

Femto-Cloud Formation: A Coalition Game-Theoretic Approach

S. M. Shahrear Tanzil, Omid Namvar Gharehshiran, and Vikram Krishnamurthy

> Department of Electrical and Computer Engineering University of British Columbia, Vancouver, Canada

> > December 9, 2015

	Femto-Cloud Formation	
		UBC
Outline		
e a cinite		

③ Femto-Cloud Formation

4 Numerical Results

- Mobile cloud computing (MCC): Offloading computation and storage to the remote cloud over the wireless/wired networks
 - Major bottlenecks in MCC
 - ★ Energy
 - ★ Latency

Mobile cloud computing

- *Cloudlet*: A trusted local cloud, comprised of multi-core computers, connected to the Internet, and available for use within the proximity of mobile users
 - Mobile devices use Wi-Fi network to offload the computation tasks to the *Cloudlet*

- Small cell access points are augmented with computational power
- The advantage is that small cells, in contrast to Wi-Fi, work under the same communication standard as the LTE cellular network

Small cell cloud

- FAPs are willing to share their computational resources with the neighbouring FAPs in exchange for monetary incentives
- Question: How should FAPs form local femto-clouds where groups of FAPs establish collaborative coalitions to perform jointly the computational tasks within the coalition so that both the end-user and FAP owners experiences are improved?

Main Idea		
		UBC

Example Scenario-1

- The femto-cloud formation problem is formulated:
 - An incentive based coalition formation cooperative game with transferable utility
 - Core of the game provides the solution to the femto-cloud formation problem

Femto-Clouds Utility

- In our formulation, we take into account:
 - The profile of request arrivals in individual FAPs
 - The data transfer delay among FAPs
 - Computational capacity of FAPs
 - The data transfer delay and computational cost in remote cloud
- Propose incentive mechanism to FAP owners so as to motivate to share their resources.

Femto-Clouds Utility

$$U(\mathcal{C}) = U^{r}(\mathcal{C}) - U^{c}_{r}(\mathcal{C}) - U^{c}_{o,r}(\mathcal{C}) - U^{c}_{o,m}(\mathcal{C})$$
(1)

- $U(\mathcal{C})$ denotes the utility function of coalition \mathcal{C} i.e., total revenue earned by the coalition
 - $U^{r}(\mathcal{C})$ denotes the revenue earned by the coalition \mathcal{C}
 - $U_r^c(\mathcal{C})$ denotes the remote cloud processing cost
 - $U_{o,r}^{c}(\mathcal{C})$ represents the remote cloud offloading delay cost
 - $U_{o,m}^{c'}(\mathcal{C})$ represents the multicast offloading delay in the coalition \mathcal{C}

- $\bullet~{\cal K}$ represents the set of all FAPs, and $2^{\cal K}$ denotes its power set
- $\bullet~\mathcal{S}$ represents the femto-cloud structure
- ${\mathcal B}$ denotes the set of all possible coalition structures
- $\bullet \ {\cal C}$ denotes an individual coalition in the coalition structure ${\cal B}$
- Δ (\$) is the smallest payoff unit
- ${\cal P}$ denotes FAPs' demand set
- K total number of FAPs

• Femto-cloud formation problem:

$$\begin{split} \max_{\mathcal{S}\in\mathcal{B}} \sum_{\mathcal{C}\in\mathcal{B}} U(\mathcal{C}) \\ \text{s.t.} \quad \sum_{k\in\mathcal{C}} r_k &= \lfloor U(\mathcal{C}) \rfloor_{\Delta}, \quad \forall \mathcal{C}\in\mathcal{B} \\ & \sum_{k\in\mathcal{C}} r_k \geq U(\mathcal{C}'), \quad \forall \mathcal{C}'\in 2^{\mathcal{K}} - \emptyset, \mathcal{C}'\notin\mathcal{B} \\ & r_k\in\mathcal{P}, r_k \geq U(\{k\}), \quad \forall k\in\mathcal{K} \end{split}$$

• **r** = ($r_1, ..., r_K$) denotes the revenue allocation vector i.e., the share of each FAP from the revenue obtained by the femto-clouds

$$\mathbf{r} \cdot \mathbf{1}_{\mathcal{K}} = \max_{\mathcal{S} \in \mathcal{B}} \sum_{\mathcal{C} \in \mathcal{S}} \lfloor U(\mathcal{C}) \rfloor_{\Delta}, \quad r^{k} \in \mathcal{P}_{k}$$
$$\sum_{k \in \mathcal{C}} r^{k} \geq \lfloor U(\mathcal{C}) \rfloor_{\Delta}, \quad \forall \mathcal{C} \subseteq \mathcal{K}, \mathcal{C} \neq \emptyset.$$

• Dynamic coalition formation algorithm is utilized with modified core for femto-cloud formation

Algorithm-1

Initialization. Set $0 < \varepsilon, \rho < 1$, and initialize $\omega^0 = (S^0, \mathbf{r}^0)$, where

$$\mathcal{S}^0 = ig\{\{1\},\ldots,\{K\}ig\}, ext{ and } \mathbf{r}^0 = ig(\hat{r}_1,\ldots,\hat{r}_Kig)$$

Here, $\hat{r}_k = U(\{k\})$ is the reservation incentive for FAP k.

Step 1. Find Blocking coalitions: Let $\mathcal{A}^n = \emptyset$. For all $\mathcal{C} \in 2^{\mathcal{K}} - \emptyset$,

if
$$\sum_{l \in \mathcal{C}} r_l^n \leq \lfloor U(\mathcal{C}) \rfloor_{\Delta}$$
, then $\mathcal{A}^n \leftarrow \mathcal{A}^n \cup \mathcal{C}$.

IntroductionMain IdeaFemto-Cloud FormationNumerical ResultsConclusionStep 2.For each $k = \{1, ..., K\}$, do:Step 2.1.With probability ρ , stay in the same coalition, set $r_k^{n+1} = r_k^n$,
and go to Step 2.5.With the remaining probability $1 - \rho$, continue
with Step 2.2.Step 2.2.Step 2.2.

$$\tilde{\mathcal{C}}_{k}^{n+1} = \underset{\mathcal{C}\in\mathcal{S}^{n}\cup\emptyset}{\operatorname{argmax}} \left(\lfloor U(\mathcal{C}\cup\{k\}) \rfloor_{\Delta} - \sum_{l\in\mathcal{C}-\{k\}} r_{l}^{n} \right)$$
(2)
$$\tilde{\mathbf{r}}_{k}^{n+1} = \lfloor U(\tilde{\mathcal{C}}_{k}^{n+1}\cup\{k\}) \rfloor_{\Delta} - \sum_{l\in\tilde{\mathcal{C}}_{k}^{n+1}-\{k\}} r_{l}^{n}$$
(3)

Step 2.3. If $k \in \mathcal{A}^n$, with probability ε , go to Step 2.4. With the remaining probability $1 - \varepsilon$, sample uniformly from the set $\mathcal{S}^n \cup \emptyset$, denote it by $\tilde{\mathcal{C}}_k^{n+1}$, and set $r_k^{n+1} = \tilde{r}_k^{n+1}$, where \tilde{r}_k^{n+1} is computed according to (3).

	Femto-Cloud Formation	

Go to Step 2.5. **Step 2.4.** Set $r_k^{n+1} = \tilde{r}_k^{n+1}$ and, if non-singleton, randomize among \tilde{C}_k^{n+1} uniformly. **Step 2.5.** If $k \neq K$, continue with the next FAP. **Step 3.** Form $\omega^{n+1} = (S^{n+1}, \mathbf{r}^{n+1})$. Set $n \leftarrow n+1$ and go to Step 1.

Simulation set-up

- Object recognition from images
- MAUI offloading mechanism
- LTE LENA module in NS3

- Algorithm-1: Our proposed femto-cloud formation scheme
- *Grand Femto-cloud*: All the FAPs form one large collaborative coalition
- Heuristic scheme-1: Based on the relative distances
- Heuristic scheme-2: Based on the computational capacities and mean demands

Numerical Results

Example-1: Enterprise environment

Figure 1: Computational capacity of FAP-1 vs. average data transfer delay in the femto-clouds

Femto-Cloud Formation

Numerical Results

Conclusion

Example-2: Residential environment

Figure 2: Computational capacity of FAP-1 vs. surplus average incentive per FAP from Isolated FAPs

- An incentive-based femto-cloud formation scheme was proposed
- The problem was formulated as a coalition game where coalition structures and payoff allocations in the core of the game correspond to the solution to the femto-cloud formation problem
- Numerical examples implemented on the LTE protocol stack in NS3:
 - Illustrate superior performance of the proposed scheme in terms of both handing latency and incentives provided to the FAP owners over alternative femto-cloud formation schemes
 - In most cases, grand coalition is not the optimal structure

You!!!

Introduction Main Idea Femto-Cloud Formation Numerical Results	Conclusion