
Abstract – Simultaneous multithreading (SMT) processors
run multiple threads simultaneously on a single processing core.
Because concurrent threads compete for the processor ’s shared
resources, non-work-conserving scheduling, i.e., running fewer
threads than the processor allows even if there are threads ready
to run, can often improve performance. Nevertheless,
conventional operating systems do not use non-work-conserving
policies. We present a scheduling algor ithm that applies the non-
work-conserving policy when it improves performance. The
scheduler uses an analytical performance model that, unlike
existing models, is sufficiently simple and efficient for use inside
the operating system. We built a user -level scheduler prototype
demonstrating that our scheduler improves application
performance in cases when a non-work-conserving policy is
beneficial.

Index terms – operating systems, processor scheduling,
software performance, simultaneous multithreading

I. INTRODUCTION

An SMT processor is equipped with multiple hardware
contexts, or virtual processors, that enable concurrent
execution of multiple threads [1-4,6,22,23]. Conventional
operating systems are work-conserving: they schedule a
thread on every virtual processor, as long as there are
runnable threads in the system. On SMT processors, work-
conserving scheduling can result in thrashing [12] – a
phenomenon where concurrent threads complete less work
than they would if one or more virtual processors were left
idle. Non-work-conserving scheduling [21,25] can eliminate
thrashing by reducing contention for shared resources.

We present a new non-work-conserving scheduling
algorithm and evaluate it using a user-level scheduler
prototype. At the heart of our scheduler is a new analytical
model that determines when it is beneficial to leave virtual
processors idle. The model estimates the workload’ s
instructions per cycle (IPC) for a given degree of
concurrency, i.e., the number of concurrent threads. The
scheduler uses this model to determine the degree of
concurrency yielding the highest IPC, and then uses only that
many virtual processors.

The analytical model is the key contribution of this work.
Similar models proposed in the past [16,17] were designed
for offline studies of SMT architectures. Their main objective
was accuracy. Efficiency, simplicity, and the ability to obtain

 Alexandra Fedorova is at Harvard University, Cambridge, MA 02138

and Sun Microsystems, Burlington, MA, 01803, USA (e-mail:
fedorova@eecs.harvard.edu).

Margo Seltzer is with Harvard University, Cambridge, MA 02138, USA
(e-mail: margo@eecs.harvard.edu).

Michael D. Smith is with Harvard University, Cambridge, MA 02138,
USA (e-mail: smith@eecs.harvard.edu)

model inputs at runtime were less important.
In contrast, our model is designed specifically for use

inside an operating system scheduler. The scheduler is a
performance critical component of the operating system
invoked hundreds of times per second, and any computation
it performs must impose little performance overhead.
Therefore, our model has two critical requirements: a) model
calculations must be simple enough so they could be
performed in a small number of steps and implemented
without floating-point operations (many modern operating
systems do not permit floating-point operations inside the
kernel); and b) inputs for the model must be obtained at
runtime or at compile time.

Our model’s simplicity derives from focusing on those
resources for which contention is most likely to cause
thrashing. We model these resources precisely, while
representing other resources with simple, less precise,
models. We identify contention for the L2 cache as the prime
cause of performance degradation and thrashing [8,9,31] (also
see Figures 1a and 1b). Contention for the L2 cache increases
the miss rate, producing more main memory accesses.
Memory access times are now 200-300 processor cycles and
have been growing at the rate of 50% per year [24].
Therefore, L2 cache contention is likely to continue to cause
thrashing for the foreseeable future. Our model precisely
expresses the relationship between the L2 cache miss rate and
IPC; we approximate contention for other resources using
linear regression, significantly simplifying our model.

The challenge in estimating the effect of the L2 cache miss
rate on the IPC of an SMT processor is to determine how
much of the L2 cache miss latency can be “hidden” by
hardware multithreading: the processor overlaps memory
access of one thread with computation of another. We use
basic probability theory to model this effect simply. Models
described in the past used Markov chains and were more
complex [16,17].

We assume the SMT architecture of Sun Microsystems’
UltraSPARC T1 [6] processor, and we validate our model
for this architecture. This is a first step towards creating a
general model. We compare our model’s IPC predictions for
the SPEC CPU2000 integer benchmarks [10] to actual
measurements obtained using an execution-driven simulator
of the UltraSPARC T1 [5] and find them to be accurate to
within 10% for most workloads, with the largest observed
difference between predicted and measured values of 31%.
This accuracy is comparable to results for more complex off-
line models [16,17].

We implement a user-level prototype of our scheduling
algorithm, and demonstrate its ability to predict when it is
beneficial to use the non-work-conserving policy. We show

A Non-Work-Conserving Operating System
Scheduler For SMT Processors

Alexandra Fedorova, Margo Seltzer and Michael D. Smith

that applications using our scheduler achieve throughput
improvement of 3 to 56% when the non-work-conserving
policy is beneficial and perform no worse than with the
default scheduler otherwise. In this study, we focus on
homogeneous workloads – multithreaded workloads where all
threads are performing similar work. Such workloads are
common in data mining and bioinformatics [28-30].

The rest of the paper is organized as follows: In Section II,
we describe our target SMT architecture and the simulator
used for our experiments. In Section III, we present the model
and evaluate its accuracy. In Section IV, we present the
scheduler prototype and performance results. In Section V,
we discuss related work, and in Section VI, we conclude.

II. THE SMT ARCHITECTURE

Modern SMT processors switch threads when one thread
requires exclusive use of a shared resource [6,22,23]. Our
model is designed for the UltraSPARC T1 [4,6] architecture
where all components of a single-issue pipeline are shared,
and switching occurs on every clock cycle. We assume a
single-core SMT processor with four virtual processors,
shared first-level (L1) instruction and data caches, and a
second-level (L2) unified cache. The L2 cache is connected
to the main memory (DRAM) by a shared bus. We assume a
single core, because our model’s novelty is in representing
the interaction among the threads inside the core. We believe
our model can be easily extended to work for multicore

architectures.
We run our experiments on an execution-driven full-

system simulator [5] of the UltraSPARC T1. Using a
simulator allowed us to validate our model for various
hardware configurations. Table 1 summarizes the
architectural characteristics of the simulated processor. The
configuration differs from that of the actual UltraSPARC T1
in the number of cores (we simulate a single core, while the
T1 has six or eight), the memory bandwidth, and the clock
speed (we could not model the precise clock speed of the T1
due to simulator constraints). We use a smaller L2 cache size
than the size typical to modern two- or four-way SMT
processors [23]: this allows us to evaluate our model under
high L2 cache contention, which we expect on next-
generation chip multiprocessors [6,35], where eight threads
might be sharing a 512KB cache. Our full-system simulator
runs the Solaris operating system and all applications for
Solaris/SPARC platforms unmodified.

III. THE MODEL

Our model expresses the relationship between the L2
cache miss rate and the processor’s IPC. The IPC is
determined by two components: 1) how many cycles the
processor is busy and 2) how many cycles the processor stalls
handling L2 cache misses. We refer to the first component as
perfect-cache cycles per instruction (CPI) – the CPI achieved
when there are no L2 cache misses. The second component
depends on the L2 cache miss rate. We express the IPC of a
workload on an SMT processor as the function of its perfect-
cache CPI, the L2 cache miss rate, and the number of
concurrent threads:

IPC = F(N, L2_MR(N), perf_cache_CPI(N)) (1),

where N is the number of concurrent threads,
perf_cache_CPI(N) is the perfect-cache CPI, and L2_MR(N)
is the L2 cache miss rate achieved by the N threads.

Our goal is to precisely model the effects of L2 cache
contention on IPC. In this section, we describe this model,
assuming that perf_cache_CPI(N) and L2_MR(N) are
measured directly. In Section IV, we explain how we derive
the values for perf_cache_CPI(N) and L2_MR(N) at runtime
using a combination of simple models and measurements
obtained from hardware performance counters.

Our model relies on several architectural parameters that
are statically configured for a given system:
– the number of virtual processors,
– DRAM latency,

Fig. 1a. Normalized throughput for memory-intensive SPEC CPU2000
benchmarks, on a simulated four-way SMT processor. We use multiple
threads to run each benchmark, such that each thread runs i ts own
benchmark instance. There is a set of bars for each benchmark/L2 cache
size, and each bar corresponds to the number of concurrent threads used
to run the benchmark. Using a high degree of concurrency causes
thrashing due to extreme contention for the L2 cache (see Figure 1b).
Lowering the degree of concurrency eliminates thrashing and improves
the throughput.

Fig. 1b. Normalized L2 miss rate corresponding to the experiments in
Figure 1a.

TABLE 1. SIMULATOR CONFIGURATION.

Processor 992 MHz, single processing core, 4 virtual
processors

L1 data cache Shared, 8KB, 4-way set associative

L1 instruction cache Shared, 16KB, 4-way set associative

L2 cache Shared, 12-way set associative, size varies
from 48KB to 192KB.

Memory bandwidth 5.2 GB/s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

4 threads 3 threads 2 threads

N
O

R
M

A
L

IZ
E

D
 T

H
R

O
U

G
H

P
U

T

0.0

0.2

0.4

0.6

0.8

1.0

1.2

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

4 threads 3 threads 2 threads

N
O

R
M

A
L

IZ
E

D
 L

2
 M

IS
S

 R
A

T
E

– L2 cache size,
– memory bus bandwidth.

We begin by describing the performance model for a
single-threaded workload (Section III.A). Then we extend our
model for multithreaded workloads (Section III.B).

A. Single-threaded model

As a building block for our multithreaded model, we
introduce how we model the CPI when a processor runs a
single thread. Our single-threaded CPI model is an extension
of models proposed in the past [11,15,38]. First, we introduce
some definitions:

L2_CPI – for a given L2 miss rate, the number of cycles per
instruction that a thread stalls handling L2 cache misses.

L2_RMR – L2 read miss rate – the number of L2 read misses
per instruction, including data and instruction misses.

L2_WMR – the number of L2 write misses per instruction.
L2_MCOST – the cost, in cycles, of handling an L2 cache

miss, including the memory latency and the memory-bus
delay. While the memory latency is fixed, the memory-
bus delay depends on contention for the bus. For now we
assume that memory-bus delay is zero. We relax this
assumption at the end of Section III.

The CPI is comprised of perf_cache_CPI and L2_CPI:

L2_CPI_CPIperf_cacheCPI += (2)

L2_CPI depends on the L2 miss rate and the cost of each
miss:

L2_MCOSTL2_WMR)(L2_RMRL2_CPI ∗+= (3)

In addition to cache misses, we must account for write-
back transactions, because they contribute to L2 stall cycles.
Processors with write-back caches issue write-back
transactions to write dirty cache lines back to memory. A
write-back may be triggered on a cache read miss or on a
write miss. We define the respective write-back rates as:

L2_WBR_R – the write-backs per instruction triggered by
read misses.

L2_WBR_W – the write-backs per instruction triggered by
write misses.

To account for write-back transactions, we extend our
definitions of read/write miss rates as follows:

L2_COMB_RMR – the L2 read miss rate including the write-

backs triggered by read misses:

L2_COMB_RMR = L2_RMR + L2_WBR_R

L2_COMB_WMR – the L2 write miss rate including the
write-backs triggered by write misses:

L2_COMB_WMR = L2_WMR + L2_WBR_W.

We found that the fraction of write-backs triggered by
each type of cache miss can be accurately approximated by
the fraction of each type of cache miss. For example, if 60%
of the cache misses are read misses, then roughly 60% of the
write-backs are triggered by read misses.

Modern processors are equipped with write buffers that
absorb the effect of writes: a writing thread places a store
value into the buffer and proceeds without blocking. The
thread stalls only when the write buffer becomes full.
Therefore, write cache misses and the corresponding write-
backs do not always stall the processor. We model the write-
buffer effect using an empirically derived write stall
coefficient (WSC). WSC expresses the fraction of write misses
that stall the processor. We derive this coefficient for a given
architecture. The coefficient is also application-specific: the
value of the coefficient depends on the workload’s write miss
rate. Through experimentation with SPEC CPU2000 integer
benchmarks, we found that for workloads with the combined
L2 write miss rate of greater than 0.005, 90% of the writes
stall the processor, while for workloads with a smaller miss
rate, most of the writes are non-blocking. Accordingly, we
compute the workload-specific value for the WSC using the
following step function:

�
�
�

≤
>=

0.005RL2_COMB_WM 0,
0.005,RL2_COMB_WM 0.9,

WSC

To account for the write-buffer effect in our model, we
multiply the L2 write miss rate by WSC, thus accounting only
for those write-miss cycles that stall the processor:

L2_MCOST
WSC) RL2_COMB_WMMR(L2_COMB_RL2_CPI

∗
∗+=

 (4)

Using the WSC coefficient instead of precisely modeling
the complexity of the write buffer is a reasonable
simplification: for most workloads, the write buffer fully
absorbs the writes, so having a detailed write buffer model is
not necessary.

B. Multithreaded model

When the processor executes a multithreaded workload,
one or more virtual processors stall handling L2 cache misses
while others continue executing instructions. The entire
processor stalls only when all virtual processors stall. In
Section III.A, we showed how to compute the L2_CPI for a
single threaded execution. In this section we show how to use
the L2_CPI to estimate the aggregate IPC achieved by a
multithreaded workload for a given L2 cache miss rate.

We first introduce a stall probability – the probability that
an individual virtual processor stalls on an L2 cache miss.
Then we combine individual stall probabilities to estimate the
processor IPC.

 1) Stall probability

Our goal is to model the effect of the L2 cache miss rate
on the IPC of an SMT processor. A stall probability captures
the effect of the L2 cache miss rate on an individual virtual
processor. By combining individual stall probabilities, we
estimate the effect of the L2 cache miss rate on the entire
processor.

If the processor is running a single thread, the probability
that an individual virtual processor stalls (prob_stall) is
trivially computed using perf_cache_CPI and L2_CPI for that
thread:

L2_CPI_CPIperf_cache

L2_CPI
prob_stall

+
= .

When the processor runs multiple threads on its V virtual
processors, the meaning of perfect-cache CPI changes, and
we must adjust our formula to take this into account. The
perfect-cache CPI for the multithreaded workload is the
aggregate CPI achieved by all the threads when they
experience the perfect cache hit rate: perf_cache_CPI(V).
(We can estimate this quantity at runtime, as described in
Section IV). Our formula for prob_stall requires the perfect-
cache CPI as perceived by an individual virtual processor.
We refer to this quantity as perf_cache_CPI_mt_ind, and
compute it as follows:

V_CPI(V)cache_erfpd_CPI_mt_inperf_cache ∗= (5).

Recall that our processor switches threads on every cycle, so
for each cycle that a thread is busy, it waits for the rest of the
threads to take their turn using the processor. Hence we
multiply perf_cache_CPI(V) by V in order to compute the
individual perfect-cache CPI.

A stall probability for an individual virtual processor
during a multithreaded execution (prob_stall_mt) is:

L2_CPId_CPI_mt_inperf_cache

L2_CPI
_mtprob_stall

+
= (6),

 2) Modeling multithreaded IPC

We now combine individual stall probabilities to estimate
the aggregate IPC. Let V be the number of virtual processors.
An SMT processor can be in one of the following V+1 states:

(0) All V virtual processors are stalled,
(1) Exactly one virtual processor is busy, (V-1) are stalled,
(2) Exactly two virtual processors are busy,
…
(V) All virtual processors are busy.

In State V, the processor’s CPI equals to
perf_cache_CPI(V). We say that it runs at
perf_cache_IPC(V) – the inverse of perfect-cache CPI. In
State 0, the entire processor is stalled, so it runs at the IPC
equal to zero. In the remaining states, the processor achieves
an IPC less than or equal to perf_cache_IPC(V) – we refer to
this quantity as R_IPC(N), where N corresponds to the
number of virtual processors that are busy. So, for example, if
exactly three virtual processors are busy (N=3), the processor
is running at R_IPC(3). A probability that a virtual processor
is busy, prob_busy_mt, is:

mt_stall_probmt_busy_prob −=1

We compute probabilities P(N) that a processor is in state N,
(0 ≤ N ≤ V) as follows:

NV_mtprob_stallNmtprob_busy_
N
V

P(N) −∗∗�
�

�
�
�

	= ,

where N is the number of virtual processors that are busy in
state N. We then compute the overall processor IPC for the

multithreaded execution by multiplying the IPC achieved in
each state by the probability of that state and summing across
all states:

 ∗= =
V

0N R_IPC(N)P(i)IPC (7).

 3) Deriving R_IPC

R_IPC(N) is the IPC achieved by N concurrent threads on
an SMT processor with V virtual processors, when N < V.
We estimate it using a linear model, whose general form is:

))V(IPC_cache_perf,N(F)N(IPC_R = (8),

where N is the number of concurrent threads, and
perf_cache_IPC(V) is the perfect-cache IPC achieved by V
threads. (In Section IV, we explain how we obtain the input
value for perf_cache_IPC(V).) We derive the equation for
R_IPC using linear regression applied to the data on R_IPC
and perf_cache_IPC collected from simulation of SPEC
CPU2000 benchmarks with a large L2 cache. A recent study
suggests that this equation could be derived online using real
hardware [31] – this is a more practical approach and we are
interested in using it in the future. The equation we derived
using the simulation data has a good fit (0.9 R-squared). The
SPEC CPU2000 suite consists of benchmarks with a variety
of cache access patterns [36], and we expect the resulting
equation to generalize well to integer workloads.

C. Model evaluation

We designed our model so that a non-work-conserving
scheduler could improve performance by determining the
degree of concurrency producing the highest IPC. The
model’s accuracy determines the effectiveness of
performance optimizations. In this section, we evaluate our
model’s accuracy using the integer benchmarks in the SPEC
CPU2000 suite. We derive the WSC coefficient and the
R_IPC equation for our model using a subset of benchmarks,
i.e., the training set. The training set consists of crafty, gcc,
gzip, parser, vortex and vpr. We report evaluation results for
the entire integer suite, except perlbmk: this is a multi-process
benchmark, and because of how we built our scheduler
prototype we needed single-process benchmarks.

For each benchmark, we use our model to estimate the
aggregate IPC achieved by multiple concurrent threads, each
running its own instance of this benchmark. We obtain the
inputs for our model by measurement. We compare the
estimated IPC with the actual, which we measure by
simulating the benchmark. We study the sensitivity of our
model to variations in two of the input factors: the L2 cache
miss rate and the degree of concurrency.

For the first analysis, we set the number of concurrent
threads to four and alter the L2 cache size of the simulated
machine from 48KB to 192KB. This creates variation in the
L2 miss rate. Figure 2 shows the results. The difference
between the measured and estimated IPC is 4% on average,
with a median difference of 3%, and a maximum difference
of 12%. The estimates were less accurate for gzip (12%
discrepency) because the R_IPC estimate was less accurate
for gzip than for other benchmarks. gzip is notably more
compute-bound than the rest of the benchmarks, and the

R_IPC equation did not suit it as well as the others. The
model for R_IPC could be made more accurate if
parameterized by the workload’s instruction mix. For the
majority of the benchmarks, however, the simple R_IPC
equation works well, as we expected.

Next we analyze the model’s sensitivity to the number of
concurrent threads. We set the cache size to 48KB and vary
the number of concurrent threads executing the benchmark
from two to four. The input perf_cache_IPC(N) for N < V is
estimated using the equation derived in a similar fashion as
the equation for R_IPC, as explained in Section IV.

Table 2 shows the data. The difference between the
measured and estimated IPC is 4.21% (mean), 4.44%
(median), and 12.20% (maximum) for four concurrent
threads, 10.29% (mean), 7.89% (median), and 22.58%
(largest) for three concurrent threads, and 11.51% (mean),
9.38% (median), 21.74% (largest) for two concurrent threads.
The accuracy is comparable to that of the SMT models
described in the past: the mean, median and maximum errors

reported by Saavedra-Barrera [16] are 7%, 4% and 28%
respectively.

Our model is less accurate when the degree of concurrency
is smaller than the number of virtual processors, because in
this case, perf_cache_IPC(N) is estimated using a regression-
derived linear equation. A precise model of
perf_cache_IPC(N) would account for architectural details of
the processor and the characteristics of the specific workload.
Ongoing work on modeling SMT performance [7,12,31]
suggests alternative avenues for approximating
perf_cache_IPC(N) without sacrificing the model’s
simplicity.

A final enhancement to the model is accounting for the
memory-bus delay. The existing models for memory-bus
delay [26,27] are typically based on mean-value analysis of
closed queuing networks [13,14,34]. We designed a model
that is simpler than the existing models. We omit presentation
of our memory bus model due to space constraints and
encourage the reader to refer to the full manuscript for the

TABLE 2. ANALYSIS OF MODEL SENSITIVITY TO THE NUMBER OF THREADS RUNNING IN PARALLEL. THE DATA IS OBTAINED WITH THE ASSUMPTION OF
UNLIMITED MEMORY BANDWIDTH.

4 threads 3 threads 2 threads

Measured Estimated Difference Measured Estimated Difference Measured Estimated Difference

bzip 0.50 0.53 6.00% 0.64 0.67 4.69% 0.89 0.74 16.85%

crafty 0.46 0.47 2.17% 0.40 0.49 22.50% 0.34 0.41 20.59%

eon 0.42 0.40 4.76% 0.34 0.35 2.94% 0.26 0.27 3.85%

gap 0.50 0.54 8.00% 0.46 0.49 6.52% 0.43 0.46 6.98%

gcc 0.35 0.35 0.00% 0.31 0.38 22.58% 0.23 0.28 21.74%

gzip 0.82 0.72 12.20% 0.68 0.71 4.41% 0.52 0.55 5.77%

mcf 0.50 0.50 0.00% 0.18 0.20 11.11% 0.15 0.16 6.67%

parser 0.62 0.59 4.84% 0.49 0.56 14.29% 0.35 0.42 20.00%

twolf 0.45 0.47 4.44% 0.38 0.35 7.89% 0.32 0.29 9.38%

vortex 0.46 0.46 0.00% 0.37 0.43 16.22% 0.27 0.31 14.81%

vpr 0.52 0.54 3.85% 0.45 0.45 0.00% 0.35 0.35 0.00%

 Mean 4.21% Mean 10.29% Mean 11.51%

 Median 4.44% Median 7.89% Median 9.38%

 Maximum 12.20% Maximum 22.58% Maximum 21.74%

Fig. 2. Comparison between measured and estimated IPC. Fig. 3. Measured vs. estimated IPC with limited memory bandwidth.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 CACHE SIZE (KB)

IP
C

Measured Estimated

bzip crafty eon gcc gzip tw olfpar-
ser

vor-
tex

vprgap mcf

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2 48 96 19
2

L2 CACHE SIZE (KB)

IP
C

Measured Estimated

bzip craf ty eon gcc gzip tw olfpar-
ser

vor-
tex

vprgap mcf

details [33]. We account for the memory-bus delay in our
model by adding the estimated delay to L2_MCOST (4).
Figure 3 shows how the IPC estimated using our model,
enhanced to account for the memory-bus delay, compares
with the IPC measured on a simulated machine configured
with memory bandwidth of 5.2GB/s. The differences between
the measured and estimated values are 11% (mean), 10%
(median), and 31% (largest).

IV. THE SCHEDULER

We designed our model for use by a non-work-conserving
scheduler. The scheduler uses our model to determine the
degree of concurrency that yields the highest IPC on an SMT
processor. To demonstrate the efficacy of our model, we built
a user-level scheduler prototype. We now describe how the
scheduler uses our model to make scheduling decisions and
how it obtains input parameters for the model at runtime.

We configure the scheduler with architecture-specific
parameters (listed in the beginning Section III) and the
equation for R_IPC (Section III.B.3). The scheduler operates
in two phases: the preparation phase and the optimization
phase:

Preparation phase: The purpose of this phase is to prepare
inputs for our IPC model. The scheduler runs a multi-process
or a multithreaded job using all of the V virtual contexts. It
collects measurements using hardware performance counters
and generates the inputs for the model. (We explain how we
generate inputs in Sections IV.A and IV.B.) This phase lasts
until each thread retires roughly 100 million instructions – we
empirically determined that for our benchmarks this length is
sufficient to capture long-term cache-locality properties.

Optimization phase: The purpose of this phase is to determine
the best degree of concurrency and enforce it. For each
degree of concurrency N < V, the scheduler estimates the IPC
using our model. It then forces the degree of concurrency
corresponding to the highest predicted IPC by disabling one
or more virtual processors. If the IPC obtained with the
highest degree of concurrency (measured during the
preparation phase) is higher than any of the estimated IPC for
N < V, the scheduler keeps all virtual processors busy.

The optimization phase can last as long as the workload
does not change its cache miss locality properties. If a
workload enters a new locality phase, the optimization phase
must be stopped, and the preparation phase must be repeated.
We analyzed temporal locality behavior of our benchmarks,
and found that most benchmarks have long locality phases
and the changes between the phases are gradual. For such
benchmarks, it is sufficient to repeat scheduling phases at
fixed intervals, such as one billion instructions. For
benchmarks with frequently changing access patterns, such as
gcc, changes in locality phases must be detected dynamically,
and the scheduling phases repeated when a change is
detected. Previous research has shown how to perform
dynamic locality phase prediction on conventional processors
[37]. Similar ideas could be used on SMT processors. Our
current prototype runs the optimization phase for one billion
instructions and then repeats the preparation phase.

A. Obtaining input parameters for the model

To estimate the IPC for a degree of concurrency N, where
N < V, the scheduler provides the following inputs to the
model: (1) perf_cache_IPC(N) – the perfect-cache IPC for N
threads, and (2) L2_MR(N) – the L2 cache miss rate achieved
by N concurrent threads. The inputs are obtained using
hardware performance counters, compiler-generated input,
and simple models, as we describe next.

 1) Obtaining the perfect-cache IPC

The perfect-cache IPC achieved by multiple homogeneous
threads depends on two factors: how efficiently these threads
use the processor, and how many threads are actually
running. Therefore, the scheduler computes
perf_cache_IPC(N) using a two-step process: (1) compute the
perfect-cache IPC for the maximum degree of concurrency,
perf_cache_IPC(V). This tells us how efficiently the threads
use the processor; (2) For a given N, estimate
perf_cache_IPC(N), using a regression-derived linear
equation. We describe these steps in more detail:

(1) We compute perf_cache_IPC(V) by applying the inverse
of our model. Recall the general form for our model:

IPC = F(N, perf_cache_CPI(N), L2_MR(N)).

We first compute perf_cache_CPI(V) by applying the inverse
of the model:

 perf_cache_CPI(V) = F′(V, IPC, L2_MR(V)).

(The actual IPC and the L2 miss rate L2_MR(V) are obtained
during the preparation phase from the hardware counters.)
We then compute perf_cache_IPC(V) by taking the inverse of
perf_cache_CPI(V).

(2) We estimate perf_cache_IPC(N) using a regression-
derived linear equation, where N and perf_cache_IPC(V) are
supplied as inputs. The equation has the same form and is
derived in a similar way as (8) (the equation for R_IPC). This
equation is also supplied to the scheduler upon initialization.

We evaluated the accuracy of the estimated
perf_cache_IPC(N) and found that the difference between the
actual and the estimated perf_cache_IPC(N) is 7.14%
(average), 6.17% (median), and 22.92% (max). Furthermore,
we found that if separate equations are derived for workloads
with high cache miss rates and medium-to-low cache miss
rates, the accuracy significantly improves: the difference
between the actual and the estimated perf_cache_IPC(N) is
2.7% (average), 1.55% (median), and 6.87% (max).

 2) Obtaining the L2 miss rate

There are two known techniques to estimate L2_MR(N),
the L2 miss rate when N < V threads run in parallel: (1) the
stack-distance model and (2) the reuse-distance model. The
stack-distance model requires a stack-distance profile of the
running program – a short summary of the program’s
memory access patterns that captures its temporal reuse
behavior. The stack-distance profile can be obtained statically
using a compiler [18] or at runtime if the machine has
appropriate hardware counters [19]. Multiple stack-distance

profiles are combined to accurately estimate miss rates for N
concurrent threads [20].

A reuse-distance model [32] requires a reuse-distance
histogram, which, similarly to the stack-distance profile,
captures the temporal reuse behavior of the running program.
Reuse-distance histogram can be obtained online, but this
process generates performance overhead.

More work is needed to determine which is the better
method for online estimation of L2_MR(N). The stack-
distance model is said to have poor accuracy for workloads
with frequently changing execution patterns [18].
Additionally, it relies on compiler-generated stack distance
profiles. A reuse-distance model is more flexible, but
generates performance overhead, sometimes as much as 40%
[32]. Although accuracy can be sacrificed for performance
with the reuse-distance model, more work is needed to
determine whether an acceptable trade-off can be achieved.

In our prototype, we estimated L2_MR(N) using a method
based on the stack-distance model. Although stack-distance
profiles are typically furnished by a compiler, we
instrumented our simulator to build such profiles. We
generated profiles for all benchmarks in advance, and then
supplied them to the scheduler.

B. Performance results

In this section, we demonstrate how our non-work-
conserving (NWC) scheduler improves application
performance by determining the best degree of concurrency.
We chose several memory-bound benchmarks (such
benchmarks are likely to benefit from the non-work-
conserving policy) and one compute-bound benchmark. Our
experiment consists of running four concurrent instances of a
benchmark on our processor with four virtual contexts and a
given L2 cache size. We use several cache sizes. We use
reference input sets. We fast-forward the simulation until all
the threads have reached their main processing loop, and then
perform detailed simulation for 100 million instructions.

The NWC scheduler performs the preparation phase
during this execution segment. At the end of the preparation
phase, the scheduler uses our model to determine the degree
of concurrency yielding the highest IPC. To determine
performance with the NWC scheduler, we measure the IPC
achieved with the degree of concurrency selected as the best
over a period of 100 million instructions.

To determine the performance with the default scheduler,
we measure the IPC achieved using the maximum degree of
concurrency. We determine the optimal IPC by simulating
each benchmark using all possible degrees of concurrency,
and selecting the highest IPC.

Figure 4 shows the results. There are three sets of bars for
each experiment, showing the IPC achieved with the default
scheduler (default), the non-work-conserving scheduler
(NWC), and the optimal IPC (optimal). On the left side of the
graph, we show the cases where better performance can be
achieved with non-work-conserving scheduling (CAN
IMPROVE). The NWC scheduler improves performance in
each case, from 3% to 56%, often achieving the IPC as high
as the optimal.

On the right side of the graph, we show the cases where no
performance improvement can result from non-work-
conserving scheduling (CANNOT IMPROVE): the IPC with
the default scheduler is already as high as the optimal. In
these cases the NWC scheduler correctly decides to keep all
virtual processors busy, achieving the IPC equal to the
optimal. Note that each memory-intensive benchmark that
appears in the “CAN IMPROVE” section of the graph also
appears in the “CANNOT IMPROVE” section with a larger
cache size, where performance can no longer be improved by
lowering the degree of concurrency.

Our results demonstrate feasibility of implementing a non-
work-conserving scheduler that uses an online model to
determine the best degree of concurrency. Although we have
not evaluated the performance overhead generated by the
scheduler, we believe it can be made small: most
computations involve simple integer arithmetic and reading
values for hardware counters, which typically have overheads
of only a few cycles. The key to obtaining these results is our
simple model that works with inputs obtainable during
compilation and at runtime.

V. RELATED WORK

IPC models for SMT processors proposed in the past
[16,17] use Markov processes to model an SMT processor’s
transitions between busy and stalled states. These models are
not trivial to solve; closed form solutions are approximated.
Our model uses basic probability theory and is simpler, but
not less accurate. Additionally, our model works with inputs
that are obtainable at runtime or from a compiler.

Jung and et al. proposed a compiler technique to determine
the optimal number of threads to execute a parallelizable loop
on an SMT processor [12]. Their IPC model is derived using
linear regression and is parameterized by the workload
instruction mix. We would like to use the techniques
presented in this work to develop more precise models for
R_IPC and perfect-cache IPC for degrees of concurrency
smaller than the maximum.

Moseley et al. [31] presented IPC models for SMT
processors that are also suitable for online use but are less
accurate than ours. They model all sources of resource
contention with simple models derived using linear regression
and recursive partitioning. In contrast, we model the most
significant source of contention using an accurate model,
resorting to regression-derived models only for less important

Fig. 4. IPC with the default scheduler, the NWC scheduler, and the optimal.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

crafty-
48KB

crafty-
96KB

gcc-
48KB

gcc-
96KB

gcc-
192KB

vortex-
48KB

crafty-
192KB

gcc-
384KB

vortex-
96KB

gzip-
48KB

N
O

R
M

A
L

IZ
E

D
 T

H
R

O
U

G
H

P
U

T
 (

IP
C

)

default NWC optimal

CAN IMPROVE CANNOT IMPROVE

sources of contention. Although Moseley’s models are less
accurate, they work across different architectures. We
envision using the results of this work to make our model
cross-architectural.

VI. CONCLUSIONS

We presented a non-work-conserving scheduler for SMT
processors and evaluated it using a user-level prototype. Our
scheduler determines when using a maximum degree of
concurrency on an SMT processor produces thrashing and
improves performance by lowering the degree of
concurrency. Scheduling decisions are made using a new
online SMT performance model, which is simple, but as
accurate as existing off-line models. We achieved simplicity
by precisely modeling contention for the L2 cache, which has
a high impact on the IPC, and approximating contention for
other resources using simple models. To further enhance
fidelity of our scheduler, we plan to work on improving
online models for cache miss rates on SMT processors. We
also plan to develop methods for online derivation of
equations for perfect-cache IPC. In addition to addressing
these challenges, we would like to apply our model to other
SMT architectures and evaluate if using heterogeneous
workloads.

VII. REFERENCES
[1] D. Tullsen, S. Eggers, H. Levy, “ Simultaneous Multithreading:

Maximizing On-Chip Parallelism” , in Proc. 1995 Intl. Symposium on
Computer Architecture, pp. 533-544.

[2] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Portenfield,
B. Smith, “The Tera Computer System”, in Proc. 1990 Intl . Conf. on
Supercomputing, pp. 1-6.

[3] A. Agarwal, B-H. Lim, D. Kranz, J. Kubiatowicz, “APRIL: A
Processor Architecture for Multiprocessing”, in Proc. 1990 Intl.
Symposium on Computer Architecture, pp. 104-114.

[4] J. Laudon, A. Gupta, M. Horowitz, “ Interleaving: A Multi threading
Technique Targeting Multiprocessors and Workstations”, in Proc. 6th
Intl . Conf. On Architectural Support for Programming Languages and
Operating Systems, pp. 308-318, 1994.

[5] Daniel Nussbaum, Alexandra Fedorova and Christopher Small, “ An
overview of the Sam CMT simulator kit” , Sun Microsystems Research
Labs, Burlington, MA, Tech. Rep. TR-2004-133, March 2004.

[6] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: A 32-Way
Multithreaded Sparc Processor”, in Proc IEEE Micro, vol. 25, no. 2,
pp. 21-29, Mar/Apr, 2005.

[7] A. Snavely, D. Tullsen, “Symbiotic Job Scheduling for a Simultaneous
Multithreading Machine” , in Proc. 9th Intl. Conf. On Architectural
Support for Programming Languages and Operating Systems, pp. 234-
244, 2000.

[8] S. Hily, A. Seznec, “Standard Memory Hierarchy Does Not Fit
Simultaneous Multithreading” , in Proc. of the Workshop on
Multithreaded Execution Architecture and Compilation, January 1998.

[9] A. Fedorova, M. Seltzer, C. Small and D. Nussbaum “Performance of
Multithreaded Chip Multiprocessors And Implications For Operating
System Design”, in Proc. USENIX Annual Technical Conf., pp. 395-
398, 2005

[10] SPEC CPU2000 Web site: http://www.spec.org
[11] R. E. Matick, T. J. Heller, and M. Ignatowski, “Analytical analysis of

fini te cache penalty and cycles per instruction of a multiprocessor
memory hierarchy using miss rates and queuing theory” IBM Journal
Of Research And Development, Vol. 45 No. 6, November 2001.

[12] C. Jung, D. Lim, J. Lee, S. Han, “Adaptive Execution Techniques for
SMT Multiprocessor Architectures” , in Proc. 10th Symposium on
Principles and Practice of Parallel Programming, pp. 236-246, 2005.

[13] R. Onvural, “Survey of Closed Queuing Networks With Blocking” ,
ACM Computing Surveys, v. 22, issue 2, pp. 83-121, 1990

[14] L. Kleinrock, Queuing Systems, Vol I, Wiley, 1975.
[15] H. Wasserman, O. Lubeck, Y. Luo, F. Bassetti, “Performance

Evaluation of the SGI Origin2000: A Memory-Centric Evaluation of

LANL ASCI Applications” , in Proc. 1997 ACM/IEEE Conf. On
Supercomputing, pp. 1-11.

[16] R. Saavedra-Barrera, D. Culler and T. von Eicken, “Analysis of
Multithreaded Architectures for Paral lel Computing”, in Proc. 2nd
Annual Symposium on Parallel Algorithms and Architectures, 1999.

[17] P. K. Dubey, A. Krishna and M. Squillante, “ Analytic Performance
Modeling for a Spectrum of Multithreaded Processor Architectures” , in
Proc. 3rd Intl. Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, pp. 110-122, 1995.

[18] C. Cascaval, L. DeRose, D.A. Padua, and D. Reed, “Compile-Time
Based Performance Prediction” , in Proc. 12th Intl. Workshop on
Languages and Compilers for Paral lel Computing, pp. 365-379, 1999.

[19] G.E. Suh, S. Devadas, and L. Rudolph, “A New Memory Monitoring
Scheme for Memory-Aware Scheduling and Partitioning”, in Proc. 8th
Intl. Symposium on High Performance Computer Architecture, pp. 117-
128, 2002.

[20] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting Inter-Thread
Cache Contention on a Multi-Processor Architecture” , In Proc. Of 11th
Int’ l . Symposium on High-Performance Computer Architecture, pp.
340-351, 2005.

[21] E. Rosti, E. Smirni, G. Serazzi, L. Dowdy, “ Analysis of Non-Work-
Conserving Processor Parti tioning Policies” , in Proc. Workshop on Job
Scheduling Strategies for Parallel Processing, pp. 165-181, 1995.

[22] M. Funk, SMT on eServer iSeries Power5 Processors,
www-03.ibm.com/servers/eserver/iseries/perfmgmt/pdf/SMT.pdf

[23] Deborah T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
M. Upton, “Hyper-threading technology architecture and
microarchitecture” . Intel Technical Journal , pp. 4-15, February 2002.

[24] D. Patterson and K. Yelick, University of Cali fornia, Berkeley, CA,
Final Report 2002-2003 for MICRO Project #02-060, 2003.

[25] E. Smirni, E. Rosti , G. Serazzi, L. W. Dowdy, and K. C. Sevcik,
“Performance Gains From Leaving Idle Processors In Multiprocessor
Systems”, in Proc. 1995 Intl. Conf. on Parallel Processing, Vol. III, pp.
203-210.

[26] Daniel J. Sorin, V. Pai, S. Adve, M. Vernon, D. Wood, “ Analytic
Evaluation of Shared-memory Systems with ILP Processors” , in Proc.
1998 International Symposium on Computer Architecture, pp. 380-391.

[27] D. Willick and D. Eager, “ An Analytical Model of Multistage
Interconnection Networks” , in Proc. of 1990 ACM SIGMETRICS, pp.
192-199.

[28] mpiBLAST: Open-Source Parallel BLAST, mpiblast.lanl.gov
[29] D.A. Bader V. Sachdeva, V. Agarwal, G. Goel, A.N. Singh,

“BioSPLASH: A Sample Workload For Bioinformatics And
Computational Biology For Optimizing Next-Generation Performance
Computer Systems”, University of New Mexico, Tech. Rep., 2005.

[30] Y. Chen, Q. Diao, C. Dulong, C. Lai, W. Hu, E. Li, T. Wang, Y.
Zhang, “Performance Scalabili ty of Data Mining Workloads in
Bioinformatics” , Intel Technology Journal, v.9 (2), 2005.

[31] T. Moseley, J. Kihm, D. Connors and D. Grunwald, “Methods for
Modeling Resource Contention on Simultaneous Multi threading
Processors” , in Proc. 2005 International Conf. on Computer Design,
pp. 373-380.

[32] E. Berg, E. Hagersten, “StatCache: A Probabilistic Approach to
Efficient and Accurate Data Locality Analysis” , in Proc. 2004 Intl.
Symposium on Performance Analysis of Systems and Software, pp. 20-
27.

[33] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. “Modeling
the Effects of Memory Hierarchy Performance On Throughput of
Multithreaded Processors” , Harvard University, Cambridge, MA, Tech.
Rep. TR-15-05, 2005.

[34] M. Reiser and S. S. Lavenberg, “Mean-Value Analysis Of Closed
Multichain Queuing Networks” Journal of the ACM, 27(2): 313-322,
April 1980.

[35] K. Krewell, “Cell Moves into the Limelight” , Microprocessor Report,
February 14, 2005.

[36] Benjamin Lee, “An Architectural Assessment of SPEC CPU
Benchmark Relevance”, Harvard University, Cambridge, MA, Tech.
Rep. TR-02-06, 2006.

[37] X. Shen, Y. Zhong and C. Ding, “ Locali ty Phase Prediction”, in. Proc.
11th Intl. Conf. On Architectural Support for Programming Languages
and Operating Systems, pp. 165-176, 2004.

[38] Y. Solihin, V. Lam, and J. Torrellas, “ Scal-Tool: Pinpointing and
Quantifying Scalability Bottlenecks in DSM Multiprocessors” , in Proc.
1999 ACM/IEEE Conf. on Supercomputing, pp. 17-30.

