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Abstract

This paper describes Glitchless, a circuit-level technique
for reducing power in FPGAs by eliminating unnecessary
logic transitions called glitches. This is done by adding
programmable delay elements to the logic blocks of the
FPGA. After routing a circuit and performing static timing
analysis, these delay elements are programmed to align the
arrival times of the inputs of each LUT, thereby preventing
new glitches from being generated. Moreover, the delay
elements also behave as filters that eliminate other glitches
generated by upstream logic or off-chip circuitry. On
average, the proposed implementation eliminates 87% of the
glitching, which reduces overall FPGA power by 17%. The
added circuitry increases the overall FPGA area by 6% and
critical-path delay by less than 1%. Furthermore, sinceitis
applied after routing, the proposed technique requires little
or no modifications to the routing architecture or CAD flow.

1. Introduction

With power dissipation of FPGAs increasing each
generation, power reduction is quickly becoming ihain
challenge for implementing large applications. RPBG
dissipate significantly more power than ASICs baeaof
the added circuitry needed to make them progranmemabl
Although static power dissipation has received iicant
attention recently due to its sharp increase, dyngower
still accounts for 62% of total power [1].

There are a number of ways to reduce power in FRGAs
Techniques that can be used at the physical lexcdide
lowering the supply voltage [2] or increasing theeshold
voltage [3]. At the circuit level, device featurean be sized
less aggressively for speed to reduce capacitiadihg and
therefore dynamic power [4]. At the architectusvell,
power management [5] and clock network design &se a
helpful [6]. At the CAD level, grouping togetheiigh-
activity logic reduces dynamic power [7]. A sumsnaf
techniques to reduce power is described in [8].

This paper introducesGlitchLess, a circuit-level
technique that reduces dynamic power in FPGAs hiyelyg
preventing each logic output from toggling until af its
inputs have fully resolved. Although there arewa f@ssible
implementations, the one explored in this papersadd
programmable delay elements to the configurabldclog

blocks (CLBs). These delay elements programmabtynal
the arrival times of early-arriving signals to theuts of the
lookup tables (LUTSs) to prevent the generation ldtiges.
Additionally, the delay elements also behave asr§lthat
eliminate other glitches generated by upstreanclogioff-
chip circuitry. Since it is applied after routin@litchLess
requires little or no modifications to the FPGA tiog
architecture or CAD flow. Furthermore, it can bentned
with other low-power techniques.

In theory, GlitchLess offers the potentialdominate all
glitching in FPGAs, thereby saving significant amounts of
power. In practice, however, we must trade-off plosver
saved with the area and speed overhead incurrethédy
additional circuitry required to implement it. Eamately,
the impact on circuit speed is not significant éstlthan
increased parasitic capacitance) because only #uly-e
arriving signals need to be delayed. However, the
programmable delay elements do consume chip aveages
should expect a modest increase in the area ofiehize.
The tradeoff between glitch reduction (hence, pdweamea,
and speed will be quantified in this paper. Speslify, this
paper examines the following questions:

1. How should the programmable delay elements be
connected to the logic? The programmable delay
elements could conceivably be connected to thet$ngu
outputs of each CLB or they could be connectechéo t
inputs of the LUTs within the CLBs.

2. How many programmable delay elements are needed
within each CLB? Intuitively, adding more
programmable delay elements to the CLBs eliminates
more glitches since more signals can be aligned;
however, it also increases the area overhead.

3. How flexible should the programmable delay elements
be? The more flexible each delay element is, #iebit
will be able to align the arrival times of signals.
However, there is a tradeoff between this flexipiand
the area overhead of the added circuits.

Does the delay insertion technique work when there
process, voltage, and/or temperature (PVT) van&tio
PVT affects both the delay of the existing FPGAidog
and the delay of the programmable delay elements.
Special measures must be taken to ensure thaketag d
insertion technique can tolerate variation well wgtoto
eliminate glitches without introducing timing vidilans.

4.



A preliminary version of this work appeared in [Jhis

paper introduces a new delay insertion scheme which

reduces the area overhead, and proposes new taeekraqd

a new programmable delay element that tolerates PVT

variation more effectively than the previous work.

This paper is organized as follows. Section 2 gnes
terminology used in this paper to describe glitghend
PVT variation and then summarizes existing techedgqtnat
can be used to minimize glitching. Section 3 exanihow
much glitching occurs within FPGAs. Section 4 prds the
proposed delay insertion schemes. Section 5 thescthe
experimental framework used to estimate power ggvand
area and delay overhead. Section 6 describes kv e
scheme is calibrated and Section 7 presents thealbve
power savings and overhead. Finally, Section 8nsarizes
the results and presents our conclusions.

2. Background

2.1 Switching Activity Terminology

There are two types of transitions that can ocaurao
signal. The first type is a functional transitiomhich is
necessary in order to perform a computation. Acfional
transition causes the value of the signal to biewdint at the
end of the clock cycle than at the beginning of theck
cycle. In each cycle, a functional transition asceither
once or the signal remains unchanged. The seggeddf
transition is called a glitch (or a hazard) andas necessary
in order to perform a computation. These transgican
occur multiple times during a clock cycle.

2.2 PVT Variation

Process variation refers to manufacturing imprecision,
leading to variability in characteristics like dewigeometry

Table 1. Breakdown of switching activity.

. . Logic L Func. Glitch %
Circuit De;thh Activity Activity | Activity || Glitch
C1355 4 0.32 0.23 0.09 27.5
C1908 10 0.26 0.17 0.09 34.6
C2670 7 0.27 0.21 0.06 22.2
C3540 12 0.42 0.23 0.19 45.2
C432 11 0.26 0.18 0.08 29.3
C499 4 0.34 0.23 0.11 31.9
C5315 10 0.40 0.25 0.15 36.7
C6288 28 1.56 0.29 1.27 81.1
C7552 9 0.39 0.23 0.16 42.0
C880 9 0.23 0.19 0.05 19.8
alu4 7 0.08 0.07 0.01 13.1
apex2 8 0.05 0.04 0.01 13.7
apex4 6 0.04 0.03 0.01 32.3
des 6 0.27 0.17 0.10 36.8
ex1010 8 0.03 0.01 0.02 52.9
ex5p 7 0.17 0.08 0.09 51.0
misex3 7 0.06 0.05 0.01 20.9
pdc 9 0.03 0.02 0.01 31.8
seq 7 0.05 0.04 0.01 16.0
spla 8 0.05 0.03 0.02 42.7
Geomean 8.1 0.024 0.019 0.047 30.8

outputs using an nMOS footer controlled by a fixkday
circuit. Similarly, a delay insertion technique deised in
[18] reduces glitching by aligning the input arfitenes of
gates using delay elements with a fixed delay. @Hast
two techniques are applied to ASIC-style circuitseve the
location and amount of delay to insert can be tadofor
each circuit by analyzing which nodes have highvigt
and large capacitance. However, these techniguesi@
suitable for FPGAs since the applications are nuwn
until after fabrication, making it is impossible to determine,
at fabrication time, where the extra delay cirgughould be

or even placement and concentration of dopant atomslocated or how much delay to add. In this paper tavget

Similarly, voltage variation refers to the variability of the
power supply andemperature variation refers to variability

of the temperature of the surrounding environment.

Collectively, these are calldeVT variation. Variations can

either bedie-to-die (different dies have different properties)
or within-die (similar circuit elements within the same chip

have different properties). In either case, vana can
affect both the timing and power dissipation of deices.

2.3 Existing Glitch Minimization Techniques

Several techniques to reduce power have been pdpos

including logic decomposition [10], loop folding 1] high-
level compiler optimization [12], technology mapgifiL3]
and clustering [7]. These techniques reduce simigch
activity, which eliminates some glitching, but thigpically

incur area and delay penalties as they reorganiee t

structure of the circuit. Another approach to iglitches
adds flip-flops (pipelining) [14] to reduce the coimational
path length. However, this increases the latencythef
circuit. To preserve latency, alternatives incladieling flip-
flops that use the opposite (e.g., negative) cemidee [15] or
relocating the flip-flops by retiming [16]. Trgate freezing

technique [17] suppresses 1-0 transitions on szlegate

FPGAs by addingprogrammable delay elements to the
architecture. The design and location of thesenetes
must be considered carefully, since their overhead
overwhelm any power savings obtained from glitahoeal.

3. Glitching in FPGAs

This section begins with a breakdown of functionsl
glitching activity to determine how much glitchirggcurs
within FPGAs. It then examines the width of typica
glitches and determines how much power is dissiphiea
single glitch. Finally, it indicates how much pavesuld be
saved if glitching could be completely eliminatedhese
statistics are important, not only because thep hadtivate
our work, but also because they provide key numfgersh
as typical pulse widths) that will be needed in tioec6
when the delay insertion schemes are calibrated.

3.1 Switching Activity Breakdown

Table 1 reports the switching activities for a sudf
benchmark circuits implemented on FPGAs. These
activities are gathered using gate-level simulatba post-
place and route implementation for a set of benckma



Pulse Width Distribution (C6288)

Table 2. FPGA power with and without glitching.

_ Power (mW)
T Circuit With Without e
1 VI 1tHo Difference
14 Glitching Glitching
w 127 C1355 9.5 6.7 28.8
S 10+ C1908 6.2 4.9 21.1
& gl C2670 21.5 18.6 13.4
s C3540 21.3 14.6 31.7
X 67 C432 4.6 3.8 17.1
4 C499 8.7 5.7 34.6
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o C6288 41.6 11.2 73.1
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Figure 1. Pulse width distribution of glitches. alud 39.2 37.8 3.6
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Figure 2. Normalized power vs. pulse width. L/ i
circuits (see Section 5 for more details). Gatele (a) Original circuit with glitch
simulations provide the functional and total adyivithe
glitching activity is computed as the differencetviEen T\ —Ja
these two quantities. In general, the amount ib€hghg is —_— | ——
greater in circuits with many levels of logic, ueewvrouting &M
delays, and exclusive-or logic. As an example,&B6i2 an — /i <

unpipelined 16-bit array multiplier that has foimés more
glitch transitions than functional transitions.

3.2 PulseWidth Distribution

In FPGAs, glitches are generated at the outputldfa
when the input signals transition at different tmeThe

(b) Glitch removed by delaying input ¢
Figure 3. Delaying early-arriving signal removes glitch.
respect to pulse width. Figure 2 illustrates tlative

power dissipated when pulse widths ranging frono Qs
are applied to an FPGA routing track that spans @iLBs.

pulse width of these glitches depends on how uneven theA 180nm process was assumed.

input arrival times are. Intuitively, we would exppeFPGA

The graph illustrates that pulses less than or legua

glittches to be wider than ASIC glitches since FPGA 200ps in duration are mostly filtered out by theitiiag

interconnect introduces larger delays. Figure dispthe
pulse width distribution of the C6288 circuit. The
distribution was obtained using event-driven sirtiataand
delays from the Versatile Place and Route (VPR) ],

as described in Section 5. The graph shows teantgjority
of glitches have a pulse width between 0 and apmrately
10ns. Although this range varies across the beadhm
circuits, we have found that the shape of the ibistion is
similar for every circuit.

3.3 Power Dissipation of Glitches

The parasitic resistance and capacitance of théngpu
resources filters out very short glitches. To rmeashe
impact of this, HSPICE was used to determine powiér

resources. All pulses that 300ps or longer in tiloma
dissipate approximately the same amount of powéwus, if

the input signals of a gate arrive within a 200psdow, the

glitching of that gate is effectively eliminated.

3.4 Potential Power Savings

Table 2 reports the average total power dissiplayedrcuits
when implemented in an FPGA. The second columartep
the power of the circuits in the normal case, wiktching

is allowed to occur. The third column reports goaver in
the ideal case, when glitching is eliminated witlo n
overhead. The fourth column shows the percenemdiffce
between the two; this number indicates how much guow
could be saved if glitching was completely elimetht



d D o D pcEEzosses .| o D ."":'“*._
= ‘K | BLE B <kl BLE B g Hal BLE o]
1 _D; I Y] I BE:
[= [= [=
—i)— _i H— H—oH]
$K | BLE n $Ki| BLE ] (i BLE n
—D— _i 1 _B:-q:p--
I{N N ITN o 114N "
_D— _D--(:l-- _D-—_n--
‘K | BLE p $Kil BLE p . i BLE o
(a) Original VPR Logic Block (b) Scheme 1: LUT inputs. (c) Scheme 2: Gradual LUT inputs.
g D B g D
— tKi| BLE fe==sr—h  §— sKi| BLE o og— *ki| BLE b
o] D ——] Pl —DH—— ou S|
[= e d
_i H—d |+ i | | ¢ _i H— >._=._
$Ki| BLE f——it—n tKi| BLE B *ki| BLE b
D —— D pr——ti
1w N N N 33 N
_D--:r—- _D--(:l-- ).
‘Ki| BLE fe=it—> $Ki| BLE ] 5 BLE b
(d) Scheme 3: LUT inputs + outputs. (e) Scheme 4: CLB and LUT inputs.

(f) Scheme 5: LUT inputs + bank.

Figure 4. Delay insertion schemes.

without any overhead. Depending on the circuite th circuit is not increased since only the early-angvinputs
potential power saving ranges between 4% and 73, w are delayed.
average savings of 22.6%. These numbers motivate a Another technique that we considered involved

technique for reducing glitching in FPGAs. modifying the placement and routing algorithms te b
glitch-aware. By placing CLBs at even distancesmfr
4. Glitch Elimination common sources and/or routing connections to balanc

arrival-times, the amount of glitching could likelge

This section describes the techniques used inpgier  reduced. The inherent problem with this approacthat it
to eliminate glitching. It begins by describingrqroposed is difficult to balance arrival-times by making tHate-
technique and discusses other possible techniguesla It arriving fanins faster since the CAD algorithms daready
then presents five variations (or schemes) of tlupgsed  been optimized to minimize critical-path delay. eTother
technique, which employ delay elements in different alternative is to balance arrival-times by makihg early-
locations within the FPGA logic blocks. It thensdgbes  arriving signals slower. This approach; howevesuld not
the programmable delay element that is used tm dhg minimize power as efficiently as the proposed témpha
arrival times and the CAD algorithms that are uded  since the routing resources, which would effectives used
configure these programmable delay elements. Ifjnial to add delay to early arriving signals, dissipat®ren
describes techniques that can be used to makalynamic power than the proposed programmable delay
programmable delay insertion more tolerant to PVT element, which uses a large resistance (as opptsed
variation. capacitance) to delay signals.

4.1 Glitch Elimination Techniques 4.2 Architectural Alternatives

Our proposed technique involves adding programmable  We consider five alternative schemes for implenmanti
delay elements to the CLBs of the FPGA. Withinheac the delay insertion technique; the schemes differthie
CLB, the programmable delay elements are configieed |ocation of the delay elements within the CLB. ig 4(a)
delay early-arriving signals so as to align thevatrtimes illustrates the baseline CLB. A CLB consists of g, flip-
on each LUT input to eliminate glitching. The terfue is  flops, and local interconnect. The LUTs and Frsaired
shown in Figure 3; by delaying inpatthe output glitch can  together into Basic Logic Elements (BLEs). Three
be eliminated. Note that the overall critical-paih the parameters are used to describe a CLBspecifies the



number of input pinsN specifies the number of BLEs and
output pins, and specifies the size of the LUTs. The local
interconnect allows each BLE input to choose framg af
the | CLB inputs andN BLE outputs. Each BLE output
drives a CLB output. The five schemes we consfder
adding delay elements to a CLB are illustratedigufe 4(b-

f), each of which are described below.

Here, additional delay elements, which we @llB input
delay elements, are added to each of th€LB inputs. Since
there are typically fewer CLB inputs than there &kéT
inputs in a CLB, this could potentially result in averall
area savings. The parametais_c andmax_c specify the
minimum and maximum delay of the CLB input delay
elements. We assume every CLB input has a detamyesit,

In Scheme 1, the programmable delay elements ardn order to maintain the equivalence of each CLuin

added at the input of each LUT, as shown in Figl(i®.
This architecture allows each LUT input to be dethy
independently. We describe the architecture ushrge
parameters:min_in, max_in, and num_in. The min_in
parameter specifies the precision of the delay efgm
connected to the LUT inputs. Intuitively, moretchiing can
be eliminated whemin_in is small since the arrival times
can be aligned more precisely. On the other htdrete is
more overhead whenmin_in is small since each

Finally, Scheme 5, shown in Figure 4(f), reducesdize
of the LUT input delay elements by adding a banklefy
elements which can programmably be used by all LidTes
CLB. We refer to these delay elements kamk delay
elements. Signals that need large delays can be delayed by
the bank delay elements, while signals that nedy small
delays can be delayed by the LUT input delay elésaeim
this way, the LUT input delay elements can be sendlian
they are in Scheme 1. These bank delay elemeets ar

programmable delay element requires more stages tQescribed using two additional parametersax b and

provide the extra precision. Thax_in parameter specifies
the maximum delay that can be added to each LUTtinp
Intuitively, more glitching can be eliminated whewax_in is
large since wider glitches can be eliminated. Hamwe
there is more overhead whemax_in is large. Finally, the
num_in parameter specifies how many LUT inputs have a
programmable delay element, between 1 lir{the number
of inputs in each LUT). Increasimyim_in reduces glitching
but increases the overhead. In Section 6, we duahe
impact of these parameters on the power, areadelay of
this scheme.

The disadvantage of Scheme 1 is that, since somgsin
need very long delays for alignment, large prograioie
delay elements are required. Simzen in delay elements
are needed for every LUT, this technique has a higa
overhead ifnum_in is large. In Scheme 2, shown in Figure
4(c), the programmable delay elements are in theesa
location as Scheme 1; however, the maximum delahef
elements is gradually decreased for each LUT irfputa
factor of 0.5). Intuitively, the arrival times dhe inputs
most likely vary with one another; therefore theecaar
overhead can be reduced by reducing the maximuay dé!
some of the delay elements without a significamtghty on
glitch reduction. The same parameters used toridbesc
Scheme 1 are used to describe Scheme 2, mth in
specifying the maximum delay of the largest delaynent.

In Scheme 3, shown in Figure 4(d), additional
programmable delay elements are added to the cutdut
LUTs (we refer to these new delay element4 d¥ output
delay elements). With this architecture, a single LUT output
delay element could be used to delay a signalfféimet out to
several sinks, potentially reducing the size arel rthmber
of delay elements required at each LUT input. Wscdbe
the LUT output delay elements using two parameters,
min_out and max_out, which specify the minimum and
maximum delay of the output delay elements. TheT LU

input delay elements are described using the same

parameters as Scheme 1.
Scheme 4, shown in Figure 4(e), is another way to
reduce the area required for the LUT input delaymants.

num_b. Themax_b parameters specify the maximum delay
of the bank delay elements and them b parameter
specifies the number of programmable delay elemarttse
bank. Note that we assume that the minimum delahe
bank delay element is equal to the maximum delayhef
LUT input delay element since only one of delaymeats
needs to add precision.

Table 3 summarizes the parameters used to desaibe
scheme. The area and delay overhead for each sctaem
well as their ability to reduce glitches, will beantified in
Section 6 and Section 7.

4.3 Programmable Delay Element

Figure 5 illustrates an example of the programmable
delay element used in each of the delay insertahrerses.
The circuit has multiple delay stages (5 in thisrmaple),
each consisting of two transmission gates and aAMSR
cell. Each stage has a fast and a slow mode, wisSich
controlled by the value stored in that SRAM celh the

Table 3: Delay insertion parameters.

Scheme | Parameter Meaning
min_in Min delay of LUT input delay element
R . Max delay of LUT input delay
1-5
max_in element
num_in # of LUT input delay elements / LUT
Max delay of LUT input delay
2 max_in element (gradually decreases by
50% for each input)
. Min delay of LUT output delay
3 min_out element
max_ out Max delay of LUT output delay
- element
min_c Min delay of CLB input delay element
4 Max delay of CLB input delay
max_c
- element
5 max_b Max delay of bank delay element
num_b # of bank delay elements / CLB
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Figure 5. New programmable delay element.

calc_needed_delays (circuit) {
/'in topological order beginning from the primary inputs
foreach node n [ circuit {
Arrival_Time(n) = 0.0;
foreach fanin f O n
if (Arrival_Time(f) + Delay(n, f) > Arrival_Time(n))
Arrival_Time(n) = Arrival_Time(f) + Fanin_Delay(n, f);
}

foreach node n [ circuit {
foreach fanin f O n
Needed_Delay(n, f) = Arrival_Time(n) -
Arrival_Time(f) - Fanin_Delay(n; f)
1}

Figure 6. Calculating the delay needed to align the inputs.

schemel (circ, min_in, max_in, num_inl)

config_LUT_input_delays (circ, min_in, max_in,
num_in);

config_LUT _input_delays (circ, min_in, max_in, num_in) {
foreach LUT n O circ {
count = 0;
foreach faninfO n {
if (Needed_Delay(n, f) > min_in &&
Needed_Delay(n, f) < max_in && count < num_in)

Needed_Delay(n, f) = Needed_Delay(n, f) —
min_in * floor(Needed_Delay(n, f) / min_in);
count++;

1

Figure 7. Assigning delays for Scheme 1.

consists of two inverters with long channel lengtias
minimize short-circuit power.

This is the circuit we use to obtain the area, powaed
delay overhead for the proposed delay insertiohriggie.
The programmable circuit produces the requiredydesend
careful consideration was taken to minimize theaamed
power dissipation of the circuit. This being saitgre are
likely other circuit-level technigues that can tsed to align
input edges and filter glitches that may be evenremo
efficient. Our main goal is to validate the ovetathnique
and to give a reasonable account of the tradeaffesden
power savings and area/delay overhead.

4.4 CAD Algorithms

This section describes the algorithms used to ohéter
the configuration of each programmable delay elémen
This configuration occurafter placement and routing, when
accurate delay information is available.

For all architecture schemes, the quantiegded_Delay
is first calculated for each LUT input using thgaithm in
Figure 6. This quantity indicates how much delagdd be
added to the LUT input so that all LUT inputs triéina at
the same time. Since the LUT inputs can have rdiffe
speeds, the delay difference accounted for wherattieal
times are calculated. Specifically, thenin_Delay(n,f)
value represents the propagation delay ffaan, including
both the interconnect delay and the precise logayd
determined from a detailed timing analysis.

The next step is to implement a delay as close to
Needed_Delay as possible for each LUT input. In all but the
first scheme, signals can be delayed in more thanveay.
Hence, the technique used to determine and to miée
the needed delay for each scheme is different.

The algorithm used to calculate the configuratibeach
LUT input delay element in Scheme 1 is shown iruFégr.

In this case, there is only one way to insert dglap the
algorithm is straightforward. Note that the gramity of the

slow mode, the signal must pass through the slowdelay elementsnfin_in) and the number of delay elements

transmission gate, consisting of pass-transistats leng
channel lengths. In the fast mode, the signallisvad to
pass through fast a transmission gate consistinga of
minimum sized transistor. By approximately douglithe
resistance of each successive stage, the circuit bea
configured usingn bits to produce one of' 2lifferent delay
values with even increments. Specifically, thewircan be
configured to produce any delayl {k, z +k, 2t +k, 3r + kK,
..., (21) + K}, where z is the minimum delay increment

and k is the delay produced by the (non-zero) bypass

resistances and the inverters. Note that thisrpiapproach
is more efficient than a straight-forward linearasmgement
of equal-delay elements since it requires signifilgaless
multiplexing to select the needed delay.

attached to each LUThgm in) will affect how closely the
inserted delays match the desired values (detechbgehe
algorithm described in Figure 6).

The algorithm for Scheme 2 is similar to the altjori
for first scheme except that it begins by sortihg telay
elements and the fanins based on delay. Bothatedsto
ensure that the fanins that need small delayshessrhaller
delay elements, which leaves the larger delay elésnt
the fanins that need larger delays.

The algorithm for Scheme 3 first visits each LUT in
topological order from inputs to outputs and detass the
minimum delay needed by all the fanouts of that LUIT
then configures the output delay element to mdiehdelay
and then updates the needed delay value of eacltfarit

In addition ton delay stages, the programmable delay then configures the LUT input delays as in Scheme 1

element has a 2-to-1 multiplexer and a buffer.
multiplexer is required to bypass the firsi stages when a
very small delay is needed. Without this, the mimin

delay of the circuit k) would be too large. The buffer

The Similarly, the algorithm for Scheme 4 first visgach CLB

input to determine the minimum delay needed bylt&
inputs that are driven by that input. After configg each
CLB input delay element, it then updates the neetkddy
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Figure 9: Schematic of programmable delay element [9].

of the affected LUT inputs to reflect the change dhen
configures the LUT input delays as in Scheme 1.

Finally, the algorithm for Scheme 5, which incorpias
a bank of programmable delay elements in additiothdse
at the LUT inputs, first visits each CLB in theaiit and
configures the bank circuits to delay signals thegd to be
delayed by more thamax in and smaller or equal to
max_b. When the algorithm finds a signal that requiaes
delay that is greater thamax_in, it calculates the amount of
delay that it can add to a signal (by a delay etgnme the
bank) and then updates the needed delay for theequbnt
LUT input algorithm.

45 PVT Variation Techniques
PVT variations can have a significant impact orcuwir

Although speed-binning can help reduce the diei¢o-d
variations, this may not be sufficient to provitie taccuracy
required to obtain significant power savings. With speed
grade, we can tolerate variations if the programendelay
element is designed to react the same way as tiséngx
FPGA logic and routing resources. As an exammasicler
an input signal that arrives 1ns before the slovwepgtit
under normal conditions, as illustrated in Figufa)8 In
order to eliminate glitches, the corresponding pognable
delay element would be configured to add 1ns to itigut.
Now, consider some variation that causes that sam# to
arrive only 0.5ns before the slowest input (seaufed(b)).
In this case, adding 1ns would be too much andilplgss
cause a timing violation. However, if the prograafuie
delay element is affected the same way as the réemgai
circuitry, the added delay would actually be 0.5ns,
producing the desired effect.

For this to be effective, PVT variation must affélae
delay of the programmable delay element in the saane
as the existing FPGA routing and logic circuitryn the
remainder of this section, we show that thiedstrue in the
delay element presented in prior work, however,isit
partially true in the delay element presented ictiSe 4.1.

First, consider the delay element proposed in [Bhe
circuit, which is illustrated in Figure 9, is congmul of two
inverters. The first inverter has programmabld-ppland
pull-down resistors to control the delay of thecgit. The
second inverter has large channel lengths to ma@rehort-
circuit power. The pull-up and pull-down resistafsthe
first inverter haven stages. Each stage has a resistor and a
bypass transistor controlled by an SRAM bit. Tésistor in
each stage consists of a pass-transistor thatlyspantially
turned on (though biasing) to produce a large t@sce.

The circuit has two major drawbacks related toatam.
The first drawback is that is uses gate biasingréaluce the
large resistances. As we will show below, thigiteto react

delays, which is problematic for the proposed delay gitferently to variation compared to the existind®GA

insertion technique.
estimates of path delays
programmable delay elements.

in order
If the estimates narte

accurate, and the delay elements are not configureq haon there is variation.

properly, they may be ineffective at reducing ¢lés.
Techniques for minimizing the effect of both diedie and
within-die PVT variation on the proposed delay mise
technique are described below.

45.1 Dieto-dieVariation

Die-to-die variation occurs when circuits on diéfet
chips have different delay properties. A commoaciice
used by FPGA vendors to deal with variation spgeed

binning, which involves grouping a product based on the

maximum speed of that product. Because of PVTatian,
some FPGAs are faster than other FPGAs.
FPGAs into different speed bins allows the vendorsell
FPGAs with different speed grades. This practa@s$ to
reduce die-to-die variation for FPGAs within eapleed bin
which improves the feasibility of the proposed tdghe.

Our technigue requires ateura
to calibrate the

Groupiag t

circuitry. The second drawback is that, since NMMOS

and PMOS transistors can react differently to vemm the
rise and fall times of the delay element becomealarized
This is less of a concern
conventional buffers and logic gates which also RSHOS

pull-up networks and NMOS pull-down networks, sirlce

effect is reduced when gates are cascaded.

To illustrate these effects, Figure 10 shows tbe and
fall times of the programmable delay element foergv
possible delay configuration. For the black, whited grey
bars, the X-axis represents intended delay andytasis
represents actual delay. Results from three exeets are
shown. The white bars are the delays of the prograble
delay element simulated in HSPICE assuming typical-
typical (TT) process parameters. Similarly, theygand
black bars are the delays assuming slow-slow (88 )ast-
fast (FF) process parameters, respectively.

In addition to the programmable circuit delays, the
graphs also include lines that show the effect mfcess
variation on the delay of the existing FPGA routing
resources, which were obtained by simulating a rcludi
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Figure 11: Rise times of new programmable delay
element considering process variation.

buffered routing resources as described in [LHH8PICE.
For the black and white lines, the x-axis represéme delay
of the FPGA routing resources when typical-typi€ar)
process parameters are assumed and the y-axiseatse

circuitry. In the second graph, however, the falles are
more affected by process variations. On averduye fall
times assuming the FF process corner is 47% fasarTT
values, while the fall times assuming the SS pocesner
are 137% slower. The process variation has agreapact
on the fall times than the rise times of this detdgment
because it changes the effective on-resistancheobiased
NMOS transistors in the pull-down network more thha
biased PMOS transistors in the power-up network.

Now consider the new programmable delay element
described in this paper (in Section 4.3). In thiscuit,
NMOS and PMOS transistors were used in parallerder
to average out their response to variation. Tie times of
the new delay circuit are shown in Figure 11. &miesults
were obtained for the fall time. On average, theadelays
are 19% faster and 26% slower for the FF and S8eps
corners, respectively. The response of the neaydstcuit
varies more than the response of the FPGA routing
resources since wires do not vary as much as $tansj
however, the new delay circuit responds signifisahetter
than the previous delay circuit which makes it maugable.

45.2 Within-Die Variation

In the case of within-die variation, speed binned
proportional scaling may not be sufficient. Sitlee inputs
of a LUT can come from any part of the chip, witkiie
variation can affect the delay of one input diffethe from
another input. Although most connections are I¢saice
the FPGA clustering, placement, and routing todlsinmize
the routing distance between connections), withén-d
variation is still a problem for large nets thaaspghe entire
chip.

A naive solution to within-die variation is to red@gure
the programmable delay elements of each FPGA
individually. This solution, however, is impradicsince it
is difficult to obtain PVT variation information fo
individual FPGAs and it would be time consuming to
reconfigure each FPGA with different delays.

Another, more practical solution, is to pessimaitic
reduce the delay added by each programmable delay
element. We first determinB, the inserted delay assuming
no PVT variation. Then, if the nature of the expdc
variations are known, we can estimate the appraema
worst-case impact of the variatioth, We then configure the
programmable logic element to insert the ddlag. This
ensures that the delay inserted by the delay eleduss not
lengthen the overall delay of the circuit. Howevieralso
means that the actual delay that is inserted maghoeter
than the delay that is needed to eliminate thekhylit This

the delay of the same resources when other procesgj reduce glitch elimination; however, even irsea where

parameters are assumed. Specifically, the blaek (BS-
Routing) indicates the delay of the FPGA routinguasing

the glitch is not eliminated, the width of the dfitis
reduced. These shorter pulses are then more likelye

SS process parameters and the white line (FF-R®utin fijtered out by other delay elements that are ddeasn.

indicates the delay of the FPGA routing assuming FF

parameters.

Note that a more complete approach to this tecleniqu
would involve using statistical timing analysisdetermine

The two graphs in Figure 10 highlight the drawbacks the maximum delays that can safely be added without

described above. In the first graph, the rise $iraee less
affected by process variations than are the FPQAiImg

increasing the critical path delay. However, statal
timing analysis is not supported within our current
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experimental framework. Nonetheless, the resultsttiis
static approach, presented in Section 7.5, stitveseo
demonstrate the tradeoff between the power saéndshe
uncertainty introduced by PVT variation.
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5. Experimental Framework

This section describes the experimental framewbék t
is used to obtain the switching activity informatiand the
FPGA area, delay, and power estimates that aremmies in
Section 6 and 7.

5.1 Switching Activity Estimation

The switching activities are obtained by simulating
circuits at the gate level and counting the toggie®ach
wire. The simulations are driven by pseudo-randoput
vectors and circuit delay information from the VPRice
and route tool [19]. To capture the filtering effeof the
FPGA routing resources and of the programmableydela
elements, the simulator uses thertial delay model.
Furthermore, to replicate an FPGA routing architeet
consisting of length 4 routing segments, the VPRydeare
divided into chains of 300ps delay.

5.2 Area, Delay, and Power Estimation

Area, delay, and power estimates are obtained ffam
VPR place and route tool and HSPICE simulation®R\s
used to model the existing FPGA circuitry and HIPIiE
used to model the added delay element circuitry.

The VPR models are detailed, taking into account
specific switch patterns, wire lengths, and traosisizes.
After generating a specified FPGA architecture, \fit&tes
and routes a circuit on the FPGA and then modeasatka,
delay, and power of that circuit. VPR models alsa
summing the area of every transistor in the FP@4luding
the routing, CLBs, clock network, and configuration
memory. The area of each transistor is approxithaging
the Minimum Transistor Equivalents (MTE) metric rito
[19], which calculates the layout area occupied &y
minimum sized transistor plus the minimum spacirg a
illustrated in Figure 12.

The model from [19] was augmented slightly in this
paper to consider transistors with longer than mimn
channel length. Expression (1) models the layoed ®f a
transistor with respect to its channel width (W)dan
Expression (2) models the area with respect teiitgth (L).
The models were derived by observing the relatitea a
increase when either W or L is increased. Theesgions
differ slightly since the minimum width of a tras&ir
accounts for approximately one half of the y-congrdnof
the layout area, whereas the minimum length acsofort

approximately one fifth of the x-component of thaydut
area.

The delay and power are modeled after routing agcur
when detailed resistance and capacitance informato be
extracted for each net in the benchmark circuhe Elmore
delay model is used to produce delay estimates thad
FPGA power model described in [20] is used to poedu
power estimates. The power model uses the VPR
capacitance information and simulated switchingviiets
to estimate dynamic, short-circuit, and leakage growNote,
however, that the leakage power estimates for lbéh
existing FPGA circuitry and the programmable delay
elements do not account for PVT variation (typigedcess,
voltage, and temperature are assumed).

5.3 Architecture Assumptions and Benchmarks

We gathered results for three LUT sizes: 4, 5, énd
inputs. In all cases, we assumed that each CLBagmn10
LUTs and that the CLBs have 22, 27, and 33 inpats f
architectures with 4, 5, and 6 input LUTs, respedyi. In
each case, we assume that the crossbar that progiziyn
connects the CLB inputs and LUT outputs to the Libfuts
with each CLB is fully populated as described if][1
Furthermore, for routing, we assumed two segmented
routing fabrics, one consisting of buffered lendgthand
another of length 4 routing segments and a chawitth
that is 20% wider than the minimum channel width (a
separate value was found for each benchmark). eSime
results were similar for both segment lengths, othlg
length 4 results are presented in Section 6 andl@ss
stated otherwise.

In each experiment, we used 20 combinational
benchmarks including the 10 largest combinationm@uis
from the MCNC and ISCAS89 benchmark suites. Before
placement and routing, each circuit is mapped tor4U
using the Emap technology mapper [7] and packed int
clusters using the T-VPack clusterer [19].

6. Scheme Calibration

Before we examine the overall power savings and are
and delay overhead of the delay insertion technique
need to find suitable values for the parameterseath
scheme (listed in Table 3). In each case, theevialehosen
to eliminate as much of the glitching as possiiile
minimizing the area and delay overhead.

6.1 Scheme 1 Calibration

We first consider themin_in parameter, which defines
the minimum delay increment of the programmableaylel
element at the inputs of the LUTs. Intuitively,sealler
delay increment reduces glitching but increasea. dr@gure
13 shows how much glitching is eliminated for minim
delay increments ranging between 0.1 and 3.2nsisdlate
the impact of themin_in parameter, the graph assumes that
every LUT input has a programmable delay elemettt am
infinite maximum delayrtax_in is « andnum_in is K).

The graph illustrates that most of the glitching il
be eliminated when the minimum delay increment 250s.



This corresponds to the fact that narrow glitchresfétered
away by the routing resources and that the majasity
glitches have a width greater than 0.2ns, as destrin
Section 3. The same conclusion holds for FPGAsuba 4,
5, or 6 input LUTs.

The second parameter, denotewx in, defines the
maximum delay of the programmable delay elemernheat
inputs of the LUTs. Intuitively, increasing the xiraum
delay reduces glitching but increases area. Figjdishows
how much glitching is eliminated as a function diet
maximum delay. The graph illustrates that over Qff%he
glitching can be eliminated when the maximum delfthe
programmable delay element is 8.0ns. This cormdpo
with Figure 1, which illustrates that the majordf/ glitches
have a width that is less than 10.0ns.

Finally, num_in defines the number of LUT inputs that
have a programmable delay element. Intuitivelgréasing
the number of inputs with delay elements reducéshihg
since the arrival times of more inputs can be aynFigure
15 shows how much glitching is eliminated when the
number of inputs with programmable delays is varidthe
graph assumes that th@n_inis 1ko andmax_in is c.

precise (1b) andmax_out is . The results are similar to
those in Scheme 1 except that some glitching imietited
even when there are no delay elements on the Ligtitsn
since the output delay elements are able to atigmesof the
inputs and filter out narrow pulses on their owrkor
Scheme 3, settingnax_in to 8.0ns andnum _in to K-2
eliminates most of the glitching.

The remaining output delay element parameters are
calibrated assumingin_in is 0.25nsmax_in is 8.0ns, and
num_in is K-2. Figure 16 shows the glitch elimination for
min_out from 0 to 3.2ns assuming thaiax_out is « and
Figure 17 shows the glitch elimination fowax_out from 0
to 12ns assuming thatin_out is 1ko. The graphs illustrate
that a 0.25ns and 8.0ns are also suitablemfior out and
max_out, respectively.

6.4 Scheme4 Calibration

Scheme 4 has five parameters, nameiyr_in, max_in,
num_in, min_c, and max_c. The first three parameters
control the delay elements at the inputs of the &iifie last
two parameters control the delay elements at thetiof the
CLBs. Themin_in, max_in, and num_in parameters are

The graph illustrates that each LUT should have aagain recalibrated to account for the affect of @ input

programmable delay element on every input minus (BRe
1). Intuitively, adding delay circuitry to everggut is not
necessary since each LUT has at least one inptidtes
not need to be delayed (the slowest input). Howeaddling
fewer thanK-1 delay elements significantly reduces the
amount of glitching that can be eliminated. Ndsoahat,
since LUTSs tend to have uneven input-to-output pggpion
delays, theK-l delay elements should be added to the
slowest inputs so as not to impede the slowedto@ipath)
input signal.

6.2 Scheme 2 Calibration

delay elements. The same procedure used in Schewas
used. The results fanin_in andmax_in were similar to the
previous cases, which indicated that 0.25ns andhs8.0
respectively, were suitable.

The results fomum_in, which are plotted in Figure 18
were different than in the previous cases. Toaisothe
impact of num_in, the graph assumes thain_in is 1ko,
max_in is «, min_c is 1lko, andmax_c is . The results
indicate thatnum_in should be 1, 2, and 2, for 4, 5, and 6-
LUTSs, respectively. Intuitively, fewer LUT inputethy
elements are needed since the CLB input delay eltsme
account for most of the delay. Only in cases wliieeeCLB

Scheme 2 has the same three parameters as Schemeirbuts fanout to multiple LUTs within that CLB artdose
and the same values are used for each parametefanouts need different delays are the LUT inputagel

Specifically,num_in is K-1, min_in is 0.25ns, andhax_in is
8ns. However, to minimize overhead, the maximurtayde
of the LUT input delay elementamnéx in) is gradually
decreased by half (or by 1 delay stage) per LUTtinpAs
an example, the maximum delay values for a 4-inpiit
would be 8ns, 4ns, and 2ns.

6.3 Scheme 3 Calibration

Scheme 3 has five parameters, nameiyr_in, max_in,
num_in, min_out, andmax_out. The first three parameters
control the delay elements at the inputs of the &ifie last
two parameters control the delay elements at thpubof
the LUTs. Although themin_in, max_in, and num_in
parameters were already calibrated for Schemeey, rfust
be recalibrated for Scheme 2 since the output detapents

elements required.

6.5 Scheme5 Calibration

Finally, Scheme 5 has five parameters, namely: _in,
max_in, num_in, max b, and num b. The first three
parameters control the delay elements and the sngiuthe
LUTs; the last two parameters control the bank elay
elements in the CLB. The bank of programmable ydela
elements are only used for signals that need melegy dhan
can be added by the LUT input delay elements, toere
this scheme uses the sammn_in and num in values as
Scheme 1: 0.25ns and K-1, respectively. Suitablees for
max_in andmax_b were found empirically to be 4.0ns and
8.0ns, respectively.  Finally, Figure 19 shows cylit
elimination with respect to the number of bank dela

change how much delay is needed by LUT input delayelements per CLBn{Um b) assumingmin_in is 0.25ns,

elements. Intuitively, however, thealue of themin_in
parameter can be reused since the LUT input delaeystill
used to perform the final alignment of each signal.

The same technique is used to recalibragx in and
num_in but with assumption thamin_out is infinitely

num_in is K-1, max_in is 4.0ns, andnax b is 8.0ns. The
results show that 4 is a suitable value fiam b for CLBs
with 10 LUTSs.
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c 6.6 Summary
€ 60l [ e aut Table 4 summarizes the values that were selected fo
'u—% —X—5-LUT each of the five delay insertion schemes. The fw®
a0 | OeLUT| columns specify the scheme number and the progréfema
0 delay element location. The third and fourth cahsm
20 1 specify the minimum delay increment and the maximum
delay of the programmable delay element at thaation.
o ‘ ‘ ‘ ‘ ‘ ‘ The fifth column specifies the corresponding numbér
0 05 1 15 2 25 3 delay stages needed to implement the programmaibéey d
Minimum Output Delay (ns) element. Finally, the sixth column specifies thenber of
Figure 16. Minimum LUT output delay for Scheme 3. programmable delay elements needed per LUT (ro\8s 2,

and 7) and per CLB (rows 4, 6, and 8).



Table 4: Summary of delay element values.

Delay Max. #
Scheme| Location Incr. (ns) Delay Stages # Circuits
(ns)
1 LUT Inputs | 0.25 8 5 K-1
2 | wTinpus| o025 |[&8H2 [543
3 LUT Inputs | 0.25 8 5 K-2
CLB Outputs| 0.25 8 5 N
4 LUT Inputs | 0.25 8 5 1,2,2
CLB Inputs | 0.25 8 5 |K(N+1)/2
5 LUT Inputs | 0.25 4 4 K-1
Bank 4.0 8 1 4 (N=10)
7. Results
This section presents the overall results. It hedy

presenting the area, delay, and power overheadabf éelay
insertion scheme. It then presents the overallgp®avings
assuming there is no PVT variation. Finally, iegents the
overall power savings assuming there is PVT vanati

7.1 AreaOverhead

The area overhead is determined by summing thecdrea
the added delay circuitry in each CLB. This aneeludes
the area of the delay elements and the added cwafign
memory. Table 5 reports how much area is needeben
CLBs and Table 6

reports the percent area overhead taking the QidB a
routing area into account. More precisely, theceet area
overhead was calculated by dividing the total areesupied
by the added programmable delay circuitry by thaltarea
occupied by the FPGA logic and routing resourcesiclv
we determined using VPR.

Table 6: Overall area overhead.

LUT Overall Area Overhead (%)

Size | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5
4 8.0 6.6 8.0 8.4 10.4
5 7.6 5.3 7.6 7.8 8.8
6 6.7 4.4 6.7 7.0 7.3

7.2 Power Overhead

Even if all the glitches could be eliminated, the
programmable delay elements still dissipate powe&his
overhead is modeled by summing the power dissiphted
the added circuitry in each CLB of the FPGA usihg t
expression below.

ZEtoggIe to(n)
— nOdnodes
Terit

In the expressiordnodes is the set of nodes in the circuit
that can be delayedy. is the energy dissipated by one
programmable delay element during one transitign) is
the switching activity of the delayed nodeandTy; is the
critical path delay of the circuit. The energy dedkage
power of the programmable delay element is deterchin
using HSPICE, the switching activity is determingsing
gate-level simulation, and the critical-path delay
determined using the VPR place and route tool. eNot
however, that the leakage power estimates assupiealty
process, voltage, and temperature conditions.

Table 7 reports the average overhead power (as a
percentage) dissipated by the added delay circtotrgach
scheme. The power of the remaining FPGA circuifry
calculated using the power model described in [A0le
table shows that the power overhead is approximaied

@)

Poverhead *+ Pstatic

The tables show that Scheme 2 has the lowest arefCr all the schemes and that Scheme 2 has the iqvogger

overhead, followed by Schemes 1, 3, and 4, andlfina
Scheme 5 has the highest overhead. Scheme 5esdhé&
most area because of the large multiplexers netdselect
which CLB input or LUT output uses the bank delay
elements. Schemes 1, 3, and 4 have a similarcaerhead
since they use the same size delay elements agdilyothe
same number of them.
overhead since it uses smaller delay elements. tdlies
also show the area overhead decreases as the 44T si
increases. This occurs since the area of the LBAG
multiplexers increases exponentially wkh while the area
of the delay elements only increases linearly.

Table 5: CLB area overhead (no global interconnect).

Original CLB Area Overhead (MTE)
LUT
Size CLB Area| Scheme| Scheme| Scheme| Scheme| Scheme
(MTE) 1 2 3 4 5
4 6938 2460 2020 2460 2568 3184
5 10361 3280 2430 3280 3368 3808
6 15228 4100 2720 4100 4282 4494

Scheme 2 has the lowest are

overhead.

7.3 Delay Overhead

Although the delay elements are programmed to only
add delay to early arriving edges, a small delayajig may
be incurred even if the delay element is bypassedurse of
garasitic resistance and capacitance. To modelydela
overhead, HSPICE was used to determine the pardsity
incurred by the delay element. The critical-patiagl of
each circuit was then recalculated, taking thesesgiic
delays into account. Finally, the overhead wasuwated by
comparing the new critical-path delay to the ordicritical-
path delay.

Table 8 reports the average delay overhead foh eac
scheme. Schemes 1, 2, and 4 have the smallesteaakr
since both havefast-paths with no delay elements (no
parasitics) to slow down the critical-path. ScherBeand 4
have a larger overhead, since neither scheme affast-
path for critical-path connections. Specifically, tharasitic
capacitance of the programmable delay elementshat t
output of the CLBs for Scheme 3 and at the inpditthe



Table 7: Average power overhead (%).

Table 8: Average delay overhead.

LUT Size Power Overhead: Poyerhead/ (Poverhead + Prpca) * 100
Scheme 1|Scheme 2{Scheme 3|Scheme 4|Scheme 5

4 0.94 0.79 1.02 1.16 0.97

5 0.97 0.84 1.12 1.28 0.99

6 1.02 0.94 1.14 1.10 0.93

CLBs for Scheme 4 imposes a small delay on anyabitpat
bypasses them (see Figure 4).

7.4 Overall Power Savings (without Variation)

Table 9 presents the average glitch eliminationefach
scheme and Table 10 presents the correspondinglbver
power savings. Both tables indicate that Schempmduces
the best results, with 91.8% glitch elimination amkrall
power savings of 18.2%. The power savings areedloshe
ideal savings of 22.6%. Note also that the resultboth
tables are for FPGAs with 4-input LUTs and length 4
routing segments; the results for 5 and 6-input &ldmd for
FPGAs with length 1 routing segments were similas an
example, using Scheme 1 for FPGAs the 6-input LEiAd
length 1 routing segments reduced glitching by @2#nd
the overall power by 16.8%. In general, the posarings
for larger LUTs are slightly smaller because themds to
be less glitching to begin with since the netlisésre fewer
levels of logic. Moreover, the segment length ribisttion
has little affect because tmeeded delays tend to be quite
dispersed even for buffered routing architecturés wnly
one segment length. The timing of a signal iscié@é not
only by the number of LUTs and routing segmenfsaitses
through, but also by where it taps on to and offttafse
segments.

7.5 Overall Power Savings (with Variation)

The results presented in the previous sectionsnasu
no PVT variation. The following results preserg thverall
power saving when the technique described in Sedtib is
applied to cope with the timing uncertainty intredd by
PVT variation. Specifically, we repeated the ekpents
from Section 7.4, using the same delay elementnpeater
values as before, but we reduced the delay insegteshch
delay element by a factg We varieds from 0.7 (meaning
each delay element is programmed to provide a defay
70% of the value predicted assuming no processtiams)
to 1.0 (which is the same as the results in Secfiab).
Figure 20 shows the results. In this figufis shown on
the X-axis. The lower line indicates the amounglitthing

removed compared to the case when programmable dela

elements are not used. As the results show, vyhisn0.7,

the glitch savings are reduced to 56% (compare@18

when process variations are not considered). Pipendine

shows the resulting decrease in power; as expethed,
power reduction is proportional to the number dfches

removed. Overall, these results indicate that dedy

insertion technique still works when the added yelare

reduced, but with diminished glitch and power sgsiras
the timing uncertainty increases.

LUT Average Delay Overhead (%)
Size | Scheme 1| Scheme 2 | Scheme 3| Scheme 4 | Scheme 5
4 0.21 0.19 2.4 2.3 0.21
5 0.13 0.14 2.2 2.1 0.13
6 0.14 0.15 2.1 1.9 0.14
Table 9: % Glitch elimination of each scheme.
Scheme 1 | Scheme 2 | Scheme 3 | Scheme 4 | Scheme 5
91.8% 87.3% 83.3% 81.8% 85.4%
Table 10: Overall power savings.
Circuit Power Saving (%)
Scheme 1|Scheme 2|Scheme 3|Scheme 4 |Scheme 5
C135 25.4 25.4 25.0 25.0 25.8
C1908 18.1 17.5 18.4 16.1 17.0
C2670 11.6 11.4 11.3 10.2 11.7
C3540 27.5 25.4 22.9 23.5 26.3
C432 13.0 11.0 10.7 10.6 10.6
C499 31.8 31.8 30.9 32.3 324
C5315 18.2 16.8 16.2 16.0 17.9
C6288 52.1 41.3 43.2 40.0 46.1
C7552 22.6 21.0 18.9 19.7 22.3
C880 7.2 6.5 6.5 8.0 7.1
alud 2.5 2.5 2.4 3.3 2.7
apex2 3.6 3.6 3.2 3.8 3.6
apex4 9.5 9.5 9.1 9.4 9.3
des 15.1 14.9 12.1 14.2 14.4
ex1010 16.8 16.8 16.4 16.5 15.9
ex5p 23.8 23.3 23.4 21.5 25.0
misex3 7.6 7.6 7.3 7.3 7.2
pdc 11.1 10.8 10.1 10.7 11.3
seq 5.3 5.2 5.9 5.7 5.6
spla 20.3 20.1 19.8 20.0 20.2
Average 18.2 16.8 16.3 16.2 17.4
20 T T 100
18 + 90
16 + 80
o 14 + — 770 §
£ 124+ —a— Glitch Ellml.natlon 160 ‘é
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Figure 20. Glitch elimination and power savings vs. B.

8. Conclusionsand Future Work

This paper proposed GlitchLess, a glitch elimimatio

technique to reduce dynamic power in FPGAs.
implementation investigated here adds programmdélay
elements to the CLB architecture to align the edigjesach

The



LUT input, thereby preventing formation of glitches the
LUT outputs. The delay elements can also filtemso
glitches produced by the upstream logic. Five a#tve
schemes were considered for delaying the logic tgipu
Scheme 1, which uses delay elementKehinputs of each
LUT, produced the greatest power savings, redupmger
by 18.2%. However, Scheme 2, which used delay
elements that gradually decrease in size, prodsoadar
power savings with less area.
eliminates 87% of all glitching, which reduces alker
FPGA power by 16.8%. The added circuitry increases
overall area by 6.6% and critical-path delay by lggmn 1%.
There are a number of interesting issues that wwete
fully explored in this paper that merit furthereasch. First,
a more complete approach to the proposed delaytimse
technique would involve using statistical timingafysis to
determine the maximum delays that can safely beechdd
without increasing the critical path delay. Second
investigation using newer process technologies téad to
dissipate more leakage power is also needed. Ifinal
further research of circuit-level implementation®or f
delaying the inputs or preventing the output fraaggling
prematurely may vyield lower overhead, increased grow
savings, and/or improved PVT tolerance. As an ¢ena
self-calibrating delay element that tunes itselfthie latest
arriving transition of a LUT (relative to the clgckwould be
ideal since it would be more tolerant to variation.
Furthermore, this delay element could be used te glhthe
early arriving inputsor to suppress output transitions until
the last input arrives. Such an implementation mejuce
area since it requires only one delay element pAr.L
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