EECE251

Circuit Analysis I

Set 5: Operational Amplifiers

Shahriar Mirabbasi Department of Electrical and Computer Engineering University of British Columbia shahriar@ece.ubc.ca

1

Amplifiers

- There are various types of amplifiers.
- Perhaps the most common type is a voltage amplifier (usually referred to simply as an amplfier!) where both input and output of the amplifier are voltages:

Amplifiers

- Typically, amplifiers have two supplies: One is positive (+V_{cc}) and one is negative (–V_{cc}).

Common Reference (Ground)

Saturation

• A practical limitation for amplifiers (at least the ones that we will see in this course) is that the magnitude of their output voltage cannot exceed the supply, that is:

$$-V_{cc} \le V_{out} \le +V_{cc}$$

• If the output wants to go beyond the supplies (for example when the input is positive and large) then it will be clipped at $+V_{cc}$:

$$V_{out} = +V_{cc}$$

• If the output is so negative then it will be limited by $-V_{cc}$:

$$V_{out} = -V_{cc}$$

• In these cases we say that the amplifier is saturated

Saturation

Common Reference (Ground)

• Often for simplifying the drawings, the supplies and ground connections of the amplifiers will not be explicitly shown

Equivalent Model of a (Voltage) Amplifier

• A voltage amplifier can be modeled with voltage-controlled voltage source:

$$V_{out} = AV_{in}$$

Ideal Amplifier

- What do you think the input and output resistance of an ideal amplifier should be?
- Let's look at a example:
- Let's assume you have a signal source with a 50Ω resistance (its Thevenin equivalent is the signal voltage source in series with a 50Ω) and a load of 4Ω.
- What happens if we naively connect the output of the signal source to the load?

Ideal Amplifier

- What if we insert an amplifier between the source and the load.
- In order to maximize the signal at the output can you guess what should be the values for R_{in} and R_{out}?

Ideal Amplifier

9

Buffer

- An amplifier with the gain of one is typically referred to as "buffer".
- Buffers are very useful when one wants to "drive" a low resistance with a signal source that has a large series resistance.

Differential Amplifier

 An amplifier that has two inputs and amplifies the potential difference between its input nodes (that is, it amplifies the difference between the voltages of its two inputs)

Equivalent Model for a Differential Amplifier

$$v_d = v_2 - v_1 and v_o = Av_d = A(v_2 - v_1)$$

Differential Amplifier

Operational Amplifier

- Operational amplifier (or op amp for short) is a differential amplifier whose gain is very large.
- Ideal op amp is an ideal differential amplifier with infinite gain!

With
$$R_i \to \infty$$
 and $R_o \to 0$
and $A \to \infty$

Operational Amplifiers

Operational Amplifiers

Operational Amplifiers (Op Amps)

• In light of their large gain, op amps are usually used in a negative feedback configuration where their output is somehow (usually through a passive component) is connected to their negative (inverting) input.

• If there is no feedback, what do you expect the output will be?

- In practice, If $V_p > V_n$ then the output will be saturated to the positive supply. Why?
- And, if $V_p < V_n$ then the output will be saturated to the negative supply

Op Amp

• What is the relationship between V_p and V_n in an op amp with negative feedback?

Op Amp

• What is the relationship between V_p and V_n in an op amp with negative feedback?

Op Amps

• Op amps were designed to performed mathematical operations such as subtraction, addition, multiplication, division, integration, and differentiation (therefore the name operational amplifier!).

- So let's have a look at how we can perform these operations using op amps.
- Note that in all these cases we should make sure that we have a negative feedback. Why?

Op Amps

- Strategy to analyze op-amp circuits (assuming ideal op amps):
 - Check to see if there is a negative feedback
 - If so, then use: Vp=Vn. If there is no negative feedback then we can't assume anything about Vp and Vn.
 - Input currents In and Ip are both zero.
 - Apply nodal analysis
 - Solve nodal equations to express output voltage in terms of input signals.

SM

Inverting Amplifier

Example

- What is the gain of this circuit, that is, what is v_o/v_i ?
- If $v_i=0.5V$ what is the output voltage? What is the current in the $10k\Omega$ resistor?

Non-inverting Amplifier

• Find the gain (v_o/v_i) of the following circuit?

Buffer

• Also known as *voltage follower* or *unity gain amplifier*

• What is the use of such amplifier?

Example

• In the following circuit, find the output voltage.

Summing Amplifier

Difference Amplifier

28

Example

• Design an op amp circuit with inputs v_1 and v_2 such that

$$v_o = -2v_1 + 1.5v_2$$

Differentiator

Integrator

Logarithm!

• Let's assume that for a diode (a component that we will see later) we have

$$i_D \approx I_s e^{\frac{V_D}{V_T}}$$

• In the following circuit, find the relationship between v_o and v_i .

Exponential

• In the following circuit, find the relationship between v_o and v_i .

Multiplication and Division

• Can you think of a circuit that can be used to multiply two voltages?

• How about a circuit that can be used to divide two voltages?

Example

• The following circuit is an electronic ammeter. It operates as follows: the unknown current, *I*, through R_I produces a voltage, V_I . V_I is amplified by the op-amp to produce a voltage, V_o , which is proportional to *I*. The output voltage is measured with a simple voltmeter. We want to find the value of R_2 such that 10 V appears at V_o for each milliamp of unknown current.

Example

 There is a requirement to design a noninverting op-amp configuration with two resistors under the following conditions: the gain must be +10, the input range is ±2 V, and the total power consumed by the resistors must be less than 100 mW.

Comparators

• A comparator, a variant of the op-amp, is designed to compare the non-inverting and inverting input voltages. When the non-inverting input voltage is greater, the output goes as high as possible, at or near V_{CC} . On the other hand, if the inverting input voltage is greater, the output goes as low as possible, at or near V_{EE} .

Comparators

• A common comparator application is the zero-crossing detector, as shown here:

Design Example

 We wish to design a weighted-summer circuit that will produce the output The design specifications call for use of one op-amp and no more than three resistors. Furthermore, we wish to minimize power while using resistors no larger than 10 kΩ.

• Inverting amplifier

$$v_o = -\frac{R_2}{R_1}v_i$$

• Non-inverting amplifier

$$v_o = \left(1 + \frac{R_2}{R_1}\right) v_i$$

• Buffer (voltage follower)

$$v_o = v_i$$

• Summer (adder)

$$v_o = -\left(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3\right)$$

• Difference Amplifier

$$v_o = \frac{R_2}{R_1} (v_2 - v_1)$$

• Differentiator

$$v_o = -RC \frac{dv_i}{dt}$$

• Integrator

$$v_o = -\frac{1}{RC} \int v_i dt$$

• Taking natural logarithm

$$v_o = -V_T \ln\left(\frac{v_i}{R \cdot I_s}\right)$$

• Raising to the power of e

$$v_o = -R \cdot I_s e^{\frac{v_i}{V_T}}$$

Instrumentation Amplifier

