BookSim 1.0 User’s Guide

Brian Towles and William J. Dally

September 10, 2004

Contents
1 Introduction 1
2 Getting started 2
2.1 Downloading and building the simulator . . . . . .. ... ... ... ... ... ... 2
2.2 Running a simulation . . . . . . . ... L 2
2.3 Simulation output . . . . . ... 2
3 Examples 4
4 Configuration parameters 4
4.1 Topologies . . . . . . L 4
4.2 Routing algorithms . . . . . . . . . ... 8
4.3 Flow control . . . . . . . . .. e e 9
4.4 Router organizations . . . . . . . . . . ..o e e 9
4.4.1 The input-queued router . . . . . . . ..o 9
4.4.2 The event-driven router . . . . . . . .. ... Lo 10
4.5 Allocators . . . . . . . e e e 10
4.6 Traffic . . . . . . L e 10
4.7 Simulation parameters . . . . . . . ... Lo 11
A Random number generation 12

1 Introduction

This document describes the use of the BookSim interconnection network simulator. The simulator
is designed as a companion to the textbook “Principles and Practices of Interconnection Networks”
(PPIN) published by Morgan Kaufmann (ISBN: 0122007514) and it is assumed that is reader is
familiar with the material covered in that text.

This user guide is fairly brief as, with most simulators, the best way to learn and understand
the simulator is to study the code. Most of the simulator’s components are designed to be modular
so tasks such as adding a new routing algorithm, topology, or router microarchitecture should not
require a complete redesign of the code. Once you have downloaded the code, compiled it, and run
a simple example (Section 2), the more detailed examples of Section 3 give a good overview of the
capabilities of the simulator. A list of configuration options is provided in Section 4 for reference.



2 Getting started 2

2 Getting started

2.1 Downloading and building the simulator

The latest version of the simulator is available from http://cva.stanford.edu as a compressed
tar archive. UNIX/Linux users can extract this archive using the tar utility

tar xvfz booksim-1.0.tar.gz

Windows users can use a compression program such as WinZip to extract the archive.

The simulator itself is written in C4++ and has been specifically tested with GNU’s G++
compiler (version > 3). In addition, both a LEX and YACC tool (also known as FLEX and
BISON) are needed to create the configuration parser. These are standard tools in any UNIX /Linux
development environment. It is suggested that Windows users download the CYGWIN versions
(http://www.cygwin.com) of these UNIX development tools to simplify their compilation process.
The Makefile should be edited so that the first lines give the paths to the tools. At Stanford,
for example, the compiler, YACC, and LEX are stored in the /usr/pubsw/bin directory. The
Makefile reflects this:

CPP = /usr/pubsw/bin/g++
YACC = /usr/pubsw/bin/byacc -d
LEX = /usr/pubsw/bin/flex

Then, the simulator can be compiled by running make in the directory that contains the Makefile.

2.2 Running a simulation

The syntax of the simulator is simply
booksim [configfile]

The optional parameter configfile is a file that contains configuration information for the simu-
lator. So, for example, to simulate the performance of a simple 8 x 8 torus (8-ary 2-cube) network
on uniform traffic, a configuration such as the one shown in Figure 1 could be used. This particular
configuration is stored in examples/torus88.

In addition to specifying the topology, the configuration file also contains basic information
about the routing algorithm, flow control, and traffic. This simple example uses dimension-order
routing and, to ensure deadlock-freedom of this routing function in the torus, two virtual channels
are required. The injection_rate parameter is added to tell the simulator to inject 0.15 flits per
simulation cycle per node. Because the simulator operates at the flit level, most parameters are
specified in units of flits as is the case with the injection_rate. Also, any line of the configuration
that begins with // is treated as a comment and ignored by the simulator. A detailed list of
configuration parameters is given in Section 4.

2.3 Simulation output

Continuing our example, running the torus simulation produces the output shown in Figure 2. Each
simulation has three basic phases: warm up, measurement, and drain. The length of the warm up
and measurement phases is a multiple of a basic sample period (defined by sample period in the
configuration). As shown in the figure, the current latency and throughput (rate of accepted pack-
ets) for the simulation is printed after each sample period. The overall throughput is determined

September 10, 2004



2.3 Simulation output

// Topology
topology = torus;

k = 8;
n = 2;
// Routing

routing_function = dim_order;

// Flow control
num_vcs = 2;

// Traffic
traffic = uniform;
injection_rate = 0.15;

Figure 1: Example configuration file for simulating a 8-ary 2-cube network.

b
% Average latency = 6.02008

% Accepted packets = 0.11 at node 52 (avg = 0.147094)
% latency change

% throughput change

% Warmed up ...
A
% Average latency = 6.0796

% Accepted packets = 0.119 at node 5 (avg = 0.148266)
% latency change 0.00562457

% throughput change = 0.00379387

% Draining all recorded packets ...

% Draining remaining packets ...

====== Traffic class 0 ======

Overall average latency = 6.09083 (1 samples)
Overall average accepted rate = 0.149475 (1 samples)
Overall min accepted rate = 0.138551 (1 samples)

Figure 2: Simulator output from running the examples/torus88 configuration file.

September 10, 2004



3 Examples 4

by the lowest throughput of all the destination in the network, but the average throughput is also
displayed.

After the warm up periods have passed, the simulator prints the “Warmed up” message and
resets all the simulation statistics. Then, the measurement phase begins and statistics continue
to be reported after each sample period. Once the measurement periods have passed, all the
measurement packets are drained from the network before final latency and throughput numbers
are reported. Details of the configuration parameters used to control the length of the simulation
phases are covered in Section 4.7.

3 Examples

One of the most basic performance measures of any interconnection network is its latency versus
offered load. Figure 3 shows a simple configuration file for making this measurement in a 8-ary
2-mesh network under the transpose traffic pattern. This configuration was used to generate Figure
25.2 in PPIN. The particular configuration accounts for some small delays and pipelining of the
input-queued router and also introduces a small input speedup to account for any inefficiencies in
allocation. By running simulations for many increments of injection_rate, the average latency
curve can be found. Then, to compare the performance of dimension-order routing against several
other routing algorithms, for example, the routing function option can be changed.

Figure 4 shows a configuration file that can be used to determine the distribution of packet
latencies in a 2-ary 6-fly network that uses age-based arbitration. Note the use of the priority
configuration parameter along with the select allocators that account for packet priorities. The
simulator does not output latency distributions by default, but by editing trafficmanager.cpp,
setting the configuration variable DISPLAY LAT DIST to true, and recompiling, the distribution will
be displayed at the end of the simulation. This technique was used to produced the distribution
shown in Figure 25.12 of PPIN.

As a final example, Figure 5 shows the use of the special single-node topology to test the
performance of a switch allocator — in this case, the iSLIP allocator. The in_ports and out_ports
options set up a simulation of an 8 x 8 crossbar.

4 Configuration parameters

All information used to configure a simulation is passed through a configuration file as illustrated
by the example in Section 2.2. This section lists the existing configuration parameters — a user
can incorporate additional options by changing the booksim config. cpp file.

4.1 Topologies

The topology parameter determines the underlying topology of the network and the simulator
supports four basic topologies:

fly A k-ary n-fly (butterfly) topology. The k parameter determines the network’s radix and
the n parameter determines the network’s dimension.

mesh A k-ary n-mesh (mesh) topology. The k parameter determines the network’s radix and the
n parameter determines the network’s dimension.

September 10, 2004



4.1 Topologies 5

// Topology

topology = mesh;

k = 8;
n=2;
// Routing

routing_function = dim_order;
// Flow control

num_vcs = 8;
vc_buf_size 8;

wait_for_tail_credit = 1;

// Router architecture

vc_allocator = islip;
sw_allocator = islip;
alloc_iters = 1;
credit_delay = 2;
routing_delay = 1;

vc_alloc_delay = 1;

input_speedup =2
output_speedup =1;
1

internal_speedup = 1.0;

// Traffic

traffic = transpose;
const_flits_per_packet = 20;

// Simulation

sim_type = latency;
injection_rate = 0.1;

Figure 3: A typical configuration file (examples/mesh88_lat) for creating a latency versus offered
load curve for a 8-ary 2-mesh network.

September 10, 2004



4.1 Topologies 6

// Topology

topology = fly;

k = 2;
n= 6;
// Routing

routing_function = dest_tag;

// Flow control

num_vcs
vc_buf_size

8;
8;

wait_for_tail_credit = 1;
// Router architecture
vc_allocator = select;

sw_allocator = select;
alloc_iters

]
—
-

credit_delay = 2;
routing_delay = 1;
vc_alloc_delay = 1;

input_speedup =
output_speedup =
internal_speedup =

= o= N

// Traffic

traffic
const_flits_per_packet
priority

uniform;
20;
age;

// Simulation

sim_type
injection_rate

latency;
0.1;

Figure 4: A configuration file (examples/f1y26_age) for finding the distribution of packet latencies
using age-based arbitration.

September 10, 2004



4.1 Topologies 7

// Topology

topology = single;

in_ports = 8;
out_ports = 8;
// Routing

routing_function = single;

// Flow control

vc_allocator
sw_allocator = islip;
alloc_iters = 2;

islip;

num_vcs = 8;
vc_buf_size

]
—
o
o
o

wait_for_tail_credit = 0;

// Simulation

sim_type = latency;
injection_rate = 0.1;

Figure 5: A single-node configuration file (examples/single) for testing the performance of a
switch allocator.

September 10, 2004



4.2 Routing algorithms 8

single A network with a single node, used for testing single router performance. The number
of input and output ports for the node is determined by the in_ports and out_ports
parameters, respectively.

torus A k-ary n-cube (torus) topology. The k parameter determines the network’s radix and the
n parameter determines the network’s dimension.

Both the mesh and torus topologies support the addition of random link failures with the
link_failures parameter. The value of link_failures determines the number of channels that
are randomly removed from the topology and are thus no longer available for forwarding packets.
Moreover, the randomization for failed channels is controlled by selecting an integer value for
the fail seed parameter — a fixed seed gives a fixed set of failed channels, independent of other
randomization in the simulation. Also, note that only certain routing functions support this feature
(see Section 4.2).

4.2 Routing algorithms

The routing function parameter selects a routing algorithm for the topology. Many routing
algorithms need multiple virtual channels for deadlock freedom (VCDF).

dim_order Dimension-order routing. Works for the mesh topology (1 VCDF) and for the
torus topology (2 VCDF).

dim_order_bal Dimension-order routing for the torus topology with a more balanced use of VCs

to avoid deadlock (2 VCDF).

dim_order ni A non-interfering version of dimension-order routing. Works on the torus or mesh
topology and requires one VC per network terminal.

min_adapt A minimal adaptive routing algorithm for the mesh topology (2 VCDF) and for the
torus topology (3 VCDF).

planar_adapt Planar-adaptive routing for the mesh topology (2 VCDF). Supports routing around
failed channels.

romm ROMM routing for the mesh (2 VCDF). Load is balanced by routing in two phases:
one from the source to a random intermediate node in the minimal quadrant and
a second from the intermediate to the destination.

romm_ni A non-interfering version of ROMM routing for the mesh that requires one VC per
network terminal.

single A dummy routing function used for the single topology.

valiant Valiant’s randomized routing algorithm for the mesh (2 VCDF) and torus (4
VCDF) topology.

valiant ni A non-interfering version of Valiant’s algorithm for the torus that requires 4 VCs
per network terminal.

Also, the simulator code is structured so that additional routing algorithms can be added with
minimal changes to the overall simulator (see the routefunc.cpp file in the simulator’s source
code).

September 10, 2004



4.3 Flow control 9

4.3 Flow control

The simulator supports basic virtual-channel flow control with credit-based backpressure.

num_vcs The number of virtual channels per physical channel.
vc_buf _size The depth of each virtual in flits.
voq If non-zero, use virtual-output queuing. With virtual output queuing, a

separate virtual channel is assigned to each destination in the network. This
option is most useful when used with a non-interfering routing algorithm
(Section 4.2).

wait_for_tail credit If non-zero, do not reallocate a virtual channel until the tail flit has left
that virtual channel. This conservative approach prevents a dependency
from being formed between two packets sharing the same virtual channel
in succession.

4.4 Router organizations

The simulator also supports two different router microarchitectures. The input-queued router
follows the general organization described in PPIN while the event-driven router is modeled after
the router used in the Avici TSR and described in U.S. Patent 6,370,145. The microarchitecture
is selected using the router option. Also, both routers share a small set of options.

credit_delay The processing delay (in cycles) for a credit. Does not include the wire delay
for transmitting the credit.

internal speedup An arbitrary speedup of the internals of the routers over the channel transmis-
sion rate. For example, a speedup 1.5 means that, on average, 1.5 flits can be
forwarded by the router in the time required for a single flit to be transmitted
across a channel. Also, the configuration parser expects a floating point num-
ber for this field, so integer speedups should also include a decimal point (e.g.
“2.07).

output_delay The processing delay incurred in the output queue of a router.

4.4.1 The input-queued router

The input-queued router (router = iq) follows the pipeline described in PPIN of route computa-
tion, virtual-channel allocation, switch allocation, and switch traversal. There are several options
specific to the input-queued router.

input_speedup An integer speedup of the input ports in space. A speedup of 2, for example,
gives each input two input ports into the crossbar. Access to these ports is
statically allocated based on the virtual channel number: virtual channel v at
input ¢ is connected to port i - s+ (v mod s) for an input speedup of s.

output_speedup An integer speedup of the output ports in space. Similar to input_speedup

routing _delay The delay (in cycles) of route computation.

September 10, 2004



4.5 Allocators 10

sw_allocator The type of allocator used for switch allocation. See Section 4.5 for a list of the
possible allocators.

sw_.alloc_delay The delay (in cycles) of switch allocation.

vc_allocator The type of allocator used for virtual-channel allocation. See Section 4.5 for a
list of the possible allocators.

vc_alloc.delay  The delay (in cycles) of virtual-channel allocation.

4.4.2 The event-driven router

The event-driven router (router = event) is a microarchitecture designed specifically to support
a large number of virtual channels (VCs) efficiently. Instead of continuously polling the state of
the virtual channels, as in the input-queued router, only changes in VC state are tracked. The
efficiency then comes from the fact that the number of state changes per cycle is constant and
independent of the number of VCs.

4.5 Allocators

Many of the allocators used in the simulator are configurable (see the input-queued router in
Section 4.4.1) and several allocation algorithms are available.

max_size Maximum-size matching.

islip iSLIP separable allocator.
pim Parallel iterative matching separable allocator.
loa Lonely output allocator.

wavefront Wavefront matching.

select Priority-based allocator. Allocation is performed as in iSLIP, but with preference to-
wards higher priority packets (see priority option in Section 4.6).

Allocation can also be improved by performing multiple iterations of the algorithm and the
number of iterations is controlled by the alloc_iters parameter.

4.6 Traffic

The rate at which flits are injected into the simulator is set using the injection _rate option. The
simulator’s cycle time is a flit cycle, the time it takes a single flit to be injected at a source, and
the injection rate is specified in flits per flit cycle. For example, setting injection rate = 0.25
means that each source injects a new flit one of every four simulator cycles. The injection process
can also be specified as either Bernoulli (injection process = bernoulli) or an on-off process
(injection_process = on_off). The burstiness of the latter injection process is controlled via the
burst_alpha and burst_beta parameter. See PPIN Section 24.2.2 for a description of the on-off
process and its parameters.

The unit of injection is packets, which may be comprised of many flits. The number of flits per
packet is set using the const_flits_per_packet option. Each packet may also have an associated
priority, either age-based (age) or none (none), as specified by the priority option.

September 10, 2004



4.7 Simulation parameters 11

The simulator also supports several different traffic patterns that are specified using the traffic
option. To describe these patterns, we use the same notation of PPIN Section 3.2: s; (d;) denotes
the i*? bit of the source (destination) address whereas s, (d,) denotes the z'" radix-k digit of the
source (destination) address. The bit length of an address is b = logy N, where N is the number of
nodes in the network.

uniform
bitcomp
bitrev
shuffle
transpose
tornado
neighbor

randperm

Each source sends an equal amount of traffic to each destination (traffic = uniform).
Bit complement. d; = —s;.

Bit reverse. d; = sp_;_1.

di = -1 mod b-

di = Si1b/2 mod b-

dy = sz + [k/2] —1 mod k.

dy = sz +1 mod k.

Random permutation. A fixed permutation traffic pattern is chosen uniformly at ran-
dom from the set of all permutations. The seed used to generate this permutation is set
by the perm_seed option. So, randomly selecting values for perm_seed gives a random
sampling of permutation while a fixed value of perm_seed allows the same permutation
to be used for several experiments.

4.7 Simulation parameters

The duration and other aspects of a simulation are controlled using the set of simulation parameters.

sim_type

A simulation can either focus on throughput or latency. The key difference
between these two types is that a latency simulation will wait for all measure-
ment packets to drain before ending the simulation to ensure an accurate latency
measurement. In throughput simulations, this final drain step is eliminated to
allow simulation of networks operating beyond their saturation point.

sample_period The sample period is expressed in simulator cycles and is used as a multiplier

when specifying the warm-up length of a simulation and the maximum number
of samples. Also, intermediate statistics are displayed once every sample_period
cycles.

warmup_periods The length of the simulator warm up expressed as a multiple of the sample_period.

After warming up, all statistics counters are reset.

max_samples The total length of simulation expressed as a multiple of the sample_period.

latency_thres If the sampled latency of the current simulation exceeds latency_thres, the

sim_count

seed

reorder

simulation is immediately ended.

The number of back-to-back simulations to run for the given configuration. Useful
for creating ensemble averages of particular statistics.

A random seed for the simulation.

A non-zero value indicates that packet order should be maintained and reordering
time is accounted for in the overall latency.

September 10, 2004



A Random number generation 12

A Random number generation

The simulator uses Knuth’s integer and floating point pseudorandom number generators. These
algorithms and their explanations appear in “The Art of Computer Programming: Seminumerical
Algorithms”.

September 10, 2004



