Programmable Logic Core Based Post-Silicon Debug For SoCs

Bradley R. Quinton
Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada
bradq@ece.ubc.ca

Abstract

Producing a functionally correct integrated circuit
is becoming increasingly difficult. No matter how
careful a designer is, there will always be integrated
circuits that are fabricated, but do not operate as
expected. Providing a means to effectively debug these
integrated circuits is vital to help pin-point problems
and reduce the number of re-spins required to create a
correctly-functioning chip. In this paper, we show that
programmable logic cores (PLCs) and flexible
networks can provide this debugging capability. We
elaborate on our PLC based debug infrastructure and
summarize our current research. We address issues
such as defining the debug architecture and debug
methodology, determining the expected area overhead,
optimizing the interconnect topology, creating a high
throughput multi-frequency on-chip network and
building efficient interfaces between the PLC and
fixed-function logic. Finally, we outline a number of
directions for ongoing research in this area.

1. Introduction

Advances in integrated circuit (IC) technology have
made possible the integration of a large number of
functional blocks on a single chip. There are many
challenges associated with this high level of
integration. One of these challenges is ensuring that
the IC design is functionally correct. Although pre-
fabrication simulation is used to help ensure that the IC
performs as desired, the complexity of modern ICs
prevents exhaustive verification. Design errors (bugs)
are often found post-fabrication. For complex ICs, the
process of verifying and debugging new devices is a
significant cost and time investment [1]. As the level
of IC integration continues to rise, this problem will be
exacerbated as more functionality is combined into a
single “black-box” that must be tested using only the
external chip interfaces.

Steven J.E. Wilton
Electrical and Computer Engineering
University of British Columbia
Vancouver, Canada
stevew @ece.ubc.ca

Debugging fixed function ICs presents a significant
challenge. It is difficult to observe or control signals
within fixed-function ICs. After fabrication, the chip
cannot be easily modified to provide these signals to
output pins where they can be observed. Even if the
signals were identified before fabrication, providing
external access to these signals at design-time is
problematic since I/O resources are often limited and
do not operate at the high speeds that would be

required.
External I/F
CPU
| l I | |
IP IP IP IP
Block [« Block [«3| Block [+ Block
#1 #2 #3 #4

Access Network

Debug Observe Debug Control

PLC

(Optional
JTAG I/F)

NoC/Shared Bus

Figure 1 Debug Infrastructure

We propose a post-silicon debug infrastructure
based on programmable logic cores (PLCs) and a
programmable interconnect network. The post
manufacturing re-configurability of the network and
programmable logic core is a key aspect of the
technique. If we consider the post-fabrication
verification process, the region of the circuit being
debugged may change over time, and in any case, it is
not likely to be predictable during design time. The

flexible network allows the verifier to select the
internal signals that are of interest for any given test,
and the programmable logic core provides a means to
process these signals in a manner that depends on the
debugging task being performed.

Various methods have been used in the past to
assist functional debug of post-silicon ICs. None of
these have been systematic or general purpose. Some
of these methods have been ad-hoc, such as controlled
un-loading of DFT scan chains, and thermal emissions.
Other methods are more formalized but directed at
specific designs, such as in-circuit emulation (ICE) for
stand-alone processors. This targeted mechanism is
not general since it relies on keys characteristics of the
processor. With the trend towards system-on-chip
(SoC) designs, application-specific logic, high-speed
interfaces and processors are being combined on a
single die. In order to effectively debug this logic,
flexible, full speed, real-time debugging is required.

Our infrastructure targets a generic SoC design
containing multiple IP cores, as shown in Figure 1.
Typically, at least one of these cores will be a
processor, and often they will contain one or more
high-speed interfaces. These cores can be connected
either by fixed (direct) wires, a shared system bus, or
Network-on-Chip (NoC).

A number of programmable debug/repair
architectures have been described since our initial
proposal of using programmable logic cores to
facilitate post-silicon debug [2]. Abramovici, et al.
(DAFCA) have described their reconfigurable design-
for-debug infrastructure for SoCs [3]. Like our
proposal, the DAFCA infrastructure is targeted at
general-purpose digital logic in a SoC design. The
DAFCA infrastructure is based on a distributed
heterogeneous reconfigurable fabric. Unlike DAFCA,
we propose using a centralized, generic programmable
logic core. Therefore there are important differences
between the two architectures. First, we make use of
existing FPGA architectures and CAD tools to
implement our debug circuits. This is an important
difference since it leverages existing research on the
architecture, synthesis, placement and routing of island
style FPGAs [4]. Second, by centralizing the
programmable logic we can make efficient use of an
expensive resource. Each new debug circuit can reuse
the same programmable logic. Third, by using generic
programmable logic we ensure that debug circuits are
fully flexible, and not restricted to certain functionality.
For, example our infrastructure does not require any
explicit trigger signals to be defined in advance,
therefore it is possible to define the required triggering
scheme at debug time. Fourth, by using a general-

purpose core, and connecting it to the system bus, we
enable the possibility of constructing error correction
circuits or adding new features to the device after
manufacturing. Finally, our centralized core imposes
the requirement of a high-speed, global, configurable
access network. This network and the interface
between the network and a PLC are key aspects of our
research in this area as outlined in Section 2.

Sarangi, et al, have described a proposal for using
programmable hardware to help patch design errors in
processors [5]. As part of their patching process they
make use of programmable logic to detect specific
conditions in the processor. In some cases, after the
detection of these specific problem conditions, they can
make use of existing processor features, such as
pipeline flushes, cache re-fills, or instruction editing to
correct the error; in other cases they can cause an
exception to be serviced by the operating system or
hypervisor. Their proposed architecture is distributed
and is targeted at a specific type of design, namely
modern processors. The programmable logic
architecture that they use is more targeted than the one
that we propose. They make use of a PLA-type fabric,
which increases performance and lowers overhead, but
is not able to implement arbitrary debug circuits. The
primary motivation of their proposal is the in-field
correction of processor design errors, and not post-
silicon debug, however it is evident that their proposal
could also be useful during the debug stage. Although
our initial focus has been debugging, we have designed
our infrastructure so it could also be used to detect and
correct errors in a similar fashion. The PLC in our
infrastructure can be configured to drive signals in the
fixed function design. For example, the debug logic in
the PLC could trigger an interrupt on the embedded
processor if a specific error condition occurs in part of
the design. The embedded processor could then take
action to fix the problem.

2. Research Results

Our research is focused on the implementation of a
post-silicon debug infrastructure based on
programmable logic cores (PLC). We have addressed
a number of key challenges including defining a basic
architecture and debug methodology, determining the
expected area overhead, optimizing the interconnect
topology, creating a high throughput multi-frequency
on-chip network and building efficient interfaces
between the PLC and fixed-function logic. These
research results will be summarized in the following
sections.

3. Architecture, Methodology, Overhead

Our basic debug infrastructure is built around a
programmable logic core (PLC) as shown in Figure 1
[2]. The key elements of this infrastructure are the
PLC, the access network and I/F buffering. The
infrastructure also makes use of an embedded
processor and/or JTAG interface [6], which are likely
to already be included in a SoC design. The PLC is
connected to the rest of the chip using an interface
buffer and access network. In addition, the PLC can
communication with the on-chip CPU using a shared
bus or NoC.

The configuration of our debug infrastructure at
design time proceeds as follows. The SoC designer
does not yet know whether the chip will fail, and if so,
how it will fail. Thus, it is impossible to select a set of
signals within the integrated circuit that will be directly
connected to the PLC. Instead, the designer chooses a
much larger set of signals (which we refer to as the
observable/controllable signals) from the integrated
circuit, and connects them to the input of the access
network, as shown in Figure 1. Although our
architecture allows a large number of signals to be
observable/controllable, it will only cover a small
percentage of the total internal signal in an integrated
circuit. A subset of the total signals must be selected
as observable/controllable signals. Although this
process is somewhat design-dependent and manual,
recent work has been done on the problem of automatic
selection of important signals for debug [7]. For our
work we assume that all signals that are used to
connect IP blocks to other IP blocks at the top-level of
the SoC are selected as observable/controllable signals.
However, our technique will work equally well if the
designer wishes to provide the ability to
control/observe selected intra-IP block signals as well.

The debug process proceeds as follows. After the
chip has been fabricated, and is deemed to require
debugging, the designer (or verifier) can program
debugging circuitry into the programmable logic core
(PLC). The PLC is used to pre-process observed data
before passing it to the on chip processor (or JTAG
interface), and to provide high-speed control of the
IC’s internal signals based on directions from the on-
chip processor (or JTAG interface). By allowing
debug signals to be manipulated, the use of the PLC
significantly reduces the off-chip communication
requirements and allows for real-time, clock cycle
accurate observation and control. For example, a
counter may record the number of transitions on a
signal over given period, and only return the total
number of transitions. Another debug circuit could

count the number of clock cycles between two signal
assertions. Or, in another case, key bytes in a data
stream could be recorded while other unimportant
signals could be discarded.

In addition to programming the PLC, the designer
or verifier can select signals from the set of
observable/controllable signals to connect to the PLC.
Since the number of pins on a PLC is typically smaller
than the number of observable/controllable signals, an
access network is used to select the
observable/controllable signals that will drive and be
driven by the PLC. The configuration of this network
(i.e. which observable/controllable signals are
connected to the PLC) can done at the same time as the
PLC by programming memory bits that control the
routing paths in the network.

20

-
(&)

-
o

overhead (%)

0
0 1000 2000 3000 4000 5000 6000 7000 8000
number of signals

Figure 2 Area Overhead

To better understand the area overhead of our
proposal, we created a parameterized model of SoC
designs with and without our debug infrastructure. The
model is parameterized based on the total number of
gates in all IP cores and the number of
observable/controllable signals. The area is calculated
by summing the size of the IP cores themselves, a
published area estimate of a specific programmable
logic core and the area of standard cell
implementations of the interface circuitry and access
network. A 90nm technology and the
STMicroelectronics Core90GPSVT standard cell
library were assumed throughout [8]. The PLC we
assumed was the 90nm PLC from IBM/Xilinx and we
used the area estimate published for this core [9]. This
PLC is equivalent to approximately 10,000 ASIC gates.
We believe that this is more than enough capacity for
the debug circuits we are considering. Therefore our
overhead numbers can be viewed as conservative. The
PLC has 384 available I/O ports. We assigned half of
these I/O ports to be inputs and the other half were

assumed to be outputs. The interface to the
NoC/shared network is implemented in the PLC logic
and therefore required no additional area overhead.

For each integrated circuit size, the number of
observable/controllable signals was varied from 100 to
7200, and the area overhead relative to the original
integrated circuit was plotted as shown in Figure 2.
The results show that for large IC designs, the cost of
implementing the extra logic to facilitate post-silicon
debug is modest. For example, on a 20 million gate
ASIC it would be possible to observe and control 7200
internal signals for an overhead of 5%. Note that as the
IC design becomes larger, the area of the PLC is
amortized and its overhead becomes less significant.
For these large ICs the cost of the access networks will
be the important issue.

4. Interconnect Topology

The area cost and performance of the access
network is an important factor in the efficiency of our
proposal. The number of switches, total depth and
interconnection of the switching (i.e. the topology)
have a direct impact of these factors. We have
demonstrated that when interfacing fixed logic
functions to a PLC it is possible to reduce the cost of
the network by taking advantage of the configurability
of the logic core [10]. A concentrator is a network that
provides full connectivity between the inputs and
outputs of a network while removing restrictions on the
ordering of the outputs. This removal of the ordering
constraint matches the flexibility of a PLC since any
physical port can be assigned to any logical
functionality. We have shown the construction of a
concentrator network that reduces the network depth
and switch cost by 1/2 compared to a fully flexible
network while still providing the full connectivity
needed for debug. One of our possible new
concentrator constructions is shown in Figure 3.

\

(n/2, m/2) 0 m/2
-concentrator 4 outputs

n
inputs

/
\

(n/2, m/2) ° m/2
-concentrator . outputs

/

Figure 3 Concentrator Construction

5. Interconnect Implementation

A major challenge with our centralized PLC
architecture is the requirement that the access network
span the entire die and run at full speed. To address
this we designed a two-stage concentrator network.
The second stage of the network is responsible for
aggregating the signals from all parts of the die. We
investigated two different implementations of the
second stage: a standard pipelined synchronous
implementation and a novel asynchronous
implementation [11]. The asynchronous interconnect
was designed specifically to fit into a standard ASIC
design flow. It can be built with only standard cells
and optimized with current commercial CAD tools.
The basic design structure is shown in Figure 4. The
clock generation logic is based on discrete XOR logic
to avoid clock glitching as shown in Figure 5. The
asynchronous implementation has the major advantage
of eliminating the need to generate a high-speed, low
skew clock tree at the top-level of the SoC that would
be required for synchronous pipelining flops.

New Code
Current Code

Next Stage Code
(ack)

Figure 5 Clock Generation Logic

We measured the performance and efficiency of
our asynchronous interconnect by performing
placement and routing on a variety of trial IC
configurations. The results showed, for example, that
for a 5 million gate, 0.18um IC with 64 design blocks,
the synchronous network could run at speeds of greater
than 250 MHz with no top-level pipeline flops,
whereas the asynchronous network could run at speeds
greater than 375. More recent results in 90nm

technology with an enhanced asynchronous pipelining
procedure demonstrate a 14 million gate IC with 64
blocks could run at over 500 MHz synchronously, and
850 MHz asynchronously [12]. Details of these 90nm
results are shown in Figure 6. Nine trial IC design
configurations are represented on the x-axis. The
scenarios represent cases with 16, 64 and 256 IP
blocks, and die widths of 3830um, 8560um and
12090um respectively. The results show that the
asynchronous interconnect is able to manage high
throughput signals while eliminating the need for
synchronous pipeline flops.

1100 T T T T T T T T
1000
900 F - § B E
800
700 F . - 4
600 F - E
500 f 2 L E
400 | - e o
300 f E
200
100 F E

0

Freq (MHz)

16 - 3830
16 - 8560
16 - 12090
64 - 3830
64 - 8560
64 - 12090
256 - 3830
256 - 8560
256 - 12090

Partitions - Die Width (um)

Figure 6 Throughput with no Pipeline Clock

6. Programmable Logic Interface

The architecture of our debug infrastructure
requires interfacing high-speed fixed function logic to a
programmable logic core. The primary challenge is
managing the difference in timing performance
between the fixed function logic and programmable
logic. The performance of the programmable logic will
inevitability be lower than that of fixed logic, therefore
without careful consideration it may effect the
performance of the entire IC. Initially, we focused on
the interface between the system bus and the PLC [13].
Our proposal maintains the island-style structure of the
PLC as shown in Figure 7. However, we propose
integrating new configurable structures into the routing
fabric and configurable logic blocks of the PLC to
enhance the timing and efficiency of bus interfaces as
shown in Figure 8. Although enhanced for bus
interfaces, the modified PLC architecture maintains all
the key attributes of a general purpose PLC. The
standard FPGA CAD tools for placement, routing and
static timing still work with only slight modification.
In addition, designs that don’t make use of our new
enhancements incur an area overhead of less than
0.5%. For design that do make use of the new logic,

our results show that, on average, our proposal would
improve PLC interface timing by 36% while reducing
the congestion and logic usage by 29% and 8%,
respectively.

modified %B standard CLB

4

[]
[]
[]

OO0000
OO0000
D000
B NN
EEEEE
OOO000
OO0000-
Nooo0o0)
OO0000

OO
OOt
OOt

Figure 7 Modified PLC Architecture

in_2[7:0] 4@ out_2[7:0]

in_1[7:0] out_1[7:0]
write_en[i-1:0],
in_0[7:0] out_0[7:0] — read_en[i-1:0],
data_in[31:0],
new circuits — data_out[31:0]
select —| dout[31:0]
read — byte_ack[3:0]
write —*| trans_ack
btye_enable[3:0] —*|
address[5:0] —|
original CLBs
size[1:0] —
din[31:0] —*

Figure 8 System Bus Shadow Clusters

7. Ongoing Work

Our ongoing work will continue to enhance our
proposed debug infrastructure. We will focus on three
areas. First, we intend to generalize our work on fixed-
function to PLC interfaces to support generic
synchronous and asynchronous interfaces. This will
effectively pull the block labelled I/F Buffer in Figure
1 into the PLC structure. We anticipate that this will

improve interface efficiency and timing while
enhancing the flexibility of the interface. Second, we
intend to implement our infrastructure on an existing
industrial SoC, and perform simulated post-silicon
debugging. This will help us to further our
understanding of the costs and requirements of our
proposal. We also anticipate that we will be able to
better understand the required size of the PLC and the
number of internal signals required for effective debug.
Thirdly, we intend to extend the functionality of our
infrastructure and utilization methodology to address
error correction and facilitate feature additions to
existing SoCs.

References

[1] S. Sandler, “Need for debug doesn’t stop at first
silicon”, E.E. Times, Feb. 21, 2005.

[2] B.R. Quinton and S.J.E. Wilton, “Post-Silicon
Debug Using Programmable Logic Cores”, Proc.
IEEE Int. Conf. on Field-Programmable
Technology, Dec. 2005.

[3] M. Abramovici, “A Reconfigurable Design-for-
Debug Infrasctructure for SoCs”, Proc. Design
Automation Conference, July 2006.

[4] V.Betz, J. Rose, and A. Marquardt, Architecture
and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[5] S. Sarangi, et al., “Patching Processor Design
Errors With Programmable Hardware”, IEEE
Micro, Jan-Feb 2007.

[6] IEEE Std. 1149.1-1990, IEEE 1149.1 Standard
Test Access Port and Boundary-Scan Architecture,
IEEE Computer Society, 1990

[71 Y. Hsu, “Visivility Enhancement for Silicon
Debug”, Proc. Design Automation Conference,
July 2006.

[8] STMicroelectronics, “CORE90 GP SVT 1.00V”,
Databook, Oct. 2004.

[9] P. Zuchowski, et al., “A Hybrid ASIC and FPGA
Architecture”, Proc. IEEE/ACM Inter. Conf. on
Computer-Aided Design, pp. 187-194, 2002.

[10] B.R. Quinton and S.J.E. Wilton, “Concentrator
Access Networks for Programmable Logic Cores
on SoCs”, Proc. of the IEEE International
Symposium on Circuits and Systems, Kobe, Japan,
May 2005.

[11] B.R. Quinton, M.R. Greenstreet, and S.J.E.
Wilton, “Asynchronous IC Interconnect Network
Design and Implementation Using a Standard
ASIC Flow”, Proc. IEEE Int. Conf. on Computer
Design, Oct. 2005, pp. 267-274.

[12] B.R. Quinton, M. Greenstreet, S.J.E. Wilton,
"Practical Asynchronous Interconnect Network
Design", in review for IEEE Transactions on VLSI.

[13] B.R. Quinton and S.J.E. Wilton, “Embedded
Programmable Logic Core Enhancements for
System Bus Interfaces”, submitted to IEEE Conf.
on Field-Programmable Logic and Applications,
2007.

