with t transmit and r receive antennas, that
satisfy r ≥ t. The channel is considered to be block fading
and constant during a time slot of length T . Furthermore, at
time slot n, the MIMO channel is completely described with
the complex r×t dimensional channel matrix H(n) containing
the elements hi,j .

Let d(n) = [d1, . . . , dt]
T be the vector of transmitted

symbols employing certain modulation format, from all of the
t transmit antennas. Each of the transmitted data streams over t
antennas can contain independent information. Then, received
signal vector y(n) = [y1, . . . , yr]

T can be presented in the
following complex baseband vector form

y(n) = H(n)d(n) + w(n) (1)

while w(n) = [w1, . . . , wr]
T is the noise vector. The elements

of w are assumed to be independent and identical distributed
(i.i.d) Gaussian random variables with zero mean and variance
σ2. Channel matrix H(n) is assumed to be dependent only
on the previous time slot i.e. P[H(n)|H(n−1),H(n−2), . . .] =
P[H(n)|H(n−1)] and the sequence of channel matrices
H(n), n = 1, 2, . . . constitutes a continuous value Markov
process.

A. Receiver Structure

In the above MIMO channel, signals from all of the t anten-
nas are received on all of the r receiver antennas. To recover
and estimate the transmitted signals, several receiver structures
have been devised. These include the linear receivers such as
zero-forcing and Minimum Mean Square Estimation (MMSE)
receivers, and non-linear successive interference cancelation
receivers. Each of these receivers compute estimates for all of
the t independent data streams.

Next we consider the zero-forcing (ZF) linear detector and
show that by employing this detector, the MIMO channel
is decoupled into t parallel independent channels2. The zero

2ZF detector has been used in the simulations of Section VI. However, the
CMDP model, proposed adaptive algorithm and utilized structural results are
also valid for MMSE detectors with appropriate change in the power costs.

forcing detector assumes that knowledge of channel gains hi,j

is known at the receiver. In this receiver, the received signal
y at time slot n is multiplied by the pseudoinverse H†. The
post-detection SNR, normalized by the nominal transmission
power of Po = 1mW , and associated with k-th transmission
antenna when linear ZF equalizer is used can be expressed as

γk =
γ0

[H†H]−1
kk

, k = 1, . . . , t (2)

where γ0 is the normalized received SNR at each receive
antenna and is defined as γ0 = 1/σ2.

We will assume that quantized information on the post-
detection SNR is provided to the transmitter, and that this
information is utilized in the controller to choose the current
rates and power levels in all of the t transmit antennas.
For the k-th transmit antenna (k = 1, 2, . . . , t), we assume
that post-detection SNR γk is quantized using thresholds at
{Γk0, Γk1, . . . , ΓkK}, where Γk0 = 0 and ΓkK = ∞. Denote
with Hs the set of all quantized channel states corresponding
to a certain transmit antenna. Therefore, there will be K chan-
nel states in Hs for each of the single antenna post-detection
SNR-s. Let the current channel state associated with the k-th
transmitter (k = 0, 1, . . . , t) be denoted with hk and hk ∈ Hs.
Let us denote with H = Hs ×Hs × · · · × Hs the composite
MIMO channel state defined as the Cartesian product of state
spaces Hs of quantized post-detection SNR-s for each of t
transmitter data streams. The composite channel state of all
transmit channels is denoted with h = {h1, h2, . . . , ht} ∈ H
and we will adopt the following assumption regarding its
statistical evolution:

A 2: The sequence of channel states, forms an er-
godic first order Markov chain with transition probabilities
ph(h(n+1)|h(n)) and is independent of the action, buffer state
and incoming traffic state.

III. V-BLAST POWER AND RATE CONTROL PROBLEM AS

CMDP

This section provides a detailed formulation of the V-
BLAST Power and Rate Control Problem (V-BLAST-PRCP)
formulated as CMDP. A CMDP is completely described
through its state space, action space, transition probabilities
and cost criteria. Let S denote an arbitrary finite set called the
state space while A denote the finite set called the action
set of a CMDP. The proceeding definitions are foundation
building blocks of the Q-learning algorithm to be discussed
in Section V.

State Space: Utilizing definitions of Section II the state
space S of V-BLAST-PRCP is the composite space comprising
of buffer space B, incoming traffic space F and the channel
state space H, i.e. S = H × B × F where × denotes the
Cartesian product.

Action Space: The action in the V-BLAST-PRCP is in-
terpreted as the composite rate allocation of the individual
transmitter antennas. Let al ∈ As denote the number of
bits that are allocated to antenna l where As is the set
of all possible single-antenna bit allocations. As shown in
Fig. 1 these al bits are processed by the adaptive coding and
modulation (ACM) block to produce N consecutive symbols
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transmitted from antenna l = 1, 2, . . . , t. Let the composite
action a = {a1, a2, . . . , at} denote the bit allocations across
all t transmit antennas. The set of composite actions is equal
to A = As × As × · · · × As. Let us also define function
Ψ(a), a ∈ A which returns the number of bits retrieved from
the buffer if action a is applied, i.e.

Ψ(a) =

t
∑

i=1

ai. (3)

Define the set of Markovian admissible policies Φ = {a =
{a(n)}|a(n) is measurable w.r.t. Ω(n), ∀n = 0, 1, . . .}. Let
Ω(n), n ≥ 0 denote the σ-algebra generated by the observed
system state s(0), . . . , s(n) at time n. This means that a(n) is
a (potentially) random function of current state s(n). Let ΦD

denote the set of all pure policies where a(n) is a deterministic
function of current state s(n).

We now introduce the following unichain assumption on the
set of optimal policies Φ:

A 3: The set of admissible policies Φ for the RFCP CMDP
comprises of unichain policies.

This assumption establishes regularity conditions of the
CMDP that ensures the existence of the optimal policy for the
average cost problems (for more details see [14]). A CMDP
is unichain [14] if every policy where a(n) is a deterministic
function of s(0), . . . , s(n) induces a single recurrent class plus
possibly an empty set of transient states.

Transition Probabilities: When the system is in state s ∈ S,
a finite number of possible actions which are elements of the
set A can be taken. Let a(n) denote the action taken by the
decision maker at the time n. For a given policy, the evolution
of a MDP is Markovian with transition probabilities

p(sl|sj , a) = P[s(n+1) = sl|s
(n) = sj , a

(n) = a] (4)

for some sl, sj ∈ S, a ∈ Asj
and n = 0, 1, . . ..

Based on Assumptions 1 and 2, the transition probability
of V-BLAST-PRCP between the composite state s = {b, h, f}
and s′ = {b′, h′, f ′}, s, s′ ∈ S when action a is taken is given
with

p(s′|s, a) = ph(h′|h)pf (f ′|f)I{b′=min(b−Ψ(a)+Gf ′,L)}. (5)

where I{l} is the indicator function that returns 1 if l is true
and 0 otherwise.

Cost Criteria: We will adopt the average expected cost as
the optimization criteria in V-BLAST-PRCP. For any admissi-
ble policy π ∈ Φ, let the infinite horizon cost conditioned on
initial state s(0) be defined as

Cs(0)(π) = Eπ

[

lim
N→∞

sup
1

N

N
∑

i=1

c(s(n), a(n))|s(0)

]

(6)

where the expectation is over randomized actions a(n) and
system state s(n) evolution for n = 1, 2, . . .. The goal is to
compute the optimal policy π∗ that minimizes the cost (6)

C∗
s(0) = inf

π∈Φ
Cs(0)(π), (7)

subject to the global constraint

Ds(0)(π) = Eπ

[

lim
N→∞

sup
1

N

N
∑

i=1

d(s(n), a(n))|s(0)

]

≤ D̃.

(8)
Let finite cost c(s(n), a(n)) ≥ 0 be the instantaneous cost
of taking action a(n) in the state s(n). For any linear V-
BLAST receiver the power cost for the composite channel
state h = {h1, h2, . . . , ht} and composite rate action a =
{a1, a2, . . . , at} can be expressed as the total power necessary
for transmission with a given average bit-error rate, i.e.

c([h, b, f ], a) =

t
∑

i=1

P i(hi, ai). (9)

where P i(hi, ai) is a single-channel power needed to transmit
with rate action ai over a channel state hi. Let the instanta-
neous delay cost be defined as

d([h, b, f ], a) =
b

GF̄
(10)

where F̄ is the average number of incoming packets in a time
slot and G is the length of each packet in bits. For d(s, a) given
above and according to the Little’s formula, (8) describes the
constrained average delay incurred in the buffer. Constraint
cost D̃ ≥ 0 is a user specified parameter. Any policy π∗ that
minimizes Cs(0) (π) will be called the optimal policy. The cost
of the policy π∗ that is optimal subject to constraint (8) will
be denoted by C∗(D̃).

Single-channel power cost P i(hi, ai) when action ai is
applied, is a random variable dependent on the random post-
detection SNR γ ∈ Γhi

conditioned on channel state hi.
However, as is known from [15], the equivalent immediate
costs in the case of random immediate costs can be calculated
as the average cost for a given state-action pair. Therefore

P i(hi, ai) =

∫ Γihi

Γi(hi−1)

P (γ, ai)p
hi(γ)dγ (11)

where P (γ, a) is the power needed to transmit with rate a over
a channel with SNR γ with a given bit-error rate of BERt. The
expectation is over signal to noise ratio (SNR) γ conditioned
on the channel state being in state hi i.e. γ ∈ [Γi(hi−1), Γihi

).
3

Furthermore, P (γ, a) can be calculated from

BERt = BER(γP (γ, a), a) (12)

for given BERt. The expression for the bit-error rate
BER(g, a) is a function of the instantaneous signal to noise
ratio g and the rate action a and depends on the utilized
modulation format. In the numerical results Section VI we use
the uncoded M-ary quadrature modulation (QAM) in each of
the transmission antennas and its bit-error rate expression will
be approximated with (see e.g. [16])

BER(g, a) = 0.2 × exp

[

−1.6g

(2v − 1)

]

. (13)

3As an alternative to the above calculation of power costs, in Section V-
C, we will discuss online estimation of power costs that can be used in
conjunction with the online Q-learning algorithm.
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Therefore, for uncoded MQAM the immediate single-channel
power cost for channel SNR γ can be expressed as

P (γ, a) =
−0.625 log(5BERt)

γ
(2a − 1). (14)

Let c(s, a; λ) be the Lagrangian cost given with

c(s, a; λ) = c(s, a) + λd(s, a) (15)

for a certain Lagrangian multiplier λ > 0. As discussed
in [13] and [1] the optimal policy of the CMDP with one
constraint is a mixture of two pure policies that are optimal
for unconstrained MDP with costs given as in (15) and two
different Lagrangian multipliers.

IV. SUMMARY OF STRUCTURAL RESULTS ON OPTIMAL

POLICIES

In this section we review two theorems, whose proofs are
given in the companion paper [1]. These results will allow us
to simplify the computational complexity and exploit the struc-
tural results of the optimal policy in Q-learning algorithms that
are to be discussed in Section V.

Action Reduction: We first note that the action space of
the V-BLAST-PRCP is of dimensions |As|t that can be very
large for large transmit antenna arrays. The following theorem
demonstrates that the action space can be reduced to the set
with on the order of t|As| states and that the optimal policy of
the V-BLAST-PRCP will only utilize actions from this reduced
action set.

Theorem 1: For the V-BLAST-PRCP, if the transmission
cost c([h, b, f ], a) have the form (9), then the composite
action set A containing (α + 1)t actions can be exponentially
decreased in cardinality to the reduced action set Ã with tα+1
actions. ◦

To compute the optimal policy of V-BLAST-PRCP, for a
certain channel state h and traffic state f , only the action
a(u) that has the minimal transmission cost among the actions
that retrieve a fixed amount of data Ψ(a) = u from the
transmission buffer should be considered i.e.

a(u) = arg min
{a|Ψ(a)=u}

c([h, b, f ], a). (16)

All other actions can be dropped from the model. To utilize
the results of the previous theorem, we can define the reduced
action set as Ã = {a(r)|r = 0, . . . , t max(As)}. Using the
reduced actions sets, in the proceeding sections we assume
for simplicity that buffer retrieval function Ψ(a) = a is equal
to the ordinal number of action a from the reduced action set
Ã. Let A = |Ã| be the number of actions in the reduced action
set.

Monotonic Policies: The Q-learning algorithm is based on
the adaptive iterative learning of Q factors of a Markov
Decision Process. Q factors are defined as

Q(s, a; λ) =

[

∑

s′

p(s′|s, a) (c(s, a; λ) + V (s′; λ))

]

(17)

where V (s; λ) denotes the value function of a certain state
s ∈ S that is the solution of the Bellman’s equation

V (s; λ) = min
a

[

∑

s′

p(s′|s, a) (c(s, a; λ) + V (s′; λ))

]

(18)

for a fixed Lagrange multiplier λ. Function Q : A×B×H×
F → < is called submodular (has decreasing differences) in
(a, b) for a fixed parameters h ∈ H and f ∈ F , if for all
a′ ≥ a and b′ ≥ b,

Q(a′, b′; h, f)−Q(a, b′; h, f) ≤ Q(a′, b; h, f)−Q(a, b; h, f).
(19)

It has been shown in [17] that if Q(s, a) is submodular in
(s, a) then the optimal action maxs Q(s, a) of the MDP for
certain state s is monotonically increasing in the state s.

The following assumption and definitions for the stated
transmission control problem will be used to establish the
below result on monotonic policies.

A 4: Set of feasible actions As in state s = [h, b, f ] ∈ S is a
non-empty set of actions a ∈ A for which b+Gf ′−Ψ(a) ≤ L
and b − Ψ(a) ≥ 0 and any f ′ ∈ F .
This assumption states that there exist such a feasible policy
that will not lead to transmit buffer overflows.

Definition 1: For any 0 ≤ q ≤ 1, mixed policy π is a
randomized policy formed of two pure policies π1 and π2

such that policy π1 is applied with probability q and policy
π2 is applied with probability 1 − q.

The next concept we will use is multimodularity. Multimod-
ularity extends the convexity property of continuous functions
defined on Euclidean space to real-valued functions defined on
a discrete set. We will call M = {[−1, 0], [1,−1], [0, 1]} a 2-
dimensional multimodular base and let X be a convex subset
of the set of ordered pairs of integers Z2 [18].

Definition 2: (Multimodularity) A real-valued function f :
X → < is multimodular with respect to base M if for all
x ∈ X , and v, w ∈ M, v 6= w the following holds:

f(x + v) + f(x + w) ≥ f(x) + f(x + v + w). (20)
We will use the multimodularity property of discrete functions
due to its property that it remains preserved after minimization
over any subset of parameters of a multimodular function (see
key Lemma 61 in [18]).

According to the previous definition, mixed policy π is a
randomized policy that is convex combination of pure policies
π1 and π2.

Definition 3: Pure policy π is non-decreasing in the buffer
state b if the ordinal number (index) of the action a =
π([h, b, f ]) taken in state [h, b, f ] is non-decreasing in buffer
state b for each channel state h and traffic state f .

Theorem 2: Consider V-BLAST-PRCP defined in Sec-
tion III. Let assumptions A2, A1, A3 hold. Furthermore,
assume that the following assumptions holds

A 5: Lagrangian cost c(s, a; λ) = c([h, b, f ], a; λ) defined
in (15) be multimodular function of b,−a, submodular func-
tion of b, a for any f ∈ F , λ ∈ <+, h ∈ H.

Then for cost constraint D̃ > 0, the optimal random-
ized policy π∗([h, b, f ]) is a mixed policy of two pure
policies π1([h, b, f ]) and π2([h, b, f ]). Both π1([h, b, f ]) and
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