
 

 

  WISEMAN 
Ver. 0.91 

Data Communications Group 
Department of Electrical and 
Computer Engineering -               
The University of British Columbia 

Prepared by:                             
Sergio González-Valenzuela 

December 8, 2008 



ABSTRACT 

We introduce WISEMAN (Wireless Sensors Employing Mobile AgeNts), a mobile-code system for the 

programmable control of distributed tasks in wireless sensor networks. WISEMAN’s architecture and 

language constructs decouple the coordination element of distributed processes from the actual data 

processing in order to produce ultra-compact agents that may help to reduce bandwidth utilization. 

WISEMAN also allows the dynamic creation of labelled links between WSN nodes, which facilitates agent 

navigation and propagation. We present the rationale behind WISEMAN’s, and important details of its 

implementation in Crossbow® Micaz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 INTRODUCTION 

The use of code mobility has gained significant attention as a plausible alternative to address energy-

conservation issues in Wireless Sensor Networks (WSNs). The selling point for the use of code mobility 

here is twofold. First, mobile code allows the network to be conveniently re-tasked according to the user 

needs. Second, a programmable approach enables the data computation element of an application to 

be re-located to the site where relatively large amounts of data were collected, enabling potentially high 

energy-savings.  

Existing agent approaches for WSN attempt to achieve a balance between the degrees of functionality 

incorporated into the actual code interpreter, and the one provided to the agents. On the one hand, a 

coarse-grained agent system incorporating a high degree of functionality in the interpreter would 

require simple constructs on the agent side in order to accomplish a certain task. For example, a coarse-

grained language construct might look like: <execute task A; execute task B; end program>. On the other 

hand, a fine-grained code interpreter with little or no functionality would require agents with a language 

construct comprehensive enough to cover all of the node’s own machine code functionalities. As an 

example, a fine-grained language construct might look like: <move X,Y; add Y,2; XOR X,Y; … >. Thus, the 

degree of granularity that language constructs will be provided should clearly be a function of the 

intended WSN’s application.  

Given the application-specific and task-centered nature of WSNs, it makes little sense to create MAS 

that promote overly detailed control of the system’s functionalities if the tasks to be performed are 

consistently repetitive. In other words, since the objective of the WSN nodes is all the same, intuitively, 

MAS deployed here should provide the necessary functionality to support coordination of distributed 

tasks, whatever that might be. 

WISEMAN stems from an earlier system that addresses this issue very effectively. In fact, the Wave 

system can be considered one of the earliest precursors of code mobility in data networks, with its 

foundations lying on the idea of efficient task coordination in distributed environments. As a result, 

WISEMAN inherits many of Wave’s original traits, including its compact language, which is highly 

appealing in WSN. In the following sections, we describe in detail the architecture of WISEMAN, which is 

a condensed version of the original Wave system, its language constructs and its functionalities. 

 



2 SYSTEM ARCHITECTURE FOR WISEMAN 

The initial implementation and testing of WISEMAN was carried out in the OMNeT++ Discrete Event 

Simulator, and was later ported to NesC for running in TinyOS. WISEMAN’s architecture is shown in 

Figure 1, and is based on a significantly scaled-down version of the original Wave interpreter. The data 

flow within the interpreter is depicted by bold arrows, whereas dashed lines show the interactions 

between its various elements. In essence, the WISEMAN’s interpreter is comprised of: an incoming 

agent queue, a codes’ parser, an instruction execution block, an engine block, and an agent dispatcher.  

 

 

 

 

 

 

 

The incoming agent queue accepts agents arriving either from other nodes through the wireless link and 

works in a simplistic first-input first-output fashion. All arriving agents are immediately inserted to the 

back of the queue, whereas agents ready for processing are removed from the head.  

The parser manipulates WISEMAN codes that are written in text-string form. Initially, the parser 

removes a single agent from the incoming queue and separates code and data. The code is then 

separated into two segments, hereto referred as head and tail. The head is the first fragment of code 

that appears before either an operation or precedence delimiter as defined by the language constructs 

is encountered. Consequently, the rest of the code that follows is referred to as the tail. The head is 

recursively unwrapped from within any precedence delimiters or top-syntactic operations, stopping 

once a single indivisible operation is found. This indivisible operation is subsequently sent to the 

execution block for further processing. The parser continues to send the next indivisible operation as 

indicated by the execution block if the previous one is successfully processed. 

Agent queue 

Dispatcher 

Engine Parser Processor 

In from WSN 

Out to WSN 

Figure 1 WISEMAN’s architecture 



The processing block’s task is to carry out any operation indicated in the codes. The outcome of an 

operation is defined either as success or failure, and is signalled back to the parser. In addition, the 

processing block handles any function calls in response to an agent’s need for information processing at 

the current node. To this regard, the agent must know in advance the function name or identifier that 

the execution block shall use. The agent can employ the value or values returned by the function, if any, 

in order to make further decisions that affect the future execution and coordination steps of the 

distributed process. 

The agent execution process is halted when an operation cannot be successfully completed, a node hop 

operation is encountered, or explicit process termination is indicated. In the first case, the agent’ tail is 

discarded and the agent simply terminates executing, unless the head is contained within a language 

construct that instructs the parser to proceed otherwise. Else, the parser sends the next indivisible 

operation to the execution block and the process continues as defined by the agent’s code construct. In 

the second case, the agent may instruct the execution block to forward the agent to another node, and 

so the tail of the agent is sent to the propagation block for dispatching. For the third case, the agent may 

simply instruct the interpreter to explicitly halt the current process and terminate the agent as needed. 

The dispatcher block is responsible for forwarding agents between nodes. In doing so, this block 

arranges for all of the required data and code to be marshalled together before the agent propagates. 

When an agent is forwarded, the dispatcher first ensures that the agent’s transfer is actually possible by 

looking up the destination node in a local table that contains a list of the neighbouring nodes. The agent 

will thus be dispatched out of the interpreter only if the intended target node’s ID number is found on 

the local table. Otherwise, the agent is discarded. The dispatcher block signals the parser once an agent 

has been forwarded, which in turn may proceed to remove the next agent from the incoming queue, if 

one exists.  

The Engine block does not necessarily perform the operations normally observed in similar elements of 

other software systems as the name implies. However, it implements a number of procedures and 

algorithms that do not belong elsewhere in the interpreter. Thus, the Engine block provides general-

purpose functionalities and serves as a repository of information that is required by the other blocks of 

the interpreter at different stages during the codes’ processing. This block is also employed as the 

interface between the interpreter and the node’s sensor functionalities. 



The maintenance of the neighbouring nodes’ table is to be performed by the interpreter’s interaction 

with the local node’s communications system through conventional means, but can also be updated by 

the agents as needed. We also note that the neighbouring table not only indicates whether a node is 

reachable, but it may also be used to establish semantic relationships from the current node. The 

purpose of this functionality is to enable the creation of virtual links that the agents can employ in their 

WSN navigation process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 LANGUAGE CONSTRUCTS 

WISEMAN’s language constructs are comprised by: variables, operators, control statements, and 

delimiters, most of which are derivations from the original Wave language. However, several changes 

have been made in order to facilitate codes’ parsing and processing, and to simplify the structure of the 

interpreter itself, leading to a smaller memory footprint. The following subsections explain in detail the 

particular aspects of these constructs. 

3.1 Variables 

In WISEMAN, the interpreter employs five kinds of variables, all of which employ pre-assigned memory 

segments in the local node (there are no provisions for dynamic memory reservation). Table 1 depicts 

the type of variables available in WISEMAN. 

Table 1 WISEMAN variables 

Identifier Description 

N Numeric 

C Character 

M Mobile 

B Clipboard 

P Predecessor 

L Link 

I Node ID 

 

 Numeric. Numeric variables are represented by the letter N. Each WSN node has its own pool of 

numeric variables. However, given memory constraints in WSN nodes, the actual number of 

Numeric variables is predefined to a certain value, for instance from N0 to N12, where N stands for 

Numeric and the adjacent number is a simple identification index for the variable. The actual 

meaning of the variable depends on what the programmer decides to use it for. Value assignment to 

Numeric variables follows the traditional form, (e.g., “N3=1”), but compound arithmetic operations 

are strictly binary, as in “N6+2”, which adds 2 units to the value already stored in variable N6 (if 

any). Therefore, expressions such as “N2=N1+5” are invalid. However, multiple variables can be 

employed to achieve the same result, if needed. This helps to reduce the complexity in both the 

parser and processing modules at the expense of a slightly lengthier agent codes. Numeric variables 

are semantically similar to public variables defined in object-oriented programming, meaning that all 



agents that arrive to the interpreter have access to them. Manipulation of Numeric variables at the 

local node has no effect on the variables of remote nodes. In addition, all variables are expected to 

maintain their semantic meaning across the WSN according to how they are individually 

manipulated by programmers through the agents. 

 Character. This kind of variables is similar to Numeric, except that these are defined for storing 

single characters through the letter C (e.g., “C7=d”). Arithmetic operations over characters are not 

defined/supported. Otherwise, the same rationale of Numeric variables applies. 

 Mobile. These variables are represented by the letter “M” (e.g., “M2=2”), and they resemble the 

role of private numeric variables in object-oriented programming. Mobile variables accompany 

agents as they hop from node to node. An agent may modify its mobile variables as needed, but 

cannot modify the values of other agent’s mobile variables. These variables are temporarily stored 

at the current node when an agent arrives, and they are erased as soon as the agent hops to 

another node. Therefore, an agent’s manipulation of its Mobile variables has no effect on other 

agents’ Mobile variables. All agents carry with them the same amount of Mobile variables. This 

amount is predetermined, and must be adjusted at all WSN nodes if changes are made to the 

interpreter’s default values.  

 Clipboard. The Clipboard variable B can be employed by agents or by the interpreter to temporarily 

store numeric, as explained later in this manual. 

 Environmental. The WISEMAN interpreter is provided with two environmental variables. The Link 

variable “L” can be employed to establish semantic relationships between WSN nodes. This variable 

can be set with the desired value before an agent hops to another node (e.g., “L=s”). Upon 

encountering a Link assignment operation, the interpreter will add the corresponding label to the 

local table as an additional identifier for the node in question. At the same time, the interpreter 

appends this new label to the agent before it hops to the next node so that, upon arrival, a 

corresponding label can be assigned resulting in a symmetric label assignment. Finally, the “L” 

variable needs to be reset to 0. In other words, the “L” variable is turned on when setting up 

labelled paths between nodes, and then turned off when the process is finished. The Predecessor 

variable “P” simply holds the identification number of the last node visited by an agent. Both of 

these variables accompany the agent as it hops from node to node, although the Predecessor 

variable is an only-read type, whereas the Link variable can be either read or written to. Both of 

these variables are re-written at the local interpreter every time an agent is removed from the 



incoming queue for processing. Identity I is a read-only variable, whose content is defined by the 

local node’s identification number (i.e., 1, 2 …). 

3.2 Operators 

Table 2 shows the operators defined for WISEMAN. The first five operators are standard comparison 

operators, which like the previous two return true or false Boolean values that can be readily evaluated 

(e.g. “M3<45”). The next four operators can be employed to perform simple arithmetic operations that 

agents use on for simple calculations of values read by the local sensors, when updating hop counts or 

for time-related calculations. For example, “N3*4” multiplies the existing value of N3 by 4, and the result 

is re-assigned to N3. The same applies for all arithmetic operators. The assignment operator “=” 

provides standard functionality for assigning values to variables.  

Table 2 WISEMAN operators 

Identifier Description 

< Less than 

<= Equal or less than 

== Equal to 

=> More than or equal to 

> More than 

!= Different to 

+ Add 

- Subtract 

* Multiply 

/ Divide 

= Assign 

# Hop 

$ Execute 

! Halt 

@ Local broadcast 

^ Insert script 

 

The Hop operator is employed to indicate that the agent needs to be forwarded to the node specified on 

the right-hand side of the “#” character, or to a subset of nodes that are logically inked to the local node 

by means of a predefined label as indicated on the left-hand side of the operator. For example, the code 

segment “#2” indicates a direct hop to node 2 from the local node. On the other hand, the segment “s#” 



indicates that the agent will be forwarded to all nodes logically linked to the local node with the label 

“s”. This latter usage implies multicasting capabilities for WISEMAN. So, for example, if node 1 is 

physically tethered to nodes 2, 3 and 4, then an agent can setup a virtual link (or logical association) to, 

say, nodes 3 and 4 by employing a label “s”. Later on, other agents need not know the identities of the 

nodes they are supposed to hop to, but instead may use the corresponding label to reach nodes 3 and 4 

from node 1 by employing the code “s#”. Evidently, the semantic connotation of the letter “s” is defined 

by the programmer. In any case, the interpreter will automatically clone the agent with as many copies 

as outgoing virtual links exist in accordance to the left-hand operand. That is, if there are 3 such virtual 

links labelled as “s”, then 3 identical copies will be forwarded by the dispatcher. Alternatively, a copy of 

the agent may be the broadcast to all immediate neighbours by employing the @ operator. The Execute 

operator “$” instructs the interpreter to call upon a local function. In this case, the function identifier is 

specified on the left-hand side of the operator, whereas the right-hand side can be used to pass a 

parameter. For instance the code “l$r” instructs the interpreter to access the hardware interface of the 

local node’s and switch on the red LED. Table 3 shows the functionalities available in the current 

WISEMAN version. The “!” operator indicates an explicit process halt of the current agent with success if 

the right-side operand is 1 (i.e., “!1”), or failure if the operand is 1 (i.e., “!0”). Finally, the local injection 

operator “^” indicates that a local agent string with the identifier defined in the right-hand side of the 

operator will be injected at the local node after a delay of t seconds (e.g., “2^0”).  

3.3 Control Statements 

Table 4 illustrates the identifiers for the compound operators defined in WISEMAN. The Repeat “R” 

control statement indicates that the codes embraced by curly brackets will be repeatedly executed (e.g. 

“R{segment1;segment2;…}”). The Or and And control statements are provided as a way to manipulate 

the execution of an agent’s constructs by testing whether the code delimited by square brackets yields a 

true or false value for every code segment it includes. Therefore, an “O*…;…;…+” compound segment 

indicates that the individual codes separated by semicolons “;” will be sequentially executed, stopping 

as soon as one of these segments results in a true value. Otherwise, the whole construct returns false 

and the agent’s process stops. The same applies for the And rule “A*…;…;…+”, except that all of the 

segments must return true in order for the whole rule to return true as well. Finally, codes embraced by 

round brackets “(…)”are executed in a compound fashion, as shown in the examples later. 

 



Table 3 Local functions accessed through the execute parameter 

Function Parameter Description 

l r Switch on the red LED 

 y Switch on the yellow LED 

 g Switch on green LED 

 e Switch off red LED 

 l Switch off yellow LED 

 i Switch off green LED 

 d Toggle red LED 

 w Toggle yellow LED 

 n Toggle green LED 

p 0-n 

Enable/disable the photo 
sensor. If argument is >0, 
a timer with period ‘n’ is 

triggered to read the 
corresponding value. If 

argument is 0, the timer is 
disabled and the sensor is 

switched off. 

r p 

Get the raw value of the 
latest photo sensor 

reading. The reading is 
stored in the clipboard ‘B’. 

 

 

Table 4 WISEMAN control statements 

Identifier Description 

R Repeat 

O Or 

A And 

 

3.4 Code Delimiters 

As seen in examples above, the main delimiter employed to separate code segments is the semicolon 

“;”. The use of round brackets indicates compound segments’ execution, whereas square and curly 

brackets have been designed to delimit code segments whose execution depends on a control 

statement construct, as explained before. Distinct types of brackets are employed since they facilitate 

the Parser’s task when tokenizing nested code segments for processing (e.g., “R,…O*…(…)…+…-”). The 



sole use of a single type of brackets (e.g., “(…)”) would have implied extended requirements in the 

Parser’s functionality, and therefore, added overhead. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 PROGRAMMING IN WISEMAN 

4.1 Program Structure 

As mentioned before, WISEMAN programs follow a simple structure in which code segments are 

separated by a semicolon (e.g., “segment 1;segment 2;…”). The simplest type of program that can be 

created involves the use of simple operations at a local node (e.g., “N1=1;N1<2;l$r”). However, these 

programs serve no useful purpose. In reality, WISEMAN programs will almost always involve the use of 

the hop operator “#” and the use of control statements that provide the means to introduce some 

meaningful functionality to the programs. In general, programs with a well-defined execution flow 

usually feature the use of one or more “And/Or” control statements. Alternatively, programs with non-

deterministic execution flows employ the “Repeat” control statement, and run continuously until certain 

condition is met and the program terminates. An important note is that WISEMAN’s control statements 

have precedence levels, and can only be combined according to the following rules: 

a) Illegal codes statements will cause the WISEMAN interpreter behave erratically, or halt 

altogether. 

b) Nesting control statements is not allowed. For example, program segments like: “R{…;R,…-;…}“ 

or “O*…;O*…+;…+” are illegal. 

c) Repeat has precedence over And/Or, and And/Or have precedence over (…). Therefore, 

enclosing a control statement of greater precedence inside one of lower precedence is illegal. 

(as in “O*…;R,…-;…+”). 

d) The hop operator can only be used without control statements, or within Repeat. Enclosing the 

hop operator in any of the other control statements is illegal. 

Though the constraints introduced by these rules might seem counterintuitive, they help to simplify the 

architecture of the interpreter significantly, which in the current WISEMAN version yields less around 

17KB of ROM memory. This leaves space for the implementation of other local functions or data 

processing algorithms as needed.  

4.2 WISEMAN Installation 

The current WISEMAN implementation is comprised by a single project named Virtual Machine. The 

binary image of the Virtual Machine project can be installed in as many additional Crossbow motes as 

desired. It is recommended that the motes be programmed with the lowest RF power setting (i.e., 3) to 

save battery power when running experiments. It is assumed that the programmer knows the physical 



location of the motes when running experiments, so that the approximate WSN topology can be 

inferred. This is necessary when creating programs where explicit hop operations are employed (e.g., 

“#1;…;#4”). Once the binary image is installed, all of the motes with an ID greater than 0 remain idle, 

waiting for agents to arrive. Upon being switched on, the base mote (i.e., with ID 0) will load and process 

pre-programmed agents, which will forwarded onto other motes accordingly if so indicated.  

4.3 Programming Example 

 

 

 

Multiple WISEMAN agents can be sequentially injected into the WSN from the gateway node. These 

codes need to be pre-programmed into the AgentQueueM module module around line 130, and can be 

changed with new ones as desired. For instance, we can program the base mote with the following 

codes: 

“L=a;#2;L=b;#3” 

“l$r;a#;l$y;b#;l$g” 

When base mote is powered up, the first agent is injected in the WSN. The L variable is set with the label 

‘a’, and the agent sets up a virtual link with this label between motes 1 and 2. Then, the L variable is 

reset to label ‘b’ and it is used to set up another virtual link between motes 2 and 3. One second later, 

the next agent is injected also by the base mote 0 into the WSN through mote 1. This agent will navigate 

through the virtual links just set up and turn on local LEDs as indicated. The user should change these 

values to other arbitrary values to understand this process better. 

In another example, the agent represented by the codes “R{M0+1;M0<100;l$w;#}” will first instruct the 

base mote to add 1 to the current value of the mobile variable M0. Then, if the value in M0 is less than 

100, the agent instructs the interpreter to toggle the yellow LED just before hoping onto another mote. 

Assuming there is only one mote in radio proximity, the agent will be continuously forwarded back and 

forth from between the corresponding mote pair until the “M0<100” is not met, and the agent is simply 

discarded. Subsequent agents can be injected into the WSN for further processing. These agents are 

removed from the queue at a pre-programmed rate of 1 per second (but this value can be changed).   

Note: The current WISEMAN implementation only supports agent scripts no longer than 170 

characters.  

 


