Deep Learning

Brad Quinton, Scott Chin

Slide 1 of 75

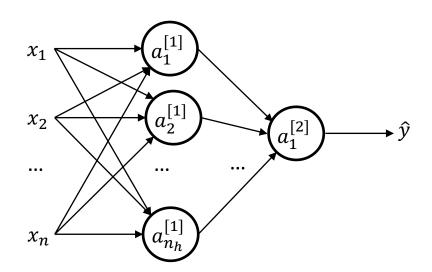
Learning Objectives

- The Multiclass Classification Problem
- How to encode the output for a Neural Network
- Common approaches to Multiclass Classification
- Softmax Activation Function
- Categorical Cross-Entropy Loss
- Back Propagation through Softmax Layer

Slide 2 of 75

Brad Quinton, Scott Chin

- Models
 - Logistic Regression
 - 2-Layer Neural Network
 - A model consists of its architecture and parameter values



$$Z^{[2]} = g(W^{[2]}A^{[1]} + B^{[2]})$$

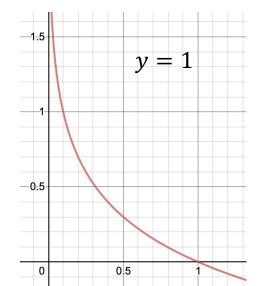
Slide 3 of 75 Brad Quinton, Scott Chin

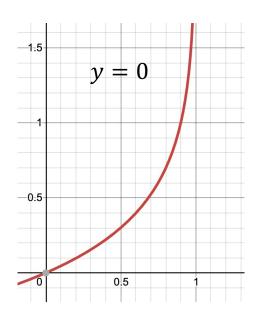
Loss

- Numerical measure of how good the model's prediction is on a single example
- Low means prediction is close (correct), high means prediction is far away (wrong)
- Binary Cross-Entropy Loss (aka Log Loss, Logistic Loss)

$$L(\hat{y}, y) = -(y\log(\hat{y}) + (1 - y)\log(1 - \hat{y}))$$

$$L(\hat{y}, y) = \begin{cases} -\log(\hat{y}), & y = 1\\ -\log(1 - \hat{y}), & y = 0 \end{cases}$$





- Training (for Supervised Learning)
 - Data has known labels (e.g. the expected output of your model)
 - Goal is to find good values for model parameters from labeled examples.
 - Use Cost Function (aka Objective Function) to measure how good the current parameters are
- Training Cost Function
 - Minimize average Loss across <u>all training samples</u>

$$J(W,B) = -\frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)})$$

Slide 5 of 75

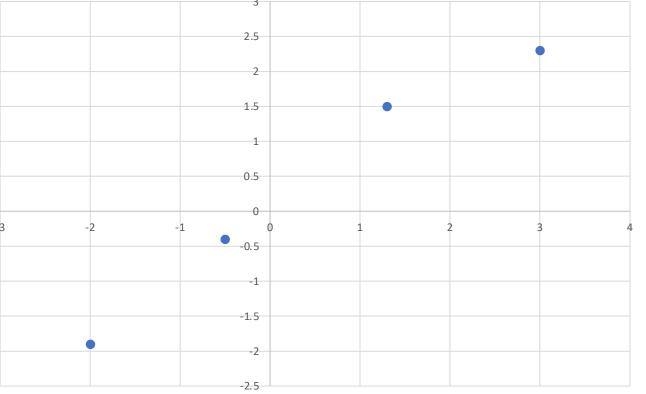
- Gradient Descent
 - Use Gradient Descent to iteratively search for parameter values that minimize the Cost Function
 - Back propagation key enabler to finding partial derivatives needed for Gradient Descent in Neural Networks

- Training
 - Training/Validation/Test data split to properly assess model
 - Overfitting

Slide 6 of 75 Brad Quinton, Scott Chin

I'm sure you've all done machine learning!

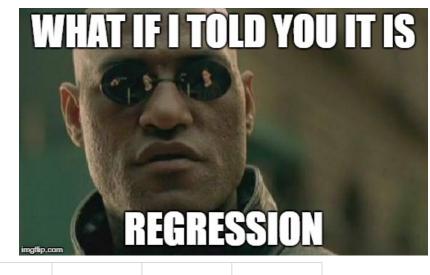
X	Υ
-2	-1.9
-0.5	-0.4
1.3	1.5
3	2.3

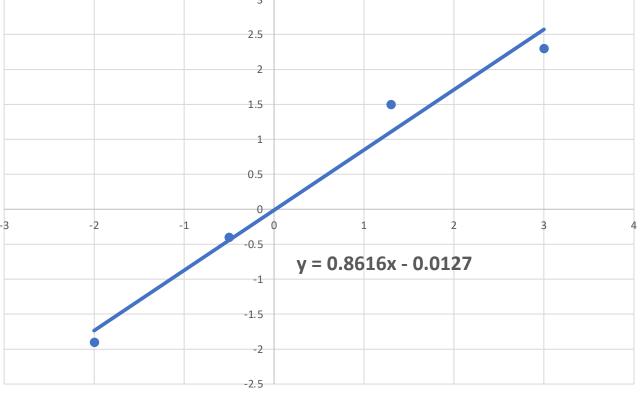


Slide 7 of 75 Brad Quinton, Scott Chin

I'm sure you've all done machine learning! Excel Add Trendline! y = mx + b

X	Υ
-2	-1.9
-0.5	-0.4
1.3	1.5
3	2.3

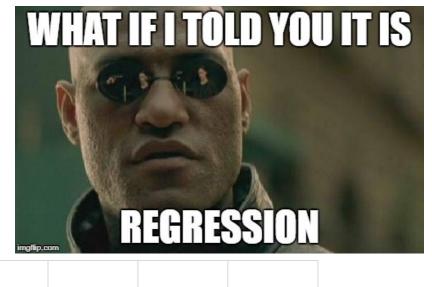


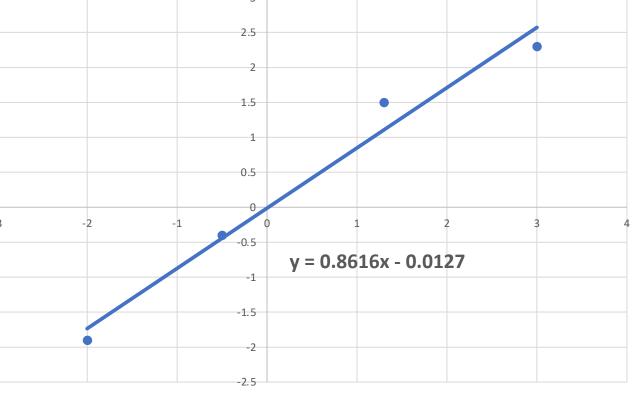


Slide 8 of 75 Brad Quinton, Scott Chin

I'm sure you've all done machine learning! Excel Add Trendline! y = mx + b

X	Υ	Y_hat
-2	-1.9	-1.73
-0.5	-0.4	-0.44
1.3	1.5	1.11
3	2.3	2.57



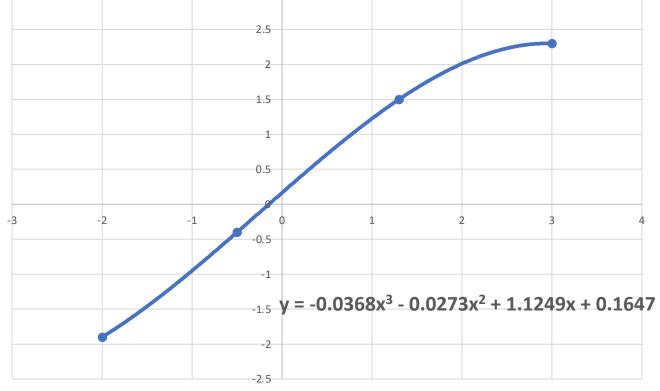


Slide 9 of 75 Brad Quinton, Scott Chin

I'm sure you've all done machine learning! Excel Add Trendline! $y = m_3 x^3 + m_2 x^2 + m_1 x^1 + b$

		TID TOU	
	REGRES	SSION	
imgflip.com			

X	Υ	Y_hat
-2	-1.9	-1.9
-0.5	-0.4	-0.4
1.3	1.5	1.5
3	2.3	2.3



Slide 10 of 75

Brad Quinton, Scott Chin

Recap — There is no magic!

Difference from the Excel example and what we will look at using Deep Learning:

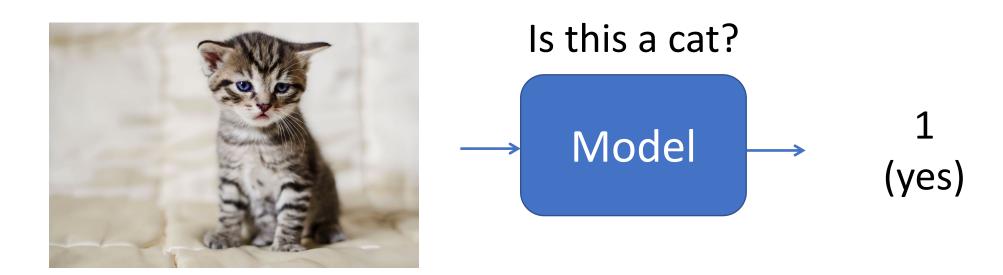
- Input is more than one variable (i.e. feature). Tens of thousands
- Model is more sophisticated
- Model has any more parameters. 100 million+

Caveat: Machine Learning and Deep Learning are broad fields, and we definitely should not say it is all just curve fitting. But it is a useful analogy for stepping into the fundamentals that we focus on in the coming weeks.

Slide 11 of 75 Brad Quinton, Scott Chin

Recap - Binary Classification

- So far, we've talked about logistic regression and neural networks that predict a 0 or 1. Input is classified into two possible classes.
- The Classification Problem can be used to model directly, or be a key building block to modelling many real world problems.



Slide 12 of 75 Brad Quinton, Scott Chin

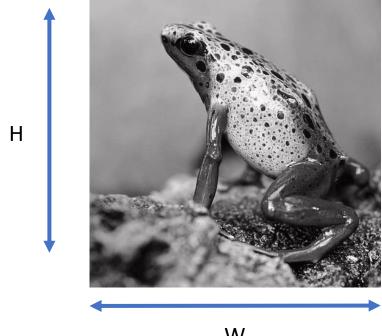
Aside – Images as Input Data

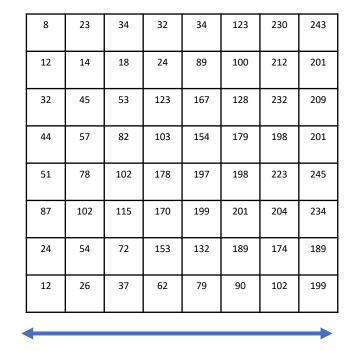
How do we supply an image as input to our model?

Slide 13 of 75

Aside - Images as Input Data

- A grayscale image can be modelled as an array of pixels
- Each array value is from 0-255 representing brightness of the pixel
- 0 for black, 255 for white, and grays in between

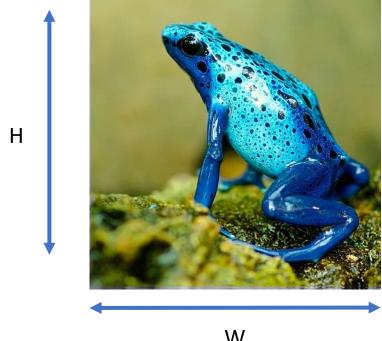


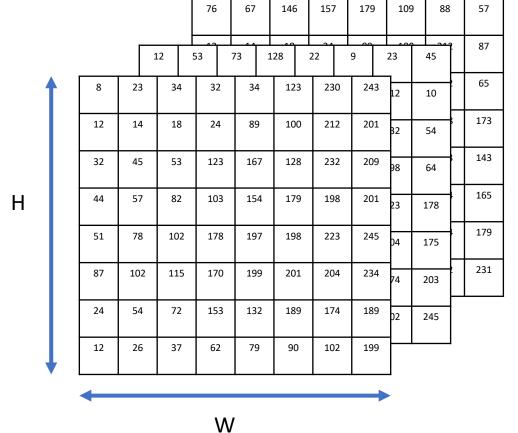


Slide 14 of 75

Aside - Images as Input Data

- For color image, model as three channels (RGB) → HxWx3
- Each array value is still 0-255
- R=255, G=153, B=0 \rightarrow Orange

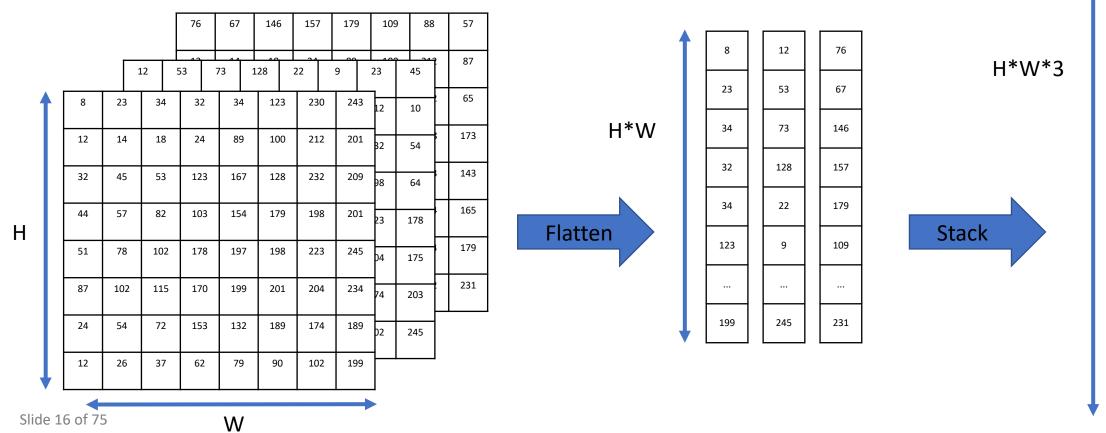




Slide 15 of 75

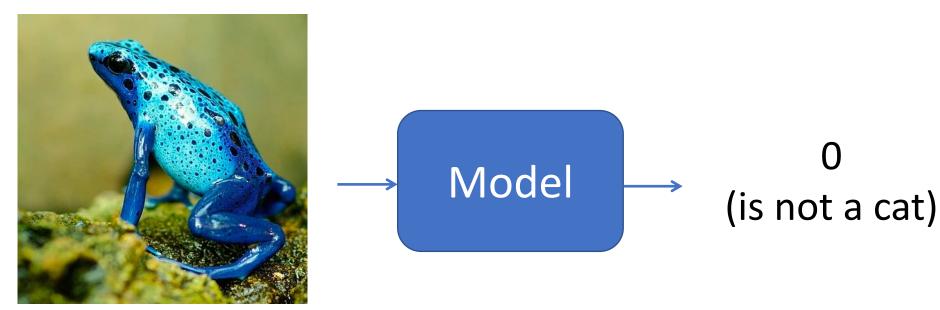
Convert to a feature vector

- Flatten each array into a vector and concatenate
- HxWx3 array becomes a (H*W*3) vector



Aside - Image as a vector

- Each pixel is a feature
- Can use with Logistic Regression and Neural Networks we've seen
- Later, we will see Convolutional Neural Networks and won't need to convert to a feature vector



Slide 17 of 75

Brad Quinton, Scott Chin

Back to Binary Classification

Binary Classification – Examples

- Is this email spam or not?
- Is this tumor malignant or benign
- If we (ex. google) show this ad to this person, will they click it?

Some problems can be modelled this way

Slide 19 of 75

Binary Classification – Examples

- Is this email spam or not?
- Is this tumor malignant or benign
- If we (ex. google) show this ad to this person, will they click it?

But for many problems we want to classify into more than two classes

Slide 20 of 75 Brad Quinton, Scott Chin

- number of possible classes n_c
 - $n_c = 2$ for the binary classification

Slide 21 of 75

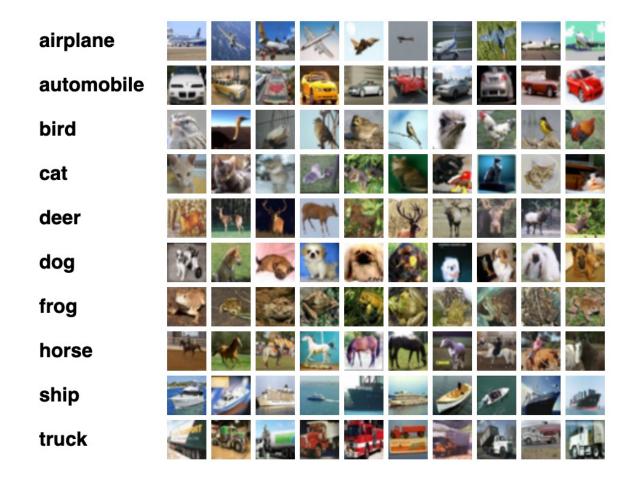
- number of possible classes n_c
 - $n_c = 2$ for the binary classification
- Which handwritten digit is this?
 - 10 classes MNIST dataset

Slide 22 of 75 Brad Quinton, Scott Chin

- number of possible classes n_c
 - $n_c = 2$ for the binary classification
- Which handwritten digit is this?
 - 10 classes MNIST dataset
- What is this a picture of out of 20,000 possibilities?
 - ImageNet dataset

Slide 23 of 75 Brad Quinton, Scott Chin

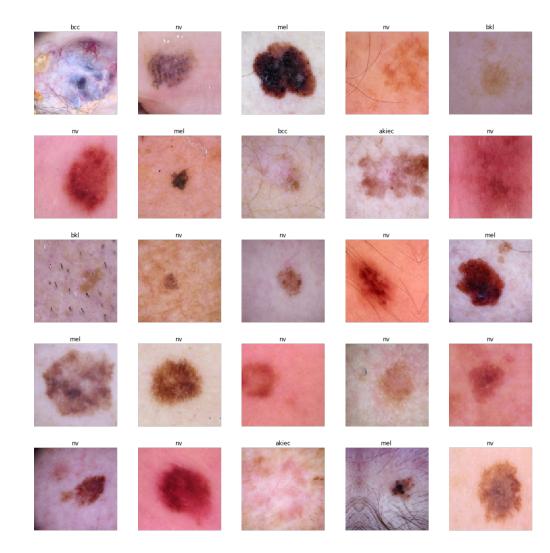
- number of possible classes n_c
 - $n_c = 2$ for the binary classification
- Which handwritten digit is this?
 - 10 classes MNIST dataset
- What is this a picture of out of 20,000 possibilities?
 - ImageNet dataset
- What is this a picture of out of 10 possibilities?
 - CIFAR10 dataset



Slide 24 of 75

Brad Quinton, Scott Chin

- number of possible classes n_c
 - $n_c = 2$ for the binary classification
- Which handwritten digit is this?
 - 10 classes MNIST dataset
- What is this a picture of out of 20,000 possibilities?
 - ImageNet dataset
- What is this a picture of out of 10 possibilities?
 - CIFAR10 dataset
- Which of 9 skin cancers is this a picture of?
 - ISIC Dataset



Multiclass vs. Multilabel

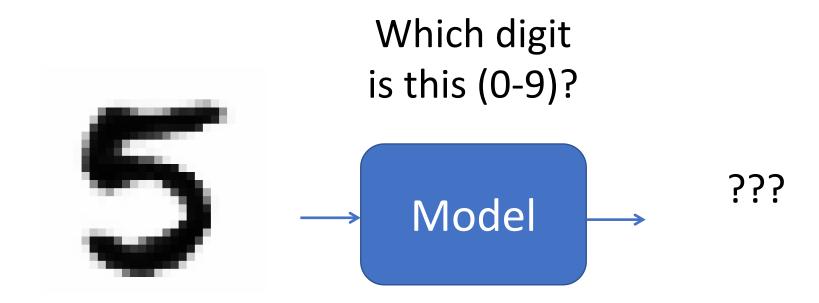
- Multiclass Classification
 - Input has exactly one label
- Multilabel Classification
 - Input has one or more label
 - Examples:
 - News articles → Topic(s)
 - Movie poster → Movie genre(s)

For now, we will look at Multiclass Classification

Slide 26 of 75

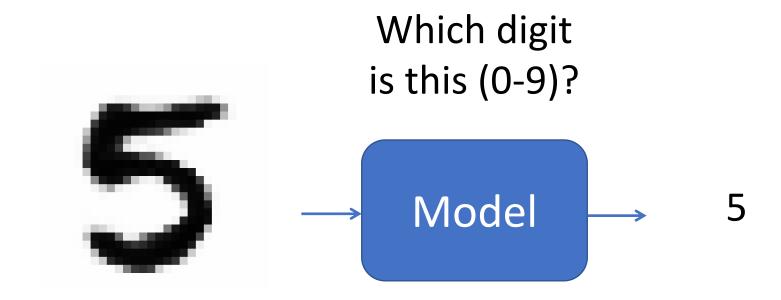
Brad Quinton, Scott Chin

- How can we encode the output?
 - i.e. instead of 0 and 1, what should our model output?



Slide 27 of 75 Brad Quinton, Scott Chin

- How can we encode the output?
 - i.e. instead of 0 and 1, what should our model output?
 - One possibility: A single number ranging from 0 to 9?



Slide 28 of 75 Brad Quinton, Scott Chin

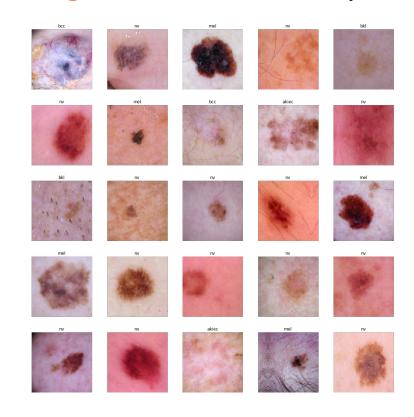
Output Discrete Range of Values

How to map discrete categories to the integer values?

Slide 29 of 75

Output Discrete Range of Values

- How to map discrete categories to a single continuous output?
 - Example: ISIC Dataset has 9 classes:
 - 1. Melanoma
 - 2. Melanocytic nevus
 - 3. Basal cell carcinoma
 - 4. Actinic keratosis
 - 5. Benign keratosis
 - 6. Dermatofibroma
 - 7. Vascular lesion
 - 8. Squamous cell carcinoma
 - 9. None of the others



Slide 30 of 75 Brad Quinton, Scott Chin

• One-hot encoded vector of length n_c Output Which digit is this (0-9)? Model n_c outputs

Slide 31 of 75 Brad Quinton, Scott Chin

• One-hot encoded vector of length n_c Output Which digit is this (0-9)? Interpret Model n_c outputs

Slide 32 of 75 Brad Quinton, Scott Chin

Why One-Hot Encoding?

Slide 33 of 75

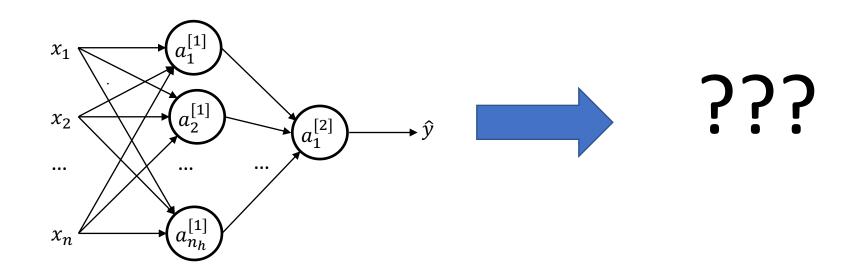
Another advantage of One-Hot Encoding

 Allows us to extend what we know already about building Binary Classification models (Both Logistic Regression and Neural Networks)!

Slide 34 of 75

How to extend Binary Classifier to Multiclass

• Let's say we have n_c classes, How we can we extend our binary classifier?



Slide 35 of 75 Brad Quinton, Scott Chin

Common Approaches

- Multiple Binary Classifiers
 - One-vs-All (a.k.a. One-vs-Rest)
 - One-vs-One
- Single Classifier With Multiple Outputs
 - This approached used with deep neural networks

Slide 36 of 75

One-vs-All (aka One-vs-Rest)

- Build multiple binary classifiers
- One binary classifier per class
- Each classifier predicts whether the input is in its class or not

Slide 37 of 75 Brad Quinton, Scott Chin

One-vs-All Example

- Say you are building image classifier for Simpson characters
 - 0 Homer
 - 1 Ned Flanders
 - 2 Moe Szyslak

• • •

19 Mayor Quimby

- One binary classifier for each.
 - Homer classifier trained with data where Homer pictures are labelled as 1, and pictures of all other characters are labelled as 0
 - Ned Flanders classifier trained with data where Ned Flander pictures are labelled as 1, and pictures of all other characters are labelled as 0

• ...

One-vs-One

- Build n_c(n_c-1)/2 binary classifiers
 - i.e. all possible combinations of 2 classes
 - Homer vs Ned
 - Homer vs Moe
 - Homer vs Lisa
 - ...
 - Ned vs Moe
 - Ned vs Lisa
 - ...
- Training
 - Each classifier only receives data about the pair of classes it is discriminating between
- Prediction/Inference
 - Use a majority voting scheme to select the class that was predicted the most often amongst the $n_c(n_c-1)$ binary classifiers

One vs One (OvO) vs One vs All (OvA)

- OvO scales poorly with number of classes
 - 5 classes → need 10 binary classifiers
 - 10 classes → need 45 binary classifiers
 - 100 classes → need 4950 binary classifiers
- OvO and OvA perform about the same. Anecdotally, I've read that people find that OvO can do a little better

 In Deep Learning (Deep Neural Networks) is generally both more efficient to train and performs better

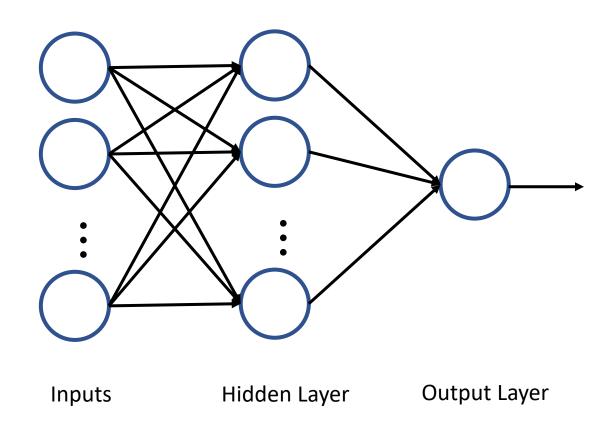
Slide 40 of 75 Brad Quinton, Scott Chin

Single Neural Network with Multiple Outputs

One neural network like before,

Notes:

- This works the same for Logistic Regression
- For rest of the course, we will refer to this kind of multiclass neural networks unless otherwise noted



Slide 41 of 75

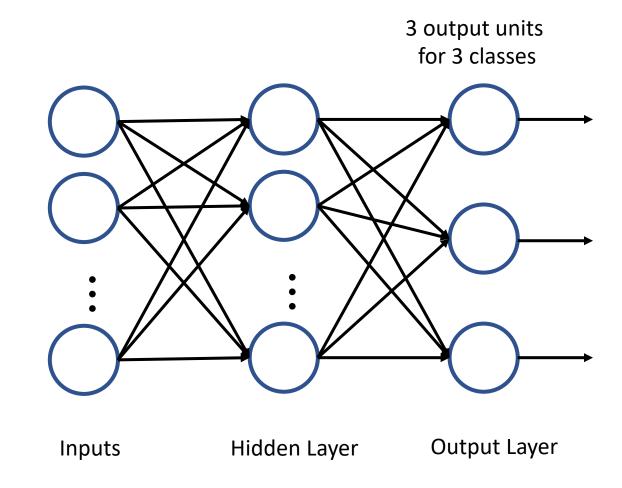
Brad Quinton, Scott Chin

Single Neural Network with Multiple Outputs

- One neural network like before,
- Change output layer to have one node per class.
- Each output continues to act as a binary classifier for that class (i.e. predicts a 0 or 1)

Notes:

- This works the same for Logistic Regression
- For rest of the course, we will refer to this kind of multiclass neural networks unless otherwise noted



Slide 42 of 75 Brad Quinton, Scott Chin

Multinomial vs One-vs-Rest

Both have n_c output nodes

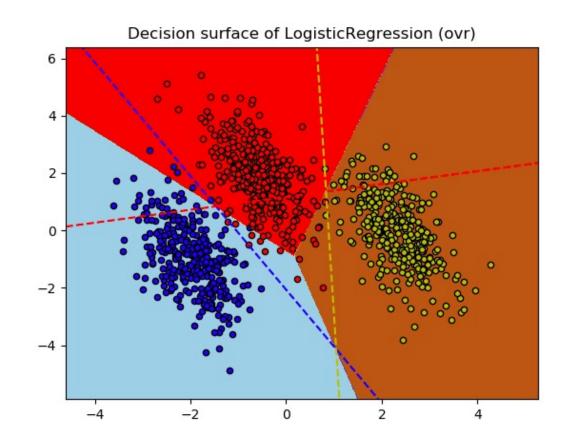
Multinomial

- Classes are mutually exclusive
- See shaded regions in figure

One-vs-Rest

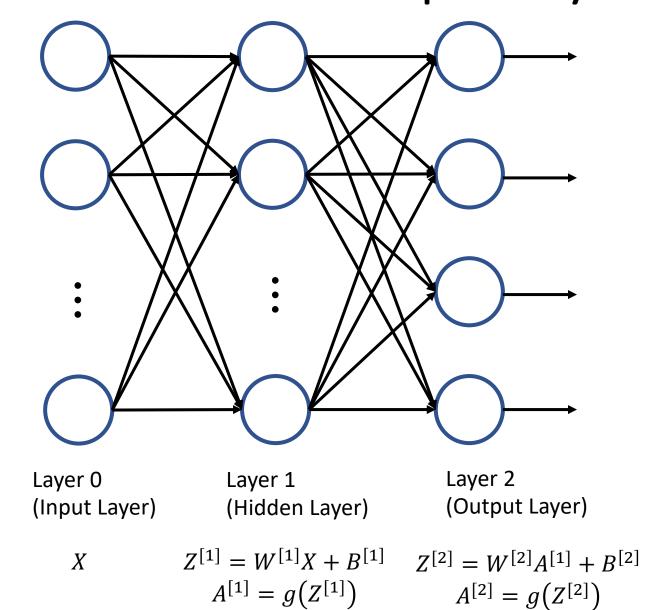
Slide 43 of 75

- Classes may overlap
 - Sample can be in more than one class
 - Sample may be in none of the classes

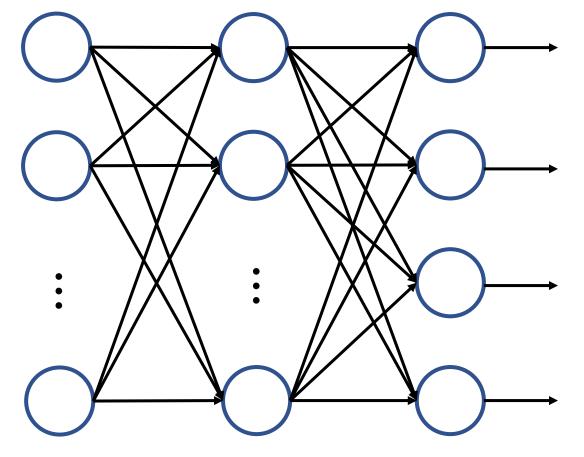


Brad Quinton, Scott Chin

Activation on Output Layer



Activation on Output Layer



What activation function to use on output layer?

Layer 0 (Input Layer) Layer 1 (Hidden Layer) Layer 2 (Output Layer)

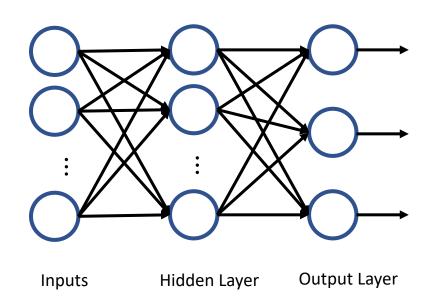
X

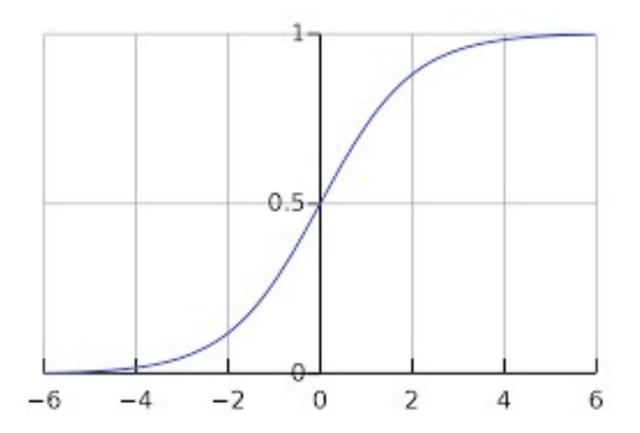
 $A^{[1]} = g(Z^{[1]})$ $A^{[2]} = g(Z^{[2]})$

 $Z^{[1]} = W^{[1]}X + B^{[1]}$ $Z^{[2]} = W^{[2]}A^{[1]} + B^{[2]}$

Activation on Output Layer

- Can we still use Sigmoid?
- Kind of...



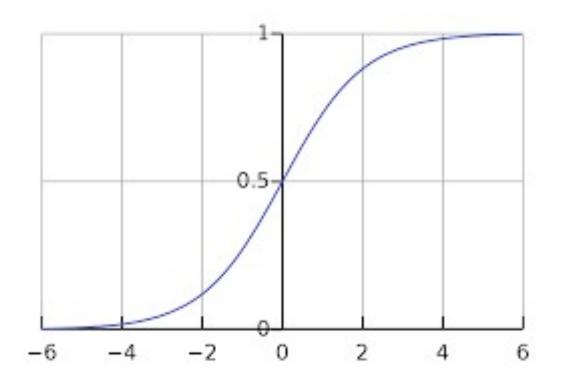


Slide 46 of 75

Brad Quinton, Scott Chin

Recall Sigmoid Activation Function

- Sigmoid produces an output between 0 and 1.0
- Can interpret this as a probability.
- For example
 - you have a Spam/Not Spam classifier.
 - Model prediction of 0.8 may be interpreted as 80% chance of email being spam.
 - Implicitly this means a 20% of the other class (not spam)

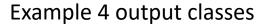


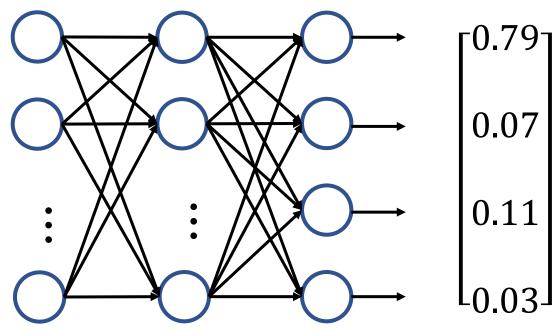
Slide 47 of 75 Brad Quinton, Scott Chin

Softmax Activation Function

Softmax Intuition

• Softmax activation normalizes the outputs such that each output node continues to produce a value between 0 and 1.0, and also sum to 1.0.



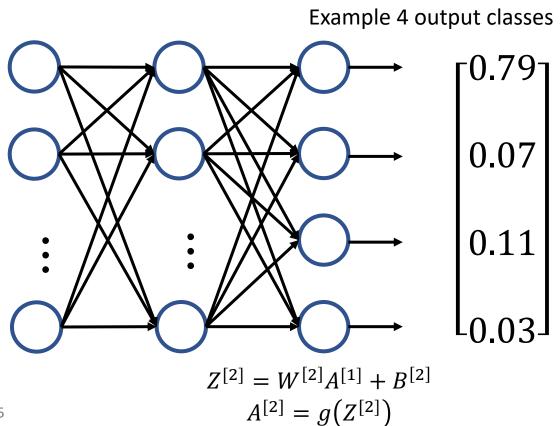


$$Z^{[2]} = W^{[2]}A^{[1]} + B^{[2]}$$

 $A^{[2]} = g(Z^{[2]})$

Softmax Intuition - Probabilities

We can interpret this as a set of prediction probabilities for each class



Interpret as probabilities

$$p(class_0|x)$$

$$p(class_1|x)$$

$$p(class_2|x)$$

$$p(class_3|x)$$

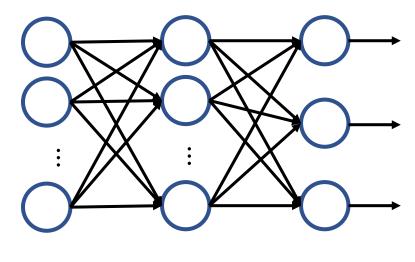
Softmax Definition

- Input is vector Z of length n_c
- Softmax produces a vector where each element is

$$g_i(Z) = \frac{e^{z_i}}{\sum_{j=1}^{n_c} e^{z_j}}$$

- Each element is a value between 0 and 1.
- Sum of elements of the output vector is equal to 1

$$g_i(Z) = \frac{e^{z_i}}{\sum_{j=1}^{n_c} e^{z_j}} \qquad Z = \begin{bmatrix} 0.11 \\ 1.6 \\ 0.81 \\ 3.91 \end{bmatrix}$$



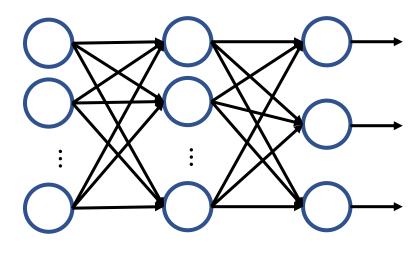
Inputs

Hidden Layer

Output Layer

$$g_i(Z) = \frac{e^{Z_i}}{\sum_{j=1}^{n_c} e^{Z_j}} \qquad Z = \begin{bmatrix} -3.44 \\ 1.6 \\ 0.81 \\ 3.91 \end{bmatrix}$$
 num

$$numerator = \begin{bmatrix} e^{-3.44} \\ e^{1.6} \\ e^{0.81} \\ e^{3.91} \end{bmatrix} = \begin{bmatrix} 0.032 \\ 4.950 \\ 2.247 \\ 49.899 \end{bmatrix}$$

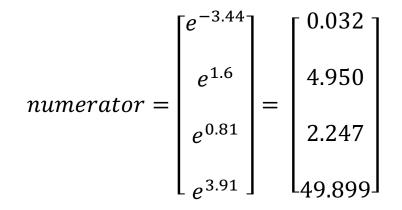


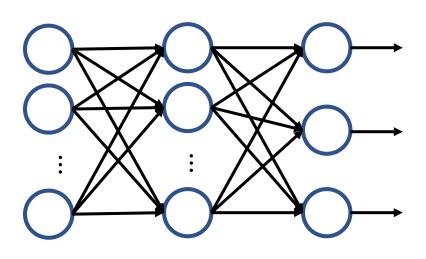
Inputs

Hidden Layer

Output Layer

$$g_i(Z) = \frac{e^{z_i}}{\sum_{j=1}^{n_c} e^{z_j}} \qquad Z = \begin{bmatrix} 3.77\\ 1.6\\ 0.81\\ 3.91 \end{bmatrix}$$





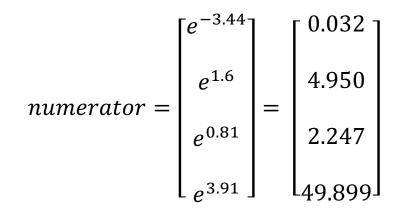
Hidden Layer

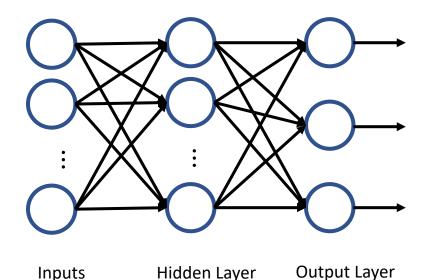
Output Layer

denominator = $e^{-3.44} + e^{1.6} + e^{0.81} + e^{3.91}$ = 0.032 + 4.950 + 2.247 + 49.899= 57.128

Inputs

$$g_{i}(Z) = \frac{e^{Z_{i}}}{\sum_{j=1}^{n_{c}} e^{Z_{j}}} \qquad Z = \begin{bmatrix} -3.44 \\ 1.6 \\ 0.81 \\ 3.91 \end{bmatrix} \qquad numerator = \begin{bmatrix} e^{-3.44} \\ e^{1.6} \\ e^{0.81} \\ e^{3.91} \end{bmatrix} = \begin{bmatrix} 0.032 \\ 4.950 \\ 2.247 \\ 49.899 \end{bmatrix}$$





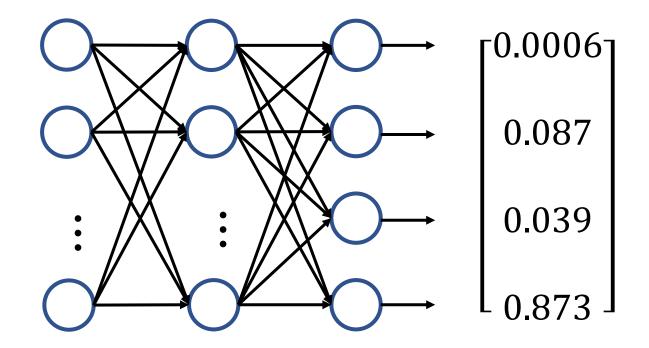
denominator
=
$$e^{-3.44} + e^{1.6} + e^{0.81} + e^{3.91}$$

= $0.032 + 4.950 + 2.247 + 49.899$
= 57.128

$$softmax(Z) = \begin{bmatrix} 0.032 \\ 4.950 \\ 2.247 \\ 49.899 \end{bmatrix} * \frac{1}{57.128} = \begin{bmatrix} 0.0006 \\ 0.087 \\ 0.039 \\ 0.873 \end{bmatrix}$$

At Prediction Time

Pick the class with highest probability



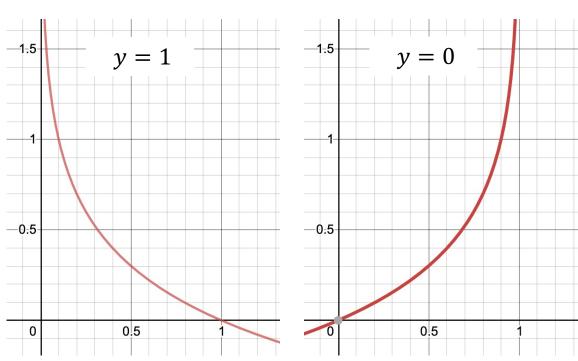
Slide 56 of 75 Brad Quinton, Scott Chin

How to measure loss on softmax output?

Recall the Binary Cross Entropy Loss:

$$L(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

$$L(\hat{y}, y) = \begin{cases} -\log(\hat{y}), & y = 1\\ -\log(1 - \hat{y}), & y = 0 \end{cases}$$



How to measure loss on softmax output?

 Categorical Cross Entropy Loss (Sometimes called Softmax Loss) is a generalization of the Binary Cross Entropy Loss

$$L(\hat{y}, y) = -\sum_{j=1}^{n_c} y_j log(\hat{y}_j)$$

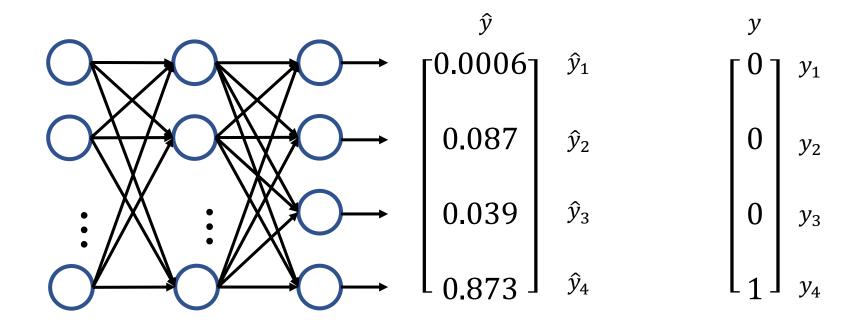
Slide 58 of 75

Cross-Entropy from Information Theory

- Cross Entropy quantifies the difference between two probability distributions over the same underlying set of events
 - A true distribution (the true labels)
 - An estimated distribution (the model's predicted label)
- Therefore, by minimizing Cross Entropy, we are trying to make the predicted output equal to the true output

Slide 59 of 75 Brad Quinton, Scott Chin

Categorical Cross Entropy Loss - Example



$$L(\hat{y}, y) = -\sum_{j=1}^{n_c} y_j log(\hat{y}_j) = ???$$

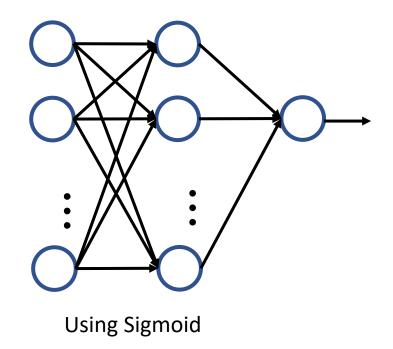
Slide 60 of 75

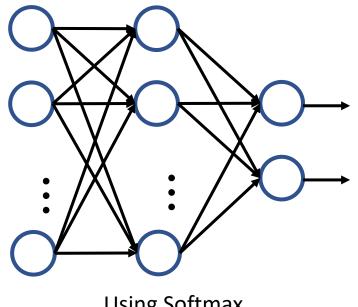
Softmax is a Generalization of Sigmoid

Softmax is a Generalization of Sigmoid

We will show that for the case of two classes

- Softmax function is equivalent to Sigmoid function
- Categorical Cross Entropy Loss is equivalent to Binary Cross Entropy Loss



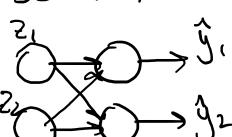


Using Softmax

Hand Written Notes: Softmax with 2 class is equivalent to Sigmoid

$$\sigma(z) = \frac{1}{1+e^{-x}} \Rightarrow \rho(\hat{y}=1/z)$$

$$p(\hat{y}=0|z)=1-p(\hat{y}=1|z)=1-\frac{1}{1+e^{-z}}=\frac{e^{-z}}{1+e^{-z}}$$



$$\frac{1}{2} = \frac{e^{\frac{7}{4}}}{e^{\frac{7}{4}} + e^{\frac{7}{4}}}$$

$$\frac{2}{\sqrt{1 + e^{2}}} = \frac{e^{2}}{e^{2} + e^{2}} = \frac{e^{2}}{e^{2} + e^{2}} = \frac{1}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}}$$

$$\frac{2}{\sqrt{1 + e^{2}}} = \frac{e^{2}}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}}$$

$$\frac{2}{\sqrt{1 + e^{2}}} = \frac{e^{2}}{\sqrt{1 + e^{2}}} = \frac{e^{2}}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}}$$

$$\frac{2}{\sqrt{1 + e^{2}}} = \frac{e^{2}}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}}$$

$$\frac{2}{\sqrt{1 + e^{2}}} = \frac{1}{\sqrt{1 + e^{2}}}$$

$$Z_1 = W_1 \times + b_1$$

 $Z_2 = W_2 \times + b_2$

$$= (W_1 - W_2) \times + (b_1 - b_2)$$

$$\hat{\mathcal{J}} = \frac{1}{1 + \hat{e}^{\frac{1}{3}}}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$
Brad Quinton, Scott Ch

Hand Written Notes: Categorical Cross Entropy Loss is the generalization of Binary Cross Entropy Loss

BINARY CROSS ENTROPY LOSS

$$L_{BIN}(\hat{y}_{1}y) = -\left(y_{1}oc_{1}\hat{y} + (1-y)_{1}oc_{1}(1-\hat{y})\right)$$

CATECORICAL CROSS ENTROPY LOSS FOR $N_{c}=2$ (Two CLASSES)

$$L_{CON}(\hat{y}_{1}y) = -\int_{1=1}^{2}y_{1}_{1}loc_{1}\hat{y}_{1}^{2} = -\left(y_{1}loc_{1}\hat{y}_{1}^{2} + y_{2}loc_{1}\hat{y}_{2}^{2}\right)$$

PECALL ONE-HOT ENCORED y

$$\sum_{i=1}^{2}y_{i} = 1$$

$$y_{2} = 1-y_{1}$$

:
$$L_{CAT}(\hat{y}, y) = -(y_{1}Loc_{1}\hat{y}_{1} + (1-y_{1})Loc_{1}(1-\hat{y}_{1}))$$

Slide 666=55 $\hat{y} = P(y=1|x)$ AND $\hat{y}_{1} = P(y_{1}=1|x)$

Brad Quinton, Scott Chin

Cost Function

 Nothing new here. Just like before we want to minimize the average loss across all training samples

$$J(W,B) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, y^{(i)})$$

Slide 67 of 75

Back Propagation through Softmax Layer

Hand Written Notes: Backprop through softmax layer

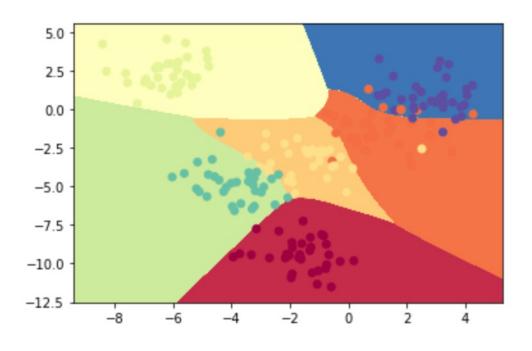
$$L(\vec{y}, \vec{y}) = \int_{j=1}^{2} g_{j}(\alpha x_{j})^{2} = -y_{j}(\alpha y_{j}) - y_{2}(\alpha y_{j})^{2} - y_{3}(\alpha y_{j})^{2}$$

$$= -y_{j}(\alpha x_{j})^{2} - y_{2}(\alpha y_{j})^{2} - y_{3}(\alpha y_{j})^{2} = -y_{j}(\alpha y_{j})^{2} - y_{2}(\alpha y_{j})^{2} - y_{3}(\alpha y_{j})^{2} -$$

Summary of Multiclass Classification (Single Neural Network with Multiple Outputs)

- One output node for each class
- Use Softmax activation function on final layer of output nodes
- Minimize the Categorical Cross-Entropy Loss
- Train on one-hot encoded label data
- Cannot be used for Multi-Label Classification

Example: Decision Regions for 2 Features, 6 classes



Slide 71 of 75 Brad Quinton, Scott Chin

Multilabel Classification

- Cannot use softmax
- Use separate classifiers or use Sigmoids on outputs
- Labels cannot be one-hot encoded vectors

Slide 72 of 75

Brad Quinton, Scott Chin

Learning Objectives

- The Multiclass Classification Problem
- How to encode the output for a Neural Network
- Common approaches to Multiclass Classification
- Softmax Activation Function
- Categorical Cross-Entropy Loss
- Back Propagation through Softmax Layer

Slide 73 of 75 Brad Quinton, Scott Chin