
A PRACTICAL METHOD FOR ESTIMATING

PERFORMANCE DEGRADATION ON MULTICORE

PROCESSORS, AND ITS APPLICATION TO HPC

WORKLOADS

by

Tyler Dwyer

B.Sc., Queen’s University, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Science

c© Tyler Dwyer 2012

SIMON FRASER UNIVERSITY

Fall 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Tyler Dwyer

Degree: Master of Science

Title of Thesis: A Practical Method for Estimating Performance Degradation

on Multicore Processors, and its Application to HPC Work-

loads

Examining Committee: Dr. Arrvindh Shriraman

Chair

Dr. Alexandra Fedorova, Senior Supervisor

Dr. Jian Pei, Co-Supervisor

Dr. Greg Mori, SFU Examiner

Date Approved:

ii



Abstract

When multiple threads or processes run on a multicore CPU they compete for shared re-

sources, such as caches and memory controllers, and can suffer performance degradation as

high as 200%. We design and evaluate a new machine learning model that estimates this

degradation online, on previously unseen workloads, and without perturbing the execution.

The motivation for this thesis is to help data center and HPC cluster operators effectively

use workload consolidation. Data center consolidation is about placing many applications

on the same server to maximize hardware utilization. In HPC clusters, processes of the

same distributed applications run on the same machine. Consolidation improves hardware

utilization, but may sacrifice performance as processes compete for resources. Our model

helps determine when consolidation is overly harmful to performance. Our work is the

first to apply machine learning to this problem domain, and we report on our experience

reaping the advantages of machine learning while navigating around its limitations. We

demonstrate how the model can be used to improve performance fidelity and save energy

for HPC workloads.

iii



Contents

Approval ii

Abstract iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1

2 Methodology 5

2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Collection of the training data . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Attribute Selection and Model Training . . . . . . . . . . . . . . . . . 9

3 Results 12

3.1 Analysis of the decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Evaluation of the model’s accuracy . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Intel architecture results . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 AMD architecture results . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Uncovering the outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Confidence Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Use Case for the Model 25

iv



5 Related Work 30

6 Conclusions 32

Appendix A Intel Co-schedules 33

Appendix B AMD Co-schedules 38

Appendix C AMD Highlight event counters 43

Bibliography 45

v



List of Tables

2.1 Shared resources in the experimental systems . . . . . . . . . . . . . . . . . . 7

2.2 Modelling techniques tested and the average error they produced relative to

REPTree on a reduced training set. REPTree’s average error was 16% in

cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 List of the attributes selected by attribute selection . . . . . . . . . . . . . . . 24

4.1 Job allocation across nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



List of Figures

3.1 The root of the Intel decision tree. The number under the node name repre-

sents the value that is used for branching. . . . . . . . . . . . . . . . . . . . . 13

3.2 Cumulative distribution of errors . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Estimated vs. predicted degradation for all instances over time for two se-

lected benchmarks on the Intel architecture. We show the co-schedules that

produced the lowest, median and the highest errors. . . . . . . . . . . . . . . 16

3.4 Difference between the actual and predicted degradation for the best, median

and worst predicted co-schedules for each primary benchmark. The right-

most chart shows the max-error co-scheduled when we apply the confidence

predictor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Highlighted event counters for libquantum, lbm, soplex and mcf. (Must be

viewed in colour). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6 Estimated vs. predicted degradation for all instances over time for two se-

lected benchmarks on the AMD architecture. We show the co-schedules that

produced the lowest, median and the highest errors. . . . . . . . . . . . . . . 19

3.7 Difference between the actual and predicted degradation for the best, median

and worst predicted co-schedules for each primary benchmark on the AMD

architecture. The right-most chart shows the max-error co-scheduled when

we apply the confidence predictor. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.8 Errors for all instances (left) and only confident instances (right) for both

Intel and AMD architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Performance and energy consumption during Experiment 1. . . . . . . . . . . 27

4.2 Performance and energy consumption during Experiment 2. . . . . . . . . . . 28

vii



A.1 The min, mean, and max error co-schedules for Intel benchmarks 1-7. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 34

A.2 The min, mean, and max error co-schedules for Intel benchmarks 8-14. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 35

A.3 The min, mean, and max error co-schedules for Intel benchmarks 15-21. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 36

A.4 The min, mean, and max error co-schedules for Intel benchmarks 22-27. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 37

B.1 The min, mean, and max error co-schedules for AMD benchmarks 1-7. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 39

B.2 The min, mean, and max error co-schedules for AMD benchmarks 8-14. Using

both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . . . . . 40

B.3 The min, mean, and max error co-schedules for AMD benchmarks 15-21.

Using both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . 41

B.4 The min, mean, and max error co-schedules for AMD benchmarks 22-27.

Using both clean and random co-schedules. . . . . . . . . . . . . . . . . . . . 42

viii



Chapter 1

Introduction

Workload consolidation refers to a resource allocation principle where we try to place many

applications on the same server, so as to not leave any cores idle. Consolidation makes

a fundamental trade-off between performance and hardware utilization (and thus power

efficiency). We improve utilization of the machine’s resources, but sacrifice some amount

of performance, because increased resource sharing among threads may reduce the rate of

retired instructions.

Previous studies have shown that performance degradation occurring when threads or

processes run on the same multicore CPU and share resources, such as last-level caches,

memory controllers, system request queues, and pre-fetch bandwidth, can reach as much as

200%, relative to running in isolation [6, 10, 13, 15, 22]. Such severe degradation can defeat

the benefits of consolidation, leading to violation of customer QoS constraints or simply

producing application slowdowns that are deemed unreasonable [8, 17]. In certain cases,

the slowdown could be so extreme, that despite saving power we waste energy, because the

workload takes much longer to complete under consolidation than without it [5].

It is clear that we cannot use workload consolidation without considering its potentially

damaging effects. Unfortunately, conventional performance tools, while allowing us to ob-

serve events like retired instructions or cache and memory controller accesses, do not tell

us how much performance degradation the workload is experiencing. If we have the luxury

of knowing in advance the input used by our workload and have access to the hardware

on which it will run in the field, we can execute the workload offline with various degrees

of consolidation, determine the optimal, and use that setting in the field. Unfortunately,

in most cases we do not have advance knowledge of runtime parameters, and so deciding

1



CHAPTER 1. INTRODUCTION 2

whether or not to consolidate becomes guesswork.

In this work we propose a solution whose goal is to enable intelligent consolidation

decisions in data centers. We develop a model that takes as inputs performance counter

values obtained on a consolidated workload (which can be measured inexpensively online)

and produces an estimate of how much performance degradation each thread or process is

suffering relative to running on the CPU alone, without contention for resources. We do not

require running applications in isolation or perturb their execution. Using this estimate, the

operator can decide if the degradation is beyond an acceptable threshold, and if it is, roll

back the consolidation, distributing the workload to a larger number of CPUs or servers.

The model is designed for scenarios where either different applications are consolidated on

the same machine, or processes of the same application share the hardware (as commonly

happens in a HPC setting).

We create the model using machine learning; to the best of our knowledge, our work

is the first to apply machine learning to this incredibly complex problem. We train the

model offline, using a set of widely available benchmark programs. To maximize accuracy,

the training programs should have properties similar to the workload on which the model

will be used, but they need not be the same or overlap. For example, if we are targeting

business applications, we could train on SPEC JBB or TPC-W; for scientific workloads, we

could train on SPEC CPU. The model is trained for specific hardware, but this needs to be

done only once, and can be performed as part of system installation and configuration.

Although machine learning has been used to model system behaviour in the past, it has

not been applied to performance degradation on multicore systems. We were compelled to

try machine learning, because it could help overcome practical limitations of previous solu-

tions. Previous solutions used analytical modeling, heuristics based on hardware counters, or

trial-and-error methods. Analytical modeling is extremely fragile and challenging, because

modern CPUs are incredibly complex; moreover, crucial details about the microarchiecture

are often unavailable due to intellectual property protection. Heuristic-based models provide

only a coarse approximation of performance degradation; typically they can tell us whether

the degradation is occurring, but not its magnitude. Indeed, as we show in chapter 4,

a cluster scheduler based on a heuristic model can waste energy relative to the scheduler

that is based on the more precise model proposed here. Trial-and-error methods require

running applications in different co-schedules with other applications [18] or with dummy

workloads [8] in an effort to find a co-schedule that minimizes the degradation, but as the



CHAPTER 1. INTRODUCTION 3

number of cores increases the number of co-schedules grows as well, as does the perturbation

imposed on the workload. In considering the limitations of previous approaches, machine

learning looked like a promising alternative.

Machine learning shines in its ability to discover complex relationships between a variety

of factors and filter out the factors that are not important to the model. This seemed very

well suited to our problem, because modern CPUs allow monitoring hundreds of performance

events, some of which correlate with sharing-induced degradation, but it is very difficult to

filter the spurious events manually. Our idea was to get machine learning to discover the

relevant hardware events automatically, so we could apply the same methodology on any

hardware platform, to automatically create a model for the desired processor without the

manual labour of picking the right counters. Indeed, we observed that our model-building

methodology seamlessly ported between microarchitectures: we created and evaluated a

model on an Intel Xeon and an AMD Opteron processor with equal success.

The key limitation of machine learning is that the model is only as good as the training

data. While we can make an effort to train on the workloads similar to those used in the

field, it is not always possible. In evaluating the model, we observed that if the input data

falls outside the range of the values seen in training, the model becomes limited in its ability

to make accurate predictions. While it is possible to re-train the model using the “outlier”

workload, it is crucial to detect in real-time when the model is about to produce a poor

estimate. To that end, we propose a statistical solution, called confidence predictor, which

detects when the model is about to make a mistake. Upon detecting the “low confidence”

signal, the operator can conservatively decide to not consolidate this workload, or re-train

the model using the data obtained on the “outlier” workload. The confidence predictor

reduces the maximum error by a factor of 2× or 3× depending on the system, while marking

roughly 25% of the predictions as “non-confident”.

We focus on modeling the degradation resulting from sharing the multicore chip’s re-

sources, because they are the most difficult to control in software, unlike CPU cycles, mem-

ory space and disk/network bandwidth, which can be controlled by quotas. In fact, in

the environment where we chose to evaluate our model, an HPC cluster running scientific

workloads, each thread is typically given a dedicated CPU, and a job’s memory is sized to

fit within the physical memory limits of the machine. Network bandwidth on the cluster

interconnect was not a bottleneck in our experiments, but if it were, machine learning could

also be used to model contention for that resource.



CHAPTER 1. INTRODUCTION 4

The contributions of our work are: (1) creating the methodology for modeling

performance degradation on multicore systems using machine learning, (2) evaluating the

strengths and limitations of the resulting model, (3) designing a confidence predictor that

signals when the model is unable to produce an accurate estimate, and (4) demonstrating

how the model can be applied to improve performance fidelity and save power in an HPC-like

setting.

The rest of the thesis is organized as follows: Chapter 2 describes the methodology for

building the model. Chapter 3 evaluates its accuracy. Chapter 4 presents and evaluates a

simple scheduler for HPC clusters that uses our model. Chapter 5 discusses related work.

Chapter 6 summarizes our findings.



Chapter 2

Methodology

2.1 The Model

Before we describe the methodology for creating the model, we explain how the model

would be used in practice. We begin with the assumption that our target application is a

single-threaded process. Then we explain how the model would work with multi-threaded

processes.

First, the user would train the model following the procedure described below, and

using as the training set the applications that most closely resemble those on which the

model would be used in the field. Each application is executed alone on the machine and

in combination with other applications. We compute how much slower the application runs

when co-scheduled with others relative to running alone; this slowdown is the performance

degradation. We then train the model to predict performance degradation using hardware

counter values obtained on the system when the target application runs with other jobs. The

resulting model is thus set up to estimate how much slowdown the application is suffering

when space-sharing the CPU with others, without the need to execute the target application

alone.

The model estimates the degradation based on per-core and system-wide hardware

counter values, and so it is agnostic to whether the cores are running single-threaded pro-

cesses or threads from the same application. We purposefully do not configure the model to

account for positive effects of co-operative sharing; such models are available and, if desired,

can be used in conjunction with the proposed model [11].

The goal of the model is not to facilitate contention-aware scheduling of threads within

5



CHAPTER 2. METHODOLOGY 6

an application, but to decide whether we need to allocate more hardware in environments

where many applications runs on the same physical server. So if we have a multi-threaded

application sharing hardware with other processes, we would use the model to estimate,

for each thread, the performance degradation that the thread is suffering under resource

contention relative to running alone and then average the degradations of all threads to

obtain the degradation for the entire application. If the application is deemed to suffer

unreasonable performance penalty, we would migrate that application to a less loaded server,

to create a less contentious environment. Within each server, a local OS or hypervisor

scheduler, ideally one that takes into account both resource contention [22] and co-operative

resource sharing [11,20] will decide how to place threads on cores. Other resource-allocation

decisions, e.g., regarding CPU and memory quotas, can be applied on top; deciding how to

combine allocation of resources of different types is deferred to future work.

In the rest of the chapter we explain how we build the model. As will become clear in

Section 2.1.2, our model is a decision tree. A decision tree consists of nodes and branches,

where each node is labeled with an attribute (e.g., a hardware counter type in our model)

and a threshold for the attribute’s value. Based on the thresholds we decide which of the

branches emanating from the node to follow. We follow the tree all the way down to a leaf,

comparing the measured hardware counter values with the corresponding thresholds assigned

to the nodes. The resulting leaf node will give us the predicted degradation for the data point

characterized by these hardware counter values. So the goal of building the model is to assign

the right attribute thresholds to intermediate tree nodes and predicted degradation values to

the leaves, so we arrive at a reasonably accurate prediction of performance degradation. This

process consists of three steps: (1) collection of the training data, (2) attribute selection,

(3) model training.

2.1.1 Collection of the training data

Testing Platform

To confirm portability of our methodology, we built and tested our model on two systems,

Intel and AMD using exactly the same procedure. Refer to Table 2.1 for system parameters.

We trained and tested the model only on a single socket, because additional contention from

running applications on the second socket did not significantly affect degradation. The

(AMD) system has a NUMA (non-uniform memory access) architecture, and so we ensured



CHAPTER 2. METHODOLOGY 7

Intel: 2-socket ”Clovertown” AMD: 2-socket ”Istanbul”

Cores per socket 4 6

Shared per socket Two L2 caches (per pair of cores),
front-side bus, pre-fetcher, memory
controller

L3 cache (all cores), system request
queue, memory controller, data and
memory controller pre-fetchers

Table 2.1: Shared resources in the experimental systems

that an application’s memory is allocated on the same node as where the application runs.

This is how the operating system would typically behave. 1

Applications and Co-schedules

Since our goal was to evaluate the model on scientific applications typical of HPC clusters,

we trained the model on the SPEC CPU2006 suite.

We ran applications in three different types of co-schedules. The solo run is when an

application runs alone on a system without contention. The solo run was used in calculating

the true value of performance degradation. True degradation is needed only to train the

model and to evaluate the accuracy of predictions; we do not expect to know it on a

production system. In the other two types of co-schedules the application runs in contention,

concurrently with others. In the clean co-schedule, the primary application (the one whose

degradation we predict) runs with several copies of itself (three on the Intel system, five

on the AMD system). In the random co-schedule, the primary runs with randomly chosen

benchmarks on the remaining cores.

To collect the data for training, we start all applications in the co-schedule at the same

time. If any interfering application terminates before the primary is finished, we restart

the interfering application, thus keeping the primary in full contention for the entire run.

Overall, we recorded over 10 random co-schedules for each of the 27 applications. Together

with clean and solo runs, this resulted in over 500 co-schedules.

1On most recent NUMA systems with directory-based cache coherence protocol, processes running on
separate memory nodes and sourcing data from their local memory node will not noticeably affect each
others performance



CHAPTER 2. METHODOLOGY 8

Recording Performance Events

To record the attributes relevant for modeling degradation, we use the hardware performance

counters that can be used to measure events, such as last-level cache misses, the number of

bus transactions, etc. (some shown in Table 3.1). On the Intel system there are 340 event

counters per core, but only four hardware registers for counting them. To be able to record

all these events, we had to sample them by switching between different event types.

When we switch between events, we have to make sure that each event is sampled for a

substantial period of time, to ensure good sampling accuracy. The need to measure a large

number of events puts a lower bound on the interval of execution for which we are able to

record all available counters. We set that interval to 5 billion retired instructions, which

allowed us to capture the required events without major loss of precision 2 Each 5-billion

instruction window is called an execution instance. We train the model and produce predic-

tions for execution instances, as opposed to the entire program. The implication is that in

production setting, we need to sample event counters for 5 billion instructions (a few seconds

of execution time) before we are able to produce an estimate of the degradation. Therefore,

the model is best suited for long-running workloads, such as the scientific applications we

evaluate in our study.

As we rapidly switch between different types of counters, intermittent system events,

such as handling of an interrupt, can introduce unexpected spikes or dips in the mea-

surements. Data containing these variations presents a challenge for a machine learning

algorithm, because there is not enough training data to learn the behaviour during these

extraneous events. To smooth out their influence, we found it helpful to represent attribute

values for each instance as the rolling average of the past five instances.

Calculating performance degradation

The degradation for an instance is obtained by calculating the percent increase in clock

cycles needed to complete the fixed instruction window under contention, relative to solo.

For example if the co-schedule A-B-C-D has 50 execution instances, then the A solo run

would also have 50 instances, as instances are based upon retired instructions, which are

constant regardless of contention. The clock cycles of the ith instance of A-B-C-D, denoted

2Adding the attribute selection step, described below, enabled us to use a smaller execution interval. We
observed, however, that the accuracy of the model was not sensitive to the size of that interval.



CHAPTER 2. METHODOLOGY 9

ABCDi
clk, are compared with the ith instance of A’s solo run, denoted as Ai

clk. From these,

the degradation of A while in contention with B-C-D is computed as:

Deg(Ai
BCD) =

ABCDi
clk −Ai

clk

Ai
clk

∗ 100% (2.1)

We performed the above calculation on all instances in our data set. After this procedure

our dataset contains equally-sized execution instances, each with 340 × 4 = 1360 attributes

from the event counters3, and the degradation value.

2.1.2 Attribute Selection and Model Training

Attribute Selection

Before building the model we reduced the number of attributes in the dataset from 340 per

core to 19 per core4. Attribute selection was performed for three reasons. The first is to

eliminate the attributes that were redundant or unrelated to degradation. The second is to

reduce the training time from up to several hours (with 340 attributes) to several minutes

(with 19 attributes). Third is to allow a new dataset to be recorded with fewer events sets,

leading to more accurate recording.

We performed attribute selection using a suite of machine learning algorithms, Weka.

We tested several attribute selection techniques by creating models for each set of selected

attributes and comparing their accuracy. The technique with the lowest error rate was corre-

lation based feature subset attribute selection (CfsSubset) [9]. CfsSubset sorts the attributes

by their correlation to the class attribute (degradation) and to the other attributes in the

dataset. Attributes with a high correlation to the class attribute and a low correlation to

the other attributes are considered relevant.

Attribute selection yielded 19 attributes for each core, shown in Table 3.1; the same 19

attributes were selected for each core. In order to train the model, we want to distinguish

the counters of the target core (the one whose degradation we are predicting) from those

of the interfering cores. To do that, for each event counter we average the values obtained

on all interfering cores, for a given execution instance. In summary, before we train the

model, we have thousands of execution instances, and for each we have the values of the

3This is for the Intel architecture, AMD had 1471 event counters initially recorded
4AMD’s counters were reduced to 32 core counters and 8 chip counters



CHAPTER 2. METHODOLOGY 10

Bagged REPTree +0.00% Linear Regression +4.45%

Gaussian Process +1.20% PLS Classifier +4.76%

REP Tree +2.35% Decision Table +6.12%

Isotonic Regression +3.79% Simple Linear Regression +8.10%

SVM Reg +3.84% Neural Network +10.60%

SMO Reg +3.85% Conjunctive Rule +11.17%

M5P +4.14% Decision Stump +12.18%

Pace Regression +4.36% M5Rules +17.84%

Table 2.2: Modelling techniques tested and the average error they produced relative to
REPTree on a reduced training set. REPTree’s average error was 16% in cross-validation.

event counters on the target core, the average of the counters on the interfering cores, and

the degradation for the target core.

Model Creation

In the process of building the model we evaluated most modeling algorithms available in

Weka, listed in Table 2.2. We used on REPTree because it yielded the highest accuracy in

a variety of test cases, was the fastest model to train, and provided a decision tree which

could be investigated to provide a deeper understanding of predictions. REPTree can be

used in two modes: as a regression tree, where the predicted outcome a real number, and as

a classification tree, where the predicted outcome is a class, or a range of degradation values

in our case. Regression mode produced a higher accuracy than the classification mode, so

we use it in our model.

We experimented with several accuracy-improving techniques and found bagging to be

very effective. Bagging, also referred to as bootstrap aggregating, is known to lower the

error rate, reduce the variance and help avoid over-fitting. Bagging works by creating m

new datasets each populated through sampling from the original dataset, uniformly with

replacement. From each of these m data sets a new model is created, providing us with

m models. Each model is then used to produce an estimate, and all these estimates are

averaged to create the final estimate. When bagging was used, the average error of our

REPTree model reduced by over 6%, and the time to train the model and make predictions



CHAPTER 2. METHODOLOGY 11

remained reasonable.5

The REPTree model is well suited for online use, because an estimate can be produced

exceptionally quickly (tens of microseconds in our experiments). The tree is represented as

a table, and all that is required is a few table look-ups, whose number is proportional to the

depth of the tree.

5We also attempted to use bagging on the Gaussian Process model, however it crashed upon building due
to memory overflows.



Chapter 3

Results

We begin by taking a closer look at the decision tree created for the Intel and AMD systems

(section 3.1). Then, in section 3.2 we present the quantitative evaluation of the model’s

accuracy, along with the analysis of scenarios producing high errors (section 3.3), and the

confidence predictor (section 3.4), a solution for anticipating inaccurate predictions online.

3.1 Analysis of the decision tree

A decision tree is structured as a collection on nodes and branches, where each node contains

the attribute used for making the branching decision and the corresponding threshold value.

For instance, in our tree for the Intel system the attribute showing the number of delayed bus

transactions (L2 REJECT BUSQ:MESI from Table 3.1) is used for branching at the root of

the tree as shown in figure 3.1. Instances that generated fewer than roughly 5 delayed bus

transactions per thousand instructions (27,792,189 events per 5 billion instruction instance

as seen in figure 3.1) follow the right branch, the rest of the instances follow the left branch.

Examining the Intel tree1, we observed that the number of delayed bus transactions

(L2 REJECT BUSQ:MESI) was one of the most important attributes in the decision tree,

as it is used for branching decisions at almost every tree level starting from the root and

appears as the branching attribute in 10% of all the tree nodes. In contrast, less important

events, such as the number of locked data reads from L1 cache appear in fewer than 0.1%

of the nodes. The L2 REJECT BUSQ event indicates that a pending L2 cache request that

1We are unable to show the full tree because of its size, but we discuss the salient points.

12



CHAPTER 3. RESULTS 13

Figure 3.1: The root of the Intel decision tree. The number under the node name represents
the value that is used for branching.

requires a bus transaction is delayed from moving to the bus queue, which typically occurs

because the bus queue is full. Therefore, frequent occurrence of this event is indicative of

front-side bus contention, which was also shown to be one of the key bottleneck resources

on the Intel Clovertown processor by Zhuravlev et al. [22]. Other events that are used most

frequently in decision making include L1 store misses (L1D CACHE ST), L2 cache requests

(L2 RQSTS), evicted L2 cache lines that were dirty (L2 M LINES OUT) and other events

indicative of the bus traffic (BUS TRANS INVAL and BUS TRANS P).

Somewhat surprisingly, we observed that many of the most significant attributes were

related to the write intensity of the workload, e.g., L1D CACHE ST and L2 M LINES OUT.

This could indicate that the underlying system is not able to buffer the writes to the extent

that their effect on the memory system is minimal.

The strongest positive correlation with degradation was observed for the following at-

tributes: L2 REJECT BUSQ (0.87 correlation coefficient), UNHALTED CORE CYCLES

(0.64), BUS TRANS P (0.48), L2 M LINES OUT (0.26) and L1D CACHE ST (0.22). The

strongest negative correlations were observed for INST RETIRED.STORES (-0.25) and

BR IND MISSP EXEC (-0.21).

The decision tree for the AMD system included a larger number of attributes and it



CHAPTER 3. RESULTS 14

was more difficult to pin-point the key resources responsible for contention. However, some

of the most frequently used attributes were the unhalted clock cycles (which essentially

indicates the cycle per instruction (CPI) rate of the program), the number of processor

cycles the decoder is stalled because the reorder buffer is full, and the number of L2 cache

misses that resulted from hardware prefetch requests into the data cache. CPI naturally

correlates with degradation, as programs that are more memory-bound (and thus have a

higher CPI) are more likely to suffer from resource contention. The number of stall cycles in

the reorder buffer indicates that the program is waiting for resources that are unavailable,

and could be indicative of memory-system contention. The number of prefetch requests that

resulted in accesses to DRAM is a gauge on the memory-system pressure; this agrees with

the observation of Zhuravlev et al. that prefetching activity puts significant pressure on the

memory system and is largely responsible for performance degradation [22].

3.2 Evaluation of the model’s accuracy

We evaluate the model’s on both the Intel and AMD architectures, both evaluations use

cross-validation. For each primary benchmark, we predict its degradation in the clean and

random co-schedules. To produce the estimates, we first remove from the data set all

execution instances containing this benchmark (either as the primary or interfering). We

train the model on the reduced data set and then produce the estimate of the degradation.

This way we ensure that the model is not trained on any instances of the application for

which it is trying to make predictions. This is the most rigorous validation procedure of all

the available options.

Our metric of accuracy, the error rate, is the absolute difference between the estimated

and the actual measured degradation. For instance, if the measured degradation was 5%,

but we predicted 7%, the error would be 2%. Another option was to use a relative error, i.e.,

the percent by which the prediction differs from the true value; in the preceding example,

the relative error would be 40%. The downside of relative errors is that they obscure the

magnitude and importance of mispredictions. For instance, we will have 100% relative error

both if the true degradation is 1% and we predict 2%, and if the true degradation is 100%

and we predict 200%. However the mis-prediction in the first case is not significant, while

in the second case it is. That is why we feel that the absolute error is a more fair reflection

of the model’s accuracy. Figure 3.2 shows the cumulative distribution of prediction errors



CHAPTER 3. RESULTS 15

Figure 3.2: Cumulative distribution of errors

produced by our model. For both architectures we observe that 80% of the errors are under

20%. The average error for Intel was 16%, and AMD was 13%.

3.2.1 Intel architecture results

We first evaluate our model’s accuracy on the Intel platform.

Figure 3.3 shows the estimated and predicted degradation over time (for all instances)

for two benchmarks that are representative of the results that we observed. Each bench-

mark was run in many co-schedules; however for readability we report on their respective

co-schedules that produced the smallest prediction error (Min Error Co.), median error

(Median Error Co.) and the highest error (Max Error Co.). In the case of tonto we observe

that the model is very good at following degradation trends over time; we observed similar

behaviour with other benchmarks exhibiting temporal variation in degradation. A full selec-

tion of benchmarks run, with their respective min, median, and highest error co-schedules,

is attached in Appendix A.

Figure 3.4 summarizes the time series graphs in figure 3.3 and appendix A together

into one graph. The x-axis shows the degradation values, the y-axis shows the primary

benchmarks. For each benchmark, the dot indicates the true degradation, and the triangle

indicates the value predicted by the model. The length of the line connecting the two symbols

correlates with the magnitude of the error. The first chart on the left shows the results for

the co-schedules that produced the smallest error for each benchmark, the second chart



CHAPTER 3. RESULTS 16

437.leslie3d

0%

50%

100%

150%

200%
Min Error Co.

0 200 400 600 800

Median Error Co.

0 200 400 600 800

Max Error Co.

0 200 400 600 800

465.tonto

0%

50%

100%

150%

200%
Min Error Co.

0 200 400

Median Error Co.

0 200 400

Max Error Co.

0 200 400

Instance Number

D
eg

. V
al

ue

Figure 3.3: Estimated vs. predicted degradation for all instances over time for two selected
benchmarks on the Intel architecture. We show the co-schedules that produced the lowest,
median and the highest errors.



CHAPTER 3. RESULTS 17

Degradation Value

P
rim

ar
y 

B
en

ch
m

ar
k

470.lbm
450.soplex

462.libquantum
429.mcf

471.omnetpp
403.gcc
433.milc

436.cactusADM
459.GemsFDTD

401.bzip2
473.astar

435.gromacs
458.sjeng

410.bwaves
437.leslie3d
445.gobmk

434.zeusmp
481.wrf

447.dealII
464.h264ref

465.tonto
444.namd

456.hmmer
453.povray

400.perlbench
454.calculix
416.gamess

Min Error Co.

●
●

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●
●

0% 50% 100%

Median Error Co.

●
●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

0% 50% 100% 150%

Max Error Co.

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●

0% 50% 100% 150% 200% 250% 300%

Conf Max Error Co.

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●

0% 50% 100% 150%

Legend

● True

Predicted

Figure 3.4: Difference between the actual and predicted degradation for the best, median
and worst predicted co-schedules for each primary benchmark. The right-most chart shows
the max-error co-scheduled when we apply the confidence predictor.

shows the median-error co-schedules, the third chart shows the highest-error co-schedules.

Min- and median-error charts show that, with a few exceptions, the prediction errors

are quite small. From the highest-error chart we observe that there are a few large errors

for high-degradation benchmarks, such as lbm, soplex, libquantum and mcf. As we will

demonstrate in the next section, these benchmarks show behaviour that is distinct from the

other benchmarks in the training set. Since cross-validation ensures that we do not train

on the benchmarks whose degradation we are trying to predict, the model is not trained

to recognize these “outliers”. The fourth chart in Figure 3.4 shows how the results for

highest-error co-schedules improve when we apply the confidence predictor; these data and

the confidence predictor will be explained in Section 3.4.

3.2.2 AMD architecture results

Next we evaluate how well our model building methodology transfers between architectures

and the model’s accuracy on an AMD platform. To create a model for the AMD architecture

we simply followed the exact same steps as we did for the Intel architecture: record a training

set using SPEC CPU benchmarks, perform attribute selection to determine which event



CHAPTER 3. RESULTS 18

Figure 3.5: Highlighted event counters for libquantum, lbm, soplex and mcf. (Must be viewed
in colour).

counters are important, and build a REPTree regression model using these attributes. The

AMD results have also been cross validated using the same technique as was used for the

Intel architecture.

Figure 3.6 shows the time series graphs for the same two benchmarks as was shown in

figure 3.4 for the Intel architecture. From this graph we can see that while the applications

true degradation values are different between architectures our model is able to make accu-

rate predictions for both. Figure 3.7 summarizes all the time series graphs in both figure 3.7

and in appendix B. When comparing both the Intel and AMD summarized graphs (fig-

ures 3.4 and 3.7) we can see that our model performs similarly, regardless of architecture.

Note that the same benchmarks, lbm, soplex, libquantum and mcf have, as did in the Intel

results, the highest errors, and benefit most from the confidence predictor. A full selection

of benchmarks run, with their respective min, median, and highest error co-schedules, is

attached in Appendix B.

3.3 Uncovering the outliers

With cross-validation, the training set contains absolutely no instances of the application

whose degradation we are trying to predict. So, for instance, if we are predicting lbm,



CHAPTER 3. RESULTS 19

437.leslie3d

0%

50%

100%

150%

200%
Min Error Co.

0 200 400 600 800

Median Error Co.

0 200 400 600 800

Max Error Co.

0 200 400 600 800

465.tonto

0%

50%

100%

150%

200%
Min Error Co.

0 200 400

Median Error Co.

0 200 400

Max Error Co.

0 200 400

Instance Number

D
eg

. V
al

ue

Figure 3.6: Estimated vs. predicted degradation for all instances over time for two selected
benchmarks on the AMD architecture. We show the co-schedules that produced the lowest,
median and the highest errors.



CHAPTER 3. RESULTS 20

Degradation Value

P
rim

ar
y 

B
en

ch
m

ar
k

470.lbm
462.libquantum

429.mcf
450.soplex

433.milc
459.GemsFDTD

403.gcc
471.omnetpp

473.astar
436.cactusADM

410.bwaves
437.leslie3d

481.wrf
464.h264ref

401.bzip2
445.gobmk

434.zeusmp
400.perlbench

447.dealII
458.sjeng

435.gromacs
465.tonto

453.povray
444.namd

456.hmmer
454.calculix
416.gamess

Min Error Co.

●
●

●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●
●
●
●
●

●
●
●
●
●

0% 50% 100%

Median Error Co.

●
●

●
●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●

●
●

●
●

●
●

●

0% 50% 100%

Max Error Co.

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●
●

●
●
●

0% 50% 100% 150% 200% 250% 300%

Conf Max Error Co.

●

●
●

●

●
●

●
●

●
●
●

●
●

●
●

●

●
●
●

●
●
●

0% 50% 100%

Legend

● True

Predicted

Figure 3.7: Difference between the actual and predicted degradation for the best, median and
worst predicted co-schedules for each primary benchmark on the AMD architecture. The
right-most chart shows the max-error co-scheduled when we apply the confidence predictor.

the model was trained with all event instances involving lbm removed. This makes it very

difficult for the model to predict this instances as it has never seen them, and must rely

on similar instances in the training set which, if lbm performs significantly different to

anything found in the training set, can lead to inaccurate predictions. Therefore, if lbm’s

attributes are very different from the training set, we could use this variation to explain

inaccurate predictions and, furthermore, to anticipate them. To test this theory, we compare

performance attributes of the outliers to those in the rest of the set.

Figure 3.5 compares the event counter values of four benchmarks with the highest errors

in the max-error co-schedules (lbm, libquantum, mcf and soplex ) with those of the other

benchmarks for the Intel architecture. Appendix C contains the same graph for the AMD

architecture. We begin by analyzing lbm. Figure 3.5 clearly shows that lbm is an outlier

in the attribute L2 M LINES OUT. This event count is high when the workload evicts a

lot of L2 cache lines in the modified state. When the evicted cache lines are dirty, the

memory system has to do more work in handling cache misses, because modified lines must

be written back to memory. Lbm happens to be a very write-intensive application [16], and

since its value of L2 M LINES OUT is extremely high, our model extrapolates an extremely



CHAPTER 3. RESULTS 21

high degradation. In reality, writes, while certainly adding pressure to the memory system,

contribute to execution latency only indirectly, since they are handled asynchronously. (The

correlation of L2 M LINES OUT with performance degradation is only 0.26). As a result,

our model greatly overestimates the degradation.

We now look at libquantum. In sharp contrast to lbm, libquantum performs very few

writes [16] and is unique in its extreme latency sensitivity. It has very poor cache reuse and

as a result spends 100% of execution time in memory episodes, where it is waiting for at least

one memory request [12]. Indeed, in Figure 3.5 we observe that libquantum has an unusually

high value of the attribute L2 REJECT BUSQ:MESI, which occurs when a pending data

request from the L2 cache is delayed from moving to the bus queue, and is indicative of long

memory episodes. No other benchmark in the SPEC CPU2006 suite has similar behaviour.

As a result of its latency-sensitivity, libquantum suffers significantly more from contention

than other benchmarks, because any increase in memory-system latency has a direct effect

on its perforamnce. Since libquantum is the only benchmark with this behaviour, the model

is unable to capture its extreme latensy-sensitivity and so it consistently underestimates the

degradation for libquantum.

Looking further at soplex, we observe that it has a vastly different prefetching behavior

than the rest of the benchmarks. First of all, it has a somewhat higher count of software

prefetch events (SSE PRE EXEC:NTA) than other benchmarks. But what is particularly

interesting is that it has a dramatically high count of LOAD HIT PRE events, which counts

load operations conflicting with a software prefetch to the same address. For every other

benchmark in the suite except one2, this event count is close to zero. This means that

soplex performs extremely effective prefetching, since a large number of loads already have a

corresponding prefetch request in flight. Effective prefetching masks memory latency, and so

contention for shared resources has a much smaller impact on soplex ’s performance than one

might expect. Since soplex is the only benchmark with such property, the model is unable

to correctly factor in the effect of successful prefetching and so it typically overestimates

soplex ’s degradation.

Finally, examining the outlier events for mcf, we see that, similarly to lbm and libquan-

tum, it has a large number of L2 REJECT BUSQ and L2 M LINES OUT events. Although

when we validate mcf, the training data does include lbm and libquantum, the number of the

2Gobmk also has a high occurrence of this event, but it is still roughly four times smaller than for soplex.



CHAPTER 3. RESULTS 22

instances that include these benchmarks is very small, relative to the other instances that

have much lower counts of the two events. As a result, the model is not strongly trained to

make accurate predictions in this case.

The key insight that we gain from this analysis is that the applications responsible for the

highest errors can be predictably identified if we analyze how their performance attributes

are different from those of other applications. We use this insight to create a method for

anticipating when the model is likely to produce a high error.

3.4 Confidence Predictor

The confidence predictor decides whether or not the model is likely to make an accurate

prediction by comparing the hardware counter attributes of the instance whose degradation

we are about to predict with the distribution of attribute values seen in training. If two or

more attributes of the to-be-predicted instance are more than two standard deviations away

from the mean of the values seen in training, the confidence predictor marks the instance

as non-confident and produces a null prediction. There are several ways how the operator

can handle null predictions. One possibility is to conservatively label this workload as high-

degradation and not to consolidate it – this policy can be used for workloads with strict QoS

requirements. Another solution is to add a copy of this workload to a database of training

benchmarks, so that the model can be trained on it in the future.

The fourth chart in Figures 3.4 and 3.7 (Intel and AMD respectively) shows the highest-

error co-schedules once we introduce the confidence predictor. We observe that the mag-

nitude of errors is substantially reduced. As the trade-off, the predictions for a few bench-

marks are not made: this would occur if all instances for that benchmark are marked as

non-confident. This is expected: if the behaviour of the benchmark is drastically different

from the behaviour seen in training, the model would not be able to confidently predict any

of its instances. In this case, it is best to either re-train the model on the benchmark or to

conservatively assume a high degradation. Overall, about 25% of the instances are omitted

as non-confident.

Figure 3.8 shows the scatter plots of the errors produced by the Intel and AMD models

when we make the estimates for all instances, regardless of confidence, and when we produce

the estimates only for confident instances. The confidence predictor substantially helps to

filter out erroneous predictions, reducing the maximum error by about a factor of two.



CHAPTER 3. RESULTS 23

The average error for all instance on Intel is around 16%, but it is reduced to 10% when

the confidence predictor is applied. On our AMD system, the confidence predictor reduces

the maximum error by about a factor of 3× and improves the average error from 13% to

10%. Both Intel and AMD confidence predictors mark 25% of their respective instances as

non-confident.

Figure 3.8: Errors for all instances (left) and only confident instances (right) for both Intel
and AMD architectures

In summary, we conclude that machine learning is a reasonable method for estimating

the complex effect of sharing-induced performance degradation on multicore processors. It

is able to produce accurate predictions in the majority of the cases, but when the training

set has insufficient diversity we can anticipate high errors in the model by applying the

proposed confidence predictor.



CHAPTER 3. RESULTS 24

Event Name Event Description

UNHALTED CORE CYCLES Clock cycles elapsed.

INSTRUCTIONS RETIRED The number of retired instructions.

RS UOPS DISPATCHED CYCLES:PORT 1 The number of cycles for which micro-ops are dispatched for execution
on port 1. Indicative of processor utilization.

SEGMENT REG LOADS Number of segment register loads.

SSE PRE EXEC:NTA This is a software prefetching event. Counts the number of times the
SSE prefetch NTA instruction is executed.

SSE PRE EXEC:STORES This is a software prefetching event. Counts the number of times SSE
non-temporal store instructions are executed.

L2 M LINES OUT:BOTH CORES Counts the number of L2 modified cache lines evicted by both cores.
Indicative of the pressure on the memory hierarchy.

L2 RQSTS:M STATE Counts all completed L2 cache requests, including hardware prefetches.
M STATE counts accesses to cache lines whose content differs from that
in in the memory).

L2 REJECT BUSQ:MESI Counts event when a pending L2 cache request that requires a bus
transaction is delayed from moving to the bus queue. This can happen,
for instance, when the bus queue is full.

L1D CACHE ST:I STATE Counts the number of data writes to cacheable memory that missed the
cache.

L1D CACHE LOCK:M STATE Counts the number of locked data reads in modified state from
cacheable memory.

LOAD HIT PRE Counts load operations conflicting with a software prefetch to the same
address.

BUS TRANS INVAL:BOTH CORES Counts invalidate bus transactions for both cores, which can be gener-
ated, for instance, when a cache line write misses the L2 cache.

BUS TRANS P:ALL AGENTS Counts all partial bus transactions.

BR MISSP EXEC Counts the number of mispredicted branch instructions.

BR IND MISSP EXEC Counts the number of mispredicted indirect branch instructions.

SIMD UOP TYPE EXEC:SHIFT SIMD packed shift micro-ops executed.

INST RETIRED:STORES Counts the number of instructions retired that contain a store opera-
tion.

SIMD COMP INST RETIRED Retired computational Streaming SIMD Extensions (SSE) scalar-single
instructions.

Table 3.1: List of the attributes selected by attribute selection



Chapter 4

Use Case for the Model

In this chapter we describe how our model could be used for improving resource-allocation

decisions in high-performance computing (HPC) clusters. HPC clusters run scientific appli-

cations, many of which are structured as multi-process jobs communicating via a message-

passing interface (MPI). By default, cluster scheduling algorithms, such as Maui [19] or

Moab [1], will assign a process to every available core on the server, but since many MPI

applications are very memory-intensive, they will experience substantial performance degra-

dation when sharing a multicore CPU [4]. The cluster operator may want to spread such

jobs across a larger number of nodes, so as to avoid unreasonable performance degradation,

but with existing tools it is difficult to decide whether the degradation is high enough to

justify using extra hardware.

To demonstrate how the proposed model can address this problem, we prototype a new

cluster scheduler that uses the model for scheduling decisions. The proposed scheduler,

described later, improves on two baseline cluster scheduling policies: Best-fit and Min-

collocation. Best-fit, which is the most commonly used policy, allocates the processes of the

same job on all available cores on the node, using additional nodes if needed, but if a single

job does not fill all the cores, it fills them with processes of another job. The other baseline

policy, Min-collocation, attempts to schedule no more than one job per node, as long as

there are unused nodes available.

The Best-fit policy ensures maximum hardware utilization, but allows contention for

multicore resources. Min-collocation would produce less resource contention, but will use

more hardware (and power). We demonstrate how to find the balance between these ex-

tremes with a new Balanced scheduler that relies on our model.

25



CHAPTER 4. USE CASE FOR THE MODEL 26

The Balanced scheduler initially assigns jobs to nodes following the Best-fit policy. It

then begins monitoring the hardware counter values selected by the model, and estimates

the performance degradation for each job. If the degradation is estimated higher than the

acceptable threshold, set to 50% in our experiments, the Balanced scheduler starts up an

additional server and migrates the suffering job to that server. The scheduler is also able to

migrate a part of the job by operating on individual containers, but these partial migrations

did not occur in our experiments. This proof-of-concept scheduler is simple and does not

take into account communication overhead that may occur if the processes of the same job

run on several nodes. This is deferred to future research; in this work we show how to avoid

contention-induced performance degradation.

The Balanced scheduler is implemented as a collection of daemons that run on each node.

Within each node, jobs are scheduled by a user-level scheduler Clavis [3] that is based on the

Distributed Intensity algorithm [4,22], and assigns threads to cores so as to avoid multicore

resource contention. Clavis is used as the intra-node scheduling policy under Best-fit and

Min-collocation policies as well.

Our experimental environment mimics an HPC cluster. We do not have exclusive access

to the actual cluster where we are able to modify the scheduling algorithm, so instead we

used three identical multicore systems connected by the Gigabit Ethernet. We did not

have multiple Intel systems, so our mini-cluster is comprised of the three AMD systems

(Table 2.1). Each system has two multicore CPUs with six cores each.

In order to be able to migrate MPI processes from one node to another after the job had

begun execution, we place the processes into OpenVZ containers [2], which is a light-weight

virtualization option for Linux. OpenVZ produced the lowest overhead compared to Xen

and KVM, and offered better reliability than MPI checkpoints. The degradation for the job

is estimated by averaging the degradation estimates for the corresponding containers.

We show two experiments demonstrating the benefits of the Balanced policy and the

underlying model. The first experiment shows that the Balanced scheduler is able to re-

spect performance degradation threshold, unlike the Best-fit scheduler, while using less

energy than the Min-collocation scheduler. The second experiment shows that the Balanced

scheduler that uses our model saves energy relative to the same scheduler that estimates

performance degradation using a simple heuristic model proposed in the earlier work [22]. In

both experiments we run four MPI jobs from the SPEC MPI suite, each with six processes.



CHAPTER 4. USE CASE FOR THE MODEL 27

Experiment 1

Node 1 Node 2 Node 3

Best-fit fds0, tachyon fds1, fds2

Min-Collocation fds0, fds2 tachyon fds1

Balanced fds0, tachyon fds1 fds2

Experiment 2

Node 1 Node 2 Node 3

Balanced (DI model) fds, tachyon zeus1 zeus2

Balanced (our model) fds, tachyon zeus1, zeus2

Table 4.1: Job allocation across nodes

We report the running times and the energy consumed to run the workload1. The model

was trained on SPEC CPU 2006 application; it did not include the MPI applications that

we test.

Experiment 1: Improved performance fidelity. In this experiment, we run three

copies of the fds application and one copy of tachyon. Fds is memory-intensive, so it would

suffer performance degradation under contention, while tachyon would not. The Balanced

scheduler is configured to avoid performance degradation above 50%. Table 4.1 shows how

the jobs were assigned to servers under the three algorithms, and Figure 4.1 shows the

running time (relative to solo) and energy consumption. The red line indicates the 50%

degradation threshold. Migration overhead is always included into the running times that

we report.

0%

50%

100%

150%

200%

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

fd
s0

ta
ch

y
o

n

fd
s1

fd
s2

Best-Fit Min-Collocation Balanced

R
u

n
ti

m
e

 r
e

la
ti

v
e

 t
o

 s
o

lo

2.91 kWh 3.51 kWh 3.17 kWh

Figure 4.1: Performance and energy consumption during Experiment 1.

1Energy was measured using the Dell Remote Access Control interface on our servers.



CHAPTER 4. USE CASE FOR THE MODEL 28

0

5000

10000

15000

20000

25000

fds tachyon zeus0 zeus1 fds tachyon zeus0 zeus1

Balanced -- DI Model Balanced -- Our Model

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

5.06 kWh 3.27 kWh

Figure 4.2: Performance and energy consumption during Experiment 2.

Under Best-fit and Min-collocation, only one copy of fds is able to meet the 50% degra-

dation constraint. The other two copies of fds suffer roughly 70% performance degradation,

because they run together on the same server. Both schedulers assign jobs to nodes ac-

cording to the order of their arrival. The jobs arrive in the order fds0, tachyon, fds1, fds2,

so Best-fit fills the first node with fds0 and tachyon, then fills the second node with the

other two copies of fds. Min-collocation assigns one job per node, but when fds2 arrives

and all three nodes are filled, it is forced to scheduled fds2 with fds0 on Node 1. Although

Min-collocation has an additional node at its disposal, it is unable to realize that it is better

to run a copy of fds alone on Node 3 rather than tachyon.

Balanced, on the other hand, discovers that two copies of fds co-located on the same node

will suffer more than 50% performance degradation and migrates one of them to the third

node. As a result, it improves performance by about 15% on average (across all applications)

relative to Best-fit and Min-collocation, while using 44% less energy than Min-collocation.

Even though Balanced uses the same number of nodes as Min-collocation, it enables the

workload to complete quicker, hence smaller energy consumption. Best-fit uses 8% less

energy than Balanced, because it uses fewer nodes, but unlike Balanced it does not meet

the 50% degradation threshold.

Experiment 2: Improved power efficiency. The purpose of this experiment is

to demonstrate the benefit of precise estimates of performance degradation that would be

produced by our model, as opposed to coarse estimates that would be produced by heuristic-

based models [15,22]. We compare the Balanced scheduler that uses our model with the same



CHAPTER 4. USE CASE FOR THE MODEL 29

scheduler, but that uses the miss-rate based model underlying the Distributed Intensity (DI)

algorithm. We refer to this version as Balanced-DI. The DI model checks if any co-located

jobs have the miss rate greater than one miss per thousand instructions. If that threshold is

exceeded, the jobs are deemed “contentious” and the scheduler distributes them to different

CPUs, or in our case, different servers. The DI model is considered state-of-the-art, as

most software-only contention aware algorithms relied on the models almost identical to

DI [4, 13,15].

We run the following jobs: fds, tachyon and two copies of zeus. Like in the first ex-

periment, the schedulers are configured to avoid the degradation above 50%. Table 4.1

shows how the schedulers assign the jobs to nodes. Balanced-DI observes that zeus has

the miss rate of 25 misses per 1000 instructions, which by far exceeds its thresholds, so it

migrates one copy of zeus to the third node. However, it turns out that despite its high miss

rate, zeus experiences only negligible degradation when co-scheduled with another copy (see

Figure 4.2). The Balanced scheduler that uses our model is able to produce an accurate

estimate, so it does not migrate zeus to another node, and meets the degradation threshold

while using 35% less energy than Balanced-DI.



Chapter 5

Related Work

Our work is the first to evaluate machine learning for modeling performance degradation on

multicore CPUs. Besides machine learning, there are three major strategies that attacked

the same problem: analytical modeling (often requiring unconventional hardware), models

based on heuristics, and trial-and-error methods.

Analytical modeling. One of the first models for resource contention on multicore

chips was proposed by Chandra et al. [6]. It estimated the increase in the last-level cache

(LLC) miss rate resulting from cache contention. Chandra’s model required unconventional

hardware which in limited cases could be substituted with compiler extensions. The main

limitation of this model is that it focused only on caches and did not address other resources,

such as memory buses, system request queues, hardware pre-fetchers, etc., contention for

which was found to be a crucial factor in performance degradation on modern CPUs [4,22].

Machine learning models will capture contention in any hardware component as long as this

component is represented by relevant performance events.

Eyerman, Hoste and Eeckhout [7] used a semi-manual methodology for modeling CPI

stacks. They estimated unknown relationships using regression analysis. However, at the

heart of their method is a generic analytical model for the processor. As we explained, we

wanted to find a practical method that does not involve any manual model construction,

and machine learning answered these needs.

Luque et al. developed a method to precisely count how many extra cycles the thread

is wasting, waiting for CPU resources that are occupied as a result of contention [14]. This

information can be used directly to estimate the performance degradation that contention is

causing. While this is a very promising technique in terms of accuracy, it requires changing

30



CHAPTER 5. RELATED WORK 31

the hardware. Furthermore, this technique, at the time of this writing, addresses only shared

caches. Our goal was to design a method that will work on today’s hardware and cover all

kinds of shared CPU resources.

Models based on heuristics. In recent studies, the last-level cache miss rate was used

as a heuristic to predict whether threads or processes sharing a multicore CPU are suffering

performance degradation [4,13,15,22]. In that work, the LLC miss rate was used to decide

when the threads should be scheduled on separate chips to avoid cache contention. While

suitable for coarse-grained scheduling decisions, the miss rate is not sufficient to estimate

performance degradation with a greater precision.

Furthermore, relying on a single indicator of performance (the miss-rate) to estimate

the effect of sharing multiple resources is a fragile strategy. It may work as long as memory

controllers and pre-fetch bandwidth are key contended resources on multicore systems [22],

but if the hardware bottlenecks change, the heuristic will stop working. Furthermore, this

method does not easily allow integration of other shared resources into the model. Machine

learning can adjust to changes in hardware and be extended to model any new resources

that emerge as important for contention; therefore, it is a more future-proof method.

Trial-and-error methods. Trial-and-error methods require running the workloads

in various combinations (co-schedules) with other workloads [18] or with dummy bench-

marks [8]. The goal is to observe how performance degradation changes in different co-

schedules and to use that information to create online a machine- and workload-specific

model of the degradation. A system called Cuanta is a very elegant solution, relying on a

set of “clones”, each with a particular cache access pattern. By co-scheduling all clones with

a target application, we can find the one that most closely mimics the behaviour of that

application. Then, based on a previously constructed degradation matrix and application

clones we can predict the degradation for any pair of applications. This approach works

well when the number of cores per chip is small, but as the number grows, we would need

to run a larger and larger combination of clones concurrently with the application. This is

not practical, because the cores are unavailable to run other applications when we use them

to run clones. Our machine learning model, on the other hand, requires hardware counter

values that can be measured for all cores in parallel, and so the time to perform the on-line

measurement does not grow with the number of cores.



Chapter 6

Conclusions

Our study aimed to investigate the effectiveness of machine learning in modeling contention-

induced performance degradation: online, on a live workload, and without a priori knowledge

of applications or the need to run them in isolation. We aimed for a model that seamlessly

ports across different systems, and machine learning met this need as it does not rely on

microarchitectural knowledge. We found that machine learning can indeed be used to build

reasonably accurate models, which estimate degradation within 16% of the true value on

average, however inaccurate estimates can occur if the test application is very different from

the applications in the training set. Fortunately, these cases can be anticipated by checking

how “dissimilar” the test application is from the training set, in terms of its attribute values.

Our proposed method, the confidence predictor, successfully anticipates when the model is

likely to produce an inaccurate estimate and reduces the maximum error by up to a factor

of three and the average degradation error down within 10%.

32



Appendix A

Intel Co-schedules

33



APPENDIX A. INTEL CO-SCHEDULES 34

Figure A.1: The min, mean, and max error co-schedules for Intel benchmarks 1-7. Using
both clean and random co-schedules.



APPENDIX A. INTEL CO-SCHEDULES 35

Figure A.2: The min, mean, and max error co-schedules for Intel benchmarks 8-14. Using
both clean and random co-schedules.



APPENDIX A. INTEL CO-SCHEDULES 36

Figure A.3: The min, mean, and max error co-schedules for Intel benchmarks 15-21. Using
both clean and random co-schedules.



APPENDIX A. INTEL CO-SCHEDULES 37

Figure A.4: The min, mean, and max error co-schedules for Intel benchmarks 22-27. Using
both clean and random co-schedules.



Appendix B

AMD Co-schedules

38



APPENDIX B. AMD CO-SCHEDULES 39

Figure B.1: The min, mean, and max error co-schedules for AMD benchmarks 1-7. Using
both clean and random co-schedules.



APPENDIX B. AMD CO-SCHEDULES 40

Figure B.2: The min, mean, and max error co-schedules for AMD benchmarks 8-14. Using
both clean and random co-schedules.



APPENDIX B. AMD CO-SCHEDULES 41

Figure B.3: The min, mean, and max error co-schedules for AMD benchmarks 15-21. Using
both clean and random co-schedules.



APPENDIX B. AMD CO-SCHEDULES 42

Figure B.4: The min, mean, and max error co-schedules for AMD benchmarks 22-27. Using
both clean and random co-schedules.



Appendix C

AMD Highlight event counters

43



APPENDIX C. AMD HIGHLIGHT EVENT COUNTERS 44



Bibliography

[1] Moab Adaptive HPC Suite. In http://www.adaptivecomputing.com/resources/docs/.

[2] OpenVZ: Container-based Virtualization for Linux. wiki.openvz.org.

[3] Sergey Blagodurov and Alexandra Fedorova. User-level Scheduling on NUMA Multicore
Systems under Linux. In Proc. of Linux Symposium, 2011.

[4] Sergey Blagodurov, Sergey Zhuravlev, Mohammad Dashti, and Alexandra Fedorova. A
Case for NUMA-Aware Contention Management on Multicore Systems. In Proceedings
of USENIX Annual Technical Conference, 2011.

[5] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-aware
scheduling on multicore systems. ACM Trans. Comput. Syst., 28:8:1–8:45, December
2010.

[6] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting inter-thread
cache contention on a chip multi-processor architecture. In HPCA, 2005.

[7] Stijn Eyerman, Kenneth Hoste, and Lieven Eeckhout. Mechanistic-empirical processor
performance modeling for constructing cpi stacks on real hardware. In ISPASS, 2011.

[8] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. Cuanta: quan-
tifying effects of shared on-chip resource interference for consolidated virtual machines.
In Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC ’11, 2011.

[9] Mark A. Hall. Correlation-based Feature Selection for Machine Learning. Master’s
thesis, University of Waikato, 1999.

[10] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and approximation
of optimal co-scheduling on chip multiprocessors. In PACT, 2008.

[11] Ali Kamali. Sharing Aware Scheduling on Multicore Systems. Master’s thesis, Simon
Fraser University, 2010.

[12] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter. Atlas: A scalable
and high-performance scheduling algorithm for multiple memory controllers. In HPCA,
2010.

45



BIBLIOGRAPHY 46

[13] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using os
observations to improve performance in multicore systems. IEEE Micro, 28(3):pp.
54–66, 2008.

[14] Carlos Luque, Miquel Moret, Francisco J. Cazorla, Roberto Gioiosa, Alper Buyuk-
tosunoglu, and Mateo Valero. ITCA: Inter-task Conflict-Aware CPU Accounting for
CMPs. In PACT, 2009.

[15] Andreas Merkel, Jan Stoess, and Frank Bellosa. Resource-Conscious Scheduling for
Energy Efficiency on Multicore Processors. In EuroSys, 2010.

[16] Asit K. Mishra, Xiangyu Dong, Guangyu Sun, Yuan Xie, Narayanan Vijaykrishnan,
and Chita R. Das. Architecting on-chip interconnects for stacked 3d stt-ram caches in
cmps. In ISCA, 2011.

[17] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing perfor-
mance interference effects for qos-aware clouds. In Proceedings of the 5th European
conference on Computer systems, EuroSys ’10, 2010.

[18] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic jobscheduling with
priorities for a simultaneous multithreading processor. In Proceedings of the 2002 ACM
SIGMETRICS international conference on Measurement and modeling of computer
systems, SIGMETRICS ’02, pages 66–76, 2002.

[19] Sourceforge. Maui Scheduler Open Cluster Software. In
http://mauischeduler.sourceforge.net/.

[20] David Tam, Reza Azimi, and Michael Stumm. Thread Clustering: Sharing-Aware
Scheduling on SMP-CMP-SMT Multiprocessors. In Proceedings of EuroSys, 2007.

[21] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. Does cache sharing on modern cmp
matter to the performance of contemporary multithreaded programs? In Proceedings
of PPOPP, 2010.

[22] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing Contention
on Multicore Processors via Scheduling. In Proceedings of ASPLOS, 2010.


