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Abstract—This work observes that a large fraction of the
computations performed by Deep Neural Networks (DNNs) are
intrinsically ineffectual as they involve a multiplication where one
of the inputs is zero. This observation motivates Cnvlutin (CNV),
a value-based approach to hardware acceleration that eliminates
most of these ineffectual operations, improving performance and
energy over a state-of-the-art accelerator with no accuracy loss.
CNYV uses hierarchical data-parallel units, allowing groups of
lanes to proceed mostly independently enabling them to skip
over the ineffectual computations. A co-designed data storage
format encodes the computation elimination decisions taking
them off the critical path while avoiding control divergence in
the data parallel units. Combined, the units and the data storage
format result in a data-parallel architecture that maintains wide,
aligned accesses to its memory hierarchy and that keeps its data
lanes busy. By loosening the ineffectual computation identification
criterion, CNV enables further performance and energy efficiency
improvements, and more so if a loss in accuracy is acceptable.
Experimental measurements over a set of state-of-the-art DNNs
for image classification show that CNV improves performance
over a state-of-the-art accelerator from 1.24x to 1.55x and by
1.37x on average without any loss in accuracy by removing
zero-valued operand multiplications alone. While CNV incurs an
area overhead of 4.49%, it improves overall EDP (Energy Delay
Product) and ED?P (Energy Delay Squared Product) on average
by 147x and 2.01x, respectively. The average performance
improvements increase to 1.52x without any loss in accuracy with
a broader ineffectual identification policy. Further improvements
are demonstrated with a loss in accuracy.

I. INTRODUCTION

Deep Neural Networks (DNNs) are becoming ubiquitous
thanks to their exceptional capacity to extract meaningful
features from complex pieces of information such as text,
images, or voice. For example, DNNs and in particular,
Convolutional Neural Networks (CNNs) currently offer the
best recognition quality versus alternative object recognition
algorithms, or image classification. DNN are not new [1],
but are currently enjoying a renaissance [2] in part due to
the increase in computing capabilities available in commodity
computing platforms such as general purpose graphics proces-
sors [3].

While current DNNs enjoy several practical applications,
it is likely that future DNNs will be larger, deeper, process
larger inputs, and used to perform more intricate classification
tasks at faster speeds, if not in real-time. Accordingly, there is
a need to boost hardware compute capability while reducing
energy per operation [4] and to possibly do so for smaller form
factor devices.
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Given the importance of DNNs, recent work such as the Di-
anNao accelerator family [5], [6] targets hardware acceleration
of DNNs. The approach taken by these accelerators exploits
the computation structure of DNNs. Our work is motivated
by the observation that further opportunities for acceleration
exist by also taking into account the content being operated
upon. Specifically, Section II shows that on average 44% of
the operations performed by the dominant computations in
DNNss are products that are undoubtedly ineffectual; one of the
operands is a zero and the result is reduced along with others
using addition. The fraction of these operations does not vary
significantly across different inputs suggesting that ineffectual
products may be the result of intrinsic properties of DNNs. The
corresponding operations occupy compute resources wasting
time and energy across inputs. This result along with the
voluminous body of work on valued-based optimizations in
software (e.g., constant propagation) and hardware (e.g., cache
deduplication [7]) for general purpose processing, motivates
value-based DNN acceleration approaches in software and
hardware.

We present Cnviutin' (CNV), a DNN accelerator that fol-
lows a value-based approach to dynamically eliminate most
ineffectual multiplications. The presented CNV design im-
proves performance and energy over the recently proposed
DaDianNao accelerator [6]. CNV targets the convolutional
layers of DNNs which dominate execution time (Sections II
and V-B).

DaDianNao takes advantage of the regular access pattern
and computation structure of DNNs. It uses wide SIMD
(single-instruction multiple-data) units that operate in tandem
in groups of hundreds of multiplication lanes. Unfortunately,
this organization does not allow the lanes to move indepen-
dently and thus prevents them from “skipping over” zero-
valued inputs. CNV units decouple these lanes into finer-grain
groups. A newly proposed data structure format for storing
the inputs and outputs of the relevant layers is generated on-
the-fly and enables the seamless elimination of most zero-
operand multiplications. The storage format enables CNV to
move the decisions on which computations to eliminate off
the critical path allowing the seamless elimination of work
without experiencing control divergence in the SIMD units.
The assignment of work to units is modified enabling units to
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be kept busy most of the time independently of the distribution
of zeroes in the input. A simple work dispatch unit maintains
wide memory accesses over the on-chip eDRAM buffers.

Once the capability to skip zero-operand multiplications
is in place, more relaxed ineffectual operation identification
criteria can be used enabling further improvements with no
accuracy loss and to dynamically trade off accuracy for even
further performance and energy efficiency improvements.

CNV’s approach bears similarity to density-time vector ex-
ecution [8] and related graphics processor proposals [9], [10],
[11], [12], [13], [14] for improving efficiency of control-flow
intensive computation. CNV directly examines data values
rather than skipping computation based upon predicate masks.
Owing to the application-specific nature of CNV, its proposed
implementation is also simpler. As Section VI explains, CNV
also bears similarity to several sparse matrix representations
sharing the goal of encoding only the non-zero elements,
but sacrificing any memory footprint savings to maintain the
ability to perform wide accesses to memory and to assign work
at the granularity needed by the SIMD units.

Experimental measurements over a set of state-of-the-art
DNNs for image classification show that CNV improves
performance over a state-of-the-art accelerator from 24% to
55% and by 37% on average by targeting zero-valued operands
alone. While CNV incurs an area overhead of 4.49%, it im-
proves overall Energy Delay Squared (ED?) and Energy Delay
(ED) by 2.01x and 1.47 x on average respectively. By loosen-
ing the ineffectual operand identification criterion, additional
performance and energy improvements are demonstrated, more
so if a loss in accuracy is acceptable. Specifically, on average
performance improvements increase to 1.52x with no loss of
accuracy by dynamically eliminating operands below a per-
layer prespecified threshold. Raising these thresholds further
allows for larger performance gains by trading-off accuracy.

The rest of this manuscript is organized as follows: Sec-
tion II motivates CNV’s value-based approach to acceleration
for DNNs by reporting the fraction of multiplications where a
runtime calculated operand is zero. Section III presents the key
design choice for CNV, that of decoupling the multiplication
lanes in smaller groups by means of an example. Section IV
details the CNV architecture. Section V reports the exper-
imental results. Section VI comments on related work and
Section VII concludes.

II. MOTIVATION: PRESENCE OF ZEROES IN INTER-LAYER
DATA

CNYV targets the convolutional layers of DNNs. In DNNSs, as
Section V-B corroborates, convolutional layers dominate exe-
cution time as they perform the bulk of the computations [15].
For the time being it suffices to know that a convolutional
layer applies several three-dimensional filters over a three
dimensional input. This is an inner product calculation, that is,
it entails pairwise multiplications among the input elements,
or neurons and the filter weights, or synapses. These products
are then reduced into a single output neuron using addition.
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Fig. 1: Average fraction of convolutional layer multiplication
input neuron values that are zero.

The key motivating observation for this work is that in
practice, many of the neuron values turn out to be zero,
thus the corresponding multiplications and additions do not
contribute to the final result and could be avoided. Accord-
ingly, this section characterizes the fraction of input neurons
that are equal to zero in the convolutional layers of popular
DNNss that are publicly available in Modelzoo [16]. For these
measurements the DNNs were used to classify one thousand
of images from the Imagenet dataset [17]. Section V-A details
the networks and methodology followed.

Figure 1 reports the average total fraction of multiplication
operands that are neuron inputs with a value of zero across all
convolutional layers and across all inputs. This fraction varies
from 37% for nin, to up to 50% for cnnS and the average
across all networks is 44%. The error bars show little variation
across input images, and given that the sample set of 1,000
images is sizeable, the relatively large fraction of zero neurons
are due to the operation of the networks and not a property of
the input.

But why would a network produce so many zero neurons?
We hypothesize that the answer lies in the nature and structure
of DNNs. At a high level, DNNs are designed so that each
DNN Ilayer attempts to determine whether and where the input
contains certain learned ‘“features” such as lines, curves or
more elaborate constructs. The presence of a feature is encoded
as a positive valued neuron output and the absence as a zero-
valued neuron. It stands to reason that when features exist,
most likely they will not appear all over the input, moreover,
not all features will exist. DNNs detect the presence of features
using the convolutional layers to produce an output encoding
the likelihood that a feature exists at a particular position with
a number. Negative values suggest that a feature is not present.
Convolutional layers are immediately followed by a Rectifier,
or ReLU layer which lets positive values pass through, but
converts any negative input to zero.

While there are many zero-valued neurons, their position
depends on the input data values, and hence it will be chal-
lenging for a static approach to eliminate the corresponding
computations. In particular, there were no neurons that were
always zero across all inputs. Even, if it was possible to
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Fig. 2: The output neuron at position (0,0,0) or 0(0,0,0) is produced by applying the filter on a 2 x 2 x 2 window of the input
with origin n(0,0,0). Each synapse s(x,y,z) is multiplied by the corresponding input neuron n(x,y,z), e.g., n(0,0,0) x 5(0,0,0),
and n(0,1,0) x s(0,1,0), for a total of 2 x 2 x2 or eight products. The eight products are reduced into a single output neuron
using addition. Then the window is slide over by S first along the X dimension to produce o(1,0,0) using the neuron input
window at origin n(1,0,0). For example, now s(0,0,0) is multiplied with n(1,0,0) and s(1,1,0) with n(2,1,0). Once the first
dimension is exhausted, then the window slides by S along the Y dimension and starts scanning along the X dimension again,
and so on as the figure shows. In total, the result is a 2 x 2 x 1 output neuron. The depth is one since there is only one filter.
Parts (b) and (c) show a convolutional layer with two 2 x 2 x 2 filters. The output now is a 2 x 2 x 2 array, with each filter
producing one of the two planes or layers of the output. As part (b) shows, the first filter produces output elements o(x,y,0).
Part (c) shows that the second filter produces output neurons o(x,y,1).

eliminate neurons that were zero with high probability, there
would not be many. For example, only 0.6% of neurons are
zero with 99% probability. Accordingly, this work proposes
an architecture that detects and eliminates such computations
at runtime.

Since the time needed to compute a convolutional layer
increases mostly linearly with the number of elements pro-
cessed and since convolutional layers dominate execution time,
these measurements serve as an upper bound on the potential
performance improvement for an architecture that manages to
skip the computations corresponding to zero-valued neurons.

III. ENABLING ZERO SKIPPING:
A SIMPLIFIED EXAMPLE

Having shown that many of the neurons are zero, this
section explains the two key ideas behind CNV that enable it to
skip over the corresponding computations: 1) lane decoupling,
and 2) storing the input on-the-fly in an appropriate format that
facilitates the elimination of zero valued inputs. Section III-A
first describes the computations that take place in a convolution
layer identifying those that could be avoided when the input
neurons are zero. Since our goal is to improve upon the state-
of-the-art, Section III-B describes a state-of-the-art accelerator
architecture for DNNs whose processing units couple several
groups of processing lanes together into wide SIMD units.
Finally, Section III-C describes a basic CNV architecture
which decouples the processing lane groups enabling them to
proceed independently from one another and thus to skip zero-
valued neurons. A number of additional challenges arise once
the lane groups start operating independently. These challenges
along with the solutions that result in a practical, simple CNV
design are described in Section I'V-B.

A. Computation of Convolutional Layers

The operations involved in computing a CNN are of the
same nature as in a DNN. The main difference is that in

the former, weights are repeated so as to look for a feature
at different points in an input (i.e. an image). The input
to a convolutional layer is a 3D array of real numbers of
dimensions I, x I, X i. These numbers are the input data in
the first layer and the outputs of the neurons of the previous
layer for subsequent layers. In the remainder of this work, we
will call them input neurons. Each layer applies N filters at
multiple positions along x and y dimensions of the layer input.
Each filter is a 3D array of dimensions Fy x Fy, x i containing
synapses. All filters are of equal dimensions and their depth is
the same as the input neuron array’s. The layer produces a 3D
output neuron array of dimensions Oy X Oy X N. The output’s
depth is the same as the number of the filters.

To calculate an output neuron, one filter is applied over
a window, or a subarray of the input neuron array that has
the same dimensions as the filters F, x F, x i. Let n(x,y,2)
and o(x,y,z) be respectively input and output neurons, and
s/ (x,y,z) be synapses of filter f. The output neuron at position
(k,1,f), before the activation function, is calculated as follows:

F—1F—11-1
o(k,I,f) = Z Z Zsf(y,x,i)><n(y+|><S,x+k><S,i)
S~ y=0 x=0 =0~

out put
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window

There is one output neuron per window and filter. The filters
are applied repeatedly over different windows moving along
the X and Y dimensions using a constant stride S to produce
all the output neurons. Accordingly, the output neuron array
dimensions are O, = (I, —F;)/S+1, and O, = ([, — F,) /S+1.
Figure 2 shows a example with a 3 X 3 X 2 input neuron array,
a single 2 x 2 x 2 filter and unit stride producing an output
neuron array of 2 x2 x 1.

When an input neuron is zero the corresponding multipli-
cation and addition can be eliminated to save time and energy
without altering the output value.
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Fig. 3: Simplified state-of-the-art DNN unit: Example. The calculation of the complete filter would take one additional cycle,
only the first three cycles are shown here. The elements of both filters have the same values with opposite signs only for the
sake of clarity. a) A partial set of input neurons and synapses. b)-d) Three cycles of processing. Top part: which neurons
and synapses are being processed. Bottom part: unit processing. b) Cycle O: the first two neurons from NBin (1 and 0), are
multiplied with the respective synapses of the two filters, ((1,2) and (-1,-2)), each product pair per filter is reduced through the
adder and stored in NBout (1 and -1). The SB pointer advances by one and the neuron is discarded from NBin. ¢)-d) Cycles
1 and 2: The same sequence of actions for the next input neuron and filter synapse pairs. The NBout partial sums are read
and used as extra inputs to the adder tree making progress toward calculating the final output neurons.

B. The Simplified Baseline Architecture

The baseline architecture is based on the DaDianNao state-
of-the-art accelerator proposed by Chen et al. [6]. This section
explains via an example how a simplified unit of this archi-
tecture calculates a convolutional layer and why, as it stands,
it cannot skip over zero valued input neurons.

In Figure 3(a) a 3 X3 x 2 neuron array is convolved with
unit stride by two 2 x 2 x 2 filters producing a 2 X 2 X 2 output
neuron array. In Figure 3(b) the example unit comprises:
1) two neuron lanes, and 2) two filter lanes each containing
two synapse sublanes. Each neuron lane and synapse sublane
is fed respectively with a single element from an Input Neuron
Buffer (NBin) lane and a Synapse Buffer (SB) lane. Every
cycle, each neuron lane broadcasts its neuron to the two
corresponding synapse sublanes resulting into four pairs of
neurons and synapses, one per synapse sublane. A multiplier
per synapse sublane multiplies the neuron and synapse inputs.
An adder tree per filter lane reduces two products into a partial
sum that accumulates into an Output Neuron Buffer (NBout)
lane per filter.

Taking advantage of the structure of the layer computations,
the unit couples all neuron and filter lanes so that they proceed
in lock-step. This is an excellent decision if one considers only
the structure of the computation assuming that most if not all
computations ought to be performed. However, as is, this unit
cannot skip over zero neurons. In our example, the zeros in

both neuron lanes are unfortunately coupled with non-zero
neurons. There are four multiplications that could be safely
avoided potentially improving performance and energy.

C. The Simplified Cnvlutin Architecture

To exploit the significant fraction of zeroes in the neuron
stream, we rethink the decision to couple all neuron lanes
together. CNV decouples the neuron lanes allowing them to
proceed independently. Figure 4 shows the equivalent simpli-
fied CNV design and how it proceeds over two cycles. The
DaDianNao units are now split into 1) the back-end containing
the adder trees and NBout, and 2) the front-end containing
the neuron lanes, synapse sublanes, and multipliers. While
the back-end remains unchanged, the front-end is now split
into two subunits one per neuron lane. Each subunit contains
one neuron lane and a synapse sublane from each of the two
filters. Each cycle each subunit generates two products, one
per filter. The products are fed into the two adder trees as
before producing the partial output neuron sums. With this
organization the neuron lanes are now capable of proceeding
independently from one another and thus have the potential to
skip over zeroes.

Instead of having the neuron lanes actively skip over zero
neurons as they appear in the input, CNV opts for a dynamic
hardware approach where the zero neurons are eliminated at
the output of the preceding layer. As a result, only the non-zero
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Fig. 4: The simplified CNV unit produces the same output as Figure 3 in just two cycles. The elements of both filters have the
same values with opposite signs only for the sake of clarity. a) Organization details and Cycle 0: Subunit O reads the next NB
neuron value 1 and its offset 0. Using the offset it indexes the appropriate SB synapses 1 and -1 corresponding to filter 0 and
1. The resulting products 1 and -1 are added to output neurons for the corresponding filters using the dedicated adder trees.
Similarly subunit 1 will fetch neuron 2 with offset 1 and multiply with synapses 4 and -4 feeding the corresponding adder
trees for the filters. b) Cycle 1: The operation repeats as before with subunit O fetching neuron 3 at offset 2 and subunit 1
fetching neuron 4 at offset 2. The same result as in the baseline (48, -48) is calculated in only two cycles.

neurons appear in the NBin. For this purpose, the input neuron
array is stored in the Zero-Free Neuron Array format (ZFNAf)
which Section IV-B1 describes in detail. Here we present a
simplified version of this format explaining how it allows
individual neuron lanes to see only the non-zero neurons
proceeding independently from the other neuron lanes. Once
the zero neurons are eliminated, the key challenge is matching
each non-zero neuron with the appropriate SB entry. ZFNAf
augments each non-zero input neuron with an offset for this
purpose. For example, if the original stream of neurons would
have been (1,0,0,3) they will be encoded as ((1,0),(3,3)).
The offsets can adjust the SB sublane’s index so that it can
access the appropriate synapse column. CNV generates the
ZFNATf on-the-fly as described in Section IV-B4.

Decoupling the neuron lanes and encoding the input neuron
array are not the only techniques that are necessary to be
able to improve performance over the baseline accelerator.
Understanding these challenges and the design choices is
easier if presented as modifications over the baseline archi-
tecture. Accordingly, the next section reviews the baseline
architecture and operation, and then proceeds to present the
CNV architecture.

IV. THE CNVLUTIN ACCELERATOR

Section IV-A completes the description of the baseline state-
of-the-art accelerator CNV builds upon so that Section IV-B

can present the complete CNV design and justify the relevant
design choices.

A. Baseline Architecture

Section III-B described a simplified version of the baseline
unit which was able to process two input neurons and two
synapses of two filters at a time. CNV as presented in this
work, builds upon DaDianNao, the state-of-the-art accelerator
proposed by Chen et al. [6]. Each DaDianNao chip, or node,
contains 16 Neural Functional Units (NFUs), or simply units.
Figure 5(a) shows one such unit. Each cycle the unit processes
16 input neurons, 256 synapses from 16 filters, and produces
16 partial output neurons. In detail, the unit has 16 neuron
lanes, 16 filter lanes each with 16 synapse lanes (256 in total),
and produces 16 partial sums for 16 output neurons. The
unit’s SB has 256 lanes (16 x 16) feeding the 256 synapse
lanes, NBin has 16 lanes feeding the 16 neuron lanes, and
NBout has 16 lanes. Each neuron lane is connected to 16
synapse lanes, one from each of the 16 filter lanes. The unit
has 256 multipliers and 16 17-input adder trees (16 products
plus the partial sum from NBout). The number of neuron lanes
and filters per unit are design time parameters that could be
changed. All lanes operate in lock-step.

DaDianNao is designed with the intention to minimize off-
chip bandwidth and to maximize on-chip compute utilization.
The total per cycle synapse bandwidth required by all 16 units
of a node is 4K synapses per cycle, or 8TB/sec assuming a



NBin

Subunit 0

Nbin
Neuron |:|:|:’_ f il Neuron
from central ~ Lane0 S rom central Lane 0
cDRAM === H eDRAM 7 e
Neuron
Lne 1 ~ 61 S  Filter Synapse | |
SC( Lane 0 LaneO S
SB (eDRAM) N & H
O Filter Synapse
g S | | ] m Lane 15 Lane0 | | o
Filter  Lane 0 7)) ~ 65 3
Lane 0 Synepse H NBout 8 -
Lane 15 | | d Subunit 15 @ [tocentral
— Nbin eDRAM
H tocentral | from central gi:r?g
eDRAM
Synapse | | || eDRAM Offsets
Filter Lane0 H
Lane 15 <  Filter Synapse
Synapse >
Lane 15 | | = Lane 0 Lane 15 | . |
(@) ]
& o) L Fi|t19é Synapse | |
m Lane Lane 15
(7] 64

Fig. 5: Compute Units. a) DaDianNao NFU. b) CNV unit.

1GHz clock and 16-bit synapses. The total SB capacity is de-
signed to be sufficient to store all synapses for the layer being
processed (32MB or 2MB per unit) thus avoiding fetching
synapses from off-chip. Up to 256 filters can be processed
in parallel, 16 per unit. All inter-layer neuron outputs except
for the initial input and final output are also stored in an
appropriately sized central eDRAM, or Neuron Memory (NM).
NM is shared among all 16 units and is 4MB for the original
design. The only traffic seen externally is for the initial input,
for loading the synapses once per layer, and for writing the
final output.

Processing starts by reading from external memory: 1) the
filter synapses, and 2) the initial input. The filter synapses are
distributed accordingly to the SBs whereas the neuron input is
fed to the NBins. The layer outputs are stored through NBout
to NM and then fed to the NBins for processing the next
layer. Loading the next set of synapses from external memory
can be overlapped with the processing of the current layer
as necessary. Multiple nodes can be used to process larger
DNNs that do not fit in the NM and SBs available in a single
node. NM and the SBs are implemented using eDRAM as the
higher the capacity the larger the neurons and filters that can
be processed by a single chip without forcing external memory
spilling and excessive off-chip accesses.

1) Processing Order in DaDianNao: Figure 6(a) shows
how the DaDianNao architecture processes an input neuron
array applying 256 filters simultaneously. Each unit processes
16 filters, with unit O processing filters O through 15 and
unit 15 processing filters 240 through 255. For simplicity,
the figure only shows the position of the elements on the
i dimension (for example, the position (0,0,15) of filter 7
would be shown as s?S). Every cycle, a fetch block of 16
input neurons (each 16-bits long)f to all 16 units. The fetch
block contains one neuron per synapse lane for each of the 16
filter lanes per unit. For example, in cycle 0, the fetch block

will contain neurons n(0,0,0) through n(0,0,15). Neuron
1n(0,0,0) will be multiplied in unit 0 with synapses s°(0,0,0)
through s'3(0,0,0), and with synapses s°4°(0,0,0) though
§2>3(0,0,0) in unit 15. Neuron 7(0,0,1) is multiplied with
synapses s(0,0,1) though s'3(0,0,1) in unit 0, and so on.
The synapses are stored in the SBs in the order shown in the
figure, so that the units can fetch the appropriate synapses in
parallel. For example, the first entry (column) of SB in Unit O
contains the following 256 synapses: s°(0,0,0) —s°(0,0, 15),
..., $1°(0,0,0) —s'3(0,0,15).

Once the current window has been processed, the next
window can be easily initiated since the location where the
corresponding neurons start can be directly calculated given
their coordinates. Since the window has to be processed by all
filters, other work assignments are possible. The assignment
chosen interleaves the input across lanes at a neuron level as
it can also be seen on the figure. Since no attempt is made
to skip over zeroes, a single 16-neuron wide fetch from NM
can provide work for all lanes across all units achieving 100%
utilization.

B. Cwnvlutin Architecture

Figure 5(b) shows a CNV unit that offers the same compu-
tation bandwidth as a DaDianNao unit. As per the description
of Section III-C, the front-end comprising the neuron lanes
and the corresponding synapse lanes is partitioned into 16
independently operating subunits, each containing a single
neuron lane and 16 synapse lanes. Each synapse lane processes
a different filter for a total of 16. Every cycle, each subunit
fetches a single (neuron, offset) pair from NBin, uses the offset
to index the corresponding entry from its SBin to fetch 16
synapses and produces 16 products, one per filter. The backend
is unchanged. It accepts the 16 x 16 products from 16 subunits
which are reduced using 16 adder trees. The adder trees
produce 16 partial output neurons which the unit accumulates
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Fig. 6: Processing order and work assignment in a) baseline accelerator and b) CNV.

using 64 NBout entries. The subunit NBin is 64 entries deep
with each entry containing a 16-bit fixed-point value plus
an offset field. The total SB capacity remains at 2MB per
unit as per the original DaDianNao design, with each subunit
having an SB of 128KB. Each subunit SB entry contains
16 x 16 bits corresponding to 16 synapses. In summary, each
subunit corresponds to a single neuron lane and processes
16 synapses, one per filter. Collectively, all subunits have 16
neuron lanes, 256 synapse lanes and produce 16 partial output
neurons each from a different filter.

The CNV units can be used to process both encoded and
conventional neuron arrays. A single configuration flag set by
software for each layer controls whether the unit will use the
neuron offset fields.

There are several challenges that have to be addressed for
the CNV design to improve performance over the baseline: 1)
Generating the encoded neuron arrays on-the-fly; 2) Keeping
the units and all lanes busy; 3) Maintaining orderly, wide
accesses to the central eEDRAM. The key to overcoming these
challenges lies in the format used to encode the input neuron
arrays and in the way the work is divided across units.
The rest of this section presents and justifies these choices.
Section IV-B1 presents the format used for the input neuron
array. Section IV-B2 explains how work is assigned across the
various units and subunits. Section IV-B3 explains how CNV
maintains wide NM accesses. Section IV-B4 presents how
CNV generates the neuron array format used by the units on-
the-fly. Finally, Section IV-B5 explains how the units process
different windows.

1) The Zero-Free Neuron Array Format: Figure 7 shows
the Zero-Free Neuron Array format (ZFNAf) that enables
CNV to avoid computations with zero-valued neurons. As
Section III-C explained, only the non-zero neurons are stored,
each along with an offset indicating its original position. The
ZFNAf allows CNV to move the decisions of which neurons
to process off the critical path and to place them at the end
of the preceding layer. Accordingly, the ZFNAf effectively

implements what would have otherwise been control flow
decisions.

The ZFNAf encoding bares some similarity to the Com-
pressed sparse row (CSR) format [18]. However, CSR, like
most sparse matrix formats that target matrices with extreme
levels of sparsity have two goals: store only the non-zero
elements and reduce memory footprint, ZFNAf only shares
the first. In CSR, it is easy to locate where each row starts;
however, to keep units busy, CNV allows direct indexing at
a finer granularity sacrificing any memory footprint savings.
Specifically, ZFNAf encodes neurons as (value, offset) pairs in
groups called bricks. Each brick corresponds to a fetch block
of the DaDianNao design, that is an aligned, continuous along
the input features dimension i group of 16 neurons, i.e., they all
have the same x and y coordinates. Bricks are stored starting
at the position their first neuron would have been stored in
the conventional 3D array format adjusted to account for the
offset fields and are zero padded.

This grouping has two desirable properties: 1) It maintains
the ability to index into the neuron array at a brick granularity
using just the coordinates of the first neuron of the brick.
2) It keeps the size of the offset field short and thus reduces
the overhead for storing the offsets. The first property allows
work to be assigned to subunits independently and also allows
CNV to easily locate where windows start. As Section IV-B2
will explain, bricks enable CNV to keep all subunits busy and
to proceed independently of one another and thus skip over
zeroes or start processing a new window as needed. Figure 7
shows an example of the ZFNATf. Since CNV uses bricks of 16
neurons, the offset fields need to be 4-bit wide, a 25% capacity
overhead for NM or 1MB for the studied configuration. Given
that the bulk of the area is taken up by the SBs (32MB),
overall the resulting area overhead proves small at 4.49%
(Section V-C).

Section IV-B4 explains how the neuron arrays are encoded
in ZFNAf on-the-fly. Before doing so, however, it is necessary
to explain how CNV processes a neuron array encoded in this
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Fig. 7: Top: ZFNAf for 4-element bricks. CNV uses 16-
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2) Processing Order in CNV: As Section IV-A1 explained,
DaDianNao fetches a single fetch block of 16 neurons per
cycle which it broadcasts to all 16 units. This blocks contains
work for all synapse lanes across 256 filters. Unfortunately, the
same distribution of work across neuron lanes is not sufficient
to keep all units busy for CNV. As Figure 6(b) shows, a fetch
block in ZFNATf contains a single brick which with the baseline
work assignment would contain work for all neuron lanes only
if the corresponding original neuron array group contained no
ZEero neurons.

In order to keep the neuron lanes busy as much as possible,
CNV assigns work differently to the various neuron lanes.
Specifically, while DaDianNao, as originally described, used
a neuron interleaved assignment of input neurons to neuron
lanes, CNV uses a brick interleaved assignment (which is
compatible with DaDianNao as well). As Figure 6(b) shows,
CNYV divides the window evenly into 16 slices, one per neuron
lane. Each slice corresponds to a complete vertical chunk of
the window (all bricks having the same starting z coordinate).
Each cycle, one neuron per slice is fetched resulting into
a group of 16 neurons one per lane thus keeping all lanes
busy. For example, let e(x,y,z) be the (neuron,offset) pair
stored at location (x,y,z) of an input array in ZFNAf. In
cycle 0, the encoded neurons at position ¢(0,0,0), ¢(0,0,16),
..., €(0,0,240) will be fetched and broadcast to all units and
processed by neuron lanes O through 15, respectively. As long
as all 16 bricks have a second non-zero neuron, in cycle 1,
€(0,0,1), €(0,0,17), ..., €(0,0,241) will be processed. If, for
example, brick 0 had only one non-zero neuron, in the next
cycle the first neuron that will be fetched will be e(1,0,0)
assuming an input neuron depth i of 256.

Since each neuron lane proceeds independently based on
how many non-zero elements each brick contains, it is neces-
sary to have a different fetch pointer per neuron lane. A naive
implementation would perform 16 single neuron accesses per
cycle, unduly burdening the NM. Section IV-B3 presents a
simple extension that requires the same number of 16-neuron-
wide and aligned NM accesses as DaDianNao.

Since the order in which the input neurons are assigned to
neuron lanes in the units has changed, it is also necessary to
change the order in which the synapses are stored in the SBs
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as the figure shows. For example, in cycle 0, if j is the offset
of ¢(0,0,0), Subunit 0 of Unit 0 will need s°(0,0, ;) through
51%(0,0, j), Subunit 15 of Unit 0, will need s'>(0,0,240 + ;)
through s'5(0,0,240 + j), and Subunit 0 of Unit 15 will
need to s24°(0,0, j) through s>33(0,0, ;). This proves to be
equivalent to transposing the SB store order per subunit. Since
the synapses are known in advance this rearrangement can be
done statically in software. Thus, accessing the appropriate
synapses in parallel per subunit is straightforward.

This work assignment does not change the output neuron
values that each unit generates which remain identical to
DaDianNao. The assignment only changes the order in which
the input neurons are processed to produce an output neuron.

3) The Dispatcher: To avoid performing 16 independent,
single-neuron-wide NM accesses per cycle, CNV uses a dis-
patcher unit that makes 16-neuron wide accesses to NM
while keeping all neuron lanes busy. For this purpose, the
subarrays the NM is naturally composed of are grouped into
16 independent banks and the input neuron slices are statically
distributed one per bank. While the dispatcher is physically
distributed across the NM banks, explaining its operation is
easier if it is thought of as a centralized unit.

Figure 8 shows that the dispatcher has a 16-entry Brick
Buffer (BB) where each entry can hold a single brick. Each
BB entry is connected to one NM bank via a 16-neuron-wide
bus and feeds one of the neuron lanes across all units via
a single-neuron-wide connection. For example, BB[0] accepts
neuron bricks from NM bank O and can broadcast any of its
neurons to neuron lane O in all units. Initially, the dispatcher
reads in parallel one brick from each bank for a total of 16
neuron bricks. In subsequent cycles, the dispatcher broadcasts
the non-zero neurons, a single neuron from each BB entry at
a time, for a total of 16 neurons, one per BB entry and thus
per neuron lane each cycle. Before all the non-zero neurons of
a brick have been sent to the units, the dispatcher fetches the
next brick from the corresponding NM bank. To avoid stalling
for NM’s response, the fetching of the next in processing
order brick per bank can be initiated as early as desired since
the starting address of each brick and the processing order
are known in advance. Since the rate at which each BB will
drain will vary depending on the number of non-zero neurons
encountered per brick, the dispatcher maintains a per NM bank
fetch pointer.

The dispatcher may issue up to 16 NM requests concur-
rently, one per slice/bank. In the worst case, when bricks
happen to have only zero valued neurons, an NM bank will



have to supply a new brick every cycle. This rarely happens
in practice, and the NM banks are relatively large and are
sub-banked to sustain this worst case bandwidth.

In DaDianNao, a single 16-neuron wide interconnect is used
to broadcast the fetch block to all 16 units. The interconnect
structure remains unchanged in CNV but the width increases
to accommodate the neuron offsets.

4) Generating the ZFNAf: The initial input to the DNNs
studied are images which are processed using a conventional
3D array format. The first layer treats them as a 3-feature deep
neuron array with each color plane being a feature. All other
convolutional layers use the ZFNAf which CNV generates on-
the-fly at the output of the immediately preceding layer.

In CNV as in DaDianNao, output neurons are written to NM
from NBout before they can be fed as input to another layer.
Since the eDRAM NM favors wide accesses, these writes
remain 16 neurons wide. However, before writing to the NM,
each 16-neuron group is encoded into a brick in ZFNAf. This
is done by the Encoder subunit. One encoder subunit exists
per CNV unit.

While CNV processes the input neuron array in an order
different than DaDianNao, CNV’s units still produce the same
output neurons as DaDianNao. Recall, that each output neuron
is produced by processing a whole window using one filter.
The assignments of filters to units remain the same in CNV.
Accordingly, the output neurons produced by a CNV unit
correspond to a brick of the output neuron array. All the
encoder unit has to do, is pack the non-zero neurons within
the brick.

The Encoder uses a 16-neuron input buffer (IB), a 16-
encoded-neuron output buffer (OB), and an offset counter.
Conversion begins by reading a 16-neuron entry from NBout
into IB while clearing all OB entries. Every cycle the encoder
reads the next neuron from IB and increments its offset
counter. The neuron is copied to the next OB position only if
it is nonzero. The current value of the offset counter is also
written completing the encoded neuron pair. Once all 16 IB
neurons have been processed, the OB contains the brick in
ZFNMT and can be sent to NM. The same interconnect as in
DaDianNao is used widened to accommodate the offset fields.
The encoder can afford to do the encoding serially since: 1)
output neurons are produced at a much slower rate, and 2) the
encoded brick is needed for the next layer.

5) Synchronization: In DaDianNao, all units process neu-
rons from the same window and processing the next window
proceeds only after the current window is processed. CNV
follows this approach avoiding further modifications to the
unit’s back-end and control. As neuron lanes process their
bricks independently, unless all slices have exactly the same
number of non-zero neurons, some neuron lanes will finish
processing their window slice earlier than others. These neuron
lanes will remain idle until all other lanes complete their
processing.

’ Network ‘ Conv. Source
Layers

alex 5 Caffe: bvlc_reference_caffenet
google 59 Caffe: bvlc_googlenet
nin 12 Model Zoo: NIN-imagenet
vggl9 16 Model Zoo: VGG 19-layer
cnnM 5 Model Zoo: VGG_CNN_M_2048
cnnS 5 Model Zoo: VGG_CNN_S

TABLE I: Networks used

V. EVALUATION

This section evaluates the performance, area and power of
the CNV architecture demonstrating how it improves over
the state-of-the-art DaDianNao accelerator [6]. Section V-A
details the experimental methodology. Section V-B evaluates
the performance of CNV. Sections V-C and V-D evaluate
the area and power of CNV, and Section V-E considers the
removal of non-zero neurons.

A. Methodology

The evaluation uses the set of popular [3], and state-of-
the-art convolutional neural networks [19][16][20][21] shown
in Table I. These networks perform image classification on
the ILSVRC12 dataset [19], which contains 256 x 256 images
across 1000 classes. The experiments use a randomly selected
set of 1000 images, one from each class. The networks are
available, pre-trained for Caffe, either as part of the distribution
or at the Caffe Model Zoo [22].

We created a cycle accurate simulator of the baseline
accelerator and CNV. The simulator integrates with the Caffe
framework [23] to enable on-the-fly validation of the layer
ouput neurons. The area and power characteristics of CNV and
DaDianNao are measured with synthesized implementations.
The two designs are implemented in Verilog and synthesized
via the Synopsis Design Compiler [24] with the TSMC 65nm
library. The NBin, NBout, and CNV offset SRAM buffers were
modeled using the Artisan single-ported register file memory
compiler [25] using double-pumping to allow a read and write
per cycle. The eDRAM area and energy was modeled with
Destiny [26].

B. Performance

Figure 9 shows the speedup of CNV over the baseline.
The first bar (CNV) shows the speedup when only zero
neurons are considered, while the second bar (CNV + Pruning)
shows the speedup when additional neurons are also skipped
without affecting the network overall accuracy as Section V-E
describes. The rest of this section focuses on the first bar.

On average CNV improves performance by 37%, at most by
55% (cnnS) and at least by 24% (google). The performance
improvements depend not only on the fraction of zero-valued
neurons but also on the fraction of overall execution time taken
by the corresponding layers (CNV does not accelerate the first
layer) and on the potential lost when subunits idle waiting for
the current window to be processed by all others. While google
exhibits a higher than average fraction of zero neurons, its first
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Fig. 9: Speedup of CNV over the baseline.

layer has a relatively longer runtime than the other networks
accounting for 35% of the total runtime vs. 21% on average as
measured on the baseline. Google also spends a higher portion
of its timing computing other layers.

The performance results for the networks can be better
understood by looking at the breakdown of where time goes
in the baseline (b) and CNV (c) per network as shown in
Figure 10. Execution activity is divided into the following
categories: 1) processing non-convolutional layers (other),
2) executing the first convolutional layer (convl), 3) process-
ing non-zero neurons (non-zero), 4) processing zero neurons
(zero), and 5) idling (stall) as explained in Section IV-BS. It
is not possible to assign time units, that is cycles, uniquely
to each category; For example, during the same cycle in the
baseline some neuron lanes may be processing zero neurons
while others maybe processing non-zero ones. In addition,
in CNV some neuron lanes may be idle waiting for all
others to finish processing the current window. Accordingly,
the figure reports a breakdown of execution activity which
accounts for each neuron lane (equivalent to a subunit in CNV)
separately per cycle. The total number of events accounted
for is units x %"m—“ x cycles, resulting in a metric that is
directly proportional to execution time and that allows each
event to be assigned to a single category.

The results corroborate that the convolutional layers which
include the first layer, dominate execution activity across all
networks on the baseline. The relatively small fraction of
activity where CNV subunits are idle demonstrates that CNV
manages to capture most of the potential that exists from
eliminating zero-valued neurons.

C. Area

Figure 11 shows the area breakdown of the baseline and
CNV architectures. Overall, CNV increases total area by only
4.49% over the baseline, a small overhead given the measured
performance improvements. Area compares across the two
architectures as follows: 1) The filter storage (SB) dominates
total area for both architectures. While CNV partitions the
SBin across subunits, the overhead for doing so is negligible
as each chunk remains large (128KB per subunit). 2) CNV
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Fig. 10: Breakdown of Execution Activity (see main text for
a definition). CNV (c) is normalized to the baseline (b).
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increases the neuron memory (NM) area by 34% since it a)
requires 25% more storage storage for the offsets and b) uses
16 banks. 3) The additional cost of CNV in the unit logic is
negligible. 4) CNV increases the SRAM area by 15.8%. This
is due to the additional buffer space dedicated to the storage
of the offsets.

D. Power

Figure 12 shows a breakdown of average power consump-
tion in the baseline and CNV. Three bars are shown for
each architecture corresponding to static, dynamic and overall
power. Each category is further divided across the NM, SB,
logic, and SRAM. The logic includes the datapath, control
logic, the encoder and the memory dispatcher, while SRAM
includes NBin and NBout. NM power is 53% higher in CNV
than the baseline. This is expected, as NM is wider and
banked. However, NM only accounts for 22% of the total chip
power in the baseline so the overall power cost is small. The
overhead of splitting the NBin and adding logic in the unit
only increases its power by 2%. Reorganizing SB has little
impact on its power cost and since synapses are not read when
a subunit is stalled, the dynamic power of SB decreases by
18%. Overall, the 32MB of SB account for most of the total
power consumption, and the savings in dynamic SB energy
outweigh the overheads in NM, logic and SRAM. As a result,
The power cost of CNV is 7% lower than the baseline on
average.
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1) EDP and ED?P: This section reports the Energy-Delay
Product (EDP) and Energy-Delay Squared Product (ED?P) for
the two architectures. While there is no unanimous consensus
on how to properly compare two computing systems taking in
consideration energy and performance, two commonly used
metrics are the EDP [27] and ED*P (ET?) [28]. Figure 13
reports the EDP and ED?P improvement of CNV over the
baseline. On average CNV’s EDP improves by 1.47x and
ED?P by 2.01x.

E. Removing More Ineffectual Neurons

Pruning is a common computation reduction technique in
neural networks that removes ineffectual synapses or neu-
rons [29], [30]. CNV’s architecture allows for a form of
dynamic neuron pruning by setting neuron values to zero so
that their computation is skipped. To demonstrate this capa-
bility, this section considers a simple pruning approach where
near zero neurons are set to zero when their magnitude is
below a pre-specified, per-layer threshold. The baseline design
incorporates comparators for max pooling which CNV reuses
for threshold comparisons. The threshold value is determined
in advance and is communicated with the layer meta-data, such
as input dimensions, padding and stride.

To find a near optimal per-layer threshold configuration,
exploration is done using gradient descent, similar to the
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[ Network | Thresholds per layer | Speedup |
alex 8,4,8,16,8 1.53
nin 4,8,16,16,16,16,32,32,16,8,16,4 1.39
google 4,4,816,4,4,4,4,222 1.37
cnnM 8,2,4,4,2 1.56
cnnS 4.4.8,4,4 1.75
vggl9 8,4,16,64,64,64,64,128,256, 1.57

256,256,128,64,32,16,16

TABLE II: Lossless Ineffectual Neuron Thresholds
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Fig. 14: Accuracy vs. Speedup trade-off from pruning neurons

approach used in previous work for finding per layer precision
requirements [31]. For simplicity, power of two thresholds
were explored, however, the hardware could support any
fixed-point threshold. Network accuracy was measured across
5000 images from the ImageNet [17] validation set, sampled
uniformly across each class.

Figure 14 shows the trade-off between accuracy (y-axis) and
performance (x-axis) when neurons are dynamically pruned
using per-layer thresholds. The pareto frontiers of the explored
configurations for each network are shown. The leftmost point
for each network corresponds to CNV in Figure 9 where only
zero-valued neurons were removed. Generally, all networks
exhibit an initial region where neurons can be pruned without
affecting accuracy. This region is shown with a solid line in
Figure 14. The maximum speedup without loss of accuracy is
also reported as (CNV + Pruning) in Figure 9. Table II shows
the the thresholds that yield the highest speedup without a
loss in accuracy. On average, pruning increases the speedup to
1.52x%, an increase of 11%. For google, thresholds are instead
specified per ’inception module’ [32].

For all networks, performance can improve further but at
an accuracy loss with accuracy decaying exponentially with
the performance improvement. For example, tolerating a drop
in relative accuracy of up to 1% further increases the average
performance improvement to 1.60x over the baseline, whereas
allowing a drop in relative accuracy of up to 10% yields a
1.87x speedup over the baseline.



A limitation of the current study is that it does not prove
that the specific ineffectual neuron identification thresholds
generalize over other inputs. In particular, a concern is whether
the neurons that are removed happen to not be excited for the
given input set. This concern bears similarity to the general
task that DNNs aim to tackle: classify previously unseen inputs
using synapses learned over another set of images. To increase
confidence in the conclusions drawn in this section, experi-
ments were repeated with different input data sets and it was
found that the specific accuracy vs. performance measurements
do vary but not significantly.

VI. RELATED WORK

CNYV bears similarities to related graphics processor propos-
als for improving efficiency of control-flow intensive compu-
tation [9], [10], [11], [12], [13], [14]. These works improve
efficiency by filling idle SIMT/SIMD (single instrution mul-
tiple threads/single instruction multiple data) lanes caused by
control-flow divergence with useful computation from other
threads, whereas CNV replaces idle lanes known to produce
zeroes with useful computation from later neurons. Temporal
SIMT [12], [13], [14], which remaps spatially parallel SIMT
execution groups temporally over a single SIMT lane, bears
the most similarity to CNV. Temporal SIMT flips the warps
on their side such that the threads from a single warp are
executed on a single execution unit one after another. With this
arrangement each execution unit operates on a separate warp,
instead of all threads in a single warp. If there is no branch
divergence, the whole warp (e.g., 32 threads) will execute this
same instruction in the single execution unit. If there is branch
divergence, then fewer threads will execute this instruction. In
this way, branch divergence does not lead to idle SIMD lanes.
Similarly, CNV removes zero, or idle, computations by rotating
filter computations mapped spatially across multiple lanes
temporally on a single lane. Computations that would have
produced zeroes instead reduce the number of computations
per window.

Qadeer et al. proposed the Convolution Engine (CE) [33],
which in contrast to CNV, trades performance for a high
degree of flexibility. CE is a system which can be programmed
to target the convolution-like data-flow algorithms present in
a wide range of applications.

Many previous works have looked at accelerating sparse
vector matrix operations using FPGAs, GPUs, or other many-
core architectures [34], [35], [36], [37], [38], [39], [40],
[41]. Traditionally sparse matrices naturally appear in many
engineering applications. There are several differences with
the problem studied here and the approach followed. 1) The
majority of these implementations operate on or modify one
of the many different sparse matrix formats [42] which often
incur a high per element overhead that is acceptable only for
highly sparse matrices. Additionally, the matrices considered
in these works exhibit very high sparsity, typically around
99%. While past work has evaluated alternative sparse storage
formats, it still targets high sparsity matrices [36], [37].
Moreover, some of these representations exploit other matrix
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properties such as most of the values being on the diagonal, or
being clustered, or parts of the matrix being symmetric. This
work considered much lower sparsity between 40-50% zeroes
(Figure 1) favoring a different representation and approach.
2) CNV is designed to operate on both encoded and conven-
tional 3D arrays. 3) CNV is designed for the specific access
and computation structure of convolutional layers of DNNs
which differs from that of traditional engineering applications.
Specifically, there is a difference in the number and size of the
arrays being manipulated, in the sparsity and general matrix
structure, and in where computations need to start at.

The Efficient Inference Engine (EIE) [43] performs in-
ference using a recently proposed compressed network
model [44] and accelerates the inherent modified sparse
matrix-vector multiplication. Eyeriss [45] is a low power, real-
time DNN accelerator that exploits zero valued neurons by
using run length coding for memory compression. Eyeriss
gates zero neuron computations to save power but it does not
skip them as CNV does.

VII. CONCLUSION

Motivated by the observation that on average 44% of the
run-time calculated neurons in modern DNNs are zero, this
work advocates a value-based approach to accelerating DNNs
in hardware and presents the CNV DNN accelerator architec-
ture. While CNV is demonstrated as a modification over the
state-of-the-art DNN accelerator DaDianNao, the key ideas
that guided the CNV design can have broader applicability.

The CNV design serves as motivation for additional ex-
ploration such as combining CNV with approaches that ex-
ploit other value properties of DNNs. such as the variable
precision requirements of DNNs [46]. Furthermore, CNV’s
design principles and a valued-based approach can be applied
in network training, on other hardware and software network
implementations, or on other tasks such as Natural Language
Processing.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and
suggestions. We also thank the Toronto Computer Architecture
group members for their feedback. This work was supported
by an NSERC Discovery Grant, an NSERC Discovery Accel-
erator Supplement and an NSERC PGS-D Scholarship.

REFERENCES

[1] K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36, no. 4, pp. 193-202, 1980.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436444, 05 2015.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural In-
formation Processing Systems 25 (F. Pereira, C. Burges, L. Bottou, and
K. Weinberger, eds.), pp. 1097-1105, Curran Associates, Inc., 2012.
A. Y. Hannun, C. Case, J. Casper, B. C. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y.
Ng, “Deep speech: Scaling up end-to-end speech recognition,” CoRR,
vol. abs/1412.5567, 2014.

[2]
[3]

[4]



[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in Proceedings of the 19th international conference
on Architectural support for programming languages and operating
systems, 2014.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
N. Sun, and O. Temam, “DaDianNao: A machine-learning supercom-
puter,” in Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, pp. 609—-622, Dec 2014.

Y. Tian, S. M. Khan, D. A. Jiménez, and G. H. Loh, “Last-level
cache deduplication,” in Proceedings of the 28th ACM International
Conference on Supercomputing, ICS *14, (New York, NY, USA), pp. 53—
62, ACM, 2014.

J. E. Smith, G. Faanes, and R. Sugumar, “Vector instruction set support
for conditional operations,” in ISCA, 2000.

W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic warp
formation and scheduling for efficient GPU control flow,” in Proceedings
of the 40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 407-420, 2007.

W. W. Fung and T. M. Aamodt, “Thread block compaction for effi-
cient SIMT control flow,” in High Performance Computer Architecture
(HPCA), 2011 IEEE 17th International Symposium on, pp. 25-36, 2011.
V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and two-
level warp scheduling,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 308-317, 2011.

Y. Lee, R. Krashinsky, V. Grover, S. W. Keckler, and K. Asanovic,
“Convergence and scalarization for data-parallel architectures,” in Code
Generation and Optimization (CGO), 2013 IEEE/ACM International
Symposium on, pp. 1-11, 2013.

R. Krashinsky, “Temporal simt execution optimization,” Feb. 14 2013.
US Patent App. 13/209,189.

S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs
and the Future of Parallel Computing,” Micro, IEEE, vol. 31, no. 5,
pp- 7-17, 2011.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar,
“An early resource characterization of deep learning on wearables,
smartphones and internet-of-things devices,” in Proceedings of the 2015
International Workshop on Internet of Things Towards Applications, 1oT-
App ’15, (New York, NY, USA), pp. 7-12, ACM, 2015.

M. Lin, Q. Chen, and S. Yan, “Network in network,’
vol. abs/1312.4400, 2013.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
arXiv:1409.0575 [cs], Sept. 2014. arXiv: 1409.0575.

Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2nd ed., 2003.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), 2015.

K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” CoRR,
vol. abs/1405.3531, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

Y. Jia, “Caftfe model zoo,” https://github.com/BVLC/caffe/wiki/Model-
Zoo, 2015.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.
Synopsys, “Design Compiler.” http://www.synopsys.com/Tools/
Implementation/RTLSynthesis/ DesignCompiler/Pages/default.aspx.
ARM, “Artisan Memory Compiler.”
http://www.arm.com/products/physical-ip/embedded-memory-
ip/index.php.

M. Poremba, S. Mittal, D. Li, J. Vetter, and Y. Xie, “Destiny: A tool for
modeling emerging 3d nvm and edram caches,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2015, pp. 1543-1546,
March 2015.

CoRR,

13

(27]

(28]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

R. Gonzalez and M. Horowitz, “Energy dissipation in general pur-
pose microprocessors,” Solid-State Circuits, IEEE Journal of, vol. 31,
pp. 1277-1284, Sep 1996.

A. Martin, M. Nystrm, and P. Pnzes, “Et2: A metric for time and energy
efficiency of computation,” in Power Aware Computing (R. Graybill and
R. Melhem, eds.), Series in Computer Science, pp. 293-315, Springer
US, 2002.

Y. L. Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,”
in Advances in Neural Information Processing Systems, pp. 598-605,
Morgan Kaufmann, 1990.

B. Hassibi, D. G. Stork, and G. J. Wolff, “Optimal Brain Surgeon and
general network pruning,” in, IEEE International Conference on Neural
Networks, 1993, pp. 293-299 vol.1, 1993.

P. Judd, J. Albericio, T. Hetherington, T. Aamodt, N. Enright Jerger,
R. Urtasun, and A. Moshovos, “Reduced-Precision Strategies for
Bounded Memory in Deep Neural Nets, arXiv:1511.05236v4 [cs.LG]
) arXiv.org, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
CoRR, vol. abs/1409.4842, 2014.

W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency and
flexibility in specialized computing,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA *13, (New
York, NY, USA), pp. 24-35, ACM, 2013.

L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th International
Symposium on Field-programmable Gate Arrays, FPGA °05, (New York,
NY, USA), pp. 63-74, ACM, 2005.

M. deLorimier and A. DeHon, “Floating-point sparse matrix-vector
multiply for FPGAs,” in Proceedings of the 2005 ACM/SIGDA 13th
International Symposium on Field-programmable Gate Arrays, FPGA
’05, (New York, NY, USA), pp. 75-85, ACM, 2005.

S. Jain-Mendon and R. Sass, “A hardware—software co-design approach
for implementing sparse matrix vector multiplication on FPGAs,” Mi-
croprocessors and Microsystems, vol. 38, no. 8, pp. 873-888, 2014.

D. Gregg, C. Mc Sweeney, C. McElroy, F. Connor, S. McGettrick,
D. Moloney, and D. Geraghty, “FPGA based sparse matrix vector
multiplication using commodity dram memory,” in Field Programmable
Logic and Applications, 2007. FPL 2007. International Conference on,
pp. 786-791, IEEE, 2007.

Y. Zhang, Y. H. Shalabi, R. Jain, K. K. Nagar, and J. D. Bakos, “FPGA
vs. GPU for sparse matrix vector multiply,” in Field-Programmable
Technology, 2009. FPT 2009. International Conference on, pp. 255-262,
IEEE, 2009.

N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication
on CUDA,” tech. rep., Nvidia Technical Report NVR-2008-004, Nvidia
Corporation, 2008.

F. Vazquez, G. Ortega, J.-J. Fernandez, and E. M. Garzén, “Improving
the performance of the sparse matrix vector product with GPUs,” in
Computer and Information Technology (CIT), 2010 IEEE 10th Interna-
tional Conference on, pp. 1146-1151, IEEE, 2010.

X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, “Efficient sparse
matrix-vector multiplication on x86-based many-core processors,” in
Proceedings of the 27th international ACM conference on International
conference on supercomputing, pp. 273-282, ACM, 2013.

Y. Saad, “SPARSKIT: A basic tool kit for sparse matrix computation,”
Tech. Rep. CSRD TR 1029, University of Illinois, 1990.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” CoRR, vol. abs/1602.01528, 2016.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
CoRR, vol. abs/1510.00149, 2015.

Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” in [EEE International Solid-State Circuits Conference,
ISSCC 2016, Digest of Technical Papers, pp. 262-263, 2016.

P. Judd, J. Albericio, and A. Moshovos, “Stripes: Bit-serial deep neural

network computing,” Computer Architecture Letters, 2016.



