
Abstract – Simultaneous multithreading (SMT) processors 
run multiple threads simultaneously on a single processing core. 
Because concurrent threads compete for the processor ’s shared 
resources, non-work-conserving scheduling, i.e., running fewer 
threads than the processor  allows even if there are threads ready 
to run, can often improve performance. Nevertheless, 
conventional operating systems do not use non-work-conserving 
policies. We present a scheduling algor ithm that applies the non-
work-conserving policy when it improves performance. The 
scheduler uses an analytical performance model that, unlike 
existing models, is sufficiently simple and efficient for  use inside 
the operating system. We built a user -level scheduler prototype 
demonstrating that our scheduler improves application 
performance in cases when a non-work-conserving policy is 
beneficial.  
 

Index terms – operating systems, processor scheduling, 
software performance, simultaneous multithreading     

I.  INTRODUCTION 

An SMT processor is equipped with multiple hardware 
contexts, or virtual processors, that enable concurrent 
execution of multiple threads [1-4,6,22,23]. Conventional 
operating systems are work-conserving: they schedule a 
thread on every virtual processor, as long as there are 
runnable threads in the system. On SMT processors, work-
conserving scheduling can result in thrashing [12] – a 
phenomenon where concurrent threads complete less work 
than they would if one or more virtual processors were left 
idle. Non-work-conserving scheduling [21,25] can eliminate 
thrashing by reducing contention for shared resources.  

We present a new non-work-conserving scheduling 
algorithm and evaluate it using a user-level scheduler 
prototype. At the heart of our scheduler is a new analytical 
model that determines when it is beneficial to leave virtual 
processors idle. The model estimates the workload’ s 
instructions per cycle (IPC) for a given degree of 
concurrency, i.e., the number of concurrent threads. The 
scheduler uses this model to determine the degree of 
concurrency yielding the highest IPC, and then uses only that 
many virtual processors.  

The analytical model is the key contribution of this work. 
Similar models proposed in the past [16,17] were designed 
for offline studies of SMT architectures. Their main objective 
was accuracy. Efficiency, simplicity, and the ability to obtain 
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model inputs at runtime were less important.  
In contrast, our model is designed specifically for use 

inside an operating system scheduler. The scheduler is a 
performance critical component of the operating system 
invoked hundreds of times per second, and any computation 
it performs must impose little performance overhead. 
Therefore, our model has two critical requirements: a) model 
calculations must be simple enough so they could be 
performed in a small number of steps and implemented 
without floating-point operations (many modern operating 
systems do not permit floating-point operations inside the 
kernel); and b) inputs for the model must be obtained at 
runtime or at compile time. 

Our model’s simplicity derives from focusing on those 
resources for which contention is most likely to cause 
thrashing. We model these resources precisely, while 
representing other resources with simple, less precise, 
models. We identify contention for the L2 cache as the prime 
cause of performance degradation and thrashing [8,9,31] (also 
see Figures 1a and 1b). Contention for the L2 cache increases 
the miss rate, producing more main memory accesses. 
Memory access times are now 200-300 processor cycles and 
have been growing at the rate of 50% per year [24]. 
Therefore, L2 cache contention is likely to continue to cause 
thrashing for the foreseeable future. Our model precisely 
expresses the relationship between the L2 cache miss rate and 
IPC; we approximate contention for other resources using 
linear regression, significantly simplifying our model.  

The challenge in estimating the effect of the L2 cache miss 
rate on the IPC of an SMT processor is to determine how 
much of the L2 cache miss latency can be “hidden” by 
hardware multithreading: the processor overlaps memory 
access of one thread with computation of another. We use 
basic probability theory to model this effect simply. Models 
described in the past used Markov chains and were more 
complex [16,17].  

We assume the SMT architecture of Sun Microsystems’  
UltraSPARC T1 [6] processor, and we validate our model 
for this architecture. This is a first step towards creating a 
general model. We compare our model’s IPC predictions for 
the SPEC CPU2000 integer benchmarks [10] to actual 
measurements obtained using an execution-driven simulator 
of the UltraSPARC T1 [5] and find them to be accurate to 
within 10% for most workloads, with the largest observed 
difference between predicted and measured values of 31%. 
This accuracy is comparable to results for more complex off-
line models [16,17].  

We implement a user-level prototype of our scheduling 
algorithm, and demonstrate its ability to predict when it is 
beneficial to use the non-work-conserving policy. We show 
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that applications using our scheduler achieve throughput 
improvement of 3 to 56% when the non-work-conserving 
policy is beneficial and perform no worse than with the 
default scheduler otherwise. In this study, we focus on 
homogeneous workloads – multithreaded workloads where all 
threads are performing similar work. Such workloads are 
common in data mining and bioinformatics [28-30]. 

The rest of the paper is organized as follows: In Section II, 
we describe our target SMT architecture and the simulator 
used for our experiments. In Section III, we present the model 
and evaluate its accuracy. In Section IV, we present the 
scheduler prototype and performance results.  In Section V, 
we discuss related work, and in Section VI, we conclude.   

II.  THE SMT ARCHITECTURE  

Modern SMT processors switch threads when one thread 
requires exclusive use of a shared resource [6,22,23]. Our 
model is designed for the UltraSPARC T1 [4,6] architecture 
where all components of a single-issue pipeline are shared, 
and switching occurs on every clock cycle. We assume a 
single-core SMT processor with four virtual processors, 
shared first-level (L1) instruction and data caches, and a 
second-level (L2) unified cache. The L2 cache is connected 
to the main memory (DRAM) by a shared bus. We assume a 
single core, because our model’s novelty is in representing 
the interaction among the threads inside the core. We believe 
our model can be easily extended to work for multicore 

architectures.   
We run our experiments on an execution-driven full-

system simulator [5] of the UltraSPARC T1. Using a 
simulator allowed us to validate our model for various 
hardware configurations. Table 1 summarizes the 
architectural characteristics of the simulated processor. The 
configuration differs from that of the actual UltraSPARC T1 
in the number of cores (we simulate a single core, while the 
T1 has six or eight), the memory bandwidth, and the clock 
speed (we could not model the precise clock speed of the T1 
due to simulator constraints). We use a smaller L2 cache size 
than the size typical to modern two- or four-way SMT 
processors [23]: this allows us to evaluate our model under 
high L2 cache contention, which we expect on next-
generation chip multiprocessors [6,35], where eight threads 
might be sharing a 512KB cache. Our full-system simulator 
runs the Solaris operating system and all applications for 
Solaris/SPARC platforms unmodified.  

III.  THE MODEL  

Our model expresses the relationship between the L2 
cache miss rate and the processor’s IPC. The IPC is 
determined by two components: 1) how many cycles the 
processor is busy and 2) how many cycles the processor stalls 
handling L2 cache misses. We refer to the first component as 
perfect-cache cycles per instruction (CPI) – the CPI achieved 
when there are no L2 cache misses. The second component 
depends on the L2 cache miss rate. We express the IPC of a 
workload on an SMT processor as the function of its perfect-
cache CPI, the L2 cache miss rate, and the number of 
concurrent threads:  

IPC =  F(N, L2_MR(N), perf_cache_CPI(N))  (1), 

where N is the number of concurrent threads, 
perf_cache_CPI(N) is the perfect-cache CPI, and L2_MR(N) 
is the L2 cache miss rate achieved by the N threads.  

Our goal is to precisely model the effects of L2 cache 
contention on IPC. In this section, we describe this model, 
assuming that perf_cache_CPI(N) and L2_MR(N) are 
measured directly. In Section IV, we explain how we derive 
the values for perf_cache_CPI(N) and L2_MR(N) at runtime 
using a combination of simple models and measurements 
obtained from hardware performance counters. 

Our model relies on several architectural parameters that 
are statically configured for a given system: 
– the number of virtual processors,  
– DRAM latency, 

Fig. 1a.  Normalized throughput for memory-intensive SPEC CPU2000 
benchmarks, on a simulated four-way SMT processor. We use multiple 
threads to run each benchmark, such that each thread runs i ts own 
benchmark instance. There is a set of bars for each benchmark/L2 cache 
size, and each bar corresponds to the number of concurrent threads used 
to run the benchmark. Using a high degree of concurrency causes 
thrashing due to extreme contention for the L2 cache (see Figure 1b). 
Lowering the degree of concurrency eliminates thrashing and improves 
the throughput. 
 

Fig. 1b.  Normalized L2 miss rate corresponding to the experiments in 
Figure 1a.  

TABLE 1. SIMULATOR CONFIGURATION. 

Processor 992 MHz, single processing core, 4 virtual 
processors 

L1 data cache Shared, 8KB, 4-way set associative 

L1 instruction cache Shared, 16KB, 4-way set associative 

L2 cache Shared, 12-way set associative, size varies 
from 48KB to 192KB. 

Memory bandwidth 5.2 GB/s  
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– L2 cache size, 
– memory bus bandwidth. 

We begin by describing the performance model for a 
single-threaded workload (Section III.A). Then we extend our 
model for multithreaded workloads (Section III.B).  

A.  Single-threaded model 

As a building block for our multithreaded model, we 
introduce how we model the CPI when a processor runs a 
single thread. Our single-threaded CPI model is an extension 
of models proposed in the past [11,15,38]. First, we introduce 
some definitions: 

L2_CPI – for a given L2 miss rate, the number of cycles per 
instruction that a thread stalls handling L2 cache misses.  

L2_RMR – L2 read miss rate – the number of L2 read misses 
per instruction, including data and instruction misses. 

L2_WMR – the number of L2 write misses per instruction.  
L2_MCOST – the cost, in cycles, of handling an L2 cache 

miss, including the memory latency and the memory-bus 
delay. While the memory latency is fixed, the memory-
bus delay depends on contention for the bus. For now we 
assume that memory-bus delay is zero. We relax this 
assumption at the end of Section III. 

The CPI is comprised of perf_cache_CPI and L2_CPI: 

L2_CPI_CPIperf_cacheCPI +=     (2) 

L2_CPI depends on the L2 miss rate and the cost of each 
miss: 

L2_MCOSTL2_WMR)(L2_RMRL2_CPI ∗+=    (3) 

In addition to cache misses, we must account for write-
back transactions, because they contribute to L2 stall cycles. 
Processors with write-back caches issue write-back 
transactions to write dirty cache lines back to memory. A 
write-back may be triggered on a cache read miss or on a 
write miss. We define the respective write-back rates as: 

L2_WBR_R – the write-backs per instruction triggered by 
read misses. 

L2_WBR_W – the write-backs per instruction triggered by 
write misses. 

To account for write-back transactions, we extend our 
definitions of read/write miss rates as follows: 
 
L2_COMB_RMR – the L2 read miss rate including the write-

backs triggered by read misses: 

L2_COMB_RMR = L2_RMR + L2_WBR_R 

L2_COMB_WMR – the L2 write miss rate including the 
write-backs triggered by write misses:  

L2_COMB_WMR =  L2_WMR + L2_WBR_W. 

We found that the fraction of write-backs triggered by 
each type of cache miss can be accurately approximated by 
the fraction of each type of cache miss. For example, if 60% 
of the cache misses are read misses, then roughly 60% of the 
write-backs are triggered by read misses. 

Modern processors are equipped with write buffers that 
absorb the effect of writes: a writing thread places a store 
value into the buffer and proceeds without blocking. The 
thread stalls only when the write buffer becomes full. 
Therefore, write cache misses and the corresponding write-
backs do not always stall the processor. We model the write-
buffer effect using an empirically derived write stall 
coefficient (WSC). WSC expresses the fraction of write misses 
that stall the processor. We derive this coefficient for a given 
architecture. The coefficient is also application-specific: the 
value of the coefficient depends on the workload’s write miss 
rate. Through experimentation with SPEC CPU2000 integer 
benchmarks, we found that for workloads with the combined 
L2 write miss rate of greater than 0.005, 90% of the writes 
stall the processor, while for workloads with a smaller miss 
rate, most of the writes are non-blocking. Accordingly, we 
compute the workload-specific value for the WSC using the 
following step function: 

�
�
�

≤
>=

0.005RL2_COMB_WM            0,
0.005,RL2_COMB_WM         0.9,

WSC  

To account for the write-buffer effect in our model, we 
multiply the L2 write miss rate by WSC, thus accounting only 
for those write-miss cycles that stall the processor:  

L2_MCOST 
WSC) RL2_COMB_WMMR(L2_COMB_RL2_CPI

∗
∗+=

 

         (4) 

Using the WSC coefficient instead of precisely modeling 
the complexity of the write buffer is a reasonable 
simplification: for most workloads, the write buffer fully 
absorbs the writes, so having a detailed write buffer model is 
not necessary.  

B.  Multithreaded model 

When the processor executes a multithreaded workload, 
one or more virtual processors stall handling L2 cache misses 
while others continue executing instructions. The entire 
processor stalls only when all virtual processors stall. In 
Section III.A, we showed how to compute the L2_CPI for a 
single threaded execution. In this section we show how to use 
the L2_CPI to estimate the aggregate IPC achieved by a 
multithreaded workload for a given L2 cache miss rate.  

We first introduce a stall probability – the probability that 
an individual virtual processor stalls on an L2 cache miss. 
Then we combine individual stall probabilities to estimate the 
processor IPC.  

    1)   Stall probability 

Our goal is to model the effect of the L2 cache miss rate 
on the IPC of an SMT processor. A stall probability captures 
the effect of the L2 cache miss rate on an individual virtual 
processor. By combining individual stall probabilities, we 
estimate the effect of the L2 cache miss rate on the entire 
processor. 

If the processor is running a single thread, the probability 
that an individual virtual processor stalls (prob_stall) is 
trivially computed using perf_cache_CPI and L2_CPI for that 
thread: 



L2_CPI_CPIperf_cache

L2_CPI
prob_stall

+
= . 

When the processor runs multiple threads on its V virtual 
processors, the meaning of perfect-cache CPI changes, and 
we must adjust our formula to take this into account. The 
perfect-cache CPI for the multithreaded workload is the 
aggregate CPI achieved by all the threads when they 
experience the perfect cache hit rate: perf_cache_CPI(V). 
(We can estimate this quantity at runtime, as described in 
Section IV). Our formula for prob_stall requires the perfect-
cache CPI as perceived by an individual virtual processor. 
We refer to this quantity as perf_cache_CPI_mt_ind, and 
compute it as follows: 

V_CPI(V)cache_erfpd_CPI_mt_inperf_cache ∗=     (5). 

Recall that our processor switches threads on every cycle, so 
for each cycle that a thread is busy, it waits for the rest of the 
threads to take their turn using the processor. Hence we 
multiply perf_cache_CPI(V) by V in order to compute the 
individual perfect-cache CPI. 

A stall probability for an individual virtual processor 
during a multithreaded execution (prob_stall_mt) is:  

L2_CPId_CPI_mt_inperf_cache

L2_CPI
_mtprob_stall

+
=   (6), 

    2)  Modeling multithreaded IPC 

We now combine individual stall probabilities to estimate 
the aggregate IPC. Let V be the number of virtual processors. 
An SMT processor can be in one of the following V+1 states: 
 
(0) All V virtual processors are stalled, 
(1) Exactly one virtual processor is busy, (V-1) are stalled, 
(2) Exactly two virtual processors are busy,  
… 
(V) All virtual processors are busy.  
 

In State V, the processor’s CPI equals to 
perf_cache_CPI(V). We say that it runs at 
perf_cache_IPC(V) – the inverse of perfect-cache CPI. In 
State 0, the entire processor is stalled, so it runs at the IPC 
equal to zero. In the remaining states, the processor achieves 
an IPC less than or equal to perf_cache_IPC(V) – we refer to 
this quantity as R_IPC(N), where N corresponds to the 
number of virtual processors that are busy. So, for example, if 
exactly three virtual processors are busy (N=3), the processor 
is running at R_IPC(3). A probability that a virtual processor 
is busy, prob_busy_mt, is:  

mt_stall_probmt_busy_prob −=1  

We compute probabilities P(N) that a processor is in state N, 
(0 ≤  N ≤  V) as follows:  

NV_mtprob_stallNmtprob_busy_
N
V

P(N) −∗∗�
�

�
�
�

	= , 

where N is the number of virtual processors that are busy in 
state N. We then compute the overall processor IPC for the 

multithreaded execution by multiplying the IPC achieved in 
each state by the probability of that state and summing across 
all states: 


 ∗= =
V

0N R_IPC(N)P(i)IPC   (7). 

    3)  Deriving R_IPC 

R_IPC(N)  is the IPC achieved by N concurrent threads on 
an SMT processor with V virtual processors, when N < V.  
We estimate it using a linear model, whose general form is: 

))V(IPC_cache_perf,N(F)N(IPC_R =    (8),  

where N is the number of concurrent threads, and 
perf_cache_IPC(V) is the perfect-cache IPC achieved by V 
threads. (In Section IV, we explain how we obtain the input 
value for perf_cache_IPC(V).) We derive the equation for 
R_IPC using linear regression applied to the data on R_IPC 
and perf_cache_IPC collected from simulation of SPEC 
CPU2000 benchmarks with a large L2 cache. A recent study 
suggests that this equation could be derived online using real 
hardware [31] – this is a more practical approach and we are 
interested in using it in the future. The equation we derived 
using the simulation data has a good fit (0.9 R-squared). The 
SPEC CPU2000 suite consists of benchmarks with a variety 
of cache access patterns [36], and we expect the resulting 
equation to generalize well to integer workloads.  

C.  Model evaluation  

We designed our model so that a non-work-conserving 
scheduler could improve performance by determining the 
degree of concurrency producing the highest IPC. The 
model’s accuracy determines the effectiveness of 
performance optimizations. In this section, we evaluate our 
model’s accuracy using the integer benchmarks in the SPEC 
CPU2000 suite. We derive the WSC coefficient and the 
R_IPC equation for our model using a subset of benchmarks, 
i.e., the training set. The training set consists of crafty, gcc, 
gzip, parser, vortex and vpr. We report evaluation results for 
the entire integer suite, except perlbmk: this is a multi-process 
benchmark, and because of how we built our scheduler 
prototype we needed single-process benchmarks. 

For each benchmark, we use our model to estimate the 
aggregate IPC achieved by multiple concurrent threads, each 
running its own instance of this benchmark. We obtain the 
inputs for our model by measurement. We compare the 
estimated IPC with the actual, which we measure by 
simulating the benchmark. We study the sensitivity of our 
model to variations in two of the input factors: the L2 cache 
miss rate and the degree of concurrency. 

For the first analysis, we set the number of concurrent 
threads to four and alter the L2 cache size of the simulated 
machine from 48KB to 192KB. This creates variation in the 
L2 miss rate. Figure 2 shows the results. The difference 
between the measured and estimated IPC is 4% on average, 
with a median difference of 3%, and a maximum difference 
of 12%. The estimates were less accurate for gzip (12% 
discrepency) because the R_IPC estimate was less accurate 
for gzip than for other benchmarks. gzip is notably more 
compute-bound than the rest of the benchmarks, and the 



R_IPC equation did not suit it as well as the others. The 
model for R_IPC could be made more accurate if 
parameterized by the workload’s instruction mix. For the 
majority of the benchmarks, however, the simple R_IPC 
equation works well, as we expected. 

Next we analyze the model’s sensitivity to the number of 
concurrent threads. We set the cache size to 48KB and vary 
the number of concurrent threads executing the benchmark 
from two to four. The input perf_cache_IPC(N) for N <  V is 
estimated using the equation derived in a similar fashion as 
the equation for R_IPC, as explained in Section IV.  

Table 2 shows the data. The difference between the 
measured and estimated IPC is 4.21% (mean), 4.44% 
(median), and 12.20% (maximum) for four concurrent 
threads, 10.29% (mean), 7.89% (median), and 22.58% 
(largest) for three concurrent threads, and 11.51% (mean), 
9.38% (median), 21.74% (largest) for two concurrent threads. 
The accuracy is comparable to that of the SMT models 
described in the past: the mean, median and maximum errors 

reported by Saavedra-Barrera [16] are 7%, 4% and 28% 
respectively.  

Our model is less accurate when the degree of concurrency 
is smaller than the number of virtual processors, because in 
this case, perf_cache_IPC(N) is estimated using a regression-
derived linear equation. A precise model of 
perf_cache_IPC(N) would account for architectural details of 
the processor and the characteristics of the specific workload. 
Ongoing work on modeling SMT performance [7,12,31] 
suggests alternative avenues for approximating 
perf_cache_IPC(N) without sacrificing the model’s 
simplicity.  

A final enhancement to the model is accounting for the 
memory-bus delay. The existing models for memory-bus 
delay [26,27] are typically based on mean-value analysis of 
closed queuing networks [13,14,34]. We designed a model 
that is simpler than the existing models. We omit presentation 
of our memory bus model due to space constraints and 
encourage the reader to refer to the full manuscript for the 

TABLE 2. ANALYSIS OF MODEL SENSITIVITY TO THE NUMBER OF THREADS RUNNING IN PARALLEL. THE DATA IS OBTAINED WITH THE ASSUMPTION OF 
UNLIMITED MEMORY BANDWIDTH. 

4 threads 3 threads 2 threads  

Measured Estimated Difference Measured Estimated Difference Measured Estimated Difference 

bzip 0.50 0.53 6.00% 0.64 0.67 4.69% 0.89 0.74 16.85% 

crafty 0.46 0.47 2.17% 0.40 0.49 22.50% 0.34 0.41 20.59% 

eon 0.42 0.40 4.76% 0.34 0.35 2.94% 0.26 0.27 3.85% 

gap 0.50 0.54 8.00% 0.46 0.49 6.52% 0.43 0.46 6.98% 

gcc 0.35 0.35 0.00% 0.31 0.38 22.58% 0.23 0.28 21.74% 

gzip 0.82 0.72 12.20% 0.68 0.71 4.41% 0.52 0.55 5.77% 

mcf 0.50 0.50 0.00% 0.18 0.20 11.11% 0.15 0.16 6.67% 

parser 0.62 0.59 4.84% 0.49 0.56 14.29% 0.35 0.42 20.00% 

twolf 0.45 0.47 4.44% 0.38 0.35 7.89% 0.32 0.29 9.38% 

vortex 0.46 0.46 0.00% 0.37 0.43 16.22% 0.27 0.31 14.81% 

vpr 0.52 0.54 3.85% 0.45 0.45 0.00% 0.35 0.35 0.00% 

  Mean 4.21%   Mean 10.29%  Mean 11.51% 

  Median 4.44%   Median 7.89%  Median 9.38% 

  Maximum 12.20%   Maximum 22.58%  Maximum 21.74% 

 

Fig. 2.  Comparison between measured and estimated IPC.  Fig. 3.  Measured vs. estimated IPC with limited memory bandwidth.  
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details [33]. We account for the memory-bus delay in our 
model by adding the estimated delay to L2_MCOST (4). 
Figure 3 shows how the IPC estimated using our model, 
enhanced to account for the memory-bus delay, compares 
with the IPC measured on a simulated machine configured 
with memory bandwidth of 5.2GB/s. The differences between 
the measured and estimated values are 11% (mean), 10% 
(median), and 31% (largest). 

IV.  THE SCHEDULER 

We designed our model for use by a non-work-conserving 
scheduler. The scheduler uses our model to determine the 
degree of concurrency that yields the highest IPC on an SMT 
processor. To demonstrate the efficacy of our model, we built 
a user-level scheduler prototype. We now describe how the 
scheduler uses our model to make scheduling decisions and 
how it obtains input parameters for the model at runtime. 

We configure the scheduler with architecture-specific 
parameters (listed in the beginning Section III) and the 
equation for R_IPC (Section III.B.3). The scheduler operates 
in two phases: the preparation phase and the optimization 
phase:  

Preparation phase: The purpose of this phase is to prepare 
inputs for our IPC model. The scheduler runs a multi-process 
or a multithreaded job using all of the V virtual contexts. It 
collects measurements using hardware performance counters 
and generates the inputs for the model. (We explain how we 
generate inputs in Sections IV.A and IV.B.) This phase lasts 
until each thread retires roughly 100 million instructions – we 
empirically determined that for our benchmarks this length is 
sufficient to capture long-term cache-locality properties. 

Optimization phase: The purpose of this phase is to determine 
the best degree of concurrency and enforce it. For each 
degree of concurrency N < V, the scheduler estimates the IPC 
using our model. It then forces the degree of concurrency 
corresponding to the highest predicted IPC by disabling one 
or more virtual processors. If the IPC obtained with the 
highest degree of concurrency (measured during the 
preparation phase) is higher than any of the estimated IPC for 
N < V, the scheduler keeps all virtual processors busy.  

The optimization phase can last as long as the workload 
does not change its cache miss locality properties. If a 
workload enters a new locality phase, the optimization phase 
must be stopped, and the preparation phase must be repeated. 
We analyzed temporal locality behavior of our benchmarks, 
and found that most benchmarks have long locality phases 
and the changes between the phases are gradual. For such 
benchmarks, it is sufficient to repeat scheduling phases at 
fixed intervals, such as one billion instructions. For 
benchmarks with frequently changing access patterns, such as 
gcc, changes in locality phases must be detected dynamically, 
and the scheduling phases repeated when a change is 
detected. Previous research has shown how to perform 
dynamic locality phase prediction on conventional processors 
[37]. Similar ideas could be used on SMT processors. Our 
current prototype runs the optimization phase for one billion 
instructions and then repeats the preparation phase. 

A.  Obtaining input parameters for the model 

To estimate the IPC for a degree of concurrency N, where 
N < V, the scheduler provides the following inputs to the 
model: (1) perf_cache_IPC(N)  – the perfect-cache IPC for N 
threads, and (2) L2_MR(N) – the L2 cache miss rate achieved 
by N concurrent threads. The inputs are obtained using 
hardware performance counters, compiler-generated input, 
and simple models, as we describe next. 

    1)  Obtaining the perfect-cache IPC 

The perfect-cache IPC achieved by multiple homogeneous 
threads depends on two factors: how efficiently these threads 
use the processor, and how many threads are actually 
running. Therefore, the scheduler computes 
perf_cache_IPC(N) using a two-step process: (1) compute the 
perfect-cache IPC for the maximum degree of concurrency, 
perf_cache_IPC(V). This tells us how efficiently the threads 
use the processor; (2) For a given N, estimate 
perf_cache_IPC(N), using a regression-derived linear 
equation. We describe these steps in more detail: 

(1) We compute perf_cache_IPC(V) by applying the inverse 
of our model. Recall the general form for our model: 

IPC = F(N, perf_cache_CPI(N), L2_MR(N)). 

We first compute perf_cache_CPI(V) by applying the inverse 
of the model: 

 perf_cache_CPI(V) = F′(V, IPC, L2_MR(V)). 

(The actual IPC and the L2 miss rate L2_MR(V) are obtained 
during the preparation phase from the hardware counters.) 
We then compute perf_cache_IPC(V) by taking the inverse of 
perf_cache_CPI(V). 
 
(2) We estimate perf_cache_IPC(N) using a regression-
derived linear equation, where N and perf_cache_IPC(V) are 
supplied as inputs. The equation has the same form and is 
derived in a similar way as (8) (the equation for R_IPC). This 
equation is also supplied to the scheduler upon initialization.  
 

We evaluated the accuracy of the estimated 
perf_cache_IPC(N) and found that the difference between the 
actual and the estimated perf_cache_IPC(N) is 7.14% 
(average), 6.17% (median), and 22.92% (max). Furthermore, 
we found that if separate equations are derived for workloads 
with high cache miss rates and medium-to-low cache miss 
rates, the accuracy significantly improves: the difference 
between the actual and the estimated perf_cache_IPC(N) is 
2.7% (average), 1.55% (median), and 6.87% (max). 

    2)  Obtaining the L2 miss rate 

There are two known techniques to estimate L2_MR(N), 
the L2 miss rate when N < V threads run in parallel: (1) the 
stack-distance model and (2) the reuse-distance model. The 
stack-distance model requires a stack-distance profile of the 
running program – a short summary of the program’s 
memory access patterns that captures its temporal reuse 
behavior. The stack-distance profile can be obtained statically 
using a compiler [18] or at runtime if the machine has 
appropriate hardware counters [19]. Multiple stack-distance 



profiles are combined to accurately estimate miss rates for N 
concurrent threads [20].   

A reuse-distance model [32] requires a reuse-distance 
histogram, which, similarly to the stack-distance profile, 
captures the temporal reuse behavior of the running program. 
Reuse-distance histogram can be obtained online, but this 
process generates performance overhead.  

More work is needed to determine which is the better 
method for online estimation of L2_MR(N). The stack-
distance model is said to have poor accuracy for workloads 
with frequently changing execution patterns [18]. 
Additionally, it relies on compiler-generated stack distance 
profiles. A reuse-distance model is more flexible, but 
generates performance overhead, sometimes as much as 40% 
[32]. Although accuracy can be sacrificed for performance 
with the reuse-distance model, more work is needed to 
determine whether an acceptable trade-off can be achieved.  

In our prototype, we estimated L2_MR(N) using a method 
based on the stack-distance model. Although stack-distance 
profiles are typically furnished by a compiler, we 
instrumented our simulator to build such profiles. We 
generated profiles for all benchmarks in advance, and then 
supplied them to the scheduler. 

B.  Performance results 

In this section, we demonstrate how our non-work-
conserving (NWC) scheduler improves application 
performance by determining the best degree of concurrency. 
We chose several memory-bound benchmarks (such 
benchmarks are likely to benefit from the non-work-
conserving policy) and one compute-bound benchmark. Our 
experiment consists of running four concurrent instances of a 
benchmark on our processor with four virtual contexts and a 
given L2 cache size. We use several cache sizes. We use 
reference input sets. We fast-forward the simulation until all 
the threads have reached their main processing loop, and then 
perform detailed simulation for 100 million instructions.  

The NWC scheduler performs the preparation phase 
during this execution segment. At the end of the preparation 
phase, the scheduler uses our model to determine the degree 
of concurrency yielding the highest IPC. To determine 
performance with the NWC scheduler, we measure the IPC 
achieved with the degree of concurrency selected as the best 
over a period of 100 million instructions. 

To determine the performance with the default scheduler, 
we measure the IPC achieved using the maximum degree of 
concurrency. We determine the optimal IPC by simulating 
each benchmark using all possible degrees of concurrency, 
and selecting the highest IPC.  

Figure 4 shows the results. There are three sets of bars for 
each experiment, showing the IPC achieved with the default 
scheduler (default), the non-work-conserving scheduler 
(NWC), and the optimal IPC (optimal). On the left side of the 
graph, we show the cases where better performance can be 
achieved with non-work-conserving scheduling (CAN 
IMPROVE). The NWC scheduler improves performance in 
each case, from 3% to 56%, often achieving the IPC as high 
as the optimal.  

On the right side of the graph, we show the cases where no 
performance improvement can result from non-work-
conserving scheduling (CANNOT IMPROVE): the IPC with 
the default scheduler is already as high as the optimal. In 
these cases the NWC scheduler correctly decides to keep all 
virtual processors busy, achieving the IPC equal to the 
optimal. Note that each memory-intensive benchmark that 
appears in the “CAN IMPROVE” section of the graph also 
appears in the “CANNOT IMPROVE” section with a larger 
cache size, where performance can no longer be improved by 
lowering the degree of concurrency.   

Our results demonstrate feasibility of implementing a non-
work-conserving scheduler that uses an online model to 
determine the best degree of concurrency. Although we have 
not evaluated the performance overhead generated by the 
scheduler, we believe it can be made small: most 
computations involve simple integer arithmetic and reading 
values for hardware counters, which typically have overheads 
of only a few cycles. The key to obtaining these results is our 
simple model that works with inputs obtainable during 
compilation and at runtime.  

V.  RELATED WORK 

IPC models for SMT processors proposed in the past 
[16,17] use Markov processes to model an SMT processor’s 
transitions between busy and stalled states. These models are 
not trivial to solve; closed form solutions are approximated. 
Our model uses basic probability theory and is simpler, but 
not less accurate. Additionally, our model works with inputs 
that are obtainable at runtime or from a compiler. 

Jung and et al. proposed a compiler technique to determine 
the optimal number of threads to execute a parallelizable loop 
on an SMT processor [12]. Their IPC model is derived using 
linear regression and is parameterized by the workload 
instruction mix. We would like to use the techniques 
presented in this work to develop more precise models for 
R_IPC and perfect-cache IPC for degrees of concurrency 
smaller than the maximum.  

Moseley et al. [31] presented IPC models for SMT 
processors that are also suitable for online use but are less 
accurate than ours. They model all sources of resource 
contention with simple models derived using linear regression 
and recursive partitioning.  In contrast, we model the most 
significant source of contention using an accurate model, 
resorting to regression-derived models only for less important 

Fig. 4.  IPC with the default scheduler, the NWC scheduler, and the optimal.  
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sources of contention. Although Moseley’s models are less 
accurate, they work across different architectures. We 
envision using the results of this work to make our model 
cross-architectural. 

VI.  CONCLUSIONS 

We presented a non-work-conserving scheduler for SMT 
processors and evaluated it using a user-level prototype. Our 
scheduler determines when using a maximum degree of 
concurrency on an SMT processor produces thrashing and 
improves performance by lowering the degree of 
concurrency. Scheduling decisions are made using a new 
online SMT performance model, which is simple, but as 
accurate as existing off-line models. We achieved simplicity 
by precisely modeling contention for the L2 cache, which has 
a high impact on the IPC, and approximating contention for 
other resources using simple models. To further enhance 
fidelity of our scheduler, we plan to work on improving 
online models for cache miss rates on SMT processors. We 
also plan to develop methods for online derivation of 
equations for perfect-cache IPC. In addition to addressing 
these challenges, we would like to apply our model to other 
SMT architectures and evaluate if using heterogeneous 
workloads. 
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