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Abstract. In this paper we present two methods for computing filtered estimates for moments
of integrals and stochastic integrals of continuous-time nonlinear systems. The first method utilizes
recursive stochastic partial differential equations. The second method utilizes conditional moment
generating functions. An application of these methods leads to the discovery of new classes of finite-
dimensional filters. For the case of Gaussian systems the recursive computations involve integrations
with respect to Gaussian densities, while the moment generating functions involve differentiations
of parameter dependent ordinary stochastic differential equations. These filters can be used in
Volterra or Wiener chaos expansions and the expectation-maximization algorithm. The latter yields
maximum-likelihood estimates for identifying parameters in state space models.
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1. Introduction. Conditional expectations of functionals of systems state pro-
cesses given noisy observations require, in general, infinite-dimensional computations.
To determine whether such conditional expectations are finite-dimensional, it is of
interest to derive representations of the conditional distribution.

This paper discusses the following problem. We are given noisy observations
{ys; 0 ≤ s ≤ t} of the system state process {xs; 0 ≤ s ≤ t}, and we wish to derive
filtered estimates for moments of integrals and stochastic integrals. The underlying
mathematical system model can be diverse; for example, it includes continuous-time
processes, discrete-time processes, jump point processes, or a combination of these
processes. In this paper we focus our attention on continuous-time processes.

Here, our system state process {xs; 0 ≤ s ≤ t} and observation process {ys; 0 ≤
s ≤ t} are solutions of the Itô stochastic differential equations

dxt = f(t, xt)dt+ σ(t, xt)dwt, x(0) ε R
n,(1.1)

dyt = h(t, xt)dt+ αtdwt +N
1/2
t dbt, y(0) = 0 ε R

n,(1.2)

in which {ws; 0 ≤ s ≤ t} and {bs; 0 ≤ s ≤ t}, are, respectively, m-dimensional and
d-dimensional, independent standard Wiener processes; x(0) is a random variable
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independent of the Wiener processes. The precise assumptions on the coefficients of
our model are stated in section 2.

We are interested in conditional expectations (filtered estimates) of moments of
integrals and stochastic integrals

Lκ,1
0,t =

(∫ t

0

f1(s, xs)ds

)κ

, Lκ,2
0,t =

(∫ t

0

f2(s, xs)dws

)κ

,(1.3)

Lκ,3
0,t =

(∫ t

0

f3(s, xs)dbs

)κ

, κ ≥ 1,

for Borel measurable functions f1 : [0, T ] × R
n → R, f2 : [0, T ] × R

n → (Rm)′,
f3 : [0, T ] × R

n → (Rd)′, which are continuous in t. Aside from their mathe-
matical value, these estimates are important, for example, in least-squares estima-
tion/filtering, Volterra series expansions of nonlinear realization theory [1], Wiener
chaos expansions (of nonlinear filtering) [2], and maximum likelihood estimation
through the expectation-maximization (EM) algorithm [3]. For the case κ = 1, these
estimates are important in estimating parameters, a problem which arises in many
disciplines, such as signal processing, communications, and control systems.

The first method, Theorem 3.1, utilizes a system of stochastic partial differential
equations (SPDEs) that enable us to compute the above estimates recursively. The
second method, Theorem 4.5, utilizes conditional moment generating functions for
L1,j

0,t , j = 1, 2, 3. That is, for a test function Φ : R
n → R, we use measure-valued

conditional moment generating functions

β̃θ,j
t (Φ) = Ẽ[Φ(xt) exp

(
θL1,j

0,t

)
|Fy

0,t], j = 1, 2, 3, θ = iω, i =
√−1.(1.4)

Therefore, when the unnormalized versions of β̃θ,j
t (Φ) have densities βθ,j(x, t), j =

1, 2, 3, the latter satisfy linear SPDEs. The computation of filtered estimates of mo-
ments (1.3) are obtained by simply differentiating the conditional densities with re-
spect to the parameter θ.

For the case of Gaussian system models (i.e., dxt = Fxtdt+Gwt, dyt = Hxtdt+

N
1
2 bt), we derive filtered estimates for

L1,1
0,t =

∫ t

0

x′
sQxsds L1,2

0,t =

∫ t

0

x′
sRdws, L1,3

0,t =

∫ t

0

x′
sSdbs.(1.5)

Each filtered estimate is propagated by four statistics. Two of these are the
conditional mean and error covariances of xt given {ys; 0 ≤ s ≤ t} (Kalman filter),
while the remaining two are modified versions of the Kalman filter; the latter are
driven by the conditional mean and error covariance of the Kalman filter.

In the past, the computation of these filtered estimates was confined to integrals
L1,1

0,t , which are obtained using smoothing operations (e.g., [4]), and certain Lie al-
gebraic techniques applied to Volterra expansions (e.g., [1]). However, for analogous
discrete-time systems the filtering estimates in (1.5) are obtained using smoothing op-
erations (e.g., [5]). Recently, conditional expectations for the items in (1.5) were ob-
tained using filtering operations in [6]; the estimates were propagated by five statistics.
The techniques in [6], which are different from ours, are only applicable to Gaussian
systems, and they are confined to κ = 1.

2. The Duncan–Mortensen–Zakai (DMZ) equation.
Notation 2.1.
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1. “′” denotes transposition of a matrix;
2. Ik denotes k × k identity matrices;
3. (·)i denotes the ith component of a vector and (·)i,j denotes the ijth compo-

nent of a matrix;
4. L(V1;V2) denotes the space of linear transformations of a vector space V1 into

a vector space V2;
5. Cp,q

x,t (R
n × [0, T ]) = {Φ : R

n × [0, T ] → R
n; Φ(·, t) is “p” times continuously

differentiable in “x,” and Φ(x, ·) is “q” times continuously differentiable in
“t”};

6. Dx = [ ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

]′, D2
x =


∂2

∂x2
1

, ··· , ∂2

∂x1∂xn

...
. . .

...
∂2

∂xn∂x1
,··· , ∂2

∂x2
n

;
7. Φ : R

n → R denotes an arbitrary test function which is C2
x(R

n) and has
compact support;

8. E, Ẽ denote expectations with respect to measures P, P̃ , respectively;

9. Nt
.
= N

1
2
t N

1
2 ,′
t .

Assumption 2.2.
1. f : [0, T ] × R

n → R
n, σ : [0, T ] × R

n → R
n, h : [0, T ] × R

n → R
d, T > 0, are

bounded Borel measurable functions;
2. N : [0, T ] → L(Rd;Rd), α : [0, T ] → L(Rn;Rd), N, α are bounded Borel

measurable functions, and ∃β1 > 0, β2 > 0 such that Nt ≥ β1Id ∀t ε
[0, T ], a(t, x)

·
= σ(t, x)σ(t, x)′ ≥ β2In ∀(t, x) ε [0, T ]× R

n;
3. σ is continuous in x, uniformly on compact subsets of [0, T ]× R

n, ∂
∂xi

σi,j is
a bounded measurable function of (t, x) ε [0, T ]× R

n, 1 ≤ i, j ≤ n;
4. |f(t, x)− f(t, z)|+ ‖σ(t, x)− σ(t, z)‖ ≤ k|x− z|;
5. x(0) has distribution Π0(dx) = p0(x)dx, where p0(·) ε L2(Rn).

The above assumptions, with the exception of statement 4, are assumed to hold
throughout the manuscript.

Next, we start with a reference probability measure which is important in deriving
certain conditional densities for the filtering problem discussed earlier. Let (Ω,F , P )
be a reference probability with complete filtration {F0,t; t ε [0, T ]}, on which we have
the following:

(a) w : [0, T ] × Ω → R
n, b : [0, T ] × Ω → R

d, which are {F0,t; t ε [0, T ]} adapted
independent Wiener processes;

(b) x(0) : Ω → R
n, an F0,0-measurable random variable, which is independent of

{wt, bt; t ε [0, T ]};
(c) processes {xt; t ε [0, T ]}, {yt; t ε [0, T ]}, which (in view of Assumption 2.2) are

unique and continuous solutions of the stochastic differential equations

dxt = f(t, xt)dt− σ(t, xt)α
′
tC

−1
t h(t, xt)dt+ σ(t, xt)dwt, x(0) ε R

n,(2.1)

dyt = αtdwt +N
1/2
t dbt, y(0) = 0 ε R

n,(2.2)

where

Ct
.
= αtα

′
t +Nt.(2.3)

Consider the P -martingale

mt =

∫ t

0

h′(s, xs)C
−1
s dys,(2.4)
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and introduce the exponential martingale

ε(mt) = exp

(
mt − 1

2
〈m,m〉t

)
= Λ0,t,(2.5)

where 〈m,m〉t =
∫ t

0
|C−1/2

s h(s, xs)|2ds is the quadratic variation of {mt; t ε [0, T ]}.
By Assumption 2.2, we have E[Λ0,t] = 1∀t ε [0, T ] (see [7]). Consequently, we define

a measure P̃ through the Radon–Nikodým derivative

Λ0,T
.
= E

[
dP̃

dP
|F0,T

]
= ε(mT ).(2.6)

Since P̃ (Ω) =
∫
Ω
Λ0,t(ω)dP (ω) = 1 ∀t ε [0, T ], the Girsanov theorem (see [7])

states that P̃ is a probability measure on (Ω,A) and that[
wt

bt

]
=

[
wt

bt

]
−
[〈w,m〉t
〈b,m〉t

]
=

[
wt

bt

]
−
[ ∫ t

0
α′
sC

−1
s h(s, xs)ds∫ t

0
N

1/2,′
s C−1

s h(s, xs)ds

]
(2.7)

are independent Wiener processes on (Ω,F , P̃ ;F0,t). Substituting (2.7) into (2.1),

(2.2), on the new probability space (Ω,F , P̃ ;F0,t) we have constructed (weak) solu-
tions {xt; t ε [0, T ]}, {yt; t ε [0, T ]} of the stochastic equations

dxt = f(t, xt)dt+ σ(t, xt)dwt, x(0) ε R
n,(2.8)

dyt = h(t, xt)dt+ αtdwt +N
1/2
t dbt, y(0) = 0 ε R

d.(2.9)

Since {wt; t ε [0, T ]} and {bt; t ε [0, T ]} are versions of Wiener processes (which
are independent), (2.8), (2.9) constitute our original system model (simply by letting
w → w, b → b). Note that we may remove the Lipschitz condition Assumption 2.2,
statement 4, and employ the martingale approach to construct weak solutions.

Notation 2.3.
1. {Fy

0,t; t ε [0, T ]} denotes the complete filtration generated by the observations
σ-algebra σ{yτ ; 0 ≤ τ ≤ t}, {Fw

0,t; t ε [0, T ]} denotes that of σ{wτ ; 0 ≤ τ ≤ t},
and Fx(0) = σ{x(0)};

2. The measure-valued process qt(Φ) = E[Φ(xt)Λ0,t|Fy
0,t] is well defined.

The problem of least-squares filtering is concerned with estimating the conditional
mean of xt given the past and present measurements, i.e., Fy

0,t. Thus, the least-squares

filtering can be cast in terms of computing conditional expectations Ẽ[Φ(xt)|Fy
0,t].

Lemma 2.4.
1. A version of Bayes’s formula yields

Ẽ[Φ(xt)|Fy
0,t] =

E[Φ(xt)
dP̃
dP |Fy

0,t]

E[dP̃dP |Fy
0,t]

=
qt(Φ)

qt(1)
.(2.10)

2. If the measure-valued process qt(Φ) has an Fy
0,t-measurable density function

q : R
n × [0, T ]× Ω → R, then

Ẽ[Φ(xt)|Fy
0,t] =

∫
Rn Φ(z)q(z, t)dz∫

Rn q(z, t)dz
.(2.11)
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Proof. 1. A version of Bayes’ rule yields the equality in (2.10).
2. The proof follows from the existence of the density q(·).
The existence of the density q(x, t) will follow from the existence and uniqueness

of solutions of SPDEs [8, 9, 10], as it will be shown shortly.
We now derive an evolution equation for q(·). Note that {Λ0,t; t ε [0, T ]} is a

solution of the stochastic differential equation

Λ0,t = 1 +

∫ t

0

Λ0,sh
′(s, xs)C

−1
s dys.(2.12)

Theorem 2.5. The unnormalized density of the conditional distribution P̃ (xt ε
A|Fy

0,t), A ε B(Rn) is q(·) and satisfies the SPDE
dq(z, t) = A(t)∗q(z, t)dt+B(t)∗q(z, t)dyt, (z, t) ε (0, T ]× R

n,(2.13)

q(z, 0) = p0(z), z ε R
n,(2.14)

where

(2.15)

A(t)∗Φ(x) =
1

2

n∑
i,j=1

(
∂2

∂xi∂xj
((σ(t, x)σ′(t, x))i,j Φ(x))

)
−

n∑
i=1

∂

∂xi

(
fi(t, x)Φ(x)

)
,

(2.16)

Bk(t)
∗Φ(x) =

d∑
i=1

(
C−1

t

)
i,k

hi(t, x)Φ(x)−
n∑

i=1

∂

∂xi

((
σ(t, x)α′

tC
−1
t

)
i,k

Φ(x)
)
.

Proof. Recall that under P, {xt, yt; t ε [0, T ]} are solutions of (2.1), (2.2). Define

Dt
.
= Im − α′

tC
−1
t αt,(2.17)

and introduce

ỹt =

∫ t

0

C−1/2
s dys, w̃t =

∫ t

0

D−1/2
s (dws − α′

sC
−1
s dys).(2.18)

Substituting into (2.1) we have

dxt =
(
f(t, xt)− σ(t, xt)α

′
tC

−1
t h(t, xt)

)
dt+ σ(t, xt)D

1/2
t dw̃t(2.19)

+ σ(t, xt)α
′
tC

−1/2
t dỹt, x(0) ε R

n.

Moreover, {ỹt; t ε [0, T ]} and {w̃t; t ε [0, T ]} are independent standard Wiener

processes, and Fy
0,t = F ỹ

0,t; that is, no information is gained or lost. By (2.12), (2.18)
we deduce

Λ0,t = 1 +

∫ t

0

Λ0,sh
′(s, xs)C

−1/2
s dỹs.(2.20)

By the Itô product rule

Φ(xt)Λ0,t = Φ(x(0)) +

∫ t

0

Φ(xs)dΛ0,s +

∫ t

0

dΦ(xs)Λ0,s

+

∫ t

0

d〈Φ(x),Λ〉s.(2.21)
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Since

Φ(xt) = Φ(x(0)) +
1

2

∫ t

0

Tr
(
σ(s, xs)D

′
sσ

′(s, xs)D
2
xΦ(xs)

)
ds

+
1

2
Tr
(
σ(s, xs)α

′
sC

−1
s αsσ

′(s, xs)D
2
xΦ(xs)

)
ds

+

∫ t

0

D′
xΦ(xs)

(
f(s, xs)− σ(s, xs)α

′
sC

−1
s h(s, xs)

)
ds

+

∫ t

0

D′
xΦ(xs)σ(s, xs)D

1/2
s dw̃s +

∫ t

0

D′
xΦ(xs)σ(s, xs)α

′
sC

−1/2
s dỹs,

〈Φ(x),Λ〉t =
∫ t

0

Λ0,sD
′
xΦ(xs)σ(s, xs)α

′
sC

−1
s h(s, xs)ds,

substituting into (2.21) we have

Φ(xt)Λ0,t = Φ(x(0)) +
1

2

∫ t

0

Λ0,sTr
(
σ(s, xs)Dsσ

′(s, xs)D
2
xΦ(xs)

)
ds

+
1

2

∫ t

0

Λ0,sTr
(
σ(s, xs)α

′
sC

−1
s αsσ

′(s, xs)D
2
xΦ(xs)

)
ds

+

∫ t

0

Λ0,sD
′
xΦ(xs)

(
f(s, xs)− σ(s, xs)α

′
sC

−1
s h(s, xs)

)
ds

+

∫ t

0

Λ0,sD
′
xΦ(xs)σ(s, xs)D

1/2
s dw̃s +

∫ t

0

Λ0,sΦ(xs)h
′(s, xs)C

−1/2
s dỹs

+

∫ t

0

Λ0,sD
′
xΦ(xs)σ(s, xs)α

′
sC

1/2
s dỹs(2.22)

+

∫ t

0

Λ0,sD
′
xΦ(xs)σ(s, xs)α

′
sC

−1
s h(s, xs)ds.

Conditioning each side of (2.22) on Fy
0,t and then using the mutual independence

of x(0), {w̃t; t ε [0, T ]}, {ỹt; t ε [0, T ]} (see [11]) and a version of Fubinis theorem [7, 12],
we conclude that

qt(Φ) = q0(Φ) +

∫ t

0

qs(A(s)Φ(x))ds+

∫ t

0

qs(B(s)Φ(x))C−1/2
s dỹs.(2.23)

Integrating each term by parts and then substituting ỹt =
∫ t

0
C

−1/2
s dys we obtain

(2.13), (2.14).
Next, we employ certain results of variational methods of partial differential equa-

tions to show existence and uniqueness of solutions to (2.13) and (2.14).
Introduce the space H(Rn) = L2(R) and the Sobolev space H1(Rn) defined by

H1(Rn) =

{
u ε L2(Rn),

∂

∂xi
u ε L2(Rn), 1 ≤ i ≤ n

}
.

Furnish H(Rn), H1(Rn) with the norm topologies

‖u‖H =

∫
Rn

|u|2dx, u ε H(Rn),

‖u‖H1 =

{∫
Rn

|u|2dx+

n∑
i=1

∫ ∣∣∣∣ ∂

∂xi
u

∣∣∣∣2 dx
}1/2

, u ε H1(Rn).
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H(Rn) and H1(Rn) are Hilbert spaces with scalar products defined by

(φ, ψ)H =

∫
Rn

φψdx, φ, ψ ε H(Rn),

(φ, ψ)H1 =

∫
Rn

φψdx+

n∑
i=1

∫
∂φ

∂xi

∂ψ

∂xi
dx = (φ, ψ)L2(Rn)

+

n∑
i=1

(
∂φ

∂xi
,
∂ψ

∂xi

)
L2(Rn)

, φ, ψ ε H1(Rn).

Let H−1(Rn) denote the dual of H1(Rn) (the space of continuous linear func-
tionals on H1(Rn)). The norm of elements of H−1(Rn) is denoted by ‖ · ‖∗, and the
duality between H1(Rn) and H−1(Rn) is denoted by 〈·, ·〉.

Let

B(·)∗u =

B1(·)∗u
...

Bd(·)∗u

 , u ε H1(Rn),

and write the adjoint operators of A(·)∗ and B(·)∗ as

〈u,A(t)∗v〉 = 〈 A(t)u, v〉 = −1

2

n∑
i,j=1

(
ai,j(t, ·) ∂

∂xi
u,

∂

∂xj
v

)
L2(Rn)

+

n∑
i=1

(
f̃i(t, ·) ∂

∂xi
u, v

)
L2(Rn)

, u, v ε H1(Rn),

where

f̃i(t, x) = fi(t, x)− 1

2

n∑
j=1

∂

∂xj
ai,j(t, x)

〈u,B(t)∗v〉 = 〈 B(t)u, v〉 =
d∑

i,k=1

((C−1
t )i,khi(t, ·)u, v)L2(Rn)

+

d∑
k=1

n∑
i=1

(
(σ(t, ·)α′

tC
−1
t )i,k

∂

∂xi
u, v

)
L2(Rn)

, u, v ε H1(Rn).

In view of Assumption 2.2, statements 1, 2, 3, and 5, it can be shown that

A(·), A(·)∗ ε L∞((0, T );L(H1(Rn);H−1(Rn))),

B(·), B(·)∗ ε L∞((0, T );L(H1(Rn); (L2(Rn))d)).(2.24)

Moreover, A(t) ε L(H1(Rn);H−1(Rn)), B(t) ε L(H1(Rn); (L2(Rn))d satisfy the
following coercivity condition. There exist λ1, λ2 > 0 such that

−2〈A(t)u, u〉+ λ1‖u‖2
L2(Rn) ≥ λ2‖u‖2

H1(Rn)(2.25)

+ ‖Bu‖2
(L2(Rn))d ∀u ε H1(Rn), ∀t ε [0, T ].
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Define the space

L2
y((0, T );H

1)
·
= {u ε L2(Ω,F , P ; L2((0, T );H1); a.e. on [0, T ], u(t) ε L2(Ω,Fy

0,t, P ;H1)}.

Lemma 2.6. There exists one and only one solution q(·) of (2.13), (2.14) in the
space

q(·) ε L2
y((0, T );H

1) ∩ L2(Ω,F , P ;C((0, T );H)).

Proof. Assumption 2.2 statements 1, 2, 3, and 5 imply the coercivity condition
(2.25), which is then employed to show existence and uniqueness of solutions to (2.13),
(2.14) (see [8, 9, 10]).

The next tool employed in subsequent sections is the concept of fundamental
solutions to stochastic differential equations.

Definition 2.7. A fundamental solution of (2.13), (2.14) is an Fy
0,t-measurable

function q(z, t;x, s), with (z, x) ε R
n × R

n, 0 ≤ s < t ≤ T , such that the following
hold:

1. q(·, ·;x, s) is a solution of

(2.26)

dq(z, t;x, s) = A(t)∗q(z, t;x, s)dt+B(t)∗q(z, t;x, s)dyt, 0 < s < t ≤ T,

(2.27)

lim
t↓s

q(z, t;x, s) = δ(z − x).

2. For fixed (s, x) ε (0, t)× R
n, q(·, t;x, s) ε C2

z (R
n).

3. For ϕ : R
n → R, which is continuous with compact support,

lim
t↓s

∫ ∞

−∞
q(z, t;x, s)ϕ(x)dx = ϕ(z).(2.28)

That is, limt↓s q(z, t;x, s) = δ(z − x) is a Dirac delta function.
Unfortunately, Assumption 2.2 is too weak to imply that q(·, t;x, s) ε C2

z (R
n).

However, if there is no correlation between the state noise and the observation noise
(e.g., αt = 0 ∀t ε [0, T ]), and we impose additional smoothness and continuity con-
ditions on (f, σ, h), then by considering the pathwise version of (2.13), (2.14), it can
be shown that for each y ε C([0, T ];Rd) there exists a unique solution, which is a
fundamental solution [13]. For the correlated case, we have the following result which
is found in [9, 10] (see also [14] for alternative conditions).

Theorem 2.8. Suppose the coefficient of A and Bk, k = 1, . . . , d have bounded
partial derivatives in x of any order. Then

1. {q(z, t;x, s); 0 ≤ s < t ≤ T}, (z, x) ε R
n × R

n, is a unique fundamental
solution of the unnormalized condition density equation (2.13), (2.14), and q(·, t;x, s) ε
C∞

b (Rn), P − a.s.∀t ε (s, T ].
2. A version of the conditional distribution P̃ (xt ε A|Fy

0,t), A ε B(Rn), is

Ẽ[Φ(xt)|Fy
0,t] =

qt(Φ)

qt(1)
=

∫
Rn×Rn Φ(z)q(z, t;x, 0)p0(x)dxdz∫

Rn×Rn q(z, t;x, 0)p0(x)dxdz
.(2.29)



1586 C. CHARALAMBOUS, R. ELLIOTT, AND V. KRISHNAMURTHY

Proof. 1. This is shown in [10, pp. 227–228].
2. Let q(z, t;x, s) be a solution of (2.26), (2.27); set q̃(z, t) =

∫
Rn q(z, t;x, 0)p0(x)dx.

Then

dq̃(z, t) =

∫
Rn

dq(z, t;x, 0)p0(x)dx

=

∫
Rn

A(t)∗q(z, t;x, 0)p0(x)dxdt+

∫
Rn

B(t)∗q(z, t;x, 0)p0dxdyt

= A(t)∗q̃(z, t)dt+B(t)∗q̃(z, t)dyt.

This shows that q̃(z, t) satisfies (2.13) for (z, t) ε R
n×(0, T ]. Since limt↓0 q̃(z, t) =

limt↓0
∫

Rn q(z, t;x, 0)p0(x)dx = p0(z), we also have (2.14). By Lemma 2.4 we establish
(2.29).

Definition 2.9. Let f1 : [0, T ] × R
n → R, f2 : [0, T ] × R

n → (Rn)′, f3 :
[0, T ]× R

n → (Rd)′ be Borel measurable and bounded functions.
1. The integrals

Lκ,1
0,t =

(∫ t

0

f1(s, xs)ds

)κ

, Lκ,2
0,t =

(∫ t

0

f2(s, xs)dws

)κ

,(2.30)

Lκ,3
0,t =

(∫ t

0

f3(s, xs)dbs

)κ

, κ ≥ 1,

are well defined.
2. The measure-valued processes

Mκ,j
t (Φ) = E[Φ(xt)Λ0,tL

κ,j
0,t |Fy

0,t], κ ≥ 0, j = 1, 2, 3,(2.31)

are well defined.
We are interested in filtered estimates of κth moments (κ ≥ 1) of integrals and

stochastic integrals. That is, we wish to derive expressions for Ẽ[Lκ,j
0,t |Fy

0,t]. An
application of Bayes’s theorem yields

Ẽ[Lκ,j
0,t |Fy

0,t] =
E[Λ0,tL

κ,j
0,t |Fy

0,t]

E[Λ0,t|Fy
0,t]

, κ ≥ 1, j = 1, 2, 3.(2.32)

3. Recursive equations. Here we prove that the filtered estimates (2.32) can
be expressed in terms of the fundamental solution of the DMZ equation; namely,
q(z, t;x, s), 0 ≤ s < t ≤ T , which satisfies (2.13), (2.14). This enables us to conclude
that if q(z, t;x, s) is a finite-dimensional statistic, then these filtered estimates can be
described in terms of solutions of a finite-number of stochastic differential equations.

Theorem 3.1. Suppose Mκ,j
t (·) have Fy

0,t-measurable density functions M
κ,j :

R
n × [0, T ]× Ω → R, j = 1, 2, 3.
Then

Mκ,j(x, t)dx = E[IxtεdxΛ0,tL
κ,j
0,t |Fy

0,t], κ ≥ 1, j = 1, 2, 3,(3.1)
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satisfy the following recursive system of SPDEs:

dMκ,1(x, t) = A(t)∗Mκ,1(x, t)dt+B(t)∗Mκ,1(x, t)dyt

+ κf1(t, x)Mk−1,1(x, t)dt, κ ≥ 1, (t, x) ε (0, T ]× R
n,(3.2)

dMκ,2(x, t) = A(t)∗Mκ,2(x, t)dt+B(t)∗Mκ,2(x, t)dyt

+
1

2
κ(κ− 1)|f2,′(t, x)|2Mκ−2,2(x, t)dt

− κ
n∑

i=1

∂

∂xi

(
Mκ−1,2(x, t)

(
σ(t, x)f2,′(x, t)

)
i

)
dt

+ κf2(t, x)Mκ−1,2(x, t)α′
tC

−1
t dyt, κ ≥ 1, (t, x) ε (0, T ]× R

n,(3.3)

dMκ,3(x, t) = A(t)∗Mκ,3(x, t)dt+B(t)∗Mκ,3(x, t)dyt

+
1

2
κ(k − 1)|C1/2N−1/2f3,′(t, x)|2Mκ−2,3(x, t)dt

+ κf3(t, x)Mκ−1,3(x, t)N1/2C−1dyt, κ ≥ 1, (t, x) ε (0, T ]× R
n,(3.4)

where the convention Mp,j(x, t) = 0 for p < 0 is used. The initial conditions are

Mκ,j(x, 0) = 0, κ ≥ 1, j = 1, 2, 3,(3.5)

and for κ = 0

M0,j(x, t) = q(x, t), j = 1, 2, 3.(3.6)

Proof. We shall use induction. Consider (3.2). Now, the case κ = 1 is easily
verified, so it is omitted. Suppose (3.2) holds for κ → k − 1. We shall show that
it also holds for κ. To this end, consider Φ(xt)Λ0,tL

κ,1
0,t , where {xt; t ε [0, T ]} and

{Λ0,t; t ε [0, T ]} are solutions of (2.19), (2.20), respectively. By the Itô product rule

Lκ,1
0,t = κ

∫ t

0

Lκ−1,1
0,s f1(s, xs)ds, κ ≥ 1.(3.7)

Employing the Itô product rule once again, we have

Φ(xt)Λ0,tL
κ,1
0,t =

∫ t

0

Φ(xs)d(Λ0,sL
κ,1
s ) +

∫ t

0

dΦ(xs)Λ0,sL
κ,1
0,s

+

∫ t

0

〈Φ(x),ΛLκ,1〉s.(3.8)

Now, from (3.7), (2.20) we compute

Λ0,tL
κ,1
0,t =

∫ t

0

Λ0,sdL
κ,1
0,s +

∫ t

0

Lκ,1
0,sdΛ0,s +

∫ t

0

d〈Λ, Lκ,1〉t

= κ

∫ t

0

f1(s, xs)Λ0,sL
κ−1,1
0,s ds+

∫ t

0

Λ0,sL
κ,1
0,sh

′(s, xs)C
−1/2
s dỹs.(3.9)

Substituting (3.9) into (3.8) and then proceeding as in the derivation of Theorem
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2.5, we obtain

Φ(xs)Λ0,tL
κ,1
0,t =

1

2

∫ t

0

Λ0,sL
κ,1
0,sTr

(
σ(s, xs)σ

′(s, xs)D
2
xΦ(xs)

)
ds

+

∫ t

0

Λ0,sL
κ,1
0,sD

′
xΦ(xs)σ(s, xs)D

1/2
s dw̃s

+

∫ t

0

Λ0,sL
κ,1
0,sΦ(xs)h

′(s, xs)C
−1/2
s dỹs

+

∫ t

0

Λ0,sL
κ,1
0,sD

′
xΦ(xs)σ(s, xs)α

′
sC

1/2
s dỹs + κ

∫ t

0

Λ0,sL
κ−1,1
0,s f1(s, xs)ds.(3.10)

Conditioning each side of (3.10) on Fy
0,t using (3.1), and then integrating by parts,

we deduce (3.2). When κ = 0, j = 1, we have M0,1(x, t)dx = E[IxtεdxΛ0,t|Fy
0,t], and

thus M0,1(x, t) satisfies the DMZ equation.
The derivation (3.3) is done similarly; therefore we shall outline only the impor-

tant steps. Under measure P ,

Lκ,2
0,t =

[∫ t

0

f2(s, xs)(dws − α′
sC

−1
s h(s, xs)ds)

]κ
.(3.11)

Substituting wt =
∫ t

0
D

1/2
s dw̃s +

∫ t

0
α′
sC

−1/2
s dỹs into (3.11),

Lκ,2
0,t =

[∫ t

0

f2(s, xs)(D
1/2
s dw̃s + α′

sC
−1/2
s dỹs − α′

sC
−1
s h(s, xs)ds)

]κ
.(3.12)

By the Itô product rule

Lκ,2
0,t = κ

∫ t

0

Lk−1,2
0,s f2(s, xs)(D

1/2
s dw̃s + α′

sC
−1/2
s dỹs − α′

sC
−1
s h(s, xs)ds)

+
1

2
κ(k − 1)

∫ t

0

Lk−2,2
0,s f2(s, xs)D

1/2
s D1/2,′

s f2,′(s, xs)ds

+
1

2
κ(k − 1)

∫ t

0

Lk−2,2
0,s f2(s, xs)α

′
sC

−1
s αsf

2,′(s, xs)ds.(3.13)

Employing the Itô product rule to Φ(xt)Λ0,tL
κ,2
0,t , as in (3.9), (3.10), and then

invoking Mκ,2(z, t)dx = E[IxtεdxΛ0,tL
κ,2
0,t |Fy

0,t], after some algebra we derive (3.3),
and (3.5) for j = 2, κ ≥ 2. The special case κ = 1, 2 is done similarly. Also, to derive
(3.4), we start with

Lκ,3
0,t =

[∫ t

0

f3(s, xs)
(
dbs −N1/2

s C−1
s h(s, xs)ds

)]κ
,(3.14)

which is defined under measure P , and then we follow the above procedure to obtain
(3.4), and (3.5), for j = 3.

Next, we establish existence and uniqueness of the moment processes Mκ,j(·), κ ≥
1, j = 1, 2, 3, using the variational methods of SPDEs, similar to Theorem 3.1.

Clearly, (3.2)–(3.4) with their corresponding boundary conditions (3.5), (3.6) are
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of the general form

M(x, t) =

∫ t

0

A(s)∗M(x, s)ds+

∫ t

0

B(s)∗M(x, s)dys +

∫ t

0

ψ(s)ds

+

∫ t

0

φ(s)dys +

∫ t

0

η(s)ds,(3.15)

where η(t) ε L2
y((0, T );H

1), ψ(t) ε L2
y((0, T );H

−1), φ(t) ε L2
y((0, T ); (L

2(Rn))d). For

example, the fourth right side term of (3.3) belongs to L2
y((0, T ); (L

2(Rn))d). There-
fore, for finite κ, an application of variational methods of SPDEs (see [8, 9, 10]) implies
there exists one and only one solution to (3.15) in the space M(·) ε L2

y((0, T );H
1) ∩

L2
y(Ω,F , P ;C((0, T );H)). Consequently, the moment processes of Theorem 3.1 have

unique solutions as well.
Notice that the filtered estimates for Lκ,j

0,t , κ ≥ 1, j = 1, 2, 3, can be computed
from

Ẽ[Lκ,j
0,t |Fy

0,t] =

∫
Rn M

κ,j(z, t)dz∫
Rn q(z, t)dz

, κ ≥ 1, j = 1, 2, 3.(3.16)

Clearly, if the fundamental solution of the DMZ equation q(t, t;x, s) is finite-
dimensional, then according to Lemma 3.2, (3.16) can be computed explicitly in terms
of finite numbers of statistics.

Lemma 3.2. Suppose the coefficients of A,Bk, k = 1, . . . , d, and f j , 1 ≤ j ≤ 3,
have bounded partial derivatives in x of any order. ThenMκ,j

t (·) have Fy
0,t-measurable

density functions given by

(3.17)

Mκ,1(z, t) = κ

∫ t

0

∫
Rn

f1(s, x)Mκ−1,1(x, s)q(z, t;x, s)dxds, κ ≥ 1,

Mκ,2(z, t) =
1

2
κ(κ− 1)

∫ t

0

∫
Rn

|f2(s, x)|2Mk−2,2(x, s)q(z, t;x, s)dxds

− κ

∫ t

0

∫
Rn

n∑
i=1

∂

∂xi

(
Mk−1,2(x, s)

(
σ(s, x)f2,′(s, x)

)
i

)
q(z, t;x, s)dxds

+ κ

∫ t

0

∫
Rn

f2(s, x)Mk−1,2(x, s)α′
sC

−1
s q(z, t;x, s)dxdys, κ ≥ 1,(3.18)

Mκ,3(z, t) =
1

2
κ(k − 1)

∫ t

0

∫
Rn

|C1/2
s N−1/2

s f3(s, x)|2Mk−2,3(x, s)q(z, t;x, s)dxds

+ κ

∫ t

0

∫
Rn

f3(s, x)Mk−1,3(x, s)N1/2C−1
s q(z, t;x, s)C−1

s dxdys, κ ≥ 1,(3.19)

with the convention Mp,j(x, t) = 0 for p < 0, j = 1, 2, 3.
Proof. Theorem 2.8 establishes the existence and uniqueness of a fundamental

solution to the DMZ equation. Let M̂κ,1(z, t) denote the right side of (3.17). For
κ = 1, we have

M̂1,1(z, t) =

∫ t

0

∫
Rn

f1(x, s)q(x, s)q(z, t;x, s)dxds,
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because M0,1(·, ·) = q(·, ·). Then

dM̂1,1(z, t) = f1(t, z)q(z, t)dt+

∫ t

0

∫
Rn

f1(s, x)q(x, s)dq(z, t;x, s)dxds

= f1(t, z)q(z, t)dt+A(t)∗
∫ t

0

∫
Rn

f1(s, x)q(x, s)q(z, t;x, s)dxdsdt

+ B(t)∗
∫ t

0

∫
Rn

f1(s, x)q(x, s)q(z, t)dxdsdyt

= A(t)∗M̂1,1(z, t)dt+B(t)∗M̂1,1(z, t)dyt + f1(t, z)q(z, t)dt.

Thus, M̂1,1(·, ·) satisfies (3.2); for t = 0, M̂1,1(z, 0), and so (3.17) holds for κ = 1.
Let

M̂κ,1(z, t) = κ

∫ t

0

∫
Rn

f1(s, x)M̂k−1,1(x, s)q(z, t;x, s)dxds(3.20)

and assume it satisfies (3.2) for (t, z) ε (0, T ]×R
n, and (3.5) for t = 0. We shall show

that

M̂k+1,1(z, t) = (k + 1)

∫ t

0

∫
Rn

f1(s, x)M̂k,1(x, s)q(z, t;x, s)dxds(3.21)

satisfies (3.2), with k → k + 1, for (t, z) ε (0, T ] × R
n. Clearly, M̂k+1,1(z, 0) = 0, so

(3.5) holds (with j = 1). Now,

dM̂k+1,1(z, t) = (k + 1)f1(t, z)M̂k,1(z, t)dt

+ (k + 1)

∫ t

0

∫
Rn

f1(s, x)M̂k,1(x, s)dq(z, t;x, s)dxds

= (k + 1)f1(t, z)M̂k,1(z, t)dt

+ (k + 1)A∗(t)
∫ t

0

∫
Rn

f1(s, x)M̂k,1(x, s)q(z, t;x, s)dxds

+ (k + 1)B(t)∗
∫ t

0

∫
Rn

f1(s, x)M̂k,1(x, s)q(z, t;x, s)dxdys

= (k + 1)f1(t, z)M̂k,1(z, t)dt+A∗(t)M̂k+1,1(z, t)dt+B(t)∗M̂k+1,1(z, t)dyt.

Hence (3.17) satisfies (3.2), (3.5) with k → k+1. Similarly, one may use induction
to verify the representations (3.18), (3.19).

Next, we introduce an example to demonstrate the computations described in
(3.17).

3.1. Specific application. Consider the system

dxt = Fxtdt+Gdwt, x(0) ε R
n,

dyt = Hxt +N
1
2 dbt, y(0) = 0 ε R

d.

The random variable x(0) is Gaussian. Although the above linear system does not
satisfy Assumption 2.2, statements 1, 2, 3, and 5, the fundamental solution of the
DMZ equation exists, and it is given by

q(z, t;x, s) =
1

(2π)n/2|Ps,t|1/2 exp

(
−1

2
|P−1/2

s,t (z − rs,t(x))|2
)
× Λs,t(x),(3.22)
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drs,t(x) =
(
F − Ps,tH

′N−1H
)
rs,t(x)dt+ Ps,tH

′N−1dyt, rs,s(x) = x,(3.23)

Ṗs,t = FPs,t + Ps,tF
′ − Ps,tH

′N−1HPs,t +GG′, Ps,s = 0,(3.24)

Λs,t(x) = exp

(∫ t

s

(Hrs,τ )
′N−1dyτ − 1

2

∫ t

s

|N− 1
2

τ Hrs,τ (x)|2dτ
)
.(3.25)

Let

rs,t(x) = Φs,tx+ βs,t,

where

Φ̇s,t =
(
F − Ps,tH

′N−1H
)
Φs,t, Φs,s = In,

dβs,t =
(
F − Ps,tH

′N−1H
)
βs,tdt+ Ps,tH

′N−1dyt, βs,s = 0.

Then

Λs,t(x) = γs,t exp

(
x′ρs,t − 1

2
x′Ss,tx

)
,

where

γs,t = exp

(∫ t

s

β′
s,τH

′N−1dyτ − 1

2

∫ t

s

|N−1/2Hβs,τ |2dτ
)
,

Ss,t =

∫ t

s

Φ′
s,τH

′N−1HΦs,τdτ,

ρs,t =

∫ t

s

Φ′
s,τH

′N−1
(
dyτ −Hβs,τdτ

)
.

Moreover, the unnormalized conditional density of xs given Fy
0,s is

q(x, s) =
1

(2π)n/2|Σ0,s|1/2 exp

(
−1

2
|Σ−1/2

0,s (x− x̂0,s)|2
)
× Λ̂0,s,

where x̂0,s is a solution of (3.23) with x̂0,0 = ξ, Σ0,s is a solution of (3.24) with

Σ0,0 = Σ0, and Λ̂0,s is given by (3.25) with r → x̂, P → Σ. Notice that∫
Rn

q(x, s)q(z, t;x, s)dx =
1

(2π)n/2|Ps,t|1/2 × 1

(2π)n/2|Σ0,s|1/2 × Λ̂0,s × γs,t

×
∫

Rn

exp

(
−1

2
|P−1/2

s,t

(
z − Φs,tx− βs,t

)|2 − 1

2
|Σ−1/2

0,s

(
x− x̂0,s

)|2 + x′ρs,t − 1

2
x′Ss,tx

)
dx.

Therefore, the integral with respect to x is computed by completing the squares.
Consequently, we deduce that Ẽ

[ ∫ t

0
f(xs)ds|Fy

0,t

]
is finite-dimensional computable

for large classes of functions f(x) such as f(x) = xp, p ≥ 1, p an integer.
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4. Conditional moment generating functions. Next we introduce moment
generating functions for computing the conditional moments of integrals and stochas-
tic integrals (2.32).

Definition 4.1. Let θ = iω, i =
√−1.

1. The measure-valued conditional moment generating functions of the stochastic
processes {L1,j

0,t ; t ε [0, T ]}, j = 1, 2, 3, given by

β̃θ,j
t (Φ) = Ẽ[Φ(xt) exp

(
θL1,j

0,t

)
|Fy

0,t], j = 1, 2, 3,(4.1)

are well defined.
2. The measure-valued unnormalized conditional moment generating functions
of the stochastic processes {L1,j

0,t ; t ε [0, T ]}, j = 1, 2, 3, given by

βθ,j
t (Φ) = E[Φ(xt)Λ0,t exp

(
θL1,j

0,t

)
|Fy

0,t], j = 1, 2, 3,(4.2)

are well defined.
Lemma 4.2. Suppose βθ,j

t (·) have Fy
0,t-measurable density function βθ,j : R

n ×
[0, T ]× Ω → R, j = 1, 2, 3.

1. Then

Ẽ[Φ(xt) exp
(
θL1,j

0,t

)
|Fy

0,t] =
βθ,j
t (Φ)

qt(1)
=

∫
Rn Φ(z)βθ,j(z, t)dz∫

Rn q(z, t)dz
, j = 1, 2, 3.

(4.3)

2. The conditional characteristic functions of the stochastic processes {L1,j
0,t ; t ε

[0, T ]}, j = 1, 2, 3, are given by

Ẽ
[
exp

(
iωL1,j

0,t

)
|Fy

0,t

]
=

βiω,j
t (1)

qt(1)
=

∫
Rn β

iω,j(z, t)dz∫
Rn q(z, t)dz

, j = 1, 2, 3.(4.4)

Proof. The proof is similar to Lemma 2.4.
Theorem 4.3. Suppose βθ,j

t (·) have Fy
0,t-measurable density functions β

θ,j(·), j =
1, 2, 3.

The densities of the measure-valued unnormalized conditional moment generating
functions, namely,

βθ,j(x, t)dx = E
[
IxtεdxΛ0,t exp

(
θL1,j

0,t

)
|Fy

0,t

]
, j = 1, 2, 3,(4.5)

satisfy the following system of SPDEs:

dβθ,1(x, t) = A(t)∗βθ,1(x, t)dt+B(t)∗βθ,1(x, t)dyt

+ θf1(t, x)βθ,1(x, t)dt, (t, x) ε (0, T ]× R
n,(4.6)

dβθ,2(x, t) = A(t)∗βθ,2(x, t)dt+B(t)∗βθ,2(x, t)dyt

+
θ2

2
|f2,′(t, x)|2βθ,2(x, t)dt− θ

n∑
i=1

∂

∂xi

((
σ(t, x)f2,′(x, t)

)
i
βθ,2(x, t)

)
dt
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+ θf2(t, x)βθ,2(x, t)α′
tC

−1
t dyt, (t, x) ε (0, T ]× R

n,(4.7)

dβθ,3(x, t) = A(t)∗βθ,3(x, t)dt+B(t)∗βθ,3(x, t)dyt

+
θ2

2
|C1/2N−1/2f3,′(t, x)|2βθ,3(x, t)dt

+ θf3(t, x)βθ,3(x, t)N1/2C−1dyt, (t, x) ε (0, T ]× R
n.(4.8)

The initial conditions are

βθ,j(x, 0) = p0(x), x ε R
n, j = 1, 2, 3.(4.9)

Proof. First, absorb exp
(
θL1,j

0,t

)
in the exponential term Λ0,t by setting

Λ̂j
0,t = Λ0,t exp

(
θL1,j

0,t

)
.

Second, apply the Itô product rule as in Theorem 3.1. This derivation is along
the lines of information state equations in [13].

Equations (4.6), (4.7), (4.8) with their respective boundary conditions (4.9) are
of the general form

Mθ(x, t) = p0(x) +

∫ t

0

Aθ(s)∗M(x, s)ds+

∫ t

0

Bθ(s)∗M(x, s)dys,(4.10)

where the operators Aθ(t)∗, Bθ(t)∗ and their adjoints Aθ(t), Bθ(t) depend on θ. More-
over, for sufficiently small θ ε R, these operators are bounded linear operators as
described in (2.24), and there exist λθ

1, λ
θ
2, which depend on θ ε R such that they

satisfy the coercivity condition (2.25). Consequently, similar to Lemma 2.6, there
exists one and only one solution of (4.6)–(4.9) in the space βθ,j(·) ε L2

y((0, T );H
1) ∩

L2(Ω,F , P ;C((0, T );H)).
Lemma 4.4. For j = 1, 2, 3,

E
[
Φ(xt)Λ0,t exp

(
θL1,j

0,t

)
|Fy

0,t

]
= E

[
Φ(xt)Λ0,t|Fy

0,t

]
+

∞∑
κ=1

θκ

κ!
E
[
Φ(xt)Λ0,tL

κ,j
0,t |Fy

0,t

]
,

(4.11)

where the infinite series converges in L1(Ω,Fy
0,t, P ). Moreover,

βθ,j
t (Φ) = qt(Φ) +

∞∑
κ=1

θκ

κ!
Mκ,j

t (Φ), j = 1, 2, 3.(4.12)

Proof. We shall invoke the following estimate found in [15, p. 353]:∣∣∣∣∣eθx −
n∑

k=0

(θx)k

k!

∣∣∣∣∣ ≤ min

{ |θx|n+1

(n+ 1)!
,
2|θx|n
n!

}
, θ ε R, x ε R.
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The first right side term is an estimate for |θx| small and the second for |θx| large.
Using the above estimate

E
{∣∣∣E[Φ(xt)Λ0,t exp(θL

1,j
0,t )|Fy

0,t]−
n∑

k=0

θk

k!
E[Φ(xt)Λ0,tL

k,j
0,t |Fy

0,t]
∣∣∣}

≤ E
{
|Φ(xt)|Λ0,t

(∣∣∣∣∣exp(θL1,j
0,t )−

n∑
k=0

θk

k!
Lk,j

0,t

∣∣∣∣∣
)}

≤ E
{
|Φ(xt)|Λ0,t min

{
|θ|n+1Ln+1,j

0,t

(n+ 1)!
,
2|θ|nLn,j

0,t

n!

}}
(4.13)

≤
(
E
{
|Φ(xt)|2Λ2

0,t

})1/2

Emin


(
|θ|n+1Ln+1,j

0,t

(n+ 1)!

)2

,

(
2|θ|nLn,j

0,t

n!

)2

1/2

.

The first right side term of (4.13) is bounded for any (t, x) ε [0, T ]× R
n, and the

second is bounded because f j(t, x), j = 1, 2, 3, are bounded for any (t, x) ε [0, T ]×R
n.

Moreover, limn→∞
(
θn

n!

)2
EL2n,j

0,t = 0, and therefore in the limit, as n → ∞, the
right side of (4.13) converges to zero. Consequently, the following expansion must
hold:

E[Φ(xt)Λ0,t exp(θL
1,j
0,t )|Fy

0,t] =

∞∑
k=0

θk

k!
E[Φ(xt)Λ0,tL

k,j
0,t |Fy

0,t],

which is equivalent to (4.11) and, by Definition 2.9, to (4.12).
At this stage, we may formally differentiate both sides of (4.12) with respect to

θ, and then take the limit as θ → 0, to obtain relations between limθ→0
dκ

dθκ β
θ,j
t (Φ)

and Mκ,j
t (Φ), j = 1, 2, 3. These results are presented next.

Theorem 4.5. We have the following:
1. β̃iω,j(1), βiω,j(1), j = 1, 2, 3 have κ continuous derivatives with respect to ω,
w.p.1.

2.

lim
θ→0

dκ

dθκ
β̃θ,j
t (Φ) = lim

θ→0

dκ

dθκ
βθ,j
t (Φ)

qt(1)
= Ẽ[Φ(xt)L

κ,j
0,t |Fy

0,t] w.p.1,(4.14)

θ = iω, κ ≥ 0, j = 1, 2, 3.

3.

lim
θ→0

dκ

dθκ
β̃θ,j
t (1) = lim

θ→0

dκ

dθκ
βθ,j
t (1)

qt(1)
= Ẽ[Lκ,j

0,t |Fy
0,t] w.p.1,(4.15)

θ = iω, κ ≥ 0, j = 1, 2, 3.

Proof. Recall that

β̃iω,j
t (Φ) = Ẽ

[
Φ(xt) exp

(
iωL1,j

0,t

)|Fy
0,t

]
=

E
[
Λ0,t exp

(
iωL1,j

0,t

)|Fy
0,t

]
qt(1)

.

Here qt(1) is independent of θ. The numerator E[Φ(xt)Λ0,t exp(iωL
1,j
0,t )|Fy

0,t] ad-
mits the power series expansion of Lemma 4.4, which implies 1, 2, 3.
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4.1. Specific application. Consider the system

dxt = Fxtdt+Gdwt, x(0) ε R
n,

dyt = Hxt +N
1
2 dbt, y(0) = 0,

f1(t, x) =
1

2
x′Qx, f2(t, x) = x′R, f3(t, x) = x′S, Q = Q′.

We assume x(0) is a Gaussian random variable.
Suppose F,H are random matrices which we wish to identify or estimate. In

[6] an algorithm is presented for estimating these matrices. This involves filtered

estimates of the processes
∫ t

0
f1(s, xs)ds,

∫ t

0
f2(s, xs)dws,

∫ t

0
f3(s, xs)dbs. Here we

apply Theorem 4.5 to obtain these estimates.
A solution of (2.13), (2.14) is

q(x, t) =
1

(2π)n/2|P 0
t |1/2

exp

(
−1

2
|P 0,−1/2

t

(
x− x̂0

t

) |2)× Λ̂0
0,t,(4.16)

where x̂0(·), P 0(·), Λ̂0(·) are given by

dx̂0
t = Fx̂0

tdt+ P 0
t H

′N−1
(
dyt −Hx̂0

tdt
)
, x̂0(0) = ξ,(4.17)

Ṗ 0
t = FP 0

t + P θ
t F

′ − P 0
t H

′N−1HP 0
t +GG′, P 0(0) = P0,(4.18)

Λ̂0
0,t = exp

(∫ t

0

(
Hx̂0

s

)′
N−1dys − 1

2

∫ t

0

(
Hx̂0

s

)′
N−1Hx̂0

sds

)
.(4.19)

These computations are easily verified by substitution into the DMZ equation.
Recall also that q(x, t) = M0,j(x, t), j = 1, 2, 3.

1. Computation of L̂1,1
0,t = Ẽ[12

∫ t

0
x′
sQxsds|Fy

0,t]:
A solution of (4.6), (4.9) is (see, for example, [11, 13])

βθ,1(x, t) =
1

(2π)n/2|P θ
t |1/2

exp

(
−1

2
|P θ,−1/2

t

(
x− x̂θ

t

) |2)× Λ̂θ
0,t × exp

(
θ

2

∫ t

0

Tr(P θ
sQ)ds

)
,

(4.20)

where

dx̂θ
t =

(
F + θP θ

t Q
)
x̂θ
tdt+ P θ

t H
′N−1

(
dyt −Hx̂θ

tdt
)
, x̂(0) = ξ,(4.21)

Ṗ θ
t = FP θ

t + P θ
t F

′ − P θ
t

(
H ′N−1H − θQ

)
P θ
t +GG′, P θ(0) = P0,(4.22)

Λ̂θ
0,t = exp

(∫ t

0

(
Hx̂θ

s

)′
N−1dys − 1

2

∫ t

0

(
Hx̂θ

s

)′
N−1Hx̂θ

sds

)
.(4.23)

In fact, we can show that limθ→0 P
θ
t = P 0

t , uniformly on compact subsets of [0, T ],
and limθ→0 x̂

θ
t = x̂0

t a.s.

According to Theorem 4.5 we need

d

dθ

βθ,1
t (1)

Λ̂0
0,t

=
d

dθ

[
Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ

2

∫ t

0

Tr(P θ
sQ)

)]
.(4.24)

Let

rθt =
d

dθ
x̂θ
t , Σθ

t =
d

dθ
P θ
t .
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Then from the differentiability of parameter dependent solutions of stochastic
differential equations we know that

rθt =

∫ t

0

(
F + θP θ

sQ− P θ
sH

′N−1Hrθt
)
rθsds

+

∫ t

0

θΣθ
sQx̂θ

sds+

∫ t

0

Σθ
sH

′N−1
(
dys −Hx̂θ

sds
)
+

∫ t

0

P θ
sQx̂θ

sds,(4.25)

Σθ
t =

∫ t

0

FΣθ
sds+

∫ t

0

Σθ
sF

′ds−
∫ t

0

Σθ
s

(
H ′N−1H − θQ

)
P θ
s ds

−
∫ t

0

P θ
s

(
H ′N−1H − θQ

)
Σθ

sds+

∫ t

0

P θ
sQP θ

s ds(4.26)

are well defined. Similarly as before we have limθ→0 r
θ
t = r0

t (a.s.), limθ→0 Σ
θ
t = Σ0

t ,
where

r0
t =

∫ t

0

P 0
sQx̂0

sds+

∫ t

0

Σ0
sH

′N−1
(
dys −Hx̂0

sds
)

+

∫ t

0

(
F − P 0

sH
′N−1H

)
r0
sds,(4.27)

Σ0
t =

∫ t

0

(
F − P 0H ′N−1H

)
Σ0

sds+

∫ t

0

Σ0
s

(
F − P 0H ′N−1H

)′
ds+

∫ t

0

P 0
sQP 0

s ds.

(4.28)

Consequently,

lim
θ→0

d

dθ

{
Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ

2

∫ t

0

Tr(P θ
sQ)ds

)}
= lim

θ→0

{(∫ t

0

(Hrθs)
′N−1dys −

∫ t

0

(Hrθs)
′N−1Hx̂θ

sds+
1

2

∫ t

0

Tr
(
P θ
sQ+ θΣθ

sQ
)
ds

)
× Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ

2

∫ t

0

Tr(P θ
sQ)ds

)}

=
1

2

∫ t

0

Tr
(
P 0
sQ

)
ds+

∫ t

0

(
Hr0

s

)′
N−1

(
dys −Hx̂0

s

)
ds.(4.29)

Finally, L̂1,1
0,t = Ẽ[12

∫ t

0
x′
sQxsds|Fy

0,t] is a solution of the stochastic equation

dL̂1,1
0,t =

1

2
Tr
(
P 0
t Q

)
dt+

(
Hr0

t

)′
N−1

(
dyt −Hx̂0

tds
)
, L̂1,1

0,t = 0.(4.30)

2. Computation of L̂1,2
0,t = Ẽ[

∫ t

0
x′
sRdws|Fy

0,t]:
A solution of (4.7), (4.9) is (see [11])

βθ,2(x, t) =
1

(2π)n/2|P θ
t |1/2

exp

(
−1

2
|P θ,−1/2

t

(
x− x̂θ

t

) |2)(4.31)

× Λ̂θ
0,t × exp

(
θ2

2

∫ t

0

Tr(P θ
sRR

′)ds
)
,
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where

dx̂θ
t =

(
F + θ2P θ

t RR
′ + θGR′) x̂θ

tdt+ P θ
t H

′N−1
(
dyt −Hx̂θ

tdt
)
, x̂(0) = ξ,

(4.32)

Ṗ θ
t = (F + θGR′)P θ

t + P θ
t (F + θRG′)′ − P θ

t

(
H ′N−1H − θ2RR′)P θ

t +GG′,
(4.33)

P θ(0) = P0,

Λ̂θ
0,t = exp

(∫ t

0

(
Hx̂θ

s

)′
N−1dys − 1

2

∫ t

0

(
Hx̂θ

s

)′
N−1Hx̂θ

sds

)
.

(4.34)

By Theorem 4.5 we need

d

dθ

βθ,2
t (1)

Λ̂0
0,t

=
d

dθ

[
Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ2

2

∫ t

0

Tr(P θ
sRR

′)
)]

.(4.35)

Computing limθ→0 r
θ
t = limθ→0

d
dθ x̂

θ
t = r0

t , limθ→0 Σ
θ
t = limθ→0

d
dθP

θ
t = P 0

t , simi-
larly as before, we have

r0
t =

∫ t

0

GR′x̂0
sds+

∫ t

0

Σ0
sH

′N−1
(
dys −Hx̂0

sds
)

+

∫ t

0

(
F − P 0

sH
′N−1H

)
r0
sds,(4.36)

Σ0
t =

∫ t

0

(
F − P 0H ′N−1H

)
Σ0

sds+

∫ t

0

Σ0
s

(
F − P 0H ′N−1H

)′
ds

+

∫ t

0

GR′P 0
s ds+

∫ t

0

P 0
sRG

′ds.(4.37)

Hence

lim
θ→0

d

dθ

{
Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ2

2

∫ t

0

Tr(P θ
sRR

′)ds
)}

=

∫ t

0

(
Hr0

s

)′
N−1

(
dys −Hx̂0

s

)
ds.(4.38)

Finally, L̂1,2
0,t = Ẽ[

∫ t

0
x′
sRdws|Fy

0,t] is a solution of the stochastic equation

dL̂1,2
0,t =

(
Hr0

t

)′
N−1

(
dyt −Hx̂0

tds
)
, L̂1,2

0,t = 0.(4.39)

3. Computation of L̂1,3
0,t = Ẽ[

∫ t

0
x′
sSdbs|Fy

0,t]:
A solution of (4.7), (4.9) is (see [11])

βθ,3(x, t) =
1

(2π)n/2|P θ
t |1/2

exp

(
−1

2
|P θ,−1/2

t

(
x− x̂θ

t

) |2)(4.40)

× Λ̂θ
0,t × exp

(
θ2

2

∫ t

0

Tr(P θ
s SS

′)ds
)
,
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where

dx̂θ
t =

(
F + θ2P θ

t SS
′) x̂θ

tdt+ P θ
t H

θ,′N−1
(
dyt −Hθx̂θ

tdt
)
, x̂(0) = ξ,(4.41)

Ṗ θ
t = FP θ

t + P θ
t F

′ − P θ
t

(
Hθ,′N−1Hθ − θ2SS′)P θ

t +GG′, P θ(0) = P0,(4.42)

Λ̂θ
0,t = exp

(∫ t

0

(
Hθx̂θ

s

)′
N−1dys − 1

2

∫ t

0

(
Hθx̂θ

s

)′
N−1Hθx̂θ

sds

)
,(4.43)

Hθ = H + θN−1/2,′S′.(4.44)

From Theorem 4.5 we need

d

dθ

βθ,3
t (1)

Λ̂0
0,t

=
d

dθ

[
Λ̂θ

0,t

(
Λ̂0

0,t

)−1

exp

(
θ2

2

∫ t

0

Tr(P θ
s SS

′)
)
ds

]
.(4.45)

This can be done as in the previous cases.
Finally, L̂1,3

0,t = Ẽ[
∫ t

0
x′
sSdbs|Fy

0,t] is a solution of the stochastic equation

dL̂1,3
0,t =

(
Hr0

t

)′
N−1

(
dyt −Hx̂0

tdt
)
+
(
N− 1

2S′x̂0
t

)′
N−1

(
dyt −N− 1

2 ,′S′x̂0
tdt
)
,

(4.46)

L̂1,3
0,t = 0,

where

r0
t =

∫ t

0

(
Σ0

sH
′N−1 + P 0

s (SN
−1/2)′N−1

) (
dys −Hx̂0

sds
)

+

∫ t

0

P 0
sH

′N−1
(
dys − (SN−1/2)′x̂0

sds
)
+

∫ t

0

(
F − P 0

sH
′N−1

)
r0
sds,(4.47)

Σ0
t =

∫ t

0

(
F − P 0H ′N−1H

)
Σ0

sds+

∫ t

0

Σ0
s

(
F − P 0H ′N−1H

)′
ds

−
∫ t

0

P 0
s

(
(SN−1/2)N−1H + (N−1H)′(SN−1/2)′

)
P 0
s ds.(4.48)

Remark 4.6. The above methodology can be generalized to joint conditional
moment generating functions of L1,j

0,t , L
1,�
0,t, 1 ≤ j, B ≤ 3.

5. Applications to nonlinear filtering problems. Both methods introduced
in section 3 can be used in Wiener chaos expansions of nonlinear filtering [2] problems.

Consider the nonlinear filtering problem

dxt = f(t, xt)dt+ σ(t, xt)dwt, x(0) ε R
n,(5.1)

dyt = h(t, xt)dt+N
1/2
t dbt, y(0) = 0 ε R

d.(5.2)

Here {xt; t ε [0, T ]} and {yt; t ε [0, T ]} are the state and observation processes,
respectively. Throughout, we assume Assumption 2.2 holds. Similar to section
2, under the reference probability space (Ω,A, P,F0,t), processes {xt; t ε [0, T ]},
{yt; t ε [0, T ]}, are independent; the former is a solution of (5.1), while the latter
is a solution of

dyt = N
1/2
t dbt, y(0) = 0 ε R

d.(5.3)
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The Radon–Nikodým derivative is

Λ0,T
.
=

[
dP̃

dP
|F0,T

]
= exp

(
mt − 1

2
〈m,m〉t

)
,(5.4)

where mt =
∫ t

0
h′(s, xs)N

−1
s dys. Thus, {Λ0,t; t ε [0, T ]} is a solution of the stochastic

differential equation

Λ0,t = 1 +

∫ t

0

Λ0,sh
′(s, xs)N

−1
s dys.(5.5)

Moreover, if the measured-valued processes qt(Φ) = E[Φ(xt)Λ0,t|Fy
0,t] have a den-

sity q(x, t), then

dq(z, t) = A(t)∗q(z, t)dt+ h′(t, z)q(z, t)N−1
t dyt, (z, t) ε [0, T ]× R

n,(5.6)

q(z, 0) = p0(z), z ε R
n.(5.7)

In what follows, we employ some of the recursive systems derived in section 3 to
obtain representations for certain asymptotic expansions of E[Φ(xt)|Fy

0,t].

Definition 5.1. Suppose E[
∫ T

0
|N−1/2

s h(s, xs)|2ds]p < ∞. Then the multiple
stochastic integrals

Ipt [h] =

∫ t

0

∫ s1

0

· · ·
∫ sp−1

0

h′(sp, xsp)N
−1
sp dysph

′(sp−1, xsp−1)N
−1
sp−1

dysp−1(5.8)

· · ·h′(s1, xs1)N
−1
s1 dys1 ,

I
[p]
t [h] =

∫ t

0

∫ s1

0

· · ·
∫ sp

0

Λsp+1h
′(sp+1, xsp+1)N

−1
sp+1

dysp+1h
′(sp, xsp)N

−1
sp dysp(5.9)

· · ·h′(s1, xs1)N
−1
s1 dys1

are well defined.
Consider the exponential martingale {Λ0,t; t ε [0, T ]}. Iterating (5.5) we have

Λ0,t = 1 +

∫ t

0

Λ0,sh
′(s, xs)N

−1
s dys

= 1 +

∫ t

0

h′(s, xs)N
−1
s dys +

∫ t

0

∫ s1

0

Λ0,s2h
′(s2, xs2)N

−1
s2 dys2h

′(s1, xs1)N
−1
s1 dys1

+
...

= 1 +

∫ t

0

h′(s, xs)N
−1
s dys +

∫ t

0

∫ s1

0

Λ0,s2h
′(s2, xs2)N

−1
s2 dys2h

′(s1, xs1)N
−1
s1 dys1

+ · · ·+
∫ t

0

∫ s1

0

· · ·
∫ sp−1

0

h′(sp, xsp)N
−1
sp dysph

′(sp−1, xsp−1)N
−1
sp−1

dysp−1

· · ·h′(s1, xs1)N
−1
s1 dys1 + I

[p]
t [h].(5.10)

If we now assume E[Φ2(xt)
∫ T

0
|N−1

s h(s, xs)|2ds]p < ∞ (which is satisfied by As-
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sumption 2.2) and then substitute (5.10) into q0
t (Φ) = E[Λ0,tΦ(xt)|Fy

0,t] we have

qt(Φ) = E[Λ0,tΦ(xt)|Fy
0,t] = E[Φ(xt)|Fy

0,t]

+

p∑
k=1

E [ Φ(xt)

∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

h′(sk, xsk)N
−1
sk

dysk · · ·h′(s1, xs1)N
−1
s1 dys1 |Fy

0,t ]

+ E
[
Φ(xt)I

[p]
t [h]|Fy

0,t

]
.

(5.11)

Note that under measure P , the processes {xt; t ε [0, T ]} and {yt; t ε [0, T ]}
are independent; therefore E[Φ(xt)|Fy

0,t] = E[Φ(xt)]. In addition, the increments
dys1 , dys2 , . . . , dysk are measurable with respect to Fy

0,t; in the scalar case, d = 1, the
second right side term of (5.11) becomes

p∑
k=1

∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

E[Φ(xt)h(sk, xsk)Nsk · · ·h(s1, xs1)Ns1 ]dysk · · · dys1 .

Formally, letting p = ∞ in (5.11) we derive the full expansion, which is made rigorous
in the next theorem.

Theorem 5.2.
1. Suppose E[

∫ t

0
|N−1/2

s h(s, xs)|2ds]p < ∞ and E[Φ(xt)
2
∫ t

0
|N−1/2

s h(s, xs)|2ds]p
< ∞. Then

Ẽ[Φ(xt)|Fy
0,t] =

qt(Φ)

qt(1)

=
E[Φ(xt)] +

∑p
k=1 E[Φ(xt)I

k
t [h]|Fy

0,t] + E[Φ(xt)I
[p]
t [h]|Fy

0,t]

1 +
∑p

k=1 E[I
p
t [h]|Fy

0,t] + E[I
[p]
t [h]|Fy

0,t]
.

(5.12)

2. Suppose E[exp
∫ t

0
|N−1/2

s h(s, xs)|2ds] < ∞ and

E[Φ(xt) exp

∫ t

0

|N−1/2
s h(s, xs)|2ds] < ∞.

Then

Ẽ[Φ(xt)|Fy
0,t] =

qt(Φ)

qt(1)
=

E[Φ(xt)] +
∑∞

k=1 E[Φ(xt)I
k
t [h]|Fy

0,t]

1 +
∑∞

k=1 E[I
k
t [h]|Fy

0,t]
(5.13)

and the infinite series of (5.13) converges in L1(Ω,Fy
0,t, P ).

Proof. See [2].

5.1. Recursive equations.

Definition 5.3. Suppose E[Φ2(xt)
∫ t

0
|N−1/2

s h(s, xs)|2]p < ∞.
The measure-valued processes

M0
t (Φ)

.
= E[Φ(xt)] =

∫
Rn

Φ(z)p(z, t;x, 0)dx,(5.14)

Mk
t (Φ)

.
= E[Φ(xt)I

k
t [h]|Fy

0,t], k ≥ 1,(5.15)

are well defined.
Theorem 5.4. Suppose Mk

t (·), k ≥ 0, have density functions Mk(z, t).
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1. The density of the distribution P̃ (xt ε A), A ε B(Rn), satisfies the Kolmogorov
equation

dp(z, t) = A(t)∗p(z, t)dt, (z, t) ε R
n × (0, T ]; lim

t→0
p(z, t) = p0(z).(5.16)

2. The densities ofMk
t (·), k ≥ 1 satisfy the following recursive system of SPDEs:

(5.17)

dMk(z, t) = A(t)∗Mk(z, t)dt+ h∗(t, z)Mk−1(z, t)N−1
t dyt, (z, t) ε R

n × [0, T ],

(5.18)

Mk(z, 0) = 0, z ε R
n.

Proof. The distribution of {xt; t ε [0, T ]} is the same under measure P̃ and P .
Hence, the density p(·, ·) satisfies (5.16).

Now, for k = 1 consider

I1
t [h] =

∫ t

0

h′(s, xs)N
−1
s dys.(5.19)

By the Itô product rule

Φ(xt)I
1
t [h] =

∫ t

0

A(s)∗Φ(xs)I
1
s [h]ds

+

∫ t

0

D′
xΦ(xs)I

1
s [h]σ(s, xs)dws

+

∫ t

0

Φ(xs)h
′(s, xs)N

−1
s dys.(5.20)

Conditioning both sides of (5.20) on Fy
0,t, and then using the independence of

{wt; t ε [0, T ]} and {yt; t ε [0, T ]} (and a version of Fubini’s theorem [12]), we have

M1
t (Φ) =

∫ t

0

∫
Rn

A(s)Φ(z)M1(z, s)dzds

+

∫ t

0

∫
Rn

Φ(z)h′(s, z)M0(z, s)N−1
s dzdys.(5.21)

Hence (5.17), (5.18) hold for k = 1.
Now, for k = B consider

I�t [h] =

∫ t

0

∫ s1

0

· · ·
∫ s
−1

0

h′(s�, xs
)N
−1
s


dys
 · · ·h′(s, xs1)N
−1
s1 dys1 .(5.22)

Then

dI�t [h] = I�−1
t [h]h′(t, xt)N

−1
t dyt.

By the Itô product rule

Φ(xt)I
�
t [h] =

∫ t

0

A(s)Φ(xs)I
�
s [h]ds

+

∫ t

0

D′
xΦ(xs)I

�
s [h]σ(s, xs)dws +

∫ t

0

Φ(xs)h
′(s, xs)I

�−1
s [h]N−1

s dys.(5.23)



1602 C. CHARALAMBOUS, R. ELLIOTT, AND V. KRISHNAMURTHY

Similarly as before, conditioning both sides of (5.2) on Fy
0,t we have

M �
t (Φ) =

∫ t

0

∫
Rn

A(s)Φ(z)M �(z, t)dzds

+

∫ t

0

∫
Rn

Φ(z)h′(s, z)M �−1(z, s)N−1
s dzdys.(5.24)

Hence, (5.17), (5.18) holds for any k ≥ 1.
Corollary 5.5. Let {p(z, t;x, s); 0 ≤ s < t ≤ T}, (z, x) ε R

n × R
n be the

fundamental solution of the density equation (5.16):

dp(z, t;x, s) = A(t)∗p(z, t;x, s)dt, (z, t) ε R
n × (0, T ]; lim

t→s
P (z, t;x, s) = δ(z − x).

(5.25)

Then the solutions of (5.16)–(5.18) are represented by

Mk(z, t) =

∫ t

0

∫
Rn

h′(s, x)N−1
s Mk−1(x, s)p(z, t;x, s)dxdys, k ≥ 1,(5.26)

M0(z, t) =

∫
Rn

p(z, t;x, 0)p0(x)dx.(5.27)

Proof. Follow the procedures of Theorem 2.5.
Remark 5.6. Because of the linearity of (5.16), (5.18), any finite expansion of both

numerator and denominator of (5.13), say,

q�t (Φ) = E[Φ(xt)] +

�∑
k=1

E[Φ(xt)I
k
t [h]|Fy

0,t], B ≥ 1,(5.28)

is a solution of the SPDE

dq�t (Φ) = q�t (A(t)Φ)dt+

�∑
k=1

Mk−1
t (h′(t, z)Φ)N−1

t dyt.(5.29)

From Theorem 5.2, we know that in order to approximate Ẽ[Φ(xt)|Fy
0,t] through a

finite series we need to compute Mk
t (Φ), 0,≤ k ≤ p. The latter can be computed from

the joint-moment generating function of the random processes {∫ t

0
h′(s, xs)N

−1dys; t ε

[0, T ]} and {∫ t

0
|h′(s, xs)|2ds; t ε [0, T ]}.

6. Conclusion. This paper presents two methods for computing conditional
moments of integrals and stochastic integrals for general diffusion processes. The
first method employs recursive SPDEs; the second method employs conditional mo-
ment generating functions. An application of the first method results in new finite-
dimensional filters. An application of the second method to the EM algorithm results
in a significant reduction in the sufficient statistics required in the computation of the
parameters.
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