EECE251

Circuit Analysis I

Set 5: Operational Amplifiers

Shahriar Mirabbasi
Department of Electrical and Computer Engineering
University of British Columbia
shahriar@ece.ubc.ca

Amplifiers

- There are various types of amplifiers.
- Perhaps the most common type is a voltage amplifier (usually referred to simply as an amplfier!) where both input and output of the amplifier are voltages:

- A bit more realistic schematic:

Amplifiers

- Typically, amplifiers have two supplies: One is positive $\left(+\mathrm{V}_{\mathrm{cc}}\right)$ and one is negative $\left(-\mathrm{V}_{\mathrm{cc}}\right)$.

Common Reference (Ground)

SM	EECE 251, Set 5	3

Saturation

- A practical limitation for amplifiers (at least the ones that we will see in this course) is that the magnitude of their output voltage cannot exceed the supply, that is:

$$
-\mathrm{V}_{\mathrm{cc}} \leq \mathrm{V}_{\mathrm{out}} \leq+\mathrm{V}_{\mathrm{cc}}
$$

- If the output wants to go beyond the supplies (for example when the input is positive and large) then it will be clipped at $+\mathrm{V}_{\mathrm{cc}}$:

$$
V_{\text {out }}=+V_{\text {cc }}
$$

- If the output is so negative then it will be limited by $-\mathrm{V}_{\mathrm{cc}}$:

$$
V_{\text {out }}=-V_{c c}
$$

- In these cases we say that the amplifier is saturated

SM	EECE 251, Set 5	4

Equivalent Model of a (Voltage) Amplifier

- A voltage amplifier can be modeled with voltage-controlled voltage source:

$$
V_{\text {out }}=A V_{\text {in }}
$$

Ideal Amplifier

- What do you think the input and output resistance of an ideal amplifier should be?
- Let's look at a example:
- Let's assume you have a signal source with a 50Ω resistance (its Thevenin equivalent is the signal voltage source in series with a 50Ω) and a load of 4Ω.
- What happens if we naively connect the output of the signal source to the load?

SM	7

Ideal Amplifier

- What if we insert an amplifier between the source and the load.
- In order to maximize the signal at the output can you guess what should be the values for $R_{\text {in }}$ and $R_{\text {out }}$?

Differential Amplifier

Equivalent Model for a Differential Amplifier
v_{sw}

Differential Amplifier

Operational Amplifier

- Operational amplifier (or op amp for short) is a differential amplifier whose gain is very large.
- Ideal op amp is an ideal differential amplifier with infinite gain!

$$
\text { With } R_{i} \rightarrow \infty \text { and } R_{o} \rightarrow 0
$$

$$
\text { and } A \rightarrow \infty
$$

Operational Amplifiers

Operational Amplifiers (Op Amps)

- In light of their large gain, op amps are usually used in a negative feedback configuration where their output is somehow (usually through a passive component) is connected to their negative (inverting) input.
- If there is no feedback, what do you expect the output will be?
- In practice, If $\mathrm{V}_{\mathrm{p}}>\mathrm{V}_{\mathrm{n}}$ then the output will be saturated to the positive supply. Why?
- And, if $\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{n}}$ then the output will be saturated to the negative supply

SM	17

Op Amp

- What is the relationship between V_{p} and V_{n} in an op amp with negative feedback?

Op Amp

- What is the relationship between V_{p} and V_{n} in an op amp with negative feedback?

SM	EECE 251, Set 5	19

Op Amps

- Op amps were designed to performed mathematical operations such as subtraction, addition, multiplication, division, integration, and differentiation (therefore the name operational amplifier!).
- So let's have a look at how we can perform these operations using op amps.
- Note that in all these cases we should make sure that we have a negative feedback. Why?

Op Amps

- Strategy to analyze op-amp circuits (assuming ideal op amps):
- Check to see if there is a negative feedback
- If so, then use: $\mathrm{Vp}=\mathrm{Vn}$. If there is no negative feedback then we can't assume anything about Vp and Vn.
- Input currents In and Ip are both zero.
- Apply nodal analysis
- Solve nodal equations to express output voltage in terms of input signals.

Inverting Amplifier

Example

- What is the gain of this circuit, that is, what is v_{0} / v_{i} ?
- If $v_{i}=0.5 \mathrm{~V}$ what is the output voltage? What is the current in the $10 \mathrm{k} \Omega$ resistor?

Non-inverting Amplifier

- Find the gain $\left(\mathrm{v}_{\mathrm{o}} / \mathrm{v}_{\mathrm{i}}\right)$ of the following circuit?

Buffer

- Also known as voltage follower or unity gain amplifier

- What is the use of such amplifier?

Summing Amplifier

Example

- Design an op amp circuit with inputs v_{1} and v_{2} such that

$$
v_{o}=-2 v_{1}+1.5 v_{2}
$$

SM	EECE 251, Set 5	29

Differentiator

Logarithm!

- Let's assume that for a diode (a component that we will see later) we have

$$
i_{D} \approx I_{s} e^{\frac{v}{D}} \frac{V_{T}}{T}
$$

- In the following circuit, find the relationship between v_{0} and v_{i}.

Exponential

- In the following circuit, find the relationship between v_{0} and v_{i}.

Multiplication and Division

- Can you think of a circuit that can be used to multiply two voltages?
- How about a circuit that can be used to divide two voltages?

Example

- The following circuit is an electronic ammeter. It operates as follows: the unknown current, I, through R, produces a voltage, $V_{1} . V_{l}$ is amplified by the op-amp to produce a voltage, V_{o}, which is proportional to l. The output voltage is measured with a simple voltmeter. We want to find the value of R_{2} such that 10 V appears at V_{o} for each milliamp of unknown current.

SM	EECE 251, Set 5

Example

- There is a requirement to design a noninverting op-amp configuration with two resistors under the following conditions: the gain must be +10 , the input range is $\pm 2 \mathrm{~V}$, and the total power consumed by the resistors must be less than 100 mW .

Comparators

- A comparator, a variant of the op-amp, is designed to compare the non-inverting and inverting input voltages. When the noninverting input voltage is greater, the output goes as high as possible, at or near $V_{C c}$. On the other hand, if the inverting input voltage is greater, the output goes as low as possible, at or near $V_{E E}$.

Comparators

- A common comparator application is the zero-crossing detector, as shown here:

Design Example

- We wish to design a weighted-summer circuit that will produce the output The design specifications call for use of one op-amp and no more than three resistors. Furthermore, we wish to minimize power while using resistors no larger than $10 \mathrm{k} \Omega$.

SM	EECE 251, Set 5	39

Summary

- Inverting amplifier

$$
v_{o}=-\frac{R_{2}}{R_{1}} v_{i}
$$

- Non-inverting amplifier
$v_{o}=\left(1+\frac{R_{2}}{R_{1}}\right) v_{i}$

- Buffer (voltage follower)
$v_{o}=v_{i}$

Summary

- Summer (adder)

$$
v_{o}=-\left(\frac{R_{f}}{R_{1}} v_{1}+\frac{R_{f}}{R_{2}} v_{2}+\frac{R_{f}}{R_{3}} v_{3}\right)
$$

- Difference Amplifier

$$
v_{o}=\frac{R_{2}}{R_{1}}\left(v_{2}-v_{1}\right)
$$

Summary

- Differentiator

$$
v_{o}=-R C \frac{d v_{i}}{d t}
$$

- Integrator

$$
v_{o}=-\frac{1}{R C} \int v_{i} d t
$$

Summary

- Taking natural logarithm

$$
v_{o}=-V_{T} \ln \left(\frac{v_{i}}{R \cdot I_{s}}\right)
$$

- Raising to the power of e

$$
v_{o}=-R \cdot I_{s} e^{\frac{v_{i}}{V_{T}}}
$$

