
Desktop Workload Characterization for CMP/SMT and Implications for
Operating System Design

Sven Bachthaler, Fernando Belli and Alexandra Fedorova
School of Computing Science, Simon Fraser University

Burnaby, B.C. Canada

Abstract—Much recent research has focused on oper-
ating system scheduling algorithms for managing shared
resource contention on chip multiprocessors (CMPs) and
simultaneous multithreaded (SMT) systems. While the rele-
vance of those algorithms is apparent for server workloads,
it is less obvious for desktop workloads. As CMP/SMT
processors are becoming increasingly deployed in desktops,
it is important to understand whether such sophisticated
algorithms are required in a desktop OS. Those algorithms
would be required if desktop workloads exhibited sufficient
parallelism, as this would imply contention for CMP/SMT
shared resources which should be managed by the OS. To
determine whether such parallelism is present in desktop
workloads, we conducted a study of workloads by collect-
ing live performance data from home, university staff and
lab computers. We concluded that most workloads have
low parallelism, which justifies scheduling algorithms that
perform load balancing and power consumption manage-
ment on lightly loaded CMP/SMT systems. Furthermore,
these workloads do not have sufficiently high parallelism
to justify performance-optimizing contention management
algorithms that rely on having many runnable threads.
An important implication of our findings is that more
work is needed on runtime parallelization and speculative
multithreading so that desktop workloads can benefit from
CMP/SMT systems with larger degrees of parallelism.

Index Terms—workload characterization, desktop work-
loads, chip multiprocessors, simultaneous multithreading.

1 Introduction
Multi-core technology is quickly becoming main-

stream, and systems based on chip multiprocessing (CMP)
and simultaneous multithreading (SMT) are made com-
mercially available by leading hardware manufacturers
[2] [6] [7] [8] [12]. Following that trend, much recent
research in operating systems has focused on the design
of scheduling algorithms that manage resource contention
on CMP/SMT systems [4] [10] [13] [14] [15] [16] [17].

Unmanaged contention, as previous work showed, leads
to inefficient resource use, performance degradation
and poor quality of service for interactive applications
[3] [4] [14] [15]. Scheduling algorithms for CMP/SMT
systems understandably target environments where many
threads or processes are runnable at the same time. While
abundant thread-level parallelism is characteristic for server
workloads, there has not been a comprehensive study show-
ing either the presence or absence of parallelism in desktop
workloads. Although it is commonly known that desktop
computers are mostly idle with only short periods of CPU
activity, the extent of parallelism during those periods of
activity has not been evaluated. Presence of parallelism
during those periods would indicate the need to use con-
tention management algorithms in desktop operating sys-
tems on CMP/SMT hardware for improved user experience
and power management. Given that CMP and SMT pro-
cessors are increasingly used in desktop processors [11]
studying the parallelism properties of desktop workloads is
timely and important.

This paper presents the first (to the best of our knowl-
edge) such study. We collected data on live systems for
three user groups: home users, university lab users, and
university staff users. We addressed these different groups
because they could exhibit different characteristics with re-
spect to parallelism. All our users ran the Microsoft Win-
dows XP operating system. We collected various runtime
statistics using built-in performance counters on Windows
as well as other tools available from Microsoft. The key
data that was collected includes the number of threads in
the run queue, processor utilization, and available memory.
The analysis of this data allows us to determine the amount
of parallelism in the considered workloads. In particular,
we use the size of the run queue as the key statistic to esti-
mating the degree of parallelism. Most of the computers in
our study were not CMP/SMT, so the number of threads in
the run queue indicates how many threads could be running
in parallel had the computer been CMP/SMT.

To address the objective of our study, it is important to
look at both low parallelism (i.e., two-three threads ready



to run at once) and high parallelism (i.e., more than three
threads ready to run at once). The presence of low paral-
lelism would justify the use of scheduling algorithms that
manage load balancing and power consumption on lightly
loaded systems [10] [14]. The presence of high parallelism
would justify the use of the performance-optimizing algo-
rithms that determine which threads to co-schedule based
on their resource use; those algorithms rely on having
a large number of threads in the run queue in order to
be able to select the co-schedule with the desired proper-
ties [13] [16] [17].

We found that the workloads generated by university lab
and staff users show a presence of low parallelism (35-52%
of the time), but almost no presence of high parallelism
(<13% of the time). On the other hand, the workloads gen-
erated by home users, show a higher degree of parallelism,
with low parallelism present 62-69% of the time and high
parallelism present 26-35% of the time. More analysis is
needed, however, to pinpoint the exact causes for a higher
parallelism for this group of users.

2 Methodology
2.1 Process

In order to evaluate typical workloads of desktop com-
puters, we collected data from three different types of user
groups: home users, university lab users, and university
staff users. Collection of data from the university com-
puters was performed with collaboration and under the su-
pervision of the Department of Computing Science at our
university. The department was in charge of setting up the
data collection and ensuring that all the data collected was
made anonymous before it was handed to us. Data collec-
tion from home computers was performed from volunteers
who agreed to participate in our study. Those volunteers
were given a package to install on their computers which
contained the necessary programs to setup, collect, and re-
turn the data. To reassure the volunteers that the collected
data was indeed limited to the purpose of our study, it was
converted to human-readable text format at the end of the
collection. That way the users could review it before it was
sent back to us. The data was also made anonymous as soon
as we received it.

The collection of data was performed over a period of
two weeks. Twenty computers were selected at random
from a group of 72 from one of the Computing Science labs
and monitored 24 hours a day for a period of one week. Due
to privacy policies, the selection of the ten staff machines to
monitor was done by the Department of Computing Sci-
ence. These computers were also monitored 24 hours a day
for a period of one week. For the home users, twelve people
volunteered to collect data from their own home computers.
They were asked to install the monitoring program and send

the information back to us after one week of data collection.
As we will see in the result section, not all the data collected
from all computers was suitable for analysis and it was also
not possible to collect data from all computers due to tech-
nical problems.

The data collection was performed locally and remotely.
Local collection was used for the home computers, while re-
mote collection was used for the university computers. Lo-
cal collection means that the data is collected by the mon-
itored computer itself, and this data is stored on the hard
drive of that computer. Remote collection is performed
over a network from a different computer than the one that
is monitored. The monitored computer only provides the
counter values. The computer doing the collection is in
charge of performing the pulling and storing the collected
data at predefined intervals. Remote collection has the ma-
jor advantage of creating less overhead since the storage and
processing of data is done on the remote computer that col-
lects the data. Its main disadvantage is that it can gener-
ate substantial amount of network traffic; especially if the
pulling of data is done frequently and/or the collected data
has considerable size. Also, if the pulling interval is short,
network latency can affect the quality and accuracy of the
data. This was not the case in our collection since the uni-
versity network is very fast. However, as indicated in the
analysis section, the collected data from the home comput-
ers includes some overhead which is caused by the use of
local collection mechanisms. The overhead manifested it-
self in an increase of the number of threads in the system
whenever one of our data collection scripts ran.

2.2 Tools

In this section we describe the various tools that were
used to perform data collection. All these programs are pro-
vided by Microsoft as part of the Microsoft Windows XP
OS or provided as separate support tools for this family of
operating systems.

The most important information is collected by Mi-
crosoft’s Performance Monitor. This application is shipped
with the operating system and allows collecting informa-
tion about internal states of the operating system and the
computer hardware. Performance Monitor was first intro-
duced when Microsoft released its first 32-bit operating sys-
tem (Windows NT 3.1) and since then it has been part of all
newer versions of Windows. The application was intended
to be part of the operating system from the very beginning;
therefore it is designed to capture data with the smallest
amount of overhead possible. Some of its main features in-
clude: local and remote collection of data, ability to sched-
ule different polling intervals (the minimum interval is one
second), and different ways to collect and store data. Per-
formance Monitor is extensively used by IT departments to
monitor performance and health of Windows servers and to



troubleshoot problems with the hardware and/or the operat-
ing system in any computer running Windows.

PsList and PsInfo are two additional programs that were
called by the scripts for local data collection (and there-
fore only for the group of home users). Both programs are
part of the Sysinternals Suite and are available for download
from the Microsoft website [1]. PsList is a command-line
tool that gathers additional performance information from
Windows’ built-in Performance Monitor, such as the infor-
mation on running processes, memory, and threads. PsInfo
is a command-line tool that gathers key information about
the Windows operating system and the host computer. This
information includes the operating system name, type and
version, the number of processors, their type and speed, and
the total amount of physical memory available.

2.3 Data Collection
Besides finding information about the parallelism in cur-

rent desktop workloads, we were also interested in the na-
ture of these workloads and the demand that it generates for
hardware resources (in particular for the processor). There-
fore, we collected more data than was explicitly needed for
this project. We intend to analyze this additional data in
future projects as well.

We repeatedly queried information from Performance
Monitor to collect the information regarding the processor’s
run queue length. To get more detailed information while
keeping the collection overhead low, we decided to use four
different sampling intervals for the data collection. Every
two seconds we queried only the length of the processor’s
run queue. For every 15 seconds we queried a more de-
tailed snapshot of the current operating system state. Ev-
ery 30 seconds we collected detailed information about the
number of threads running in the system including their sta-
tus. Finally, every five minutes a summary of the number of
processes and sub-processes was gathered.

The data which is collected every 15 seconds includes
the following statistics:

• Size of the run queue

• Number of running processes

• Number of running threads

• Available main memory

• Percentage of time when the processor is busy

This detailed list helps us to identify the times when the
processor is heavily utilized and the workload shows a high
degree of parallelism. At the same time we can sort out
the cases when this high parallelism is just due to insuffi-
cient main memory (which causes paging and requires lots
of additional computational power). The collection which is

done every two seconds is used to validate the data collected
every 15 seconds. The scripts that run every 30 seconds and
every five minutes used PsList v1.28 to gather the required
data. PsInfo was only run once in order to collect general
information about the monitored computer.

2.4 Data Preprocessing

Whenever it was possible, we tried to capture data only
when users were working with their computers. Since stu-
dents and staff at the university are required to logon into
their computers before they can start working with them,
we could make use of that information to identify the times
when users were actually working on a computer. This kind
of information was not available for home users. Many
home users configure their computer for automatic login,
and usually they do not turn off their computer when they
finish using it. This implies that part of the information col-
lected from the home users includes time intervals where
the computer was not used by a person.

2.5 Types of Hardware

Most workloads examined in our study ran on comput-
ers with conventional, non-CMP/SMT processors (to which
we later refer as superscalar processors). However, there
were some computers enabled with SMT (i.e., Intel Hyper-
Threading (HT) Pentium). We report our data separately for
superscalar and hyper-threaded computers. As expected,
hyper-threaded computers usually show a lower degree of
parallelism—we use the size of the run queue as the metric
for parallelism. As shown in Figure 1, for the same work-
load the run queue is likely to be smaller on hyper-threaded
computers than on superscalar ones, because there are more
hardware contexts available for runnable threads.

Figure 1. Two lab computers with HT enabled
and disabled.



Figure 2. Lab computers - three computers per group (14750 samples per group).

3 Results

We analyzed the collected data for each of the groups
separately. The hardware configuration for each of the
groups or individual computers is shown in each figure. All
our results are reported using the data that was collected ev-
ery 15 seconds.

We found that five out of the 20 lab computers did not
collect valid data due to technical problems. Similar prob-
lems arose for three home computers and two staff comput-
ers. For the remaining eight staff computers we received

Figure 3. Three HT lab computers (14750
samples in total)

valid data, but one computer was found to be running an in-
dexing service for a website. We do not consider that kind
of application to be part of a normal workload of a desktop
computer. Therefore we treated this as a special case and
analyzed its workload separately.

Every graph of this section shows histograms and pie
charts for different data sets. Each histogram shows the
number of data samples for different lengths of the run
queue. Each bar of the histogram shows the sum over the
samples of the computers in that group. Each pie chart
shows the percentage of data set samples that belong to one
of the following groups: no parallelism (zero threads in the
run queue), low parallelism (one or two threads in the run
queue) and high parallelism (three or more threads in the
run queue). The white slice shows the percentage of sam-
ples with no parallelism, the light-gray slice shows the per-
centage of low parallelism and the dark-gray slice shows the
percentage of high parallelism. For graphs with more than
one pie chart, the order for the pie charts is the same as for
the histograms.

3.1 University Lab Computers
Figure 2 shows samples collected for university comput-

ers. We group the data according to the hardware configu-
rations of the computers, resulting in three groups of three
computers. The graph for superscalar computers shows that
this workload has low or high parallelism approximately
half of the time, and no parallelism the rest of the time. As
we will see later, university lab workloads have a compar-



Figure 4. Left graph: Two lab computers with HT enabled and disabled (9250 samples per computer).
Right graph: Six HT staff computers (98000 samples in total).

atively low number of simultaneous processors (on average
there are only 30 processes and 411 threads running). The
reason for that is due to the fact that the users do not have the
administrative permissions to install new programs. They
are restricted to the installed educational programs. Never-
theless, a significant presence of low parallelism (35-42%
of the time) suggests that there will be a presence of simul-
taneous threads if this workload were run on a CMP/SMT
system. But since the presence of high parallelism is not
significant (under 13%) we believe that this workload will
justify only the need for CMP/SMT scheduling algorithms
targeted for lightly loaded systems.

Figure 3 and Figure 4 (left graph) show the results for
university lab workloads running on the hyper-threaded
computers. Figure 3 shows the computers with identical

Figure 5. University staff computer (35000
samples).

hardware configurations, Figure 4 (left graph) shows differ-
ent hyper-threaded configurations, including the computer
where hyper-threading was disabled. The latter is equiva-
lent to a superscalar computer. These computers are running
a similar workload as the ones that are shown in Figure 2.
For computers with hyper-threading enabled, the run queue
is empty for 98% of the total time. We conclude that the
hyper-threaded processors are able to handle that workload
appropriately. At the same time, this offers a great oppor-
tunity to benefit from scheduling algorithms that optimize
power consumption of the cores. Since the average pro-
cessor utilization is approximately 2.6% for an empty run
queue, it would be advantageous to reduce the power con-
sumption as suggested in [14]. As mentioned in that paper
as well, such a scheduling algorithm could also improve the
utilization of the cores (on CMP systems) by balancing their
workload.

3.2 University Staff Computers

The result for university staff computers is shown in Fig-
ure 4 (right graph). The data was collected for a group of 6
hyper-threaded computers that are used by the administra-
tive personnel. The workload on these computers is heav-
ier than for the lab users; on average 44 processes and 536
threads are running. Nevertheless, we see a similar trend
as for the hyper-threaded lab computers: The run queue is
empty for 97.37% of the time. It is worth mentioning that
these computers have faster processors and twice the mem-
ory than the lab computers. This could further contribute to
efficient emptying of the run queue.

There was only one computer among the staff comput-
ers that did not have hyper-threading. The results for this
computer are shown in Figure 5. This workload shows sim-



Figure 6. Left graph: Two home laptops and four home desktops (19500 samples per group).
Right graph: Three HT/CMP home computers. (19500 samples in total)

ilar properties as the university lab workloads: the runtime
is dominated by low parallelism (52% of the time), there is
no parallelism for 42% of the time and high parallelism for
roughly 6% of the time. These similarities persist despite
the heavier load on the staff computers (43 processes and
449 threads on average).

It is worth mentioning that we found in the collected data
the special case of a hyper-threaded computer that was used
by administrative personnel and performed the indexing of
web pages (in addition to running other user programs).
That indexing service runs in the background and utilized
the processor for 52% of the total time. Figure 7 shows
the run queue for this particular computer. Even though
this computer has two hardware threads, it cannot serve all
ready-to-execute threads in time. It is clear that this com-
puter shows high parallelism and will benefit from running
on CMP/SMT processor with a larger degree of parallelism

Figure 7. Hyper-threaded staff computer in-
dexing a website. (35000 samples)

and from OS contention management algorithms. However,
this kind of workload is very rare for desktop computers.

Our conclusions for this group of users echo those for
lab users: there are opportunities to apply load balancing
and power consumption using the scheduling algorithms for
lightly loaded systems, but the use of contention-managing
algorithms for highly loaded systems is not necessary.

3.3 Home Computers
After analyzing the hardware configuration of the home

user computers, we decided to group these systems into
three categories. The first group consists of two superscalar
desktop computers; the second group consists of three com-
puters that have two hardware threads (either via hyper-
threading or CMP). The last group includes four laptops
with mobile superscalar processors.

The results for the laptops and superscalar desktop com-
puters are shown in Figure 6 (left graph). We can observe
a different trend here: the workload shows significant pres-
ence of low and high parallelism (62-69% and 26-35% re-
spectively). Furthermore, the situations with no parallelism
are almost absent. We hypothesize that the larger paral-
lelism in this workload could be due to following reasons:
(1) home user workloads are more prone to viruses and spy-
ware that run in the background; (2) home users are more
likely than university users to run a large variety of pro-
grams (i.e. multimedia, IP telephony, games); (3) some lap-
top computers had limited free memory—this could result
in an increased CPU utilization due to paging; (4) higher
parallelism could be in part due to the overhead generated
by our data collection script that periodically ran on the
background (this is the artifact of the local data collection
method used for home workloads). More analysis is needed
to understand the exact cause of higher parallelism in this



workload. Finally, Figure 6 (right graph) shows the results
for three computers with either hyper-threaded or dual-core
processors. Every system is equipped with two gigabytes of
main memory and high-end graphics cards—these comput-
ers are mainly used for graphic applications and 3D games.
Therefore the workload of these computers is above the av-
erage that we have seen so far: on average there are 61
processes and 722 threads running. Similarly to what we
have seen for university workloads, these computers largely
show no presence of parallelism (85% of the time). This
demonstrates again that CMP/SMT processors are able to
handle this workload well and there is no need for a sophis-
ticated scheduler that employs on a performance-optimizing
contention management.

4 Related Work
We are not aware of another study that evaluated the par-

allelism characteristics of desktop workloads. Research has
been more focused on the area of database or web server
workloads. For example Lo et al [5] examine database per-
formance on SMT processors with regard to memory be-
havior. Menasce [9] performed a workload characteriza-
tion for an e-commerce website to analyze the scalability of
such web sites.

5 Conclusions and Future Work
We have demonstrated that a significant number of the

analyzed workloads show only low parallelism for both su-
perscalar and CMP/SMT systems. As a result of this, we
conclude that there is not too much benefit in implementing
advanced scheduling algorithms that further optimize per-
formance. Instead, desktop workloads would benefit more
from techniques such as runtime parallelization and specu-
lative multithreading. There is also considerable leeway for
implementing scheduling algorithms that optimize power
consumption management and load-balancing of the core
workloads. Even though our results do not have a statisti-
cal significance due to the small number of computers sam-
pled, we have shown that there is a particular trend that is
worth further research. This trend indicates that most cur-
rent desktop workloads do not fully benefit from multiple
hardware threads.

For the future, we consider to expand the data collection
to a scale that provides statistical significance. Furthermore
we plan to investigate better ways for the local data collec-
tion in order to reduce the data collection overhead.

6 Acknowledgements
We want to thank for the work and cooperation provided

by the department of Computing Science at Simon Fraser
University. Special thanks to Lee Greenough for allowing

this project to go ahead and Ching Tai Wong for configur-
ing and troubleshooting the data collection on the university
computers. We also want to thank Michael Letourneau for
providing guidelines for the data analysis. Finally, we want
to thank to the people who volunteered for the collection of
data from their home computers for time and collaboration.

References

[1] Microsoft Corporation. Windows Sysinternals.
http://www.microsoft.com/technet/sysinternals/default.mspx,
2007.

[2] Advanced Micro Devices. AMD Demonstrates Dual Core
Leadership. http://www.amd.com, 2004.

[3] F. Cazorla, P. Knijnenburg, R. Sakellariou, E. Fernandez, A.
Ramirez and M. Valero. Predictable Performance in SMT
Processors. Proceedings of the 1st Conference on Comput-
ing Frontiers, 2004.

[4] A. Fedorova. Operating System Scheduling for Chip Multi-
threaded Processors. PhD Thesis, 2006.

[5] J. Lo, L. Barroso, S. Eggers, K. Gharachorloo, H. Levy and
S. Parekh. An analysis of database workload performance
on simultaneous multithreaded processors. Proceedings of
the 25th Annual International Symposium on Computer Ar-
chitecture, 1998.

[6] P. Kongetira. A 32-way Multithreaded SPARC(R) Proces-
sor. Proceedings of the 16th Symposium On High Perfor-
mance Chips (HOTCHIPS), 2004.

[7] T. Maruyama. SPARC64 VI: Fujitsu’s Next Generation Pro-
cessor. Microprocessor Forum 2003, 2003.

[8] C. McNairy and R. Bhatia. Montecito - the Next
Product in the Itanium Processor Family. Hot Chips,
http://hotchips.org/archive(16), 2004.

[9] D. Menasce. Workload characterization. IEEE Internet
Computing, (7):89–92, 2003.

[10] J. Nakajima and V. Pallipadi. Enhancements for Hyper-
Threading Technology in the Operating System - Seeking
the Optimal Scheduling. Proceedings of the Second Work-
shop on Industrial Experiences with Systems and Software,
2002.

[11] P. Otellini. Intel Keynote. Intel Developer Forum, 2004.
[12] R. Kalla, B. Sinharoy and J. Tendler. IBM POWER5 chip: a

dual-core multithreaded processor. IEEE Micro, 24(2):40–
47, 2004.

[13] S. Kim, D. Chandra and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. Pro-
ceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2004.

[14] S. Siddha, V. Pallipadi and A. Mallick. Chip Multi Process-
ing aware Linux Kernel Scheduler. Proceedings of the Linux
Symposium, pages 337–347, 2005.

[15] A. Snavely and D. Tullsen. Symbiotic Jobscheduling for
a Simultaneous Multithreaded Processor. Proceedings of
the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2000.



[16] T. Moseley, J. Kihm, D. Connors and D. Grunwald. Methods
for Modeling Resource Contention on Simultaneous Multi-
threading Processors. Proceedings of the International Con-
ference on Computer Design, 2005.

[17] R. Thekkath and S. Eggers. Impact of Sharing-Based Thread
Placement on Multithreaded Architectures. Proceedings of
the 22nd Annual International Symposium On Computer Ar-
chitecture (ISCA), 2004.


