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Abstract

This paper tackles the challenges of obtaining more efficient

data center computing while maintaining low latency, low

cost, programmability, and the potential for workload con-

solidation. We introduce GNoM, a software framework en-

abling energy-efficient, latency bandwidth optimized UDP

network and application processing on GPUs. GNoM han-

dles the data movement and task management to facilitate

the development of high-throughput UDP network services

on GPUs. We use GNoM to develop MemcachedGPU, an

accelerated key-value store, and evaluate the full system on

contemporary hardware.

MemcachedGPU achieves ∼10 GbE line-rate processing

of ∼13 million requests per second (MRPS) while deliver-

ing an efficiency of 62 thousand RPS per Watt (KRPS/W)

on a high-performance GPU and 84.8 KRPS/W on a low-

power GPU. This closely matches the throughput of an opti-

mized FPGA implementation while providing up to 79% of

the energy-efficiency on the low-power GPU. Additionally,

the low-power GPU can potentially improve cost-efficiency

(KRPS/$) up to 17% over a state-of-the-art CPU imple-

mentation. At 8 MRPS, MemcachedGPU achieves a 95-

percentile RTT latency under 300µs on both GPUs. An of-

fline limit study on the low-power GPU suggests that Mem-

cachedGPU may continue scaling throughput and energy-

efficiency up to 28.5 MRPS and 127 KRPS/W respectively.

Categories and Subject Descriptors H.2.4 [Database

Management]: Systems—Parallel databases; D.4.4 [Oper-

ating Systems]: Communications Management—Network

communication

Keywords Data center, key-value store, GPU
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1. Introduction

Data centers contain large numbers of servers, memory, net-

work hardware, non-volatile storage and cooling that, to-

gether, can consume tens of megawatts. Reducing energy

consumption is therefore a key concern for data center op-

erators [8]. However, typical data center workloads often

have strict performance requirements, which makes obtain-

ing energy efficiency through “wimpy” nodes [4] that give

up single-thread performance nontrivial [24, 49]. This has

increased the focus on specialized hardware accelerators,

such as ASICs and FPGAs, to improve the performance of

individual servers [47, 49, 58]. Although ASICs can provide

higher efficiencies than reprogrammable FPGAs [34], gen-

erality is important in the data center to support many con-

stantly changing applications [8]. FPGAs can provide high

levels of efficiency for a single application; however, long

reconfiguration times on current FPGAs [47, 49] may mit-

igate some of these benefits if the full application does not

fit on the FPGA or when context switching between multi-

ple applications. This is at odds with improving efficiency

through higher utilization by consolidating multiple work-

loads onto a single server [8, 35]. While the ease of pro-

gramming has improved on recent FPGAs with support for

higher-level languages through high-level synthesis (HLS),

such as OpenCL [14] and CUDA [47], HLS tends to achieve

improvements in developer productivity by trading off the

quality of the results [5].

Alternatively, graphics processing units (GPUs) are capa-

ble of providing high-throughput and energy-efficient pro-

cessing on general-purpose architectures. While early GPUs

had a reputation for high thermal design power (TDP) [47],

recent GPUs have drastically improved energy-efficiency

and TDP [46]. GPUs are currently being used in data cen-

ters to accelerate highly data-parallel applications, such as

machine learning at Google [15]. In this work, we explore

the potential of also using GPUs as flexible energy-efficient

accelerators for network services in the data center.

Towards this end, we implement and evaluate an end-to-

end version of the Memcached [38] distributed, in-memory

key-value caching service, MemcachedGPU, on commod-

ity GPU and ethernet hardware. Memcached is a scale-out

workload, typically partitioned across multiple server nodes.

In this work, we focus on using the GPU to scale-up the



throughput of an individual server node. We exploit request-

level parallelism through batching to process multiple con-

current requests on the massively parallel GPU architecture,

and task-level parallelism within a single request to improve

request latency. While previous works have evaluated batch

processing of network requests on GPUs, such as Mem-

cached [23], HTTP [2], or database queries [7, 57], they

focus solely on the application processing, which can be a

small subset of the total end-to-end request processing. In

contrast, we develop a complete system, GNoM (GPU Net-

work Offload Manager), that incorporates UDP network pro-

cessing on the GPU in-line with the application processing

(Figure 1). GNoM provides a software layer for efficient

management of GPU tasks and network traffic communica-

tion directly between the network interface (NIC) and GPU.

This is the first work to perform all of the Memcached

read request processing and network processing on the GPU.

We address many of the challenges associated with a full

system network service implementation on heterogeneous

systems, such as efficient data partitioning, data communi-

cation, and synchronization. Many of the core Memcached

data structures are modified to improve scalability and ef-

ficiency, and are partitioned between the CPU and GPU to

maximize performance and data storage. This requires syn-

chronization mechanisms to maintain a consistent view of

the application’s data. The techniques presented in this pa-

per may be relevant to other network services that require

both CPU and GPU processing on shared data structures.

This work also tackles the challenges with achieving

low-latency network processing on throughput-oriented

accelerators. GPUs provide high throughput by running

thousands of scalar threads in parallel on many small cores.

GNoM achieves low latency by constructing fine-grained

batches (512 requests) and launching multiple batches

concurrently on the GPU through multiple parallel hardware

communication channels. At 10 Gbps with the smallest

Memcached request size, the smaller batches result in

requests being launched on the GPU every ∼40µs, keeping

the GPU resources occupied to improve throughput while

reducing the average request batching delay to under 20µs.

This paper makes the following contributions:

• It presents GNoM1, a software system for UDP network

and application processing on GPUs (Section 3), and

evaluates the feasibility of achieving low-latency, 10 GbE

line-rate processing at all request sizes on commodity

ethernet and throughput-oriented hardware (Section 5).

• It describes the design of MemcachedGPU, an acceler-

ated key-value store, which leverages GNoM to run ef-

ficiently on a GPU (Section 4), and compares Mem-

cachedGPU against prior Memcached implementations

(Section 5.6).

• It explores the potential for workload consolidation on

GPUs during varying client demands while maintaining

a level of QoS for MemcachedGPU (Section 5.4).

2. Background

This section provides a brief overview of the background for

Memcached, the network interface (NIC) architecture, and

the GPU architectures assumed in this work.

2.1 Memcached

Memcached is a general-purpose, scale-out, in-memory

caching system used in distributed database systems to

improve performance by reducing the amount of traffic to

back-end databases. Memcached is used by many popular

network services such as Facebook, YouTube, Twitter, and

Wikipedia [38]. Memcached provides a simple key-value

store interface to modify (SET, DELETE, UPDATE) and

retrieve (GET) data from the hash table. The key-value

pair and corresponding metadata is referred to as an item.

To avoid expensive memory allocations for every write

request, Memcached uses a custom memory allocator from

pre-allocated memory slabs to store the items. To reduce

memory fragmentation, Memcached allocates multiple

memory slabs with different fixed-size entries. The hash

table stores pointers to the items stored in the memory slabs.

Keys are hashed to lookup item pointers from the hash table.

Facebook Memcached deployments typically perform

modify operations over TCP connections, where it is a re-

quirement that the data be successfully stored in the cache,

whereas retrieve operations can use the UDP protocol [40].

Since Memcached acts as a look-aside cache, dropped

GET requests can be classified as cache misses or the client

application can replay the Memcached request. However,

excessive packet drops mitigate the benefits of using the

caching layer, requiring a certain level of reliability of the

underlying network for UDP to be effective.

2.2 Network Interface (NIC) Architecture

The NIC connects to the host (CPU) via a PCIe bus. Net-

work packets enter RX (receive) queues at the NIC, which

are copied to pre-allocated, DMA-able RX ring buffers typi-

cally in CPU memory. The NIC sends interrupts to the CPU

for one or more pending RX packets. The NIC driver copies

packets to Linux Socket Buffers (SKB) and returns the RX

buffer back to the NIC. Optimizations such as direct NIC

access (DNA) may reduce memory copies by allowing ap-

plications to directly access the RX buffers. In Section 3,

we expand on this technique by using NVIDIA’s GPUDi-

rect [45] to enable efficient GPU processing on RX packets.

2.3 GPU Architecture

GPUs are throughput-oriented offload accelerators tradition-

ally designed for graphics. Recent GPUs are capable of run-

ning non-graphics applications written in C-like languages,

such as CUDA [43] or OpenCL [31]. In this work we use

CUDA and focus on discrete NVIDIA GPUs connected to

1 Code for GNoM and MemcachedGPU is available at

https://github.com/tayler-hetherington/MemcachedGPU



the host device through a PCIe bus. However, the system pre-

sented in this paper is also relevant with AMD and integrated

GPUs. CUDA applications are composed of two parts: a host

side (CPU) responsible for initializing the GPU’s environ-

ment and communicating with the GPU, and a device side

(GPU) which executes one or more kernels. A CUDA ker-

nel is a user-defined parallel section of code that runs on the

GPU. Scalar CUDA threads are grouped into warps typically

containing 32 threads. Each thread in a warp executes in-

structions in a lock-step single-instruction, multiple-thread

(SIMT) fashion. Warps are further grouped into coopera-

tive thread arrays (CTAs). A CTA is dispatched as a unit

to a SIMT stream multiprocessor (SM) but individual warps

within the CTA are scheduled independently within the SM.

When threads in a warp take different execution paths

due to branch instructions, each sub-group of threads must

be executed serially, causing SIMT lanes to become idle.

This is known as branch divergence. Another optimization,

referred to as memory coalescing, combines accesses from

threads in a warp to adjacent memory locations, improving

performance. Accesses to separate memory locations from

within a warp is known as memory divergence.

The host communicates with the GPU through a set of

hardware managed CUDA streams, allowing for concur-

rently operating asynchronous tasks (e.g., computation and

data transfers). AMD hardware provides the same capability

through OpenCL command queues. NVIDIA’s Hyper-Q [44]

enables up to 32 independent hardware streams.

3. GNoM

GNoM provides a CPU software framework that aims to en-

able a class of high-throughput, low-latency UDP network

applications to run efficiently on GPUs. This section ad-

dresses some of the challenges with achieving this goal and

presents the software architecture of GNoM that facilitated

the design and implementation of MemcachedGPU.

3.1 Request Batching

Request batching in GNoM is done per request type to re-

duce control flow divergence among GPU threads. Smaller

batch sizes minimize batching latency, however, increase

GPU kernel launch overhead and lower GPU resource uti-

lization, which reduces throughput. We find that 512 re-

quests per batch provides a good balance of throughput and

latency (Section 5.3). While MemcachedGPU contains a

single request type for batching, GET requests, workloads

with many different request types could batch requests at

finer granularities. For example, multiple smaller batches

could be constructed at the warp-level of 32 requests and

launched together on the GPU to perform different tasks [9].

3.2 Software Architecture

GNoM is composed of two main parts that work together

to balance throughput and latency for network services on

GPUs: GNoM-host (CPU), responsible for interaction with
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Figure 1: GNoM packet flow and main CUDA kernel.

the NIC and pre/post-GPU data and task management; and

GNoM-dev (GPU), responsible for UDP packet and appli-

cation processing. Figure 1 presents the interactions be-

tween the NIC, CPU, and GPU in GNoM, as well as the

main CUDA kernel for GNoM-dev. RX packets are DMA-

ed directly to the GPU’s global memory using GPUDirect.

Only metadata describing the request batch is sent to the

CPU. We focus on accelerating the RX path in GNoM. While

GNoM can implement a similar TX (transmit) path using

GPUDirect, MemcachedGPU uses a third party CPU Linux

network bypass service, PF RING [41], to accelerate the TX

path on the CPU. This decision was driven by the design

of MemcachedGPU in which the main data structures used

to populate the response packets are stored in CPU memory

(Section 4).

3.2.1 GNoM-host

GNoM-host is required to provide task management and

I/O support for the GPU because current GPUs cannot

directly communicate with, or receive interrupts from the

NIC. GNoM-host is responsible for efficiently managing

data movement between the NIC and GPU, managing work

tasks on the GPU, and performing any post-processing tasks

required prior to sending response packets. To accomplish

these tasks, GNoM-host is composed of three software com-

ponents: a modified Intel IXGBE network driver (v3.18.7),

GNoM-ND, a custom Linux kernel module, GNoM-KM, and

a user-level software framework, GNoM-user.

GNoM-KM and GNoM-ND GNoM allocates pinned, un-

pageable GPU memory using GPUDirect (220MB parti-

tioned into 32 - 2KB buffers per 64KB GPU page) to store



incoming RX packets (GRXB). To reduce memory copies,

the GRXBs hold the packets throughout their lifetime on

the server, recycling them to the NIC only when processing

is complete. This differs from the baseline network driver

which recycles the RX buffers immediately to the NIC after

copying the packets into Linux SKBs. GNoM requires sig-

nificantly more pinned memory than the baseline network

flow to ensure that a GRXB is available for incoming pack-

ets. For a given processing latency, a packet drop occurs

when GRXBs are not recycled quickly enough to accommo-

date the new RX packet. If more buffers cannot be allocated,

then the throughput must be reduced accordingly. 220 MB

is the maximum amount of pin-able GPU memory one can

allocate for GPUDirect on the NVIDIA Tesla K20c.

GNoM-ND DMAs RX packet data directly from the NIC

to the GRXBs in GPU memory using GPUDirect and con-

structs metadata in CPU memory describing the batch of

GPU packets (Figure 1). GNoM-ND passes the batch meta-

data to GNoM-KM once a batch is fully populated and ready

for GPU processing. The NIC populates the GRXBs in the

order they were registered. To identify a full batch of packets

in GPU memory, the metadata only requires a pointer to the

first packet and the total number of packets.

GNoM-KM provides an interface between the Linux ker-

nel and GNoM-user. It includes hooks for GNoM-user to

communicate indirectly with the NIC, such as configuring

the NIC for use with GNoM, reading metadata for request

batches, and recycling GRXBs.

GNoM-User GNoM-user consists of pre-processing

(GNoM-pre) and post-processing (GNoM-post) user-level

pthreads (Figure 1). GNoM-pre retrieves request batch

metadata from GNoM-KM, performs application specific

memory copies to the GPU, launches CUDA kernels that

perform the network service processing on the batch of

requests, and constructs CUDA events to detect when the

GPU processing completes. GNoM uses CUDA streams to

overlap processing of multiple small batches to provide a

better tradeoff between packet latency and throughput.

GNoM-post polls the CUDA events waiting for the

GPU network service processing to complete, populates

the response packets with application specific data, and

transmits the response packets using PF RING. For Mem-

cachedGPU, this consists of copying the item’s value from

the Memcached memory slabs in CPU memory to the TXBs

(PF RING transmit buffers) in CPU memory for each

packet in the batch. Finally, GNoM-post recycles the now

free GRXBs back to GNoM-ND for future RX packets.

Non-GPUDirect (NGD) GPUDirect is currently only sup-

ported on the high-performance NVIDIA Tesla and Quadro

GPUs. To evaluate MemcachedGPU on lower power, lower

cost GPUs, we also implemented a non-GPUDirect (NGD)

framework. NGD uses PF RING [41] to receive and batch

Memcached packets in host memory before copying the

request batches to the GPU. NGD uses the same GNoM-

user and GNoM-dev framework; however, GNoM-KM and

GNoM-ND are replaced by PF RING. Section 5.3 evaluates

NGD on the NVIDIA Tesla K20c and GTX 750Ti GPUs.

3.2.2 GNoM-dev

The lower portion of Figure 1 illustrates the CUDA ker-

nel for UDP packet and network service processing (e.g.,

MemcachedGPU GET request processing). Once a network

packet has been parsed (UDP processing stage), the network

service can operate in parallel with the response packet gen-

eration since they are partly independent tasks. The num-

ber of threads launched per packet is configurable (Mem-

cachedGPU uses two threads). GNoM-dev leverages addi-

tional helper threads to perform parallel tasks related to a

single network service request, exploiting both packet level

and task level parallelism to improve response latency.

GNoM-dev groups warps into main and helper warps.

Main warps perform the network service processing (e.g.,

Memcached GET request processing) while helper warps

perform the UDP processing and response packet header

construction. The main and helper warps also cooperatively

load RX data and store TX data (e.g., response packet head-

ers and any application specific data, such as pointers to

Memcached items in CPU memory) between shared and

global memory efficiently through coalesced memory ac-

cesses. This requires CUDA synchronization barriers to en-

sure that the main and helper warps maintain a consistent

view of the packet data in shared memory. The UDP pro-

cessing verifies that the packet is for the network service and

verifies the IP checksum. While most of the response packet

header can be constructed in parallel with the network ser-

vice processing, the packet lengths and IP checksum are up-

dated after to include any application dependent values (e.g.,

the length of the Memcached item value).

4. MemcachedGPU

This section presents the design of MemcachedGPU and

discusses the modifications required to achieve low latency

and high throughput processing on the GPU.

4.1 Memcached and Data Structures

In typical Memcached deployments [40], GET requests may

comprise a large fraction of traffic (e.g., 99.8% for Face-

book’s USR pool [6]) when hit-rates are high. Hence, we

focus on accelerating Memcached GET requests and leave

the majority of SET request processing on the CPU.

Memcached data structures accessed by both GET and

SET requests include a hash table to store pointers to Mem-

cached items, memory slabs to store the Memcached items

and values, and a least-recently-used (LRU) queue for select-

ing key-value pairs to evict from the hash table when Mem-

cached runs out of memory on a SET. Memcached keys can

be an order of magnitude smaller than value sizes (e.g., 31B

versus 270B for Facebook’s APP pool [6]), placing larger

storage requirements on the values.



These data structures need to be efficiently partitioned be-

tween the CPU and GPU due to smaller GPU DRAM capac-

ity versus CPUs found on typical Memcached deployments.

We place the hash table containing keys and item pointers in

GPU memory. Values remain in CPU memory.

4.1.1 GET requests

MemcachedGPU performs the main GET request operations

on the GPU. This includes parsing the GET request, extract-

ing the key, hashing the key, and accessing the hash table

to retrieve the item pointer. Aside from the item values, all

of the Memcached data structures accessed by GET requests

are stored in GPU global memory. MemcachedGPU uses the

same Bob Jenkin’s lookup3 hash function [27] included in

the baseline Memcached. GET requests bypass the CPU and

access the hash table on the GPU as described in Section

4.2. Each GET request is handled by a separate GPU thread,

resulting in memory divergence on almost every hash table

access. However, the small number of active GPU threads

and the GPU’s high degree of memory-level parallelism mit-

igates the impact on performance. After the GPU process-

ing is complete, GNoM-post copies the corresponding item

value for each packet in the batch from CPU memory into a

response packet (TXB) to be sent across the network.

4.1.2 SET requests

SET requests require special attention to ensure consistency

between CPU and GPU data structures. SET requests follow

the standard Memcached flow over TCP through the Linux

network stack and Memcached code on the CPU. They up-

date the GPU hash table by launching a naive SET request

handler on the GPU.

SET requests first allocate the item data in the Mem-

cached memory slabs in CPU memory, and then update

the GPU hash table. This ordering ensures that subsequent

GET requests are guaranteed to find valid CPU item pointers

in the GPU hash table. Another consequence of this ordering

is that both SET and UPDATE requests are treated the same

since the hash table has not been probed for a hit before allo-

cating the item. An UPDATE simply acts as a SET that evicts

and replaces the previous item with the new item.

SET requests update the GPU hash table entries, introduc-

ing a race condition between GETs and other SETs. Section

4.2.2 describes a GPU locking mechanism to ensure exclu-

sive access for SET requests. As GETs typically dominate

request distributions, we have used a simple implementation

in which each SET request is launched as a separate kernel

and processed by a single warp. Accelerating SET requests

through batch processing should not be difficult but was not

the focus of this work.

4.2 Hash Table

This section presents the modifications to the baseline Mem-

cached hash table to enable efficient processing on the GPU

while minimizing the impact on hit-rate.

4.2.1 Hash Table Design

The baseline Memcached implements a dynamically sized

hash table with hash chaining on collisions. This hash ta-

ble resolves collisions by dynamically allocating new entries

and linking them into existing linked lists (chains) at con-

flicting hash table entries. This ensures that all items will be

stored as long as the system has enough memory.

This hash table design is a poor fit for GPUs for two main

reasons. First, dynamic memory allocation on current GPUs

can significantly degrade performance [25]. Second, hash

chaining creates a non-deterministic number of elements to

be searched between requests when collisions are high. This

can degrade SIMD efficiency when chain lengths vary since

each GPU thread handles a separate request.

To address these issues, MemcachedGPU implements a

fixed-size set-associative hash table, similar to [11, 36]. We

select a set size of 16-ways (see Section 5.2). We also evalu-

ated a modified version of hopscotch hashing [22] that evicts

an entry if the hopscotch bucket is full instead of rearranging

entries. This improves the hit-rate over a set-associative hash

table by 1-2%; however, the peak GET request throughput is

lower due to additional synchronization overheads. The hop-

scotch hash table requires locking on every entry since no

hopscotch group is unique, whereas the set-associative hash

table only requires locking on each set.

Each hash table entry contains a header and the physical

key. The header contains a valid flag, a last accessed times-

tamp, the length of the key and value, and a pointer to the

item in CPU memory. MemcachedGPU also adopts an opti-

mization from [19, 36] that includes a small 8-bit hash of the

key in every header. When traversing the hash table set, the

8-bit hashes are first compared to identify potential matches.

The full key is compared only if the key hash matches, re-

ducing both control flow and memory divergence.

Hash table collisions and evictions The baseline Mem-

cached uses a global lock to protect access to a global LRU

queue for managing item evictions. On the GPU, global

locks would require serializing all GPU threads for every

Memcached request, resulting in low SIMD efficiency and

poor performance. Other works [40, 56] also addressed the

bottlenecks associated with global locking in Memcached.

Instead, we manage local LRU per hash table set, such

that GET and SET requests only need to update the times-

tamp of the hash table entry. The intuition is that the miss

rate of a set-associative cache is similar to a fully associa-

tive cache for high enough associativity [48]. Instead of al-

locating a new entry, collisions are resolved by finding a free

entry or evicting an existing entry within the set. While the

set-associative hash table was also proposed in [11, 36], we

expand on these works by evaluating the impact of the addi-

tional evictions on hit-rates compared to the baseline Mem-

cached hash table with hash chaining in Section 5.2.

SET requests search a hash table set for a matching, in-

valid, or expired entry. If the SET misses and no free entries



are available, the LRU entry in this hash table set is evicted.

GET requests traverse the entire set until a match is found

or the end of the set is reached. This places an upper bound,

the set size, on the worst case number of entries each GPU

thread traverses. If the key is found, the CPU value pointer

is recorded to later populate the response packet.

Storage limitations The static hash table places an upper

bound on the maximum amount of key-value storage.

Consider a high-end NVIDIA Tesla K40c with 12GB

of GPU memory. GNoM and MemcachedGPU consume

∼240MB of GPU memory for data structures such as the

GRXBs, response buffers, and SET request buffers. This

leaves ∼11.75GB for the GPU hash table and the lock table

(described in Section 4.2.2). The hash table entry headers

are a constant size, however, the key storage can be varied

depending on the maximum size. For example, the hash

table storage increases from 45 to 208.5 million entries

decreasing from a maximum key size of 250B to 32B. From

[6], typical key sizes are much smaller than the maximum

size, leading to fragmentation in the static hash table.

If a typical key size distribution is known, however, mul-

tiple different hash tables with fixed-size keys can be allo-

cated to reduce fragmentation. For example, [6] provides key

and value size distributions for the Facebook ETC work-

load trace. If we create five hash tables with static key en-

tries of 16, 32, 64, 128, and 250B with each size determined

by the provided key distribution (0.14%, 44.17%, 52.88%,

2.79%, and 0.02% respectively), this enables a maximum of

157 million entries for a 10GB hash table. Using an average

value size of 124B for ETC, this static partitioning on the

GPU would enable indexing a maximum of 19.2GB of value

storage in CPU memory compared to only 5.5GB when al-

locating for the worst case key size.

Our results on a low-power GPU (Section 5.3) suggest

that integrated GPUs, with access to far more DRAM than

discrete GPUs, may be able to achieve high throughputs in

MemcachedGPU and are an important alternative to explore.

4.2.2 GPU Concurrency Control

Aside from updating the timestamps, GET requests do not

modify the hash table entries. Thus, multiple GET requests

can access the same hash table entry concurrently as they

have similar timestamp values. However, SET requests re-

quire exclusive access since they modify the entries. To han-

dle this, we employ a multiple reader (shared), single writer

(exclusive) spin lock for each hash set using CUDA atomic

compare and exchange (CAS), increment, and decrement

instructions. The shared lock ensures threads performing a

GET request in a warp will never block each other whereas

the exclusive lock ensures exclusive access for SET requests

to modify a hash table entry.

For SET requests, a single thread per warp acquires an

exclusive lock for the hash table set. The warp holds on to

the lock until the SET request hits in one of the hash table

Table 1: Server and Client Configuration.
Server Client

Linux kernel 3.11.10 3.13.0

CPU Intel Core i7-4770K AMD A10-5800K

Memory 16 GB 16 GB

Network In-
terface

Intel X520-T2 10Gbps
82599 (mod. driver v3.18.7)

Intel X520-T2 10Gbps
82599 (driver v3.18.20)

Table 2: Server NVIDIA GPUs.
GPU Tesla K20c Titan GTX 750Ti

Architecture (28 nm) Kepler Kepler Maxwell

TDP 225 W 250 W 60 W

Cost $2700 $1000 $150

# CUDA cores 2496 2688 640

Memory size (GDDR5) 5 GB 6 GB 2 GB

Peak SP throughput 3.52 TFLOPS 4.5 TFLOPS 1.3 TFLOPS

Core frequency 706 MHz 837 MHz 1020 MHz

Memory bandwidth 208 GB/s 288 GB/s 86.4 GB/s

entries, locates an empty or expired entry, or evicts the LRU

item for this set.

4.3 Post GPU Race Conditions on Eviction

While the CPU item allocation order (Section 4.1.2) and

GPU locking mechanism (Section 4.2.2) ensure correct ac-

cess to valid items in CPU memory, a race condition still ex-

ists in GNoM-post for SET requests that evict items conflict-

ing with concurrent GET requests. This race condition exists

because separate CPU threads handle post GPU processing

for GET and SET requests. For example, a GET request may

access stale or garbage data when populating its response

packet with an item that a concurrent SET request, occurring

later in time on the GPU, may have just evicted.

Removing the race condition requires preserving the or-

der seen by the GPU on the CPU. To accomplish this, each

GNoM-post thread maintains a global completion timestamp

(GCT), which records the timestamp of the most recent

GET request batch to complete sending its response pack-

ets. This is the same timestamp used to update the hash table

entry’s last accessed time. If a SET needs to evict an item, it

records the last accessed timestamp of the to-be evicted item.

On the CPU after updating the GPU hash table, the SET polls

all GNoM-post GCT’s and stalls until they are all greater

than its eviction timestamp before evicting the item. This en-

sures that all GETs prior to the SET have completed before

the SET completes, preserving the order seen by the GPU.

This stalling does not impact future GET requests since the

SET allocates a new item prior to updating the hash table.

Thus all GET requests occurring after the SET will correctly

access the updated item.

5. Evaluation

This section presents our methodology and evaluation of

MemcachedGPU, GNoM, and NGD.

5.1 Methodology

All of the experiments are run between a single Memcached

server and client directly connected via two CAT6A Eth-

ernet cables. The main system configuration is presented

in Table 1. The GPUs evaluated in this study are shown



in Table 2, all using CUDA 5.5. The high-performance

NVIDIA Tesla K20c is evaluated using GNoM (supports

GPUDirect) and the low-power NVIDIA GTX 750Ti is eval-

uated using NGD. All three GPUs are evaluated in the of-

fline limit study (Section 5.5). MemcachedGPU was im-

plemented from Memcached v1.4.15 and is configured as a

16-way set-associative hash table with 8.3 million entries as-

suming the maximum key-size. Note that this is only ∼46%

of the maximum hash table size on the Tesla K20c.

The client generates Memcached requests through the

Memaslap microbenchmark included in libMemcached

v1.0.18 [3]. Memaslap is used to stress MemcachedGPU

with varying key-value sizes at different request rates. We

evaluate the effectiveness of the hash table modifications

in MemcachedGPU on more realistic workload traces with

Zipfian distributions in Section 5.2. The Memcached

ASCII protocol is used with a minimum key size of 16 bytes

(packet size of 96 bytes). Larger value sizes impact both the

CPU response packet fill rate and network response rate.

However, we find that GNoM becomes network bound, not

CPU bound, as value sizes increase. Thus, the smallest value

size of 2 bytes is chosen to stress per packet overheads.

The single client system is unable to send, receive and

process packets at 10 Gbps with the Memaslap microbench-

mark. We created a custom client Memcached stressmark

using PF RING zero-copy [41] for sending and receiving

network requests at 10 Gbps, and replay traces of SET and

GET requests generated from Memaslap. We populate the

MemcachedGPU server with 1.3 million key-value pairs

through TCP SET requests and then send GET requests over

UDP. However, processing all response packets still limits

our send rate to ∼6 Gbps. To overcome this, we used a

technique from [36] to forcefully drop response packets at

the client using hardware packet filters at the NIC to sample

a subset of packets. Using this technique, the server still

performs all of the required per-packet operations. However,

if we create a static set of requests to repeatedly send to the

server (e.g., 512 requests), we are able to send and receive

at the full rate at the client. We use this to measure packet

drop rates at the client more accurately.

Power is measured using the Watts Up? Pro ES plug

load meter [54] and measures the total system wall power

for all configurations. An issue with PCIe BAR memory

allocation between the BIOS and NVIDIA driver on the

server system restricted the Tesla K20c and GTX 750Ti from

being installed in isolation. We measured the idle power of

the Tesla K20c (18W) and GTX 750Ti (6.5W) using the

wall power meter and the nvidia-smi tool and subtracted the

inactive GPU idle power from the total system power when

running experiments on the other GPU. The GTX Titan did

not have this issue and could be installed in isolation.

5.2 Hash Table Evaluation

We first evaluate the impact of our modifications to the

hash table on the hit-rate. We created an offline hash table
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Figure 2: Miss-rate versus hash table associativity and size

compared to hash chaining for a request trace with a working

set of 10 million requests following the Zipf distribution.

simulator that measures the hit-rate for a trace of key-value

GET and SET requests. As in the baseline Memached, a

GET request miss triggers a SET request for that item.

We evaluate the hash chaining (HC) and set-associative

(SA) hash tables, as described in Section 4.2.1. For both

hash tables, we fix the maximum number of key-value ele-

ments stored. HC evictions only occur when the total number

of elements is exceeded. However, evictions may occur for

the SA hash table even with fewer elements than the maxi-

mum due to set conflicts.

We used a modified version of the Yahoo! Cloud Serving

Benchmark (YCSB) [13] provided by [19] to generate three

Memcached traces with different item access distributions.

Real workloads tend to follow a Zipfian (Zipf) distribution

[13], where some items are accessed very frequently, while

most others are accessed infrequently. Thus, it is important

that the SA hash table miss-rate closely matches the HC hash

table for the Zipf workload (Figure 2). We also evaluated the

Latest distribution, where the items stored most recently are

accesses more frequently than others, and Uniform random,

where items are chosen at uniform random.

For each workload distribution, we generated a runtime

trace of 10 million key-value pairs with 95% GET requests

and 5% SET requests. The hash tables were first warmed up

using a load trace of all SET requests. Figure 2 plots the

miss-rate for an increasing hash table size and associativity

compared to hash chaining for the Zipf distribution. For ex-

ample, with a maximum hash table size of 8 million entries,

SA has a 21.2% miss-rate with 1-way (direct mapped) and

10.4% miss-rate with 16-ways. HC achieves a 0% miss-rate

when the hash table size is larger than the request trace (dot-

ted line at 10 million entries) since it is able to allocate a new

entry for all new key-value pairs. At smaller hash table sizes,

none of the configurations are able to effectively capture the

locality in the request trace resulting in comparable miss-

rates. As the hash table size increases, increasing the asso-

ciativity decreases the miss-rate. At 16-ways for all sizes,

SA achieves a minimum of 95.4% of the HC hit-rate for

the Zipf distribution. The other distributions follow similar

trends with different absolute miss-rates. However, increas-

ing the associativity also increase the worst-case number of

entries to search on an access to the hash table. From exper-



Table 3: GET request throughput and drop rate at 10 GbE.
Key Size 16 B 32 B 64 B 128 B

Tesla drop rate server 0.002% 0.004% 0.003% 0.006%

Tesla drop rate client 0.428% 0.033% 0.043% 0.053%

Tesla MRPS/Gbps 12.92/9.92 11.14/9.98 8.66/9.98 6.01/10

Maxwell-NGD drop rate server 0.47% 0.13% 0.05% 0.02%

Maxwell-NGD MRPS/Gbps 12.86/9.87 11.06/9.91 8.68 10 6.01/10
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Figure 3: Mean and 95-percentile RTT vs. throughput for

Tesla with GNoM and NGD, and Maxwell with NGD.
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Figure 4: Power and energy-efficiency vs. throughput for

MemcachedGPU and GNoM on the Tesla K20c.
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Figure 5: Impact of key length and hit-rate variation on RTT

and throughput for MemcachedGPU and GNoM on the Tesla

K20c.

imentation, we found that an associativity of 16-ways pro-

vides a good balance of storage efficiency and performance.

5.3 MemcachedGPU Evaluation

Next, we evaluate the full end-to-end MemcachedGPU on

the high-performance NVIDIA Tesla K20c (Tesla) using

GNoM with GPUDirect, and on the low-power NVIDIA

GTX 750Ti (Maxwell) using the non-GPUDirect (NGD)

framework (Section 3.2.1). Throughput is measured in mil-

lions of requests per second (MRPS) and energy-efficiency

is measured in thousands of RPS per Watt (KRPS/W).

For latency experiments, the 8 byte Memcached header is

modified to contain the client send timestamp and measures

the request’s complete round trip time (RTT).

Throughput: Memcached tolerates dropped packets by

treating them as misses in the caching layer. However, exces-

sive packet dropping mitigates the benefits of using Mem-

cached. We measure the packet drop rate at the server and

client for packet traces of 500 million requests with equal

length keys at peak throughputs, averaging over three runs.

As shown in Table 3, MemcachedGPU is able to processes

packets near 10 GbE line-rate for any Memcached request

size with server packet drop rates < 0.006% (GNoM) and

< 0.5% (NGD). The client drop rates are measured using

the static trace described in Section 5.1 with no packet loss

at the server. Increasing to the full 13.02 MRPS at 16B keys

increases the server drop rate due to the latency to recycle the

limited number of GRXBs to the NIC for new RX packets.

RTT Latency: For many scale-out workloads, such as

Memcached, the longest latency tail request dictates the to-

tal latency of the task. While the GPU is a throughput-

oriented accelerator, we find that it can provide reasonably

low latencies under heavy throughput. Figure 3 measures

the mean and 95-percentile (p95) client-visible RTT versus

request throughput for 512 requests per batch on the Tesla

using GNoM and NGD, and the Maxwell using NGD. As

expected, GNoM has lower latencies than NGD (55-94%

at p95 on the Tesla) by reducing the number of memory

copies on packet RX with GPUDirect. As the throughput

approaches the 10 GbE line-rate the latency also increases,

with the p95 latencies approaching 1.1ms with GNoM and

1.8ms with NGD. We also evaluated a smaller batch size of

256 requests on GNoM and found that it provided mean la-

tencies between 83-92% of 512 requests per batch when less

than 10 MRPS, while limiting peak throughput and slightly

increasing the mean latency by ∼2% at 12MRPS. At lower

throughputs (< 4 MRPS), we can see the effects of the batch-

ing delay on the p95 RTT (Figure 3b). For example, at 2

MRPS with a batch size of 512 requests, the average batch-

ing delay per request is already 128µs, compared to 32µs

at 8 MRPS. While not shown here, a simple timeout mech-

anism can be used to reduce the impact of batching at low

request rates by launching partially full batches of requests.

Energy-Efficiency: Figure 4 plots the average power

consumption (full system power and GPU power) and

energy-efficiency of MemcachedGPU and GNoM on the

Tesla K20c at increasing request rates. The Tesla K20c

power increases by less than 35% when increasing the

throughput by ∼13X, leading to the steady increase in

energy-efficiency. The jumps in system power at 10.1 and

12.9 MRPS are caused by adding GNoM-post threads to

recycle the GRXBs fast enough to maintain low packet

drop rates at the higher throughputs. However, increasing

the GNoM-post threads from two to four decreases energy-

efficiency as the system power is increased by 9%. At

peak throughputs, the low-power GTX 750Ti using NGD

consumes 73% of the total system power consumed by the

Tesla K20c using GNoM (151.4 W at 84.8 KRPS/W).



Table 4: Concurrent GETs and SETs on the Tesla K20c.
GET MRPS (% peak) 7 (54) 8.8 (68) 9.7 (74) 10.6 (82) 11.7 (90)

SET KRPS (% peak) 21.1 (66) 18.3 (57) 18 (56) 16.7 (52) 15.7 (49)

SET:GET 0.3% 0.21% 0.19% 0.16% 0.13%

Server Drop 0% 0.26% 3.1% 7.5% 8.8%

The Tesla K20c consumes roughly one third of the to-

tal system power. Note that the peak GPU power of 71W is

less than 32% of the K20c’s TDP, suggesting low utilization

of the total GPU resources. The system has an idle power

of 84W without any GPUs. Thus, GNoM-host consumes

roughly 15%, 25%, and 33% of the total system power

when using one, two, or four GNoM-post threads respec-

tively. Much of this is an artifact of GPUs being offload-

accelerators, which rely on the CPU to communicate with

the outside world. This leaves large opportunities to further

improve the energy-efficiency of GNoM through additional

hardware I/O and system software support for the GPU.

Branch Divergence: Next, we evaluate the impact of

branch divergence on performance in MemcachedGPU,

which stems from each GPU thread handling a separate

GET request. For example, differences in key lengths,

potential hits on different indexes in the hash table set, or

misses in the hash table can all cause threads to perform a

different number of iterations or execute different blocks of

code at a given time. Each of these scenarios reduce SIMD

efficiency and consequently performance. Figure 5 plots

the average peak throughput as a fraction of the theoretical

peak throughput for a given key length distribution. We find

that the throughput performs within 99% of the theoretical

peak, regardless of the key distribution. That is, even when

introducing branch divergence, MemcachedGPU becomes

network bound before compute bound.

Figure 5 also plots the average RTT for GET requests at

4 MRPS under different distributions of key lengths and at

100% and 85% hit-rates. Note that this experiment still con-

sists of 100% GET requests. The results match the intuition

that because there is no sorting of key lengths to batches,

the latency should fall somewhere between the largest and

smallest key lengths in the distribution. If there are large

variations in key lengths and tight limits on RTT, the system

may benefit from a pre-sorting phase by key length. This

could help reduce RTT for smaller requests, however, the

maximum throughput is still limited by the network. Addi-

tionally, there is little variation between average RTT with

different hit-rates. While reducing the hit-rate forces more

threads to traverse the entire hash table set, the traversal re-

quires a similar amount of work compared to performing the

key comparison on a potential hit.

GETs and SETs: While the main focus of Mem-

cachedGPU is on accelerating GET requests, we also

evaluate the throughput of the current naive SET request

handler and its impact on concurrent GET requests.

SET requests are sent over TCP for the same packet trace as

the GETs to stress conflicting locks and update evictions.
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Figure 6: Client RTT (avg. 256 request window) during BGT

execution for increasing # of fine-grained kernel launches.
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Figure 7: Impact on BGT execution time with increasing # of

kernel launches and max client RTT during BGT execution.

The maximum SET request throughput is currently limited

to 32KRPS in MemcachedGPU, ∼32% of the baseline. This

is a result of the naive SET handler described in Section

4.1.2, which serializes SET requests. However, this is not

a fundamental limitation of MemcachedGPU as, similar to

GET requests, SET requests could also be batched together

on the CPU prior to updating the GPU hash table. Unlike

GET requests, however, each SET requests would need to

be serialized or processed per GPU warp instead of per

thread to avoid potential deadlocks on the exclusive locks

(Section 4.2.2). Improving SET support is left to future

work. Table 4 presents the GET and SET request through-

puts, resulting SET:GET ratio, and server packet drop rate

of MemcachedGPU on the Tesla K20c. As the GET request

rate increases, the SET rate drops due to contention for

GPU resources. The low maximum SET request throughput

limits the SET:GET ratio to <0.5% for higher GET request

rates. The average server packet drop rate approaches 10%

when increasing GET throughput to 90% of the peak, which

limits the effectiveness of MemcachedGPU. GET requests

at ∼9 MRPS maintains comparable drop rates to the peak

throughput, while also handling 0.26% SET requests.

5.4 Workload Consolidation on GPUs

Workload consolidation, running multiple workloads con-

currently on the same hardware, improves data center uti-

lization and efficiency [8]. While specialized hardware ac-

celerators, such as ASICs or FPGAs, can provide high effi-

ciency for single applications, they may reduce the flexibil-

ity gained by general-purpose accelerators, such as GPUs.

For example, long reconfiguration times of reprogrammable

hardware, milliseconds to seconds [47, 49], may mitigate the



benefits gained by the accelerator when switching between

applications. In this section, we evaluate the potential for

workload consolidation on GPUs, which may provide ad-

vantages over other hardware accelerators in the data center.

However, current GPUs do not support preemptive [53]

or spatial [1] multitasking for GPU computing although they

do support preemptive multitasking for graphics [42]. When

multiple CUDA applications run concurrently, their indi-

vidual CUDA kernel launches contend for access to the

GPU and, depending on resource constraints, are granted ac-

cess in a first-come, first-serve basis by the NVIDIA driver.

Large CUDA kernels with many CTAs may consume all of

the GPU resources, blocking another CUDA kernel from

running until completed. However, we can potentially ex-

ploit this property through a naive approach to enable finer

grained multitasking by splitting a single CUDA kernel into

multiple kernels with fewer CTAs.

We study a hypothetical low-priority background task

(BGT) that performs a simple vector multiplication in global

memory requiring a total of 256 CTAs with 1024 threads

each to complete. The low-priority BGT is divided into

many smaller short running kernel launches, which can be

interleaved with MemcachedGPU processing. This creates a

two-level, software/hardware CTA scheduler. For example,

if we reduce the background task to 16 CTAs per kernel, we

require 16 separate kernel launches to complete the task.

We run MemcachedGPU using GNoM on the Tesla K20c

at a lower GET request throughput of 4 MRPS using 16 byte

keys. After some time, the BGT is launched concurrently

on the same GPU, varying the number of CTAs per kernel

launch. Figure 6 measures the average client RTT based on a

256 request window during the BGT execution. Without the

BGT, MemcachedGPU has an average RTT < 300µs. With

256 CTAs (1 kernel launch), the BGT consumes the GPU

resources causing a large disruption in the RTT. Even after

the BGT completes with 256 CTAs (around 32ms), Mem-

cachedGPU takes over 20ms to return back to the original

average RTT. As the number of CTAs per kernel is reduced,

the impact of the BGT on MemcachedGPU reduces signifi-

cantly. For example, at 16 CTAs per kernel, the RTT is dis-

rupted for ∼2.4ms during the initial BGT kernel launch, with

a maximum average RTT of ∼1.5ms, and then returns back

to under 300µs while the BGT is executing.

However, increasing the number of BGT kernel launches

also impacts the the BGT execution time. Figure 7

measures the BGT execution time with and without

MemcachedGPU, as well as the maximum average RTT

seen by MemcachedGPU during the BGT execution. At 4

MRPS, MemcachedGPU has very little impact on the BGT

execution time due to its low resource utilization and small

kernel launches. As the number of BGT kernels increases,

the execution time also increases due to the introduction of

the software CTA scheduler and contention with competing

kernel launches. However, the impact on MemcachedGPU

Table 5: MemcachedGPU Offline - 16B keys, 96B packets.
Tesla K20c GTX Titan GTX 750Ti

Throughput (MRPS) 27.5 27.7 28.3

Avg. latency (us) 353.4 301.1 263.6

Energy-efficiency (KRPS/W) 100 89 127.3

RTT decreases much faster. At 16 CTAs per kernel, the

BGT execution time is increased by ∼50% versus 256

CTAs, while the MemcachedGPU RTT is reduced by over

18X. Allowing for an increase in the low-priority BGT

completion time, GNoM is able to provide reasonable QoS

to MemcachedGPU when run with another application.

5.5 MemcachedGPU Offline Limit Study

In this section, we evaluate an offline, in-memory frame-

work that reads network request traces directly from CPU

memory to evaluate the peak performance and efficiency of

GNoM and MemcachedGPU independent of the network.

The same GNoM framework described in Section 3.2 is

used to launch the GPU kernels (GNoM-pre), perform

GPU UDP and GET request processing (GNoM-dev), and

populate dummy response packets upon kernel completion

(GNoM-post). The same packet trace used in Section 5.3,

with the minimum key size of 16 bytes to stress GNoM, is

used in the offline evaluation.

Table 5 presents the offline throughput, latency, and

energy-efficiency of MemcachedGPU for the three GPUs in

Table 2. Each GPU achieves over 27 MRPS (∼21.5 Gbps),

suggesting that the GPUs are capable of handling over 2X

the request throughput measured in the online evaluations.

Assuming the PCIe bus is not a bottleneck, achieving this

high throughput would require additional NICs and remov-

ing the limitation on the amount of pin-able GPU memory

to allocate more GRXBs for the increased request rate.

The latency in Table 5 measures the time prior to copy-

ing the packets to GPU and after populating the dummy re-

sponse packets at peak throughputs. An interesting result

of this study was that the low-power GTX 750Ti reduced

the average batch latency compared to the Tesla K20c by

∼25%, while also slightly improving peak throughput. This

improvement can be attributed to many of the different archi-

tectural optimizations in Maxwell over Kepler [46]. Addi-

tionally, MemcachedGPU contains many memory accesses

with little processing per packet, which reduces the benefits

of the higher computational throughput GPUs.

Finally, the energy-efficiency in Table 5 measures the

system wall power at the peak throughputs and includes the

TDP of the additional NICs required to support the increased

throughput. The GTX 750Ti is able to process over 27% and

43% more GET requests per watt than the Tesla K20c and

GTX Titan respectively.

5.6 Comparison with Previous Work

This section compares MemcachedGPU against reported re-

sults in prior work. Table 6 highlights the main points of

comparison for MemcachedGPU. Results not provided in



Table 6: Comparing MemcachedGPU with Prior Work.
Platform MRPS Lat. (µs) KRPS/W KRPS/$ Year / nm

MemcGPU Tesla
(online)

12.9-13
m <800,
p95<1100

62 4.3 ’14/28

MemcGPU Tesla
(online)

9 p95 < 500 45 3 ’14/28

MemcGPU GTX
750Ti (NGD online)

12.85
m <830,
p95<1800

84.8 25.7 ’14/28

MemcGPU GTX
750Ti (offline)

28.3 – 127.3 56.6 ’14/28

Vanilla Memc - 4
threads

0.93
p95<677 -
0.5 MRPS

6.6 2.67 ’13/22

Vanilla Memc +
PF RING- 2 threads

1.82
p95<607 -
1 MRPS

15.89 5.2 ’13/22

Flying Memc [16] 1.67 m < 600 8.9 2.6 ’13/28

MICA - 2x In-
tel Xeon E5-2680
(online,4 NICs) [36]

76.9 p95 < 80 – 22 ’12/32

MICA - 2x In-
tel Xeon E5-2680
(offline) [36]

156 (avg.
of uni. &
skew.)

– – 44.5 ’12/32

MemC3 - 2x Intel
Xeon L5640 [36]

4.4 – – 12.9 ’10/32

FPGA [11, 26] 13.02 3.5-4.5 106.7 1.75 ’13/40

the published work or not applicable are indicated by ”–”.

The cost-efficiency (KRPS/$) only considers the current pur-

chase cost of the CPU and the corresponding accelerator, if

applicable. All other costs are assumed to be the same be-

tween systems. The last column in Table 6 presents the year

the processor was released and the process technology (nm).

Table 6 also presents our results for the vanilla CPU

Memcached and vanilla CPU Memcached using PF RING

to bypass the Linux network stack. No other optimizations

were applied to the baseline Memcached. These results high-

light that while bypassing the Linux network stack can in-

crease performance and energy-efficiency, additional opti-

mizations to the core Memcached implementation are re-

quired to continue improving efficiency and scalability.

Aside from MICA [36], MemcachedGPU improves or

matches the throughput compared to all other systems.

However, an expected result of batch processing on a

throughput-oriented accelerator is an increase in request

latency. The CPU and FPGA process requests serially, re-

quiring low latency per request to achieve high throughput.

The GPU instead processes many requests in parallel to

increase throughput. As such, applications with very low

latency requirements may not be a good fit for the GPU.

However, even near 10 GbE line-rate MemcachedGPU

achieves a 95-percentile RTT under 1.1ms and 1.8ms on the

Tesla K20c (GNoM) and GTX 750Ti (NGD) respectively.

MemcachedGPU is able to closely match the through-

put of an optimized FPGA implementation [11, 26] at all

key and value sizes, while achieving 79% of the energy-

efficiency on the GTX 750Ti. Additionally, the high cost

of the Xilinix Virtex 6 SX475T FPGA (e.g., $7100+ on

digikey.com) may enable MemcachedGPU to improve cost-

efficiency by up to 14.7X on the GTX 750Ti ($150). While

an equivalent offline study to Section 5.5 is not available for

the FPGA, the work suggests that the memory bandwidth

is tuned to match the 10 GbE line-rate, potentially limiting

additional scaling on the current architecture. This provides

promise for the low-power GTX 750Ti GPU in the offline

analysis, which may be able to further increase through-

put and energy-efficiency up to 2.2X and 1.2X respectively.

Furthermore, the GPU can provide other benefits over the

FPGA, such as ease of programming and a higher potential

for workload consolidation (Section 5.4).

Flying Memcache [16] uses the GPU to perform the

Memcached key hash computation, while all other net-

work and Memcached processing remains on the CPU.

GNoM and MemcachedGPU work to remove additional

serial CPU processing bottlenecks in the GET request

path, enabling 10 GbE line-rate processing at all key/value

sizes. Flying Memcache provides peak results for a min-

imum value size of 250B. On the Tesla K20c with 250B

values, MemcachedGPU improves throughput and energy-

efficiency by 3X and 2.6X respectively, with the throughput

scaling up to 7.8X when using 2B values.

The recent state-of-the-art CPU Memcached implementa-

tion, MICA [36], achieves the highest throughput of all sys-

tems on a dual 8-core Intel Xeon system with four dual-port

10 GbE NICs. Similar to MemcachedGPU, MICA makes

heavy modifications to Memcached and bypasses the Linux

network stack to improve performance, some of which were

adopted in MemcachedGPU (Section 4). Additional mod-

ifications, such as the log based value storage, could also

be implemented in MemcachedGPU. MICA’s results include

GETs and SETs (95:5 ratio) whereas the MemcachedGPU

results consider 100% GET requests, however, MICA also

modified SETs to run over UDP, which may limit the effec-

tiveness in practice. Additionally, MICA requires modifica-

tions to the Memcached client to achieve peak throughputs,

reducing to ∼44% peak throughput without this optimiza-

tion. In the online NGD framework, the GTX 750Ti may

improve cost-efficiency over MICA by up to 17%. MICA

presents an offline limit study of their data structures with-

out any network transfers or network processing, reaching

high throughputs over 150 MRPS. In contrast, all of the UDP

packet data movement and processing is still included in the

offline MemcachedGPU study (Section 5.5); however, UDP

packets are read from CPU memory instead of over the net-

work. In the offline analysis, the GTX 750Ti may improve

cost-efficiency over MICA up to 27%. We were not able

to compare the energy-efficiency of MemcachedGPU with

MICA as no power results were presented.

6. Related Work

Concurrent with our work, Zhang et al. [59] also propose

using GPUs to accelerate in-memory key-value stores.

They use two 8-core CPUs, two dual-port 10 GbE NICs

(max. 40 Gbps), and two NVIDIA GTX 780 GPUs to

achieve throughputs over 120 MRPS. In contrast to Mem-

cachedGPU, these results use a smaller minimum key size

(8B vs. 16B), use a compact key-value protocol independent

from the Memcached ASCII protocol, and batch multiple



requests and responses into single network requests through

multi-GETs to reduce per-packet network overheads. How-

ever, for GET requests, the GPU is only used to perform

a parallel lookup for the corresponding CPU key-value

pointer in a GPU Cuckoo hash table. All other processing,

including UDP network processing, request parsing, key

hashing, and key comparisons, are done on the CPU. In con-

trast, the goal of our work was to achieve 10 GbE line-rate

performance for all key-value sizes while performing all of

the UDP network processing and GET request processing

on the GPU. We have not yet evaluated the potential for

additional scaling of GNoM and MemcachedGPU using a

more powerful CPU with multiple NICs and GPUs.

Recent work by Kim et al. [33] present GPUnet, a net-

working layer and socket level API for GPU programs. Sim-

ilar to GNoM, GPUnet aims to improve the support for ap-

plications requiring networking I/O on GPU accelerators.

However, GPUnet is designed for Infiniband hardware and

is directed towards more traditional GPU applications, such

as image processing and MapReduce. The current cost of In-

finiband hardware is a large contributor to the restricted us-

age outside of HPC. GNoM instead targets commodity Eth-

ernet hardware typically used in data centers and evaluates a

non-traditional GPU application, Memcached.

Other works have evaluated packet acceleration on GPUs

[21, 32, 55]. Similar to GNoM, these works exploit packet-

level parallelism on the massively parallel GPU architecture,

requiring a host framework to efficiently manage tasks and

data movement. Packet Shader [21] implements a software

router framework on GPUs to accelerate the lower-level net-

work layer, whereas GNoM and MemcachedGPU focus on

transport and application levels. Other recent works [32, 55]

evaluate GPUs for higher-level network layer processing, in-

cluding stateful protocols such as TCP. However, their focus

is more towards individual packet processing applications,

such as packet filtering and network intrusion detection.

Our prior work [23] initially explored the potential ben-

efits of exploiting request-level parallelism for a subset of

Memcached GET request processing on GPUs. Dimitris et

al. [16] also address the networking bottlenecks in a version

of Memcached where the GPU is used for performing the

key hash while all other processing remains on the CPU.

In contrast, this work performs all Memcached GET request

and network processing on the GPU, addressing many of the

challenges associated with a full system implementation.

Prior work has evaluated server workloads on GPUs,

such as Memcached [23], HTTP workloads [2], or database

queries [7, 57]. These works highlight the benefits of exploit-

ing request level parallelism on the GPU through batching.

However, they focus solely on the workload specific process-

ing. In contrast, this work considers a full system implemen-

tation including end-to-end network measurements.

Many prior works have looked at improving the through-

put and scalability of Memcached or other general key-value

store applications through software or hardware modifica-

tions [4, 10, 18, 19, 28, 29, 36, 40, 56], many of which are

orthogonal to our work. As described in Section 4, we have

adopted some of the Memcached optimizations presented in

[19, 36], and many others could be implemented to further

improve performance and storage efficiency. While the focus

of this paper is on Memcached, one of the long term goals of

our work is to provide a general framework for accelerating

high-throughput network services on GPUs.

Other works have considered using FPGAs to accelerate

Memcached [11, 12, 37]. While the FPGA architecture en-

ables high energy-efficiency and high performance, the flex-

ibility of the general-purpose GPU architecture (e.g., ease

of programming, multitasking), may outweigh some of the

efficiency gains in the data center.

Recent works have evaluated different operating system

abstractions on GPUs, such as file systems [52], resource

management and scheduling [30, 50, 53], exceptions and

speculative execution [39], and virtualization [17, 20, 51].

These works are complementary to our work with a common

goal of improving system-software support on GPUs.

7. Conclusion

We have described GNoM, a GPU-accelerated networking

framework, which enables high-throughput, network-

centric applications to exploit massively parallel GPUs to

execute both network packet processing and application

code. This framework allows a single GPU-equipped

data center node to service network request at ∼10 GbE

line-rates, while maintaining acceptable latency even while

processing background, lower priority batch jobs. Using

GNoM, we described an implementation of Memcached,

MemcachedGPU. MemcachedGPU is able to achieve ∼10

GbE line-rate processing at all request sizes, using only

16.1µJ and 11.8µJ of energy per request, while maintaining

a client visible p95 RTT latency under 1.1ms and 1.8ms on

a high-performance NVIDIA Tesla GPU and low-power

NVIDIA Maxwell GPU respectively. We also performed

an offline limit study and highlight that MemcachedGPU

may be able to scale up to 2X the throughput and 1.5X the

energy-efficiency on the low-power NVIDIA Maxwell GPU.

We believe that future GPU-enabled systems which are

more tightly integrated with the network interface and less

reliant on the CPU for I/O will enable higher performance

and lower energy per request. Overall, we demonstrated the

potential to exploit the efficient parallelism of GPUs for

network-oriented data center services.
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