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Abstract 

This paper describes Glitchless, a circuit-level technique 
for reducing power in FPGAs by eliminating unnecessary 
logic transitions called glitches. This is done by adding 
programmable delay elements to the logic blocks of the 
FPGA.  After routing a circuit and performing static timing 
analysis, these delay elements are programmed to align the 
arrival times of the inputs of each LUT, thereby preventing 
new glitches from being generated.  Moreover, the delay 
elements also behave as filters that eliminate other glitches 
generated by upstream logic or off-chip circuitry.  On 
average, the proposed implementation eliminates 87% of the 
glitching, which reduces overall FPGA power by 17%.  The 
added circuitry increases the overall FPGA area by 6% and 
critical-path delay by less than 1%.  Furthermore, since it is 
applied after routing, the proposed technique requires little 
or no modifications to the routing architecture or CAD flow. 

1. Introduction 

With power dissipation of FPGAs increasing each 
generation, power reduction is quickly becoming the main 
challenge for implementing large applications.  FPGAs 
dissipate significantly more power than ASICs because of 
the added circuitry needed to make them programmable. 
Although static power dissipation has received significant 
attention recently due to its sharp increase, dynamic power 
still accounts for 62% of total power [1]. 

There are a number of ways to reduce power in FPGAs.  
Techniques that can be used at the physical level include 
lowering the supply voltage [2] or increasing the threshold 
voltage [3].  At the circuit level, device features can be sized 
less aggressively for speed to reduce capacitive loading and 
therefore dynamic power [4].  At the architecture level, 
power management [5] and clock network design are also 
helpful [6].  At the CAD level, grouping together high-
activity logic reduces dynamic power [7].  A summary of 
techniques to reduce power is described in [8]. 

This paper introduces GlitchLess, a circuit-level 
technique that reduces dynamic power in FPGAs by actively 
preventing each logic output from toggling until all of its 
inputs have fully resolved. Although there are a few possible 
implementations, the one explored in this paper adds 
programmable delay elements to the configurable logic 

blocks (CLBs). These delay elements programmably align 
the arrival times of early-arriving signals to the inputs of the 
lookup tables (LUTs) to prevent the generation of glitches. 
Additionally, the delay elements also behave as filters that 
eliminate other glitches generated by upstream logic or off-
chip circuitry.  Since it is applied after routing, GlitchLess 
requires little or no modifications to the FPGA routing 
architecture or CAD flow. Furthermore, it can be combined 
with other low-power techniques. 

In theory, GlitchLess offers the potential to eliminate all 
glitching in FPGAs, thereby saving significant amounts of 
power.  In practice, however, we must trade-off the power 
saved with the area and speed overhead incurred by the 
additional circuitry required to implement it.  Fortunately, 
the impact on circuit speed is not significant (other than 
increased parasitic capacitance) because only the early-
arriving signals need to be delayed.  However, the 
programmable delay elements do consume chip area, so we 
should expect a modest increase in the area of the device.  
The tradeoff between glitch reduction (hence, power), area, 
and speed will be quantified in this paper.  Specifically, this 
paper examines the following questions: 
1. How should the programmable delay elements be 

connected to the logic?  The programmable delay 
elements could conceivably be connected to the inputs or 
outputs of each CLB or they could be connected to the 
inputs of the LUTs within the CLBs.   

2. How many programmable delay elements are needed 
within each CLB?  Intuitively, adding more 
programmable delay elements to the CLBs eliminates 
more glitches since more signals can be aligned; 
however, it also increases the area overhead. 

3. How flexible should the programmable delay elements 
be?  The more flexible each delay element is, the better it 
will be able to align the arrival times of signals.  
However, there is a tradeoff between this flexibility and 
the area overhead of the added circuits. 

4. Does the delay insertion technique work when there is 
process, voltage, and/or temperature (PVT) variation?  
PVT affects both the delay of the existing FPGA logic 
and the delay of the programmable delay elements.  
Special measures must be taken to ensure that the delay 
insertion technique can tolerate variation well enough to 
eliminate glitches without introducing timing violations. 



A preliminary version of this work appeared in [9]. This 
paper introduces a new delay insertion scheme which 
reduces the area overhead, and proposes new techniques and 
a new programmable delay element that tolerates PVT 
variation more effectively than the previous work.   

This paper is organized as follows.  Section 2 presents 
terminology used in this paper to describe glitching and 
PVT variation and then summarizes existing techniques that 
can be used to minimize glitching.  Section 3 examines how 
much glitching occurs within FPGAs.  Section 4 presents the 
proposed delay insertion schemes.  Section 5 describes the 
experimental framework used to estimate power savings and 
area and delay overhead.  Section 6 describes how each 
scheme is calibrated and Section 7 presents the overall 
power savings and overhead.  Finally, Section 8 summarizes 
the results and presents our conclusions. 

2. Background 

2.1 Switching Activity Terminology 
There are two types of transitions that can occur on a 

signal.  The first type is a functional transition, which is 
necessary in order to perform a computation.  A functional 
transition causes the value of the signal to be different at the 
end of the clock cycle than at the beginning of the clock 
cycle.  In each cycle, a functional transition occurs either 
once or the signal remains unchanged.  The second type of 
transition is called a glitch (or a hazard) and is not necessary 
in order to perform a computation.  These transitions can 
occur multiple times during a clock cycle.  

2.2 PVT Variation 
Process variation refers to manufacturing imprecision, 

leading to variability in characteristics like device geometry 
or even placement and concentration of dopant atoms.  
Similarly, voltage variation refers to the variability of the 
power supply and temperature variation refers to variability 
of the temperature of the surrounding environment.  
Collectively, these are called PVT variation. Variations can 
either be die-to-die (different dies have different properties) 
or within-die (similar circuit elements within the same chip 
have different properties).  In either case, variations can 
affect both the timing and power dissipation of the devices.  

2.3 Existing Glitch Minimization Techniques 
Several techniques to reduce power have been proposed, 

including logic decomposition [10], loop folding [11], high-
level compiler optimization [12], technology mapping [13] 
and clustering [7].  These techniques reduce switching 
activity, which eliminates some glitching, but they typically 
incur area and delay penalties as they reorganize the 
structure of the circuit.  Another approach to reduce glitches 
adds flip-flops (pipelining) [14] to reduce the combinational 
path length. However, this increases the latency of the 
circuit. To preserve latency, alternatives include adding flip-
flops that use the opposite (e.g., negative) clock edge [15] or 
relocating the flip-flops by retiming [16]. The gate freezing 
technique [17] suppresses 1-0 transitions on selected gate 

outputs using an nMOS footer controlled by a fixed-delay 
circuit. Similarly, a delay insertion technique described in 
[18] reduces glitching by aligning the input arrival times of 
gates using delay elements with a fixed delay. These last 
two techniques are applied to ASIC-style circuits where the 
location and amount of delay to insert can be tailored for 
each circuit by analyzing which nodes have high activity 
and large capacitance.  However, these techniques are not 
suitable for FPGAs since the applications are not known 
until after fabrication, making it is impossible to determine, 
at fabrication time, where the extra delay circuitry should be 
located or how much delay to add.  In this paper, we target 
FPGAs by adding programmable delay elements to the 
architecture.  The design and location of these elements 
must be considered carefully, since their overhead can 
overwhelm any power savings obtained from glitch removal. 

3. Glitching in FPGAs 

This section begins with a breakdown of functional vs. 
glitching activity to determine how much glitching occurs 
within FPGAs.  It then examines the width of typical 
glitches and determines how much power is dissipated by a 
single glitch.  Finally, it indicates how much power could be 
saved if glitching could be completely eliminated.  These 
statistics are important, not only because they help motivate 
our work, but also because they provide key numbers (such 
as typical pulse widths) that will be needed in Section 6 
when the delay insertion schemes are calibrated. 

3.1 Switching Activity Breakdown 
Table 1 reports the switching activities for a suite of 

benchmark circuits implemented on FPGAs.  These 
activities are gathered using gate-level simulation of a post-
place and route implementation for a set of benchmark 

Table 1. Breakdown of switching activity. 

Circuit Logic 
Depth Activity Func. 

Activity 
Glitch 

Activity 
% 

Glitch 
C1355 4 0.32 0.23 0.09 27.5 
C1908 10 0.26 0.17 0.09 34.6 
C2670 7 0.27 0.21 0.06 22.2 
C3540 12 0.42 0.23 0.19 45.2 
C432 11 0.26 0.18 0.08 29.3 
C499 4 0.34 0.23 0.11 31.9 
C5315 10 0.40 0.25 0.15 36.7 
C6288 28 1.56 0.29 1.27 81.1 
C7552 9 0.39 0.23 0.16 42.0 
C880 9 0.23 0.19 0.05 19.8 
alu4 7 0.08 0.07 0.01 13.1 

apex2 8 0.05 0.04 0.01 13.7 
apex4 6 0.04 0.03 0.01 32.3 
des 6 0.27 0.17 0.10 36.8 

ex1010 8 0.03 0.01 0.02 52.9 
ex5p 7 0.17 0.08 0.09 51.0 

misex3 7 0.06 0.05 0.01 20.9 
pdc 9 0.03 0.02 0.01 31.8 
seq 7 0.05 0.04 0.01 16.0 
spla 8 0.05 0.03 0.02 42.7 

Geomean 8.1 0.024 0.019 0.047 30.8 



circuits (see Section 5 for more details).  Gate-level 
simulations provide the functional and total activity; the 
glitching activity is computed as the difference between 
these two quantities.  In general, the amount of glitching is 
greater in circuits with many levels of logic, uneven routing 
delays, and exclusive-or logic.  As an example, C6288 is an 
unpipelined 16-bit array multiplier that has four times more 
glitch transitions than functional transitions. 

3.2 Pulse Width Distribution 
In FPGAs, glitches are generated at the output of a LUT 

when the input signals transition at different times.  The 
pulse width of these glitches depends on how uneven the 
input arrival times are. Intuitively, we would expect FPGA 
glitches to be wider than ASIC glitches since FPGA 
interconnect introduces larger delays.  Figure 1 plots the 
pulse width distribution of the C6288 circuit.  The 
distribution was obtained using event-driven simulation and 
delays from the Versatile Place and Route (VPR) tool [19], 
as described in Section 5.  The graph shows that the majority 
of glitches have a pulse width between 0 and approximately 
10ns.  Although this range varies across the benchmark 
circuits, we have found that the shape of the distribution is 
similar for every circuit. 

3.3 Power Dissipation of Glitches 
The parasitic resistance and capacitance of the routing 

resources filters out very short glitches.  To measure the 
impact of this, HSPICE was used to determine power with 

respect to pulse width.  Figure 2 illustrates the relative 
power dissipated when pulse widths ranging from 0 to 1ns 
are applied to an FPGA routing track that spans four CLBs.  
A 180nm process was assumed. 

The graph illustrates that pulses less than or equal to 
200ps in duration are mostly filtered out by the routing 
resources.  All pulses that 300ps or longer in duration 
dissipate approximately the same amount of power.  Thus, if 
the input signals of a gate arrive within a 200ps window, the 
glitching of that gate is effectively eliminated. 

3.4 Potential Power Savings 
Table 2 reports the average total power dissipated by circuits 
when implemented in an FPGA.  The second column reports 
the power of the circuits in the normal case, when glitching 
is allowed to occur.  The third column reports the power in 
the ideal case, when glitching is eliminated with no 
overhead.  The fourth column shows the percent difference 
between the two; this number indicates how much power 
could be saved if glitching was completely eliminated 

Figure 1. Pulse width distribution of glitches. 

 
Figure 2. Normalized power vs. pulse width. 

Table 2. FPGA power with and without glitching. 

Circuit 
Power (mW) 

% 
Difference With 

Glitching 
Without 

Glitching 
C1355 9.5 6.7 28.8 
C1908 6.2 4.9 21.1 
C2670 21.5 18.6 13.4 
C3540 21.3 14.6 31.7 
C432 4.6 3.8 17.1 
C499 8.7 5.7 34.6 

C5315 34.7 26.8 22.8 
C6288 41.6 11.2 73.1 
C7552 39.9 29.8 25.5 
C880 5.8 5.3 9.6 
alu4 39.2 37.8 3.6 

apex2 41.2 39.4 4.3 
apex4 24.5 22.0 10.1 

des 88.2 72.4 17.9 
ex1010 51.4 41.9 18.4 
ex5p 29.7 21.4 28.1 

misex3 41.6 38.3 8.1 
pdc 35.8 31.0 13.3 
seq 38.3 36.0 6.1 
spla 45.5 35.8 21.4 

Geomean 24.3 18.8 22.6 

 
Figure 3.  Delaying early-arriving signal removes glitch. 



without any overhead.  Depending on the circuit, the 
potential power saving ranges between 4% and 73%, with 
average savings of 22.6%.  These numbers motivate a 
technique for reducing glitching in FPGAs. 

4. Glitch Elimination 

This section describes the techniques used in this paper 
to eliminate glitching.  It begins by describing our proposed 
technique and discusses other possible techniques as well.  It 
then presents five variations (or schemes) of the proposed 
technique, which employ delay elements in different 
locations within the FPGA logic blocks.  It then describes 
the programmable delay element that is used to align the 
arrival times and the CAD algorithms that are used to 
configure these programmable delay elements.  Finally, it 
describes techniques that can be used to make 
programmable delay insertion more tolerant to PVT 
variation. 

4.1 Glitch Elimination Techniques 
Our proposed technique involves adding programmable 

delay elements to the CLBs of the FPGA.  Within each 
CLB, the programmable delay elements are configured to 
delay early-arriving signals so as to align the arrival times 
on each LUT input to eliminate glitching.  The technique is 
shown in Figure 3; by delaying input c, the output glitch can 
be eliminated.  Note that the overall critical-path of the 

circuit is not increased since only the early-arriving inputs 
are delayed. 

Another technique that we considered involved 
modifying the placement and routing algorithms to be 
glitch-aware.  By placing CLBs at even distances from 
common sources and/or routing connections to balance 
arrival-times, the amount of glitching could likely be 
reduced.  The inherent problem with this approach is that it 
is difficult to balance arrival-times by making the late-
arriving fanins faster since the CAD algorithms have already 
been optimized to minimize critical-path delay.  The other 
alternative is to balance arrival-times by making the early-
arriving signals slower.  This approach; however, would not 
minimize power as efficiently as the proposed technique 
since the routing resources, which would effectively be used 
to add delay to early arriving signals, dissipate more 
dynamic power than the proposed programmable delay 
element, which uses a large resistance (as opposed to 
capacitance) to delay signals. 

4.2 Architectural Alternatives 
We consider five alternative schemes for implementing 

the delay insertion technique; the schemes differ in the 
location of the delay elements within the CLB.  Figure 4(a) 
illustrates the baseline CLB.  A CLB consists of LUTs, flip-
flops, and local interconnect.  The LUTs and FFs are paired 
together into Basic Logic Elements (BLEs).  Three 
parameters are used to describe a CLB: I specifies the 

 
Figure 4. Delay insertion schemes. 



number of input pins, N specifies the number of BLEs and 
output pins, and K specifies the size of the LUTs.  The local 
interconnect allows each BLE input to choose from any of 
the I CLB inputs and N BLE outputs.  Each BLE output 
drives a CLB output.  The five schemes we consider for 
adding delay elements to a CLB are illustrated in Figure 4(b-
f), each of which are described below.   

In Scheme 1, the programmable delay elements are 
added at the input of each LUT, as shown in Figure 4(b).  
This architecture allows each LUT input to be delayed 
independently.  We describe the architecture using three 
parameters: min_in, max_in, and num_in.  The min_in 
parameter specifies the precision of the delay element 
connected to the LUT inputs.  Intuitively, more glitching can 
be eliminated when min_in is small since the arrival times 
can be aligned more precisely.  On the other hand, there is 
more overhead when min_in is small since each 
programmable delay element requires more stages to 
provide the extra precision.  The max_in parameter specifies 
the maximum delay that can be added to each LUT input.  
Intuitively, more glitching can be eliminated when max_in is 
large since wider glitches can be eliminated.  However, 
there is more overhead when max_in is large.  Finally, the 
num_in parameter specifies how many LUT inputs have a 
programmable delay element, between 1 and K (the number 
of inputs in each LUT). Increasing num_in reduces glitching 
but increases the overhead.  In Section 6, we quantify the 
impact of these parameters on the power, area, and delay of 
this scheme. 

The disadvantage of Scheme 1 is that, since some inputs 
need very long delays for alignment, large programmable 
delay elements are required.  Since num_in delay elements 
are needed for every LUT, this technique has a high area 
overhead if num_in is large.  In Scheme 2, shown in Figure 
4(c), the programmable delay elements are in the same 
location as Scheme 1; however, the maximum delay of the 
elements is gradually decreased for each LUT input (by a 
factor of 0.5).  Intuitively, the arrival times of the inputs 
most likely vary with one another; therefore the area 
overhead can be reduced by reducing the maximum delay of 
some of the delay elements without a significant penalty on 
glitch reduction.  The same parameters used to describe 
Scheme 1 are used to describe Scheme 2, with max_in 
specifying the maximum delay of the largest delay element. 

In Scheme 3, shown in Figure 4(d), additional 
programmable delay elements are added to the outputs of 
LUTs (we refer to these new delay elements as LUT output 
delay elements).  With this architecture, a single LUT output 
delay element could be used to delay a signal that fans out to 
several sinks, potentially reducing the size and the number 
of delay elements required at each LUT input.  We describe 
the LUT output delay elements using two parameters, 
min_out and max_out, which specify the minimum and 
maximum delay of the output delay elements.  The LUT 
input delay elements are described using the same 
parameters as Scheme 1.   

Scheme 4, shown in Figure 4(e), is another way to 
reduce the area required for the LUT input delay elements.  

Here, additional delay elements, which we call CLB input 
delay elements, are added to each of the I CLB inputs.  Since 
there are typically fewer CLB inputs than there are LUT 
inputs in a CLB, this could potentially result in an overall 
area savings.  The parameters min_c and max_c specify the 
minimum and maximum delay of the CLB input delay 
elements.  We assume every CLB input has a delay element, 
in order to maintain the equivalence of each CLB input. 

Finally, Scheme 5, shown in Figure 4(f), reduces the size 
of the LUT input delay elements by adding a bank of delay 
elements which can programmably be used by all LUTs in a 
CLB.  We refer to these delay elements as bank delay 
elements.  Signals that need large delays can be delayed by 
the bank delay elements, while signals that need only small 
delays can be delayed by the LUT input delay elements.  In 
this way, the LUT input delay elements can be smaller than 
they are in Scheme 1.  These bank delay elements are 
described using two additional parameters: max_b and 
num_b.  The max_b parameters specify the maximum delay 
of the bank delay elements and the num_b parameter 
specifies the number of programmable delay elements in the 
bank.  Note that we assume that the minimum delay of the 
bank delay element is equal to the maximum delay of the 
LUT input delay element since only one of delay elements 
needs to add precision. 

Table 3 summarizes the parameters used to describe each 
scheme.  The area and delay overhead for each scheme, as 
well as their ability to reduce glitches, will be quantified in 
Section 6 and Section 7.   

4.3 Programmable Delay Element 
Figure 5 illustrates an example of the programmable 

delay element used in each of the delay insertion schemes.  
The circuit has multiple delay stages (5 in this example), 
each consisting of two transmission gates and an SRAM 
cell.  Each stage has a fast and a slow mode, which is 
controlled by the value stored in that SRAM cell.  In the 

Table 3: Delay insertion parameters. 

Scheme Parameter Meaning 

1-5 

min_in Min delay of LUT input delay element 

max_in 
Max delay of LUT input delay 
element 

num_in # of LUT input delay elements / LUT 

2 max_in* 
Max delay of LUT input delay 
element (gradually decreases by 
50% for each input) 

3 
min_out 

Min delay of LUT output delay 
element 

max_out Max delay of LUT output delay 
element 

4 
min_c Min delay of CLB input delay element 

max_c Max delay of CLB input delay 
element 

5 
max_b Max delay of bank delay element 

num_b # of bank delay elements / CLB 



slow mode, the signal must pass through the slow 
transmission gate, consisting of pass-transistors with long 
channel lengths.  In the fast mode, the signal is allowed to 
pass through fast a transmission gate consisting of a 
minimum sized transistor.  By approximately doubling the 
resistance of each successive stage, the circuit can be 
configured using n bits to produce one of 2n different delay 
values with even increments.  Specifically, the circuit can be 
configured to produce any delay ∆ ∈ {k, τ + k, 2τ + k, 3τ + k, 
…, (2n-1)τ + k}, where τ is the minimum delay increment 
and k is the delay produced by the (non-zero) bypass 
resistances and the inverters.  Note that this binary approach 
is more efficient than a straight-forward linear arrangement 
of equal-delay elements since it requires significantly less 
multiplexing to select the needed delay. 

In addition to n delay stages, the programmable delay 
element has a 2-to-1 multiplexer and a buffer.  The 
multiplexer is required to bypass the first n-1 stages when a 
very small delay is needed.  Without this, the minimum 
delay of the circuit (k) would be too large.  The buffer 

consists of two inverters with long channel lengths to 
minimize short-circuit power. 

This is the circuit we use to obtain the area, power, and 
delay overhead for the proposed delay insertion technique.  
The programmable circuit produces the required delays and 
careful consideration was taken to minimize the area and 
power dissipation of the circuit.  This being said, there are 
likely other circuit-level techniques that can be used to align 
input edges and filter glitches that may be even more 
efficient.  Our main goal is to validate the overall technique 
and to give a reasonable account of the tradeoffs between 
power savings and area/delay overhead. 

4.4 CAD Algorithms  
This section describes the algorithms used to determine 

the configuration of each programmable delay element.  
This configuration occurs after placement and routing, when 
accurate delay information is available.   

For all architecture schemes, the quantity Needed_Delay 
is first calculated for each LUT input using the algorithm in 
Figure 6.  This quantity indicates how much delay should be 
added to the LUT input so that all LUT inputs transition at 
the same time.  Since the LUT inputs can have different 
speeds, the delay difference accounted for when the arrival 
times are calculated.  Specifically, the Fanin_Delay(n,f) 
value represents the propagation delay from f to n, including 
both the interconnect delay and the precise logic delay 
determined from a detailed timing analysis. 

The next step is to implement a delay as close to 
Needed_Delay as possible for each LUT input.  In all but the 
first scheme, signals can be delayed in more than one way. 
Hence, the technique used to determine and to implement 
the needed delay for each scheme is different. 

The algorithm used to calculate the configuration of each 
LUT input delay element in Scheme 1 is shown in Figure 7.  
In this case, there is only one way to insert delays, so the 
algorithm is straightforward.  Note that the granularity of the 
delay elements (min_in) and the number of delay elements 
attached to each LUT (num_in) will affect how closely the 
inserted delays match the desired values (determined by the 
algorithm described in Figure 6). 

The algorithm for Scheme 2 is similar to the algorithm 
for first scheme except that it begins by sorting the delay 
elements and the fanins based on delay.  Both are sorted to 
ensure that the fanins that need small delays use the smaller 
delay elements, which leaves the larger delay elements to 
the fanins that need larger delays. 

The algorithm for Scheme 3 first visits each LUT in 
topological order from inputs to outputs and determines the 
minimum delay needed by all the fanouts of that LUT.  It 
then configures the output delay element to match this delay 
and then updates the needed delay value of each fanout.  It 
then configures the LUT input delays as in Scheme 1.  
Similarly, the algorithm for Scheme 4 first visits each CLB 
input to determine the minimum delay needed by the LUT 
inputs that are driven by that input. After configuring each 
CLB input delay element, it then updates the needed delay 

 
Figure 5. New programmable delay element. 

calc_needed_delays (circuit) { 
    // in topological order beginning from the primary inputs 

foreach node n ∈ circuit {  
    Arrival_Time(n) = 0.0; 
    foreach fanin f ∈ n 
        if (Arrival_Time(f) + Delay(n, f) > Arrival_Time(n)) 
            Arrival_Time(n) = Arrival_Time(f) + Fanin_Delay(n, f); 
    } 

        foreach node n ∈ circuit { 
        foreach fanin f ∈ n 
            Needed_Delay(n, f) = Arrival_Time(n) -  
                Arrival_Time(f) - Fanin_Delay(n, f); 
}}}  

Figure 6. Calculating the delay needed to align the inputs. 

scheme1 (circ, min_in, max_in, num_inl)  
{ 

config_LUT_input_delays (circ, min_in, max_in,  
                                                num_in); 

} 
config_LUT_input_delays (circ, min_in, max_in, num_in) { 

foreach LUT n ∈ circ  { 
    count = 0; 
    foreach fanin f ∈ n  { 
        if (Needed_Delay(n, f) > min_in && 
            Needed_Delay(n, f) ≤ max_in && count < num_in)  
        { 
            Needed_Delay(n, f) = Needed_Delay(n, f) –  
                min_in * floor(Needed_Delay(n, f) / min_in); 
            count++; 

}}}} 
Figure 7. Assigning delays for Scheme 1. 



of the affected LUT inputs to reflect the change and then 
configures the LUT input delays as in Scheme 1. 

Finally, the algorithm for Scheme 5, which incorporates 
a bank of programmable delay elements in addition to those 
at the LUT inputs, first visits each CLB in the circuit and 
configures the bank circuits to delay signals that need to be 
delayed by more than max_in and smaller or equal to 
max_b.  When the algorithm finds a signal that requires a 
delay that is greater than max_in, it calculates the amount of 
delay that it can add to a signal (by a delay element in the 
bank) and then updates the needed delay for the subsequent 
LUT input algorithm.   

4.5 PVT Variation Techniques 
PVT variations can have a significant impact on circuit 

delays, which is problematic for the proposed delay 
insertion technique.  Our technique requires accurate 
estimates of path delays in order to calibrate the 
programmable delay elements.  If the estimates are not 
accurate, and the delay elements are not configured 
properly, they may be ineffective at reducing glitches.  
Techniques for minimizing the effect of both die-to-die and 
within-die PVT variation on the proposed delay insertion 
technique are described below. 

4.5.1 Die-to-die Variation 
Die-to-die variation occurs when circuits on different 

chips have different delay properties.  A common practice 
used by FPGA vendors to deal with variation is speed 
binning, which involves grouping a product based on the 
maximum speed of that product.  Because of PVT variation, 
some FPGAs are faster than other FPGAs.  Grouping the 
FPGAs into different speed bins allows the vendors to sell 
FPGAs with different speed grades.  This practice tends to 
reduce die-to-die variation for FPGAs within each speed bin 
which improves the feasibility of the proposed technique.  

Although speed-binning can help reduce the die-to-die 
variations, this may not be sufficient to provide the accuracy 
required to obtain significant power savings.  Within a speed 
grade, we can tolerate variations if the programmable delay 
element is designed to react the same way as the existing 
FPGA logic and routing resources.  As an example, consider 
an input signal that arrives 1ns before the slowest input 
under normal conditions, as illustrated in Figure 8(a).  In 
order to eliminate glitches, the corresponding programmable 
delay element would be configured to add 1ns to that input.  
Now, consider some variation that causes that same input to 
arrive only 0.5ns before the slowest input (see Figure 8(b)).  
In this case, adding 1ns would be too much and possibly 
cause a timing violation.  However, if the programmable 
delay element is affected the same way as the remaining 
circuitry, the added delay would actually be 0.5ns, 
producing the desired effect. 

For this to be effective, PVT variation must affect the 
delay of the programmable delay element in the same way 
as the existing FPGA routing and logic circuitry.  In the 
remainder of this section, we show that this is not true in the 
delay element presented in prior work, however, it is 
partially true in the delay element presented in Section 4.1.   

First, consider the delay element proposed in [9].  The 
circuit, which is illustrated in Figure 9, is composed of two 
inverters.  The first inverter has programmable pull-up and 
pull-down resistors to control the delay of the circuit.  The 
second inverter has large channel lengths to minimize short-
circuit power.  The pull-up and pull-down resistors of the 
first inverter have n stages.  Each stage has a resistor and a 
bypass transistor controlled by an SRAM bit.  The resistor in 
each stage consists of a pass-transistor that is only partially 
turned on (though biasing) to produce a large resistance. 

The circuit has two major drawbacks related to variation.  
The first drawback is that is uses gate biasing to produce the 
large resistances.  As we will show below, this tends to react 
differently to variation compared to the existing FPGA 
circuitry.   The second drawback is that, since the NMOS 
and PMOS transistors can react differently to variation, the 
rise and fall times of the delay element become unbalanced 
when there is variation.  This is less of a concern in 
conventional buffers and logic gates which also use PMOS 
pull-up networks and NMOS pull-down networks, since the 
effect is reduced when gates are cascaded. 

To illustrate these effects,  Figure 10 shows the rise and 
fall times of the programmable delay element for every 
possible delay configuration.  For the black, white, and grey 
bars, the X-axis represents intended delay and the Y-axis 
represents actual delay.  Results from three experiments are 
shown.  The white bars are the delays of the programmable 
delay element simulated in HSPICE assuming typical-
typical (TT) process parameters.  Similarly, the grey and 
black bars are the delays assuming slow-slow (SS) and fast-
fast (FF) process parameters, respectively.   

In addition to the programmable circuit delays, the 
graphs also include lines that show the effect of process 
variation on the delay of the existing FPGA routing 
resources, which were obtained by simulating a chain of 

 
Figure 8: Inserted delays must scale with remaining 

delays. 

 
Figure 9: Schematic of programmable delay element [9]. 



buffered routing resources as described in [19] in HSPICE.  
For the black and white lines, the x-axis represents the delay 
of the FPGA routing resources when typical-typical (TT) 
process parameters are assumed and the y-axis represents 
the delay of the same resources when other process 
parameters are assumed.  Specifically, the black line (SS-
Routing) indicates the delay of the FPGA routing assuming 
SS process parameters and the white line (FF-Routing) 
indicates the delay of the FPGA routing assuming FF 
parameters. 

The two graphs in Figure 10 highlight the drawbacks 
described above.  In the first graph, the rise times are less 
affected by process variations than are the FPGA routing 

circuitry.  In the second graph, however, the fall times are 
more affected by process variations.  On average, the fall 
times assuming the FF process corner is 47% faster than TT 
values, while the fall times assuming the SS process corner 
are 137% slower.  The process variation has a greater impact 
on the fall times than the rise times of this delay element 
because it changes the effective on-resistance of the biased 
NMOS transistors in the pull-down network more than the 
biased PMOS transistors in the power-up network. 

Now consider the new programmable delay element 
described in this paper (in Section 4.3).  In this circuit, 
NMOS and PMOS transistors were used in parallel in order 
to average out their response to variation.  The rise times of 
the new delay circuit are shown in Figure 11.  Similar results 
were obtained for the fall time. On average, the actual delays 
are 19% faster and 26% slower for the FF and SS process 
corners, respectively.  The response of the new delay circuit 
varies more than the response of the FPGA routing 
resources since wires do not vary as much as transistors; 
however, the new delay circuit responds significantly better 
than the previous delay circuit which makes it more suitable. 

4.5.2 Within-Die Variation 
In the case of within-die variation, speed binning and 

proportional scaling may not be sufficient.  Since the inputs 
of a LUT can come from any part of the chip, within-die 
variation can affect the delay of one input differently from 
another input.  Although most connections are local (since 
the FPGA clustering, placement, and routing tools minimize 
the routing distance between connections), within-die 
variation is still a problem for large nets that span the entire 
chip.   

A naïve solution to within-die variation is to reconfigure 
the programmable delay elements of each FPGA 
individually.  This solution, however, is impractical since it 
is difficult to obtain PVT variation information for 
individual FPGAs and it would be time consuming to 
reconfigure each FPGA with different delays.   

Another, more practical solution, is to pessimistically 
reduce the delay added by each programmable delay 
element.  We first determine, D, the inserted delay assuming 
no PVT variation.  Then, if the nature of the expected 
variations are known, we can estimate the approximate 
worst-case impact of the variation, d. We then configure the 
programmable logic element to insert the delay D-d.  This 
ensures that the delay inserted by the delay element does not 
lengthen the overall delay of the circuit.  However, it also 
means that the actual delay that is inserted may be shorter 
than the delay that is needed to eliminate the glitch.  This 
will reduce glitch elimination; however, even in cases where 
the glitch is not eliminated, the width of the glitch is 
reduced.  These shorter pulses are then more likely to be 
filtered out by other delay elements that are downstream. 

Note that a more complete approach to this technique 
would involve using statistical timing analysis to determine 
the maximum delays that can safely be added without 
increasing the critical path delay.  However, statistical 
timing analysis is not supported within our current 

 
(a)  Rise times. 

 
(b) Fall times 

Figure 10: Rise and fall times of delay element from [9] 
considering process variation. 

 
Figure 11: Rise times of new programmable delay 

element considering process variation. 



experimental framework.  Nonetheless, the results for this 
static approach, presented in Section 7.5, still serve to 
demonstrate the tradeoff between the power savings and the 
uncertainty introduced by PVT variation. 

5. Experimental Framework 

This section describes the experimental framework that 
is used to obtain the switching activity information and the 
FPGA area, delay, and power estimates that are presented in 
Section 6 and 7. 

5.1 Switching Activity Estimation 
The switching activities are obtained by simulating 

circuits at the gate level and counting the toggles of each 
wire.  The simulations are driven by pseudo-random input 
vectors and circuit delay information from the VPR place 
and route tool [19].  To capture the filtering effect of the 
FPGA routing resources and of the programmable delay 
elements, the simulator uses the inertial delay model.  
Furthermore, to replicate an FPGA routing architecture 
consisting of length 4 routing segments, the VPR delays are 
divided into chains of 300ps delay.   

5.2 Area, Delay, and Power Estimation 
Area, delay, and power estimates are obtained from the 

VPR place and route tool and HSPICE simulations.  VPR is 
used to model the existing FPGA circuitry and HSPICE is 
used to model the added delay element circuitry.   

The VPR models are detailed, taking into account 
specific switch patterns, wire lengths, and transistor sizes.  
After generating a specified FPGA architecture, VPR places 
and routes a circuit on the FPGA and then models the area, 
delay, and power of that circuit.  VPR models area by 
summing the area of every transistor in the FPGA, including 
the routing, CLBs, clock network, and configuration 
memory.  The area of each transistor is approximated using 
the Minimum Transistor Equivalents (MTE) metric from 
[19], which calculates the layout area occupied by a 
minimum sized transistor plus the minimum spacing as 
illustrated in Figure 12. 

The model from [19] was augmented slightly in this 
paper to consider transistors with longer than minimum 
channel length.  Expression (1) models the layout area of a 
transistor with respect to its channel width (W) and 
Expression (2) models the area with respect to its length (L).  
The models were derived by observing the relative area 
increase when either W or L is increased.  The expressions 
differ slightly since the minimum width of a transistor 
accounts for approximately one half of the y-component of 
the layout area, whereas the minimum length accounts for 

approximately one fifth of the x-component of the layout 
area.  

The delay and power are modeled after routing occurs, 
when detailed resistance and capacitance information can be 
extracted for each net in the benchmark circuit.  The Elmore 
delay model is used to produce delay estimates and the 
FPGA power model described in [20] is used to produce 
power estimates.  The power model uses the VPR 
capacitance information and simulated switching activities 
to estimate dynamic, short-circuit, and leakage power.  Note, 
however, that the leakage power estimates for both the 
existing FPGA circuitry and the programmable delay 
elements do not account for PVT variation (typical process, 
voltage, and temperature are assumed).  

5.3 Architecture Assumptions and Benchmarks 
We gathered results for three LUT sizes: 4, 5, and 6 

inputs.  In all cases, we assumed that each CLB contains 10 
LUTs and that the CLBs have 22, 27, and 33 inputs for 
architectures with 4, 5, and 6 input LUTs, respectively.  In 
each case, we assume that the crossbar that programmably 
connects the CLB inputs and LUT outputs to the LUT inputs 
with each CLB is fully populated as described in [19].  
Furthermore, for routing, we assumed two segmented 
routing fabrics, one consisting of buffered length 1 and 
another of length 4 routing segments and a channel width 
that is 20% wider than the minimum channel width (a 
separate value was found for each benchmark).  Since the 
results were similar for both segment lengths, only the 
length 4 results are presented in Section 6 and 7 unless 
stated otherwise.  

In each experiment, we used 20 combinational 
benchmarks including the 10 largest combinational circuits 
from the MCNC and ISCAS89 benchmark suites.  Before 
placement and routing, each circuit is mapped to LUTs 
using the Emap technology mapper [7] and packed into 
clusters using the T-VPack clusterer [19]. 

6. Scheme Calibration 

Before we examine the overall power savings and area 
and delay overhead of the delay insertion technique, we 
need to find suitable values for the parameters of each 
scheme (listed in Table 3).  In each case, the value is chosen 
to eliminate as much of the glitching as possible, while 
minimizing the area and delay overhead. 

6.1 Scheme 1 Calibration 
We first consider the min_in parameter, which defines 

the minimum delay increment of the programmable delay 
element at the inputs of the LUTs.  Intuitively, a smaller 
delay increment reduces glitching but increases area.  Figure 
13 shows how much glitching is eliminated for minimum 
delay increments ranging between 0.1 and 3.2ns.  To isolate 
the impact of the min_in parameter, the graph assumes that 
every LUT input has a programmable delay element with an 
infinite maximum delay (max_in is ∞ and num_in is K). 

The graph illustrates that most of the glitching can still 
be eliminated when the minimum delay increment is 0.25ns.  
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Figure 12: Extension of MTE Area model from [19]. 



This corresponds to the fact that narrow glitches are filtered 
away by the routing resources and that the majority of 
glitches have a width greater than 0.2ns, as described in 
Section 3.  The same conclusion holds for FPGAs that use 4, 
5, or 6 input LUTs.  

The second parameter, denoted max_in, defines the 
maximum delay of the programmable delay element at the 
inputs of the LUTs.  Intuitively, increasing the maximum 
delay reduces glitching but increases area.  Figure 14 shows 
how much glitching is eliminated as a function of the 
maximum delay.  The graph illustrates that over 90% of the 
glitching can be eliminated when the maximum delay of the 
programmable delay element is 8.0ns.  This corresponds 
with Figure 1, which illustrates that the majority of glitches 
have a width that is less than 10.0ns. 

Finally, num_in defines the number of LUT inputs that 
have a programmable delay element.  Intuitively, increasing 
the number of inputs with delay elements reduces glitching 
since the arrival times of more inputs can be aligned.  Figure 
15 shows how much glitching is eliminated when the 
number of inputs with programmable delays is varied.  The 
graph assumes that the min_in is 1/∞ and max_in is ∞. 

The graph illustrates that each LUT should have a 
programmable delay element on every input minus one (K-
1).  Intuitively, adding delay circuitry to every input is not 
necessary since each LUT has at least one input that does 
not need to be delayed (the slowest input). However, adding 
fewer than K-1 delay elements significantly reduces the 
amount of glitching that can be eliminated.  Note also that, 
since LUTs tend to have uneven input-to-output propagation 
delays, the K-l delay elements should be added to the 
slowest inputs so as not to impede the slowest (critical-path) 
input signal. 

6.2 Scheme 2 Calibration 
Scheme 2 has the same three parameters as Scheme 1 

and the same values are used for each parameter.  
Specifically, num_in is K-1, min_in is 0.25ns, and max_in is 
8ns.  However, to minimize overhead, the maximum delay 
of the LUT input delay elements (max_in) is gradually 
decreased by half (or by 1 delay stage) per LUT input.  As 
an example, the maximum delay values for a 4-input LUT 
would be 8ns, 4ns, and 2ns. 

6.3 Scheme 3 Calibration 
Scheme 3 has five parameters, namely: min_in, max_in, 

num_in, min_out, and max_out.  The first three parameters 
control the delay elements at the inputs of the LUTs; the last 
two parameters control the delay elements at the output of 
the LUTs.  Although the min_in, max_in, and num_in 
parameters were already calibrated for Scheme 1, they must 
be recalibrated for Scheme 2 since the output delay elements 
change how much delay is needed by LUT input delay 
elements.  Intuitively, however, the value of the min_in 
parameter can be reused since the LUT input delays are still 
used to perform the final alignment of each signal. 

The same technique is used to recalibrate max_in and 
num_in but with assumption that min_out is infinitely 

precise (1/∞) and max_out is ∞.  The results are similar to 
those in Scheme 1 except that some glitching is eliminated 
even when there are no delay elements on the LUT inputs 
since the output delay elements are able to align some of the 
inputs and filter out narrow pulses on their own.  For 
Scheme 3, setting max_in to 8.0ns and num_in to K-2 
eliminates most of the glitching. 

The remaining output delay element parameters are 
calibrated assuming min_in is 0.25ns, max_in is 8.0ns, and 
num_in is K-2.  Figure 16 shows the glitch elimination for 
min_out from 0 to 3.2ns assuming that max_out is ∞ and 
Figure 17 shows the glitch elimination for max_out from 0 
to 12ns assuming that min_out is 1/∞. The graphs illustrate 
that a 0.25ns and 8.0ns are also suitable for min_out and 
max_out, respectively. 

6.4 Scheme 4 Calibration 
Scheme 4 has five parameters, namely: min_in, max_in, 

num_in, min_c, and max_c.  The first three parameters 
control the delay elements at the inputs of the LUTs; the last 
two parameters control the delay elements at the input of the 
CLBs.  The min_in, max_in, and num_in parameters are 
again recalibrated to account for the affect of the CLB input 
delay elements.  The same procedure used in Scheme 1 was 
used.  The results for min_in and max_in were similar to the 
previous cases, which indicated that 0.25ns and 8.0ns, 
respectively, were suitable. 

The results for num_in, which are plotted in Figure 18 
were different than in the previous cases.  To isolate the 
impact of num_in, the graph assumes that min_in is 1/∞, 
max_in is ∞, min_c is 1/∞, and max_c is ∞.  The results 
indicate that num_in should be 1, 2, and 2, for 4, 5, and 6-
LUTs, respectively.  Intuitively, fewer LUT input delay 
elements are needed since the CLB input delay elements 
account for most of the delay.  Only in cases where the CLB 
inputs fanout to multiple LUTs within that CLB and those 
fanouts need different delays are the LUT input delay 
elements required. 

6.5 Scheme 5 Calibration 
Finally, Scheme 5 has five parameters, namely: min_in, 

max_in, num_in, max_b, and num_b.  The first three 
parameters control the delay elements and the inputs of the 
LUTs; the last two parameters control the bank of delay 
elements in the CLB.  The bank of programmable delay 
elements are only used for signals that need more delay than 
can be added by the LUT input delay elements, therefore 
this scheme uses the same min_in and num_in values as 
Scheme 1: 0.25ns and K-1, respectively.  Suitable values for 
max_in and max_b were found empirically to be 4.0ns and 
8.0ns, respectively.  Finally, Figure 19 shows glitch 
elimination with respect to the number of bank delay 
elements per CLB (num_b) assuming min_in is 0.25ns, 
num_in is K-1, max_in is 4.0ns, and max_b is 8.0ns.  The 
results show that 4 is a suitable value for num_b for CLBs 
with 10 LUTs. 



 
Figure 13.  Minimum LUT input delay for Scheme 1. 

 
Figure 14.  Maximum LUT input delay for Scheme 1. 

 
Figure 15.  Number of delay elements/LUT for Scheme 1. 
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Figure 16. Minimum LUT output delay for Scheme 3. 
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Figure 17.  Maximum LUT output delay for Scheme 3. 
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Figure 18.  Number of input delay elements per LUT for 

Scheme 4. 
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Figure 19: Number of bank delay elements for Scheme 5. 

6.6 Summary 
Table 4 summarizes the values that were selected for 

each of the five delay insertion schemes.  The first two 
columns specify the scheme number and the programmable 
delay element location.  The third and fourth columns 
specify the minimum delay increment and the maximum 
delay of the programmable delay element at that location.  
The fifth column specifies the corresponding number of 
delay stages needed to implement the programmable delay 
element.  Finally, the sixth column specifies the number of 
programmable delay elements needed per LUT (rows 2, 3, 5, 
and 7) and per CLB (rows 4, 6, and 8). 



7. Results 

This section presents the overall results.  It begins by 
presenting the area, delay, and power overhead of each delay 
insertion scheme.  It then presents the overall power savings 
assuming there is no PVT variation.  Finally, it presents the 
overall power savings assuming there is PVT variation. 

7.1 Area Overhead 
The area overhead is determined by summing the area of 

the added delay circuitry in each CLB.  This area includes 
the area of the delay elements and the added configuration 
memory.  Table 5 reports how much area is needed in the 
CLBs and Table 6 

 
 reports the percent area overhead taking the CLB and 

routing area into account.  More precisely, the percent area 
overhead was calculated by dividing the total area occupied 
by the added programmable delay circuitry by the total area 
occupied by the FPGA logic and routing resources, which 
we determined using VPR. 

The tables show that Scheme 2 has the lowest area 
overhead, followed by Schemes 1, 3, and 4, and finally 
Scheme 5 has the highest overhead.  Scheme 5 requires the 
most area because of the large multiplexers needed to select 
which CLB input or LUT output uses the bank delay 
elements.  Schemes 1, 3, and 4 have a similar area overhead 
since they use the same size delay elements and roughly the 
same number of them.  Scheme 2 has the lowest area 
overhead since it uses smaller delay elements.  The tables 
also show the area overhead decreases as the LUT size 
increases.  This occurs since the area of the LUTs and 
multiplexers increases exponentially with K, while the area 
of the delay elements only increases linearly. 

 
Table 5: CLB area overhead (no global interconnect). 

LUT 
Size 

Original 
CLB Area 

(MTE) 

CLB Area Overhead (MTE) 
Scheme 

1 
Scheme

2 
Scheme 

3 
Scheme 

4 
Scheme 

5 

4 6938 2460 2020 2460 2568 3184 
5 10361 3280 2430 3280 3368 3808 
6 15228 4100 2720 4100 4282 4494 

 

 
 

Table 6: Overall area overhead. 

LUT 
Size 

Overall Area Overhead (%) 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

4 8.0 6.6 8.0 8.4 10.4 
5 7.6 5.3 7.6 7.8 8.8 
6 6.7 4.4 6.7 7.0 7.3 

7.2 Power Overhead 
Even if all the glitches could be eliminated, the 

programmable delay elements still dissipate power.  This 
overhead is modeled by summing the power dissipated by 
the added circuitry in each CLB of the FPGA using the 
expression below. 
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In the expression, dnodes is the set of nodes in the circuit 
that can be delayed, Etoggle is the energy dissipated by one 
programmable delay element during one transition, α(n) is 
the switching activity of the delayed node n, and Tcrit is the 
critical path delay of the circuit.  The energy and leakage 
power of the programmable delay element is determined 
using HSPICE, the switching activity is determined using 
gate-level simulation, and the critical-path delay is 
determined using the VPR place and route tool.  Note, 
however, that the leakage power estimates assume typical 
process, voltage, and temperature conditions.   

Table 7 reports the average overhead power (as a 
percentage) dissipated by the added delay circuitry for each 
scheme.  The power of the remaining FPGA circuitry is 
calculated using the power model described in [20]. The 
table shows that the power overhead is approximately 1% 
for all the schemes and that Scheme 2 has the lowest power 
overhead. 

7.3 Delay Overhead 
Although the delay elements are programmed to only 

add delay to early arriving edges, a small delay penalty may 
be incurred even if the delay element is bypassed because of 
parasitic resistance and capacitance. To model delay 
overhead, HSPICE was used to determine the parasitic delay 
incurred by the delay element.  The critical-path delay of 
each circuit was then recalculated, taking these parasitic 
delays into account.  Finally, the overhead was calculated by 
comparing the new critical-path delay to the original critical-
path delay.   

 Table 8 reports the average delay overhead for each 
scheme.  Schemes 1, 2, and 4 have the smallest overhead 
since both have fast-paths with no delay elements (no 
parasitics) to slow down the critical-path.  Schemes 3 and 4 
have a larger overhead, since neither scheme offer a fast-
path for critical-path connections.  Specifically, the parasitic 
capacitance of the programmable delay elements at the 
output of the CLBs for Scheme 3 and at the inputs of the 

Table 4: Summary of delay element values. 

Scheme Location Delay 
Incr. (ns) 

Max. 
Delay 
(ns) 

# 
Stages # Circuits 

1 LUT Inputs 0.25 8 5 K-1 

2 LUT Inputs 0.25 
8, 4, 2, 

… 
5, 4, 3, 

… K-1 

3 
LUT Inputs 0.25 8 5 K-2 

CLB Outputs 0.25 8 5 N 

4 
LUT Inputs 0.25 8 5 1, 2, 2 

CLB Inputs 0.25 8 5 K(N+1) / 2 

5 
LUT Inputs 0.25 4 4 K-1 

Bank 4.0 8 1 4 (N=10) 



CLBs for Scheme 4 imposes a small delay on any signal that 
bypasses them (see Figure 4). 

7.4 Overall Power Savings (without Variation) 
Table 9 presents the average glitch elimination for each 

scheme and Table 10 presents the corresponding overall 
power savings.  Both tables indicate that Scheme 1 produces 
the best results, with 91.8% glitch elimination and overall 
power savings of 18.2%.  The power savings are close to the 
ideal savings of 22.6%.  Note also that the results in both 
tables are for FPGAs with 4-input LUTs and length 4 
routing segments; the results for 5 and 6-input LUTs and for 
FPGAs with length 1 routing segments were similar.  As an 
example, using Scheme 1 for FPGAs the 6-input LUTs and 
length 1 routing segments reduced glitching by 92.9% and 
the overall power by 16.8%.  In general, the power savings 
for larger LUTs are slightly smaller because there tends to 
be less glitching to begin with since the netlists have fewer 
levels of logic.  Moreover, the segment length distribution 
has little affect because the needed delays tend to be quite 
dispersed even for buffered routing architectures with only 
one segment length.  The timing of a signal is affected not 
only by the number of LUTs and routing segments it passes 
through, but also by where it taps on to and off of those 
segments. 

7.5 Overall Power Savings (with Variation) 
The results presented in the previous sections assumed 

no PVT variation.  The following results present the overall 
power saving when the technique described in Section 4.5 is 
applied to cope with the timing uncertainty introduced by 
PVT variation.  Specifically, we repeated the experiments 
from Section 7.4, using the same delay element parameter 
values as before, but we reduced the delay inserted by each 
delay element by a factor β. We varied β from 0.7 (meaning 
each delay element is programmed to provide a delay of 
70% of the value predicted assuming no process variations) 
to 1.0 (which is the same as the results in Section 7.4).  
Figure 20 shows the results.  In this figure, β is shown on 
the X-axis.  The lower line indicates the amount of glitching 
removed compared to the case when programmable delay 
elements are not used.  As the results show, when β is 0.7, 
the glitch savings are reduced to 56% (compared to 91% 
when process variations are not considered).  The upper line 
shows the resulting decrease in power; as expected, the 
power reduction is proportional to the number of glitches 
removed.  Overall, these results indicate that the delay 
insertion technique still works when the added delays are 
reduced, but with diminished glitch and power savings as 
the timing uncertainty increases. 

8. Conclusions and Future Work 

This paper proposed GlitchLess, a glitch elimination 
technique to reduce dynamic power in FPGAs.  The 
implementation investigated here adds programmable delay 
elements to the CLB architecture to align the edges of each 

Table 7: Average power overhead (%). 

LUT Size 
Power Overhead: Poverhead / (Poverhead + PFPGA) * 100 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

4 0.94 0.79 1.02 1.16 0.97 
5 0.97 0.84 1.12 1.28 0.99 
6 1.02 0.94 1.14 1.10 0.93 

Table 8: Average delay overhead. 

LUT 
Size 

Average Delay Overhead (%) 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 

4 0.21 0.19 2.4 2.3 0.21 
5 0.13 0.14 2.2 2.1 0.13 
6 0.14 0.15 2.1 1.9 0.14 

Table 9: % Glitch elimination of each scheme. 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
91.8% 87.3% 83.3% 81.8% 85.4% 

Table 10: Overall power savings. 

Circuit 
Power Saving (%) 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
C135 25.4 25.4 25.0 25.0 25.8 
C1908 18.1 17.5 18.4 16.1 17.0 
C2670 11.6 11.4 11.3 10.2 11.7 
C3540 27.5 25.4 22.9 23.5 26.3 
C432 13.0 11.0 10.7 10.6 10.6 
C499 31.8 31.8 30.9 32.3 32.4 
C5315 18.2 16.8 16.2 16.0 17.9 
C6288 52.1 41.3 43.2 40.0 46.1 
C7552 22.6 21.0 18.9 19.7 22.3 
C880 7.2 6.5 6.5 8.0 7.1 
alu4 2.5 2.5 2.4 3.3 2.7 

apex2 3.6 3.6 3.2 3.8 3.6 
apex4 9.5 9.5 9.1 9.4 9.3 
des 15.1 14.9 12.1 14.2 14.4 

ex1010 16.8 16.8 16.4 16.5 15.9 
ex5p 23.8 23.3 23.4 21.5 25.0 

misex3 7.6 7.6 7.3 7.3 7.2 
pdc 11.1 10.8 10.1 10.7 11.3 
seq 5.3 5.2 5.9 5.7 5.6 
spla 20.3 20.1 19.8 20.0 20.2 

Average 18.2 16.8 16.3 16.2 17.4 

 

Figure 20. Glitch elimination and power savings vs. β. 



LUT input, thereby preventing formation of glitches on the 
LUT outputs.  The delay elements can also filter some 
glitches produced by the upstream logic. Five alternative 
schemes were considered for delaying the logic inputs.  
Scheme 1, which uses delay elements on K-1 inputs of each 
LUT, produced the greatest power savings, reducing power 
by 18.2%.  However, Scheme 2, which uses K-1 delay 
elements that gradually decrease in size, produced similar 
power savings with less area.  On average, Scheme 2 
eliminates 87% of all glitching, which reduces overall 
FPGA power by 16.8%.  The added circuitry increases 
overall area by 6.6% and critical-path delay by less than 1%. 

There are a number of interesting issues that were not 
fully explored in this paper that merit further research.  First, 
a more complete approach to the proposed delay insertion 
technique would involve using statistical timing analysis to 
determine the maximum delays that can safely be added 
without increasing the critical path delay.  Second, 
investigation using newer process technologies that tend to 
dissipate more leakage power is also needed.  Finally, 
further research of circuit-level implementations for 
delaying the inputs or preventing the output from toggling 
prematurely may yield lower overhead, increased power 
savings, and/or improved PVT tolerance.  As an example, a 
self-calibrating delay element that tunes itself to the latest 
arriving transition of a LUT (relative to the clock) would be 
ideal since it would be more tolerant to variation.  
Furthermore, this delay element could be used to gate all the 
early arriving inputs or to suppress output transitions until 
the last input arrives.  Such an implementation may reduce 
area since it requires only one delay element per LUT.  
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