
JumpGate: Automating Integration of Network
Connected Accelerators
PRELIMINARY DRAFT

Craig Mustard
UBC

craigm@ece.ubc.ca

Swati Goswami
UBC

sggoswam@cs.ubc.ca

Niloofar Gharavi
UBC

email3@mail.com

Joel Nider
UBC

joel@ece.ubc.ca

Ivan Beschastnikh
UBC

bestchai@cs.ubc.ca

Alexandra Fedorova
UBC

sasha@ece.ubc.ca

ABSTRACT
Network-connected accelerators (NCA), such programmable
switches, ASICs, and FPGAs can speed up operations in data
analytics manyfold. But so far, integration of NCAs into data
analytics systems required manual effort: orchestrating their
execution over the network and converting data to and from
formats understood by NCAs. Clearly, this manual approach
is neither scalable nor sustainable.
We present JumpGate, a system that simplifies integra-

tion of existing NCA code into data analytics systems, such
as Apache Spark or Presto. JumpGate places most of the
integration code into the analytics system, which needs to
be written once, leaving NCA programmers to write only
a couple hundred lines of code to integrate of new NCAs.
JumpGate relies on dataflow graphs that most analytics sys-
tems internally use for query processing, and takes care of
the invocation of NCAs, the necessary format conversion,
and orchestration of their execution via novel staged network
pipelines.

Our implementation of JumpGate in Apache Spark made
it possible, for the first time, to study the benefits and draw-
backs of using NCAs across the entire range of queries in
the TPC-DS benchmark. Since we lack hardware that can
accelerate all analytics operations, we implemented NCAs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR’21, June 14-16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/1234.5678

in software. We report insights on how and when analyt-
ics workloads will benefit from NCAs to motivate future
designs.

ACM Reference Format:
Craig Mustard, Swati Goswami, Niloofar Gharavi, Joel Nider, Ivan
Beschastnikh, and Alexandra Fedorova. 2021. JumpGate: Automat-
ing Integration of Network ConnectedAccelerators [PRELIMINARY
DRAFT]. In Proceedings of ACM International Systems and Stor-
age Conference (SYSTOR’21). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.475/1234.5678

1 INTRODUCTION
As Dennard scaling and Moore’s law reach their limits,
system designers are turning to domain-specific accelera-
tors. Network-connected accelerators (NCA) show promise for
data analytics. NCAs implemented on top of programmable
switches, such as Cheetah, NetAccel, PPS and Sonata, showed
a 2-8× speedup for a join-and-group-by operation, a 6.5×
speedup for string search and a 3-7 orders of magnitude re-
duction in network traffic [15, 20, 31, 52]. More generally,
FPGAs, SmartNICs and network-based software accelerators
demonstrate speedups of 2-10× for analytics (§2).

Two steps are required to use an NCA inside an analytics
system: (1) writing the NCA code itself, and (2) integrating it
into the analytics system. This paper focuses on the second
step – integration, which up to this point has been done
manually, for each new NCA.

Integration involves conversion of input data into the for-
mat suitable to the NCA, the invocation of the NCA, and
the orchestration of the execution and data exchange. NCAs
need format conversion, because they are usually limited in
resources and cannot parse common storage formats. They
need orchestration, because they have limited storage and
(typically) must stream data as it is made available by the
sender and ingested by the recipient. Performing these steps
manually for every new NCA and every analytics system

https://doi.org/10.475/1234.5678
https://doi.org/10.475/1234.5678

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

puts unnecessary burden on programmers and slows devel-
opment and adoption of these promising accelerators.

We present JumpGate, a system that simplifies integration.
The key insight underlying JumpGate’s design is that data
flow graphs, used internally by query processing engines
in analytics systems, provide a convenient abstraction for
using NCAs. At the heart of JumpGate is a compiler that
(upon query submission) generates the appropriate format
converters for the available NCAs, specializes the existing
NCA code for the operations in the query (if needed), and
ensures NCAs can communicate with one-another and the
analytics system. To process a query, JumpGate orchestrates
the execution of NCAs, converters, and the analytics system
using an execution paradigm called staged network pipelines.
JumpGate divides the integration effort between analytics
system programmers and NCA programmers: We add Jump-
Gate to Apache Spark with 2200 LoC, and to Presto with
1870 LoC. (This paper focuses on the Spark implementation).
NCA programmers creating new accelerators need to write
only a few hundred lines of Arc integration code: 186-609
LoC, in our experience.

Using NCAs for analytics presents trade-offs that need to
be quantified across many queries: data formats for NCAs
can inflate intermediate data volumes, and format converters
and orchestration add overheads. In the past, it was difficult
to study these overheads at scale, because manual integra-
tion limited how many queries could use NCAs. For exam-
ple, the most substantial work known to us studied only 9
queries [52]. With JumpGate we are able to offload opera-
tions in all of 99 TPC-DS1 queries and study the implications
of using NCAs across a wide range of workloads.

Since we had limited access to hardware NCAs (only a sim-
ple aggregation operation implemented in a programmable
switch was available to us), we implemented five NCAs in
software to ensure good coverage; in the end, we were able
to offload 60% of TPC-DS operations. We found that using
NCAs creates a trade-off: instead of materializing the data in
memory of an analytics system, a similar volume of data is
sent on the network. Offloading is beneficial when NCAs can
reduce the volume of data received by the analytics system
(often by orders of magnitude in our experiments), which
also reduces work the client system must perform. Perfor-
mance improves when the network and NCAs transfer and
process data faster than the analytics system: our studied
NCAs can accelerate certain queries by 1.12 − 3× in these
conditions. Finally, most NCA pipelines we studied were bot-
tlenecked on converting input data to the format suitable for
NCAs, indicating that accelerating format conversion should
be a future research direction.

1TPC-DS is a popular SQL benchmark for data analytics.

In summary, our key contributions are the architecture
of JumpGate, its implementation in Apache Spark, and the
study of pros and cons of using NCAs to execute TPC-DS.
§2 provides the background, §3 and §4 present the design
of JumpGate and its implementation, §5 describes the eval-
uation, and §6 offers a discussion and reflects on future re-
search.

2 BACKGROUND AND RELATEDWORK
Data analytics engines translate a user’s query into a logical
graph of operations, and then map it to a physical graph
of implementations that perform them. Analytics dataflow
graphs are so similar between systems that they can be trans-
lated from one system to another [12, 37, 41, 42]. JumpGate
builds on this property and translates a dataflow graph into
a graph of NCAs from a set of known NCA implementations.
This design makes it easy to integrate JumpGate with various
analytics engines.
Analytics systems leverage the dataflow graph for dis-

tributed execution onworker nodes in a cluster. At first glance,
it seems trivial to swap a conventional node for an NCA, but
in reality this requires non-trivial integration effort, because
NCAs are built with unconventional and typically limited
processing hardware and constrained storage.

Programmable dataplane switches, equipped with custom
ASICs, were used to speed up analytics tasks by up to 10-
1000× [13, 15, 21, 22, 31, 47, 51], but they can store at most
tens of MB of intermediate data and process no more than
≈100s of bytes per packet. Storage accelerators [10, 14, 19, 23,
26, 55], SmartNICs, and FPGA-based accelerators have their
own constraints [25, 33, 34, 43].
In contrast, analytics systems (e.g., Apache Spark [5],

Hadoop [6], Dryad [18]) assume worker nodes can store
intermediate data (often tens or hundreds of GB) in local
memory or storage. Even Presto [50], which pipelines con-
current tasks, buffers data in memory until requested by a
consumer. JetScope [8] also pipelines tasks but still requires
workers to write intermediate data to local storage for fault
tolerance.
Most NCAs do not have the storage, computational, or

memory resources of a conventional worker node, so in-
tegrating them into an analytics system requires new ap-
proaches to orchestration and data exchange. NCAs must
often run concurrently with data producers/consumers and
must stream data from/to the source and the destination.
Similarly, NCAs using specialized processors are unable to
parse arbitrary data formats. As a result, Cheetah, NetAc-
cel [31], DAIET [47], PPS [20] and SwitchML [48] each had
to write custom programs to convert input data for their
NCAs. JumpGate takes care of these integration tasks so that

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

Figure 1: JumpGate bridges analytics systems and net-
work connected accelerators (NCAs).

NCA programmers just need to write code to add their NCA
to JumpGate’s library.
JumpGate delivers on our early work that described the

challenges to using NCAs [54]. The most recent related sys-
tem is Cheetah [51, 52], which interposes between Spark
master and workers to prune data just before it is returned to
the analytics system. This approach limits the operations that
can run on NCAs to just a final filtering operation, so Chee-
tah is only evaluated on 9 queries. By contrast, JumpGate
can support any dataflow graph that contains operations for
which there are NCA implementations.

3 JUMPGATE DESIGN
3.1 Overview
JumpGate enables existing systems to execute relational
(SQL) queries on NCAs. JumpGate sits between the analytics
system and the set of NCAs that were added to its library
(Figure 1). Since JumpGate positions the analytics system
to use the services of NCAs, we will refer to the analytics
system as the client.
JumpGate provides two new interfaces for adding NCAs

to its library: (1) an operator interface that describes the rela-
tional operations and data format compatibility of each NCA,
and (2) a life-cycle interface that describes how to launch, ex-
ecute and communicate with the NCA (§3.3). To add a new
NCA, programmers write a small amount of code to imple-
ment these APIs.
To execute client requests, JumpGate uses a task execu-

tion and communication paradigm called Staged Networked
Pipelines (SNPs)(§3.4). SNPs simplify communication and
stage data streaming to enable the execution of analytics
tasks in constrained NCAs.
To address the need for simple data formats, JumpGate

introduces network tuple formats (NTFs). NTF is a data seri-
alization format where the precise data layout is determined
before execution. (§3.5).

JumpGate allows the network transport to vary between
two given NCAs or the client and the NCA, and ensures each
pair is compatible. Prior systems that used programmable
switches for analytics sent a tuple/row per UDP packet, some-
times with an added reliability layer [22, 48, 51, 52, 57]. This
approach requires changes to clients to receive UDP packets
at high speed usingDPDK [45], which can limit adoption [35].
JumpGate’s design allows the client to pick its desired proto-
col, leaving NCAs the freedom to implement their own.

Scope and Assumptions. This work contributes inte-
gration of individual NCAs, but does not address resource
allocation and scheduling. We employ simple algorithms
in our implementation (described below), but for produc-
tion deployments, resource schedulers like Kubernetes [27],
Mesos [17] or OpenStack [49] would be a better choice.

JumpGate assumes the client will retry failed queries, and
our Spark integration does this. This decision is in-line with
Themis [46] and Presto [50] that note failure recovery is
expensive with little benefit, even at ≈ 1000 nodes, when
job times are under a few hours.

3.2 JumpGate Step-by-Step
We begin with an example showing how operations of a
SQL query are offloaded to NCAs via JumpGate. The steps,
described below, are summarized in Figure 2.

1 A user submits a SQL query to Spark to calculate total
sales from each store for a given item, grouped by the store’s
state. 2 Spark parses the SQL query and computes a query
plan consisting of relational operations. The plan reads from
the sales and store tables and filters and projects each output,
then joins and aggregates the results.

3 Spark generates a dataflowAPI request for JumpGate
using its existing query plan and submits it to JumpGate.
Spark may submit the full or partial query plan (see §3.3.1); in
our example, it splits the aggregation operation into a partial
aggregation to be done by JumpGate and a full aggregation
to be finished by Spark workers.

4 JumpGate begins the compilation phase. During this
phase it maps the dataflow request to a set of NCA imple-
mentations that are able to run the requested operations,
computes the network tuple formats (NTF) that NCAs
will use to communicate, and specializes the NCA implemen-
tations for the operations and the NTFs. JumpGate uses the
operator interface to query the NCAs in its library and
find ones that can run the requested operations and com-
municate with adjacent NCAs or the client (§3.3.2). In this
example, JumpGate chooses NCA1 – 4 from the available
NCAs shown in the figure.

5 JumpGate coordinates execution by organizing the
selected NCAs into a staged networked pipeline that en-
sures that producers and consumers run concurrently and

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

SELECT sum(price), t.state
FROM sales s
INNER JOIN stores t

ON s.store_id = t.id
WHERE s.item_id = 100
GROUP BY t.state

* NCA3 executes
over two stages
so that input to
join is correctly
ordered.

Spark Plan

User’s Query

Spark
Original Query Plan

aggregate

project

sales

project

filter

stores

project

filter

join

partial agg.

project

sales

project

filter

project

filter

join

stores

Arc:

aggregate

NCA implementations declared via Operator Interface

partial agg.

stores

project

filter
project

join

project

filter

sales

Arc maps dataflow requests to NCA implementations:
NCA1 NCA2 NCA4

NCA3
Prog. Switch UDPPartial Aggregation

Join - Project Software TCP / UDP

Relational Operations Runs On Protocols

Scan - Filter - Project Software TCP / UDP

Spark
Workers

Staged Networked Pipelines

Stage 1

Stage 2

NCAs exchange data in
Network Tuple Format

state (i64)NULL (2) store_id (i64)

NCA1 NCA3

NULL (2) price (f64) store_id (i64)

NCA2 NCA3

NULL (2) price (f64) state (i64)

NCA3 NCA4

NULL (2) sum(price) (f64) state (i64)

NCA4 Spark Workers
NCA1NCA3*

NCA2

NCA4

Dataflow Request

1

2

3

4

5 6

Figure 2: How JumpGate interacts with client analytics systems and accelerators to deliver processed data to client
endpoints.

guarantees that stateless NCAs do not need to store interme-
diate results.
In stage 1, NCA1 reads the store table and sends data to

NCA3 to build an in-memory hash-table used for the join. In
stage 2, NCA2 reads the sales table and sends data to NCA3
to probe the hash-table. NCA3 sends joined tuples to NCA4
to be aggregated, which forwards partially aggregated results
to Spark workers.

6 JumpGate initializes each NCA and signals them to
execute using the life-cycle interface(§3.3.3).

Summary This overview highlighted the important parts
of JumpGate’s design and how they help address our goals:
1. Dataflow API allows easy interfacing with analytics
systems. 2. The operator and life-cycle interfaces allow
JumpGate to query the capabilities and limitations of various
NCA and to control them. 3. Staged Networked Pipelines
enable correct input ordering to relieve NCAs from storing
or buffering intermediate data unless required by the seman-
tics of the operation they implement. 4. Network Tuple
Formats solve the per-packet read limitations of NCAs by
simplifying the data format transmitted between NCAs and
the client. The next sections describe these parts in detail.

3.3 APIs used in JumpGate
3.3.1 Dataflow API. Clients use JumpGate’s dataflow API to
construct dataflow requests bottom-up, starting with reading
data from storage. Prior work required analytics systems to

know the specific NCAs to use, but the dataflow API means
clients do not need to know the set of available NCAs.

The client decides which parts of the query plan to send to
JumpGate based on the operations that JumpGate supports,
shown in Table 1. Most are familiar data analytics operations
and the list can be expanded as needed. JumpGate adds one
operation that is important for sending data to the client:
Send specifies the address, port, and transport protocol of the
client machines that will receive data. Clients can insert a
shuffle operation to partition results between multiple client
nodes.
The client may decide to send the entire query plan to

JumpGate or parts of it. Presently this decision is greedy
(every supported operation is sent), but it can be enhanced
to account for the costs and benefits of using JumpGate.
For example, §5 describes a simple heuristic we use in our
implementation to offset the start-up overhead.

JumpGate iteratively transforms a dataflow request into a
graph of NCA instances by repeatedly picking an operation
to replace, and calling all known NCAs operator interface to
check if it can implement the operation. JumpGate generates
candidate graphs and greedily picks one with the smallest
number of nodes so operations are fused together. Future im-
plementations could apply prior work on query and dataflow
optimization to improve this algorithm as needed [30, 56].
Upon receiving the request. JumpGate returns a job ID,

a description of the chosen NCAs, and the network tuple

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

Operation Parameters Description

read path, format, schema Reads data from path in format, returns records in the given schema.
filter expression Filters input records according to expression.

project expressions, output_schema Applies expressions to the input data and emits a new record in out-
put_schema.

shuffle shuffle_key Records with the same shuffle_key are forwarded to the same destina-
tion.

join inner, outer, condition, join_type Joins records from inner to outer according to join_type.
aggregate key, expressions, output_schema Groups records by key, applies aggregate expressions and outputs

records as output_schema.
send host, transport, format Send records towards host on the given transport in the given format.

Table 1: JumpGate’s Client API: supported operations and their parameters.

Name Meaning

match_input Return true when the NCA accepts
the input NTF on a given transport.

match_operations Given a DAG node, return the node
and any subsequent ones if the NCA
can implement them.

match_output Return the NTF/transport the NCA
would emit.

Table 2: Operator interface used to query if an NCA
can replace a logical operation.

format the client will receive (§3.3.2). When the client ma-
chines are ready to receive data, the client submits the job
ID to begin execution, and JumpGate signals the NCAs to
begin working and sending data to the client.

3.3.2 Operator Interfaces. JumpGate has a library of NCA
implementations we call operators. NCA designers imple-
ment the operator interface to help JumpGate find NCAs that
can be used to execute operations in the client’s request
(see Table 2). match_input and match_operations check
if the NCA can receive data in a given format and implement
the given operations. match_output returns the NTF the
NCA would emit and the transport that would be used, given
the same parameters passed to the first two functions.
The operator interface gives NCA designers freedom to

implement any detailed applicability checks their device
may need. For instance, some NCAs might support any join
operation, but others may only be able to run joins with
specific characteristics, such as a single 32-bit join key.

3.3.3 Life-cycle Interface. JumpGate uses the life-cycle in-
terface (Table 3) to control each NCA executing the client
request. This interface must be implemented by the NCA
designer and enables JumpGate to coordinate diverse NCAs

Name Meaning

compile Compile a binary or configuration to imple-
ment the NCA’s assigned operations.

allocate Start the NCA instance. Returns IP/port of lis-
tening NCA.

configure Configure the destination IP/port(s) of this
NCAs output.

execute Start processing and sending data. Called mul-
tiple times for many-stage operations (i.e. join)

destroy Called on completion/failure to clean up NCA.
Table 3: Life-cycle interface to control NCAs.

to work together. For instance, some NCAs will use vendor-
specific RPCs (e.g., programmable switches), while others
can be controlled via SSH. The life-cycle API abstracts these
idiosyncrasies.

3.4 Staged Networked Pipelines
SNPs solve the problem of limited NCA storage. SNPs orga-
nize NCAs to execute in stages. NCAs in the same stage are
guaranteed to execute concurrently, and stages are ordered
to satisfy data dependencies. Since NCAs in the same stage
run concurrently, SNPs ensure that only operations that in-
herently store data must do so: NCAs with limited or no
storage can be used for stateless (or limited state) operators,
such as filter, shuffle, or partial aggregation. Only operations
that require state, such as join or final aggregation, need to
be implemented on NCAs that have storage.
To compute stages, JumpGate uses a modified topologi-

cal sort: runnable operations are added to the current stage,
marked as executed, and a new stage is begun. JumpGate
repeats this process until all operations are marked. The key
difference of SNPs from scheduling jobs in other dataflow

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

systems is that they cannot rely on nodes to store intermedi-
ate results in local storage or memory: the nodes must be set
up, connected and launched to ensure that producers and
consumers are all available when needed, to cater to NCAs
that cannot store intermediate results.

3.5 Network Tuple Formats
NTFs solve the problem of limited parsing capability of NCAs,
while supporting multiple NCAs and common storage for-
mats. An NTF encodes the byte layout of the data that a
producer NCA will send to its consumers. JumpGate com-
putes NTFs while mapping the dataflow request to NCAs and
checks that the output data of every producer is compatible
with the consumers (via the operator interface). To read data
from storage formats (e.g., ORC, JSON), JumpGate uses con-
verters that translate this data to NTF. JumpGate then uses
the life-cycle interface to compile/configure converters and
NCAs to efficiently write/read a specific NTF layout before
execution begins.
JumpGate uses the operator interface of each NCA to

check that the producers and consumers can transmit/receive
a given NTF. Some NCAs have a fixed output format, such
as the implementation of aggregation on a programmable
switch used in our evaluation that always outputs three fields:
a sum, count, and grouping key. Such NCAs just return their
fixed NTF specification for their output.

Prior work uses fixed data formats, assumes there is only
oneNCA in use, and relies on hand-coded software to convert
input data into the fixed NCA format. For instance, Chee-
tah [51] has a format specific to a programmable switch
that only supports fixed-length values and must include the
number of columns in each packet.

Figure 2 shows the generated NTFs for producer-consumer
pairs in our example. For now each NTF includes: a bit
vector for null values, fixed-length binary fields, and a
variable-length section at the end. Strings are handled as
offset/lengths that point into the variable-length section. We
expect the layout of NTFs to co-evolve with device capabili-
ties (e.g., a column-wise format might be preferred between
more capable devices) since an NTF specification can vary
at the level of each producer-consumer pair.

4 IMPLEMENTATION
Since JumpGate is not on the data-path we did not have to
worry about runtime overhead when choosing the language.
We implemented JumpGate in about 5,500 LoC of Python.

Other Clients – In addition to Spark (detailed in §5.2),
there are two other JumpGate clients: a Python client to aid in
testing JumpGate without requiring Spark, and a preliminary
Presto [50] client that can submit jobs and receive data from

Lines of Code

Name Supported Ops NCA Integration

JSON scan-[agg] 505 458
ORC scan-[agg] 586 501
Join join-[project] 766 609
Agg [partial] aggregation 475 344
Shuffle shuffle 321 203
PS-Agg partial aggregation 700 186

Table 4: JumpGate’s NCA implementations: the opera-
tions they support and the lines of code to implement:
the NCA and the integration. Square brackets denote
optional operations the NCA can support.

JumpGate, but does not yet offload as many operations as
Spark.
NCA Implementations – The NCA implementations used

in our evaluation are shown in Table 4. Most of the NCAs
were written in software, because we did not have many
hardware NCAs for TPC-DS operations available to us. Our
goal was to evaluate integration, and not NCAs themselves,
so software implementations are appropriate. There was one
hardware NCA implementation that we could implement,
partial aggregation in P4 for the Barefoot Network’s Tofino
switch (PS-Agg), and we evaluate JumpGate with it in §5.5.
JSON [28, 32, 40] and ORC [2, 4, 36, 39, 53] are popular

formats used in data analytics. The JSON and ORC software
NCAs refer to the accelerators that simultaneously read the
data from storage (scan, convert it from either JSON or ORC
to the desired NTF, and optionally filter or project it, if the
operation requires. JumpGate uses simdjson [28] to parse
JSON, and the Apache ORC C++ Library to parse ORC [3].

5 EVALUATION
5.1 Experimental Setup
Workloads We use the TPC-DS benchmark [38, 44], which
consists of 99 parameterized SQL queries over simulated
retail store representing analytics queries used for decision-
making.We use spark-sql-perf [9] to execute TPC-DS queries
in Spark; spark-sql-perf breaks up the 99 canonical TPC-DS
queries into 104 individual ones. When Spark uses JumpGate,
it can submit many requests for a single query depending on
which operations are sent to JumpGate. Spark hits memory
limits executing a couple of queries, so we exclude them from
the evaluation. We generate TPC-DS data in JSON format at
scale factor=100 (≈ 370𝐺𝐵 uncompressed) and ORC format
at SF=1000 (≈ 387 GB compressed).

Hardware Setup. We run JumpGate on one machine,
which receives jobs, compiles them, and then sends compiled

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

NCA binaries to other machines in the cluster for execution.
Our Spark master runs on the same machine as JumpGate.
Spark worker nodes run on other machines. For equal com-
parison, we always run JumpGate software NCAs with the
same resources that we run baseline Spark with. Input data
is stored on each machine. We explain our specific setup in
the relevant sections.

Metrics.We measure query execution time using spark-
sql-perf’s built-in benchmarking, whichmeasures the end-to-
end time of each query. OnewayNCAs can improve analytics
performance is by reducing the amount of data that client
systems process. We measure data read and processed by
Spark and JumpGate to show this reduction. We measure
lines of code (without comments) using cloc [1].

5.2 Client Integration: Apache Spark
We made Apache Spark 2.4.4 an JumpGate client using 2,200
LoC – a small amount compared to Spark’s SQL modules,
which comprise around 100,000 LoC. This suggests that using
JumpGate from client systems will not be onerous. We break
down the changes as follows:

Query planning (1,100 LoC): Spark currently offloads scan,
filter, projection, broadcast hash-joins, and aggregations.
Spark does not offload sort-merge-joins, top-k or operations
that reference results of subqueries. Execution (450 LoC):
Spark coordinates JumpGate job submission with worker
nodes, so the job request includes listening network end-
points of the workers. Receiving Data (550 LoC): Spark is
built to read files, so we added code to receive data over
TCP and UDP sockets from NCAs. To receive data as fast
as possible, we used Spark’s code-generator to generate an
NTF parser based on JumpGate’s response to the submitted
job.
Offload heuristic (100 LoC): JumpGate’s prototype has

start-up overhead on the order of seconds (mostly due to
dynamic compilation – see §5.3), so offloading queries over
small datasets is not worthwhile. The amount of data𝐷 that is
worthwhile to process with JumpGate is found by solving an
equation that estimates the execution time of both systems:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 𝐽 𝑢𝑚𝑝𝐺𝑎𝑡𝑒+𝐷/𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 𝐽 𝑢𝑚𝑝𝐺𝑎𝑡𝑒 ≤ 𝐷/𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑆𝑝𝑎𝑟𝑘 .

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 is determined experimentally by measuring an
aggregation over a large table. Both 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 and 𝐷 are
computed per-core so that Spark sends operations to Jump-
Gate when the request would process at at least one dataset
of at least 𝐷 ×𝑛𝑢𝑚𝐶𝑜𝑟𝑒𝑠 in size. We set 𝐷 at 700𝑀𝐵 to offset
a worst-case ≈ 6 seconds of overhead.

5.3 JumpGate Overhead
To measure the overhead of JumpGate, we configure Spark
to offload all eligible operations from TPC-DS to JumpGate

0 2500 5000 7500 10000 12500 15000 17500
Arc Job Breakdown (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 A

rc
 Jo

bs

1. Request Mapping
2. NCA Compilation
3. Life-cycle Setup
4. Stage Execution
Total Time

Figure 3: CDF showing the latency of the four execu-
tion phases in JumpGate. Request Mapping: map a re-
quest to a SNP. NCA compilation: specialize NCAs for
the operations they execute. Life-cycle Setup: upload
and start binaries on worker machines. Stage Execu-
tion: run the query.

(disabling the offload heuristic) and to useminimal data (each
input table contains only a single record). This experiment es-
sentially measures the time to receive “done” messages from
NCAs and signal NCAs to switch stages without measuring
the throughput of NCAs. Here we use a 64-core machine to
run JumpGate, and deploy compiled NCAs to 4 machines.

Figure 3 shows a CDF breakdown of execution time for all
1205 requests in this setup. Spark without JumpGate takes
11-950ms for the same test. Static overheads are high, but
are paid only at the start of a query: 95% of jobs take less
than 6s (mean 3.6s). Request Mapping takes 0.09-2.4s, de-
pending on job complexity. NCA Compilation takes 0.88-5s,
as each NCA is compiled in parallel. Life-cycle Setup takes
1.5-5.8s, because of using SSH to transfer binaries and start
processes on remote machines. However, dynamic overheads
are low: Stage execution takes 13ms - 70ms for all jobs,
depending on the number of stages in each job. Low dynamic
overheads mean JumpGate can get out of the way during exe-
cution, so it is possible to benefit from high performance NCAs.
We discuss how to reduce static overheads in §6, but this is
not necessary because the offload heuristic (§5.2) ensures
static overheads are amortized across long running jobs.

5.4 Performance: Understanding NCA
Behaviour on Real Queries

This section explores how NCAs behave when executing
queries and illustrates the main factors and bottlenecks that
affect performance when Spark uses JumpGate. We start by
examining a few queries individually to understand perfor-
mance factors before presenting aggregate performance on
TPC-DS.

Experimental Setup.We ran these experiments on Mi-
crosoft Azure. One setup uses four LSv2 nodes, with 8 cores
each, giving 3.2Gbps inter-machine bandwidth. To get a

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

0 10 20 30 40 50 60 70
Time (seconds)

shuffle-1

aggregate-1

shuffle-0

aggregate-0

join-0

orc-0

join-1

orc-1

orc-2

Arc Job

NC
As

Sent 46KB

Sent 46KB

Sent 421KB

Sent 421KB

Sent 45MB

Sent 22KB

Sent 12GB

Sent 117KB

Sent 72GB

Arc Execution
Arc Setup
NCA Processing Fraction
NCA Blocked Fraction
Spark + Arc Runtime
Spark Runtime
Sends to

From
Storage

Mat. to
Memory

Spark
Received

25GB

76GB

46KB

Input Data Volumes

Figure 4: Visualization of JumpGate’s execution of
TPC-DS Query 3. JumpGate job bars (top) break down
JumpGate’s set-up and execution time for the job. Be-
low are theNCAs used to execute the job. Arrows show
howNCAs send data to one another: datamostly flows
downward. shuffle-1 is the NCA that transmits data
to Spark. For each NCA bar, we show the fraction of
time it spent processing data (orange) and the frac-
tion spent waiting to read or send data on the net-
work (blue). In reality, these two phases are highly in-
terleaved, but are aggregated here for readability. The
overlaid text shows how much data each NCA sends.
The inset bar chart at the bottom-right shows the over-
all data volume: read from storage, materialized to
memory, and transmitted back to Spark for this query,
from left to right.

faster network with similar core counts, we use the 40GBps
loopback network of single 32 core LSv2 instance and restrict
each Spark worker and JumpGate software NCAs to use at
most 8 cores to simulate the first setup. At this time, no ma-
jor cloud providers offer a combination of high bandwidth
and low core counts, so this is the best we could do to fairly
compare JumpGate to Spark.

Format conversion is a bottleneck. Figure 4 shows
a timeline view of JumpGate executing TPC-DS Query 3,
which has similar performance with and without JumpGate.
To explain why, recall that SNPs form parallel pipelines of
NCAs. A pipeline’s throughput is limited by the throughput
of its slowest component [16, 24, 29]. So, orc-2 is the bot-
tleneck because most of its time is spent processing (orange
fraction) and other NCAs spend most of the time waiting for
data (blue fraction). JumpGate’s ORC NCA uses a C++ ORC
parser which is almost twice as fast as the Java implementa-
tion used by Spark, but the extra work of converting ORC to
NTF offsets this advantage.

0 10 20 30 40 50
Time (seconds)

shuffle-1

aggregate-1

shuffle-0

aggregate-0

join-0

orc-0

join-1

orc-1

orc-2

Arc Job

NC
As

Sent 9MB

Sent 9MB

Sent 66MB

Sent 66MB

Sent 378MB

Sent 620B

Sent 40GB

Sent 17MB

Sent 19GB

Arc Execution
Arc Setup
NCA Processing Fraction
NCA Blocked Fraction
Spark + Arc Runtime
Spark Runtime
Sends to

From
Storage

Mat. to
Memory

Spark
Received

6GB

19GB

9MB

Input Data Volumes

Figure 5: Visualization of JumpGate’s execution of
TPC-DS Query 12. This illustrates how joins can in-
crease and decrease the amount of intermediate data.

NCAs reduce clientwork.The inset bar chart of Figure 4
compares the data volumes read by this query and received
by Spark. The ORC parser reads 25GB, which turns into
76GB after data is decompressed to memory. This volume
of data would normally have to be processed by Spark. But
when Spark uses JumpGate, NCAs do this processing and
Spark only receives 46KB, a 500, 000x reduction compared to
the compressed ORC input data, and a 1, 600, 000x reduction
compared to the decompressed data.

Joins inflate and reduce intermediate data. Figure 4
shows that as data moves between NCAs, it is often reduced
as it moves towards the client. This is not always true: Fig-
ure 5 shows that join-1 is the bottleneck because multiple
tuples match each record, so while it receives 19GB, it sends
40GB, which is then subsequently reduced by join-0. Joins
are a cause of increased network data volume in addition to
materializing input data to NTF. Future NCAs that implement
join could reduce intermediate data volume by performing
several join operations on a single device. This underscores
that join ordering optimizations will be important for using
NCAs.

Faster bottleneck operations improve query run-
time. Figure 6 shows execution of Q65 where Spark runs
two separate jobs on JumpGate. Performance improves by
1.56×. The aggregation operation is the bottleneck in both
Spark and JumpGate due to lots of unique keys causing many
memory allocations, and the aggregate NCA uses a faster
allocator (tcmalloc [11]) than Spark.
Overall, these queries illustrate the two factors in under-

standing when using NCAs will be beneficial:
Factor 1: The data volume received by the client system.

Work is reduced for the client when the volume of data

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

0 100 200 300 400
Time (seconds)

shuffle-2
aggregate-3
aggregate-2

shuffle-1
join-0
orc-0
orc-1

aggregate-0
shuffle-0

aggregate-1

shuffle-1
join-0
orc-0
join-1
orc-1

aggregate-0
shuffle-0

aggregate-1
join-2
orc-2
orc-3

Arc Job 2
Arc Job 1

NC
As

Sent 14KB
Sent 14KB
Sent 141KB
Sent 141KB

Sent 14GB
Sent 7KB

Sent 90GB
Sent 9GB
Sent 9GB
Sent 2GB

Sent 13GB
Sent 13GB

Sent 49MB
Sent 3GB

Sent 32KB
Sent 2GB
Sent 9GB
Sent 9GB

Sent 14GB
Sent 7KB

Sent 90GB

Arc Execution
Arc Setup
NCA Processing Fraction
NCA Blocked Fraction
Spark + Arc Runtime
Spark Runtime
Sends to

From
Storage

Mat. to
Memory

Spark
Received

52GB

200GB

13GB

Input Data Volumes

Figure 6: Visualization of JumpGate’s execution of
TPC-DS Query 65. JumpGate beats Spark because ag-
gregation is the bottleneck and JumpGate’s aggregator
is faster.

0 150 300 450 600 750 900
Data Size (GB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

of
 Q

ue
rie

s

Arc Pipeline
Arc data sent to Spark
Baseline Input (Disk)
Baseline Input (Memory)

Figure 7: CDF of data size read from ORC on Disk,
ORC materialized in memory, sent by JumpGate to
Spark, and sent between NCAs when running TPC-DS
queries. Towards top left is better.

transmitted to Spark is reduced by “summative” or filtering
operations inherent in filters, joins, and aggregations.

Factor 2: Benefiting from this reduction depends on the
underlying NCA pipeline processing data faster than the client
system. In Q3 (Figure 4), the software-based ORC parser
was not quick enough, so there was only a small speed-up.
With a faster ORC to NTF parser, this query would see more
speed-up. In Q12 (Figure 5), the join-1 did not produce
data quickly enough. But, in Q65 (Figure 6), the aggregate
NCA quickly reduced input data volume and improved query
runtime. Overall, the first factor can show us the potential
improvement, while the second factor tells us if speed-up can
be achieved in practice. Now, we zoom out to look at these
factors for all of our studied queries.

Factor 1: The potential for data reduction. Figure 7
shows the CDF of data volumes in all TPC-DS/ORC queries.
Baseline Input (Disk) and Baseline Input (Memory) show how

much data Spark reads from disk andmaterializes in memory,
and reflect the first two bars on the inset chart in Figure 4 for
all queries. When in use, JumpGate would instead read/mate-
rialize Baseline Input data, and Spark would only receive and
process JumpGate data sent to Spark, but NCAs would need
to process data in JumpGate pipeline quickly to see benefit.
In 60% of all queries Spark receives less data from Jump-

Gate than it would have read directly from storage. 50% see
a reduction greater than 4×, and 25% see a reduction over
2700×. Comparing data received to that materialized inmem-
ory (orange to red dashed lines), 94% of all queries see a
reduction in data received by Spark and 50% of queries
see a reduction greater than 22×. This reduction in data read
and materialized by Spark translates into less work for Spark
to do. Lastly, data volume of JumpGate’s NCA pipeline (blue
solid line) is in the same ballpark as the data materialized in
memory for the same query (red dotted line), with up to 2×
inflation due to joins.
Offloading tasks to JumpGate has potential to be a win

when data received and processed by clients can be reduced
by orders of magnitude, and these results show that can
happen frequently in TPC-DS. These results also validate
our decision to offload operations ‘bottom-up’ from storage,
because we are able to capture a significant amount of work
to do from the client system. The cost of this reduction is that
NCAs must process this volume of data. The overall volume
of data materialized in memory is on-par with what would
get written to the network when using NCAs. This gives a
convenient rule of thumb for understanding the demands on
the network when using NCAs.

Factor 2: The current performance when Spark uses
JumpGate for TPC-DS. Figure 8a shows the speed-up of
Spark using JumpGate to run TPC-DS queries over JSON,
on the 4-node cluster. We see that JumpGate improves per-
formance by 1.16 × −3.1× for 88 of the 104 queries, with
the mean improvement of 1.8×. This is because JumpGate’s
JSON parser is faster than Spark’s due to JumpGate’s use of
simdjson [28] over Spark’s Java-based parser. Nonetheless,
all queries remained bottlenecked on JSON parsing, which
is generally quite slow.

Figure 8b shows the speed-up when reading ORC format.
ORC is optimized for analytics performance, so it makes
both Spark and JumpGate faster, but JumpGate becomes
bandwidth bound, so we use the single node/32 core setup
to increase network bandwidth. Here, we used each query’s
timeline chart (see Figures 4,5,6) to determine the bottleneck
of each query. Overall, there is less speed-up than with JSON,
and many queries are bottlenecked on the ORC parser, as
described earlier. Where we do see the best speed-ups is on
aggregations over many unique keys.

These experiments show that format parsingwill be impor-
tant to accelerate. There are a variety of approaches for this,

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

TPC-DS Queries over JSON (Sorted by Speedup)
0

1

2

3

Sp
ee

du
p

(a) Speedup of query execution of Spark with JumpGate
over Spark (baseline of 1), for TPC-DS at SF=100with JSON
input, run on 4 machines with 8 cores each with 32 with
3.2 Gbps networking. Higher is better. All queries were
bottlenecked on parsing JSON format data.

TPC-DS Queries over ORC (Sorted by Speedup)
0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

Pipeline Bottleneck
aggregate
orc
spark

join
less reuse

(b) Speedup of query execution of Spark with JumpGate
over Spark (baseline of 1), for TPC-DS at SF=1000 with
ORC input, on 1 machine with 32 cores with a 40Gbps
loopback. Bars are colored based on the pipeline bot-
tleneck we identified for each query using the timeline
charts (Figure 4). Higher is better.

Figure 8: Current performance of Software NCAs

such as: changing the format to eliminate parsing overheads,
implementing format parsing accelerators in hardware, and
further optimizing the format parser.

Figure 8b also shows that in queries that run slower with
JumpGate, the bottleneck is commonly attributed to Spark,
because in these queries Spark sends only scan and filter op-
erations to JumpGate and the pipeline bottlenecks on Spark
receiving a lot of NTF data. This underscores the role of Factor
1: offloading operations that ensure data reduction for the client
will be key to achieving speedup.When we investigated, we
found this was due to not offloading sort-merge joins from
Spark. Such joins preceded an aggregation which would have
reduced data received by the client. The worst slowdowns
are due to Spark’s current offload heuristics, which remove
some opportunities for re-use from the query plan. In the
future, Spark’s offload heuristics should be revised to offload
all joins, and to generally avoid offloading operations that
won’t bring an expected reduction in data size.

Performance goals for future accelerators. Finally, to
estimate how quickly future hardware accelerators would
need to perform, we can derive how much faster the NCA

pipeline should be to meet or beat Spark. To compute this,
we scale the overall throughput of the NCA pipeline by the
ratio of Spark to JumpGate performance. This overestimates
the performance requirements, because it attributes all slow-
down to NCA processing speed, and not to Spark’s NTF re-
ceive path. NCA pipelines would have to work at 15.2 Gbps
for 90% of queries, and at 30.4 Gbps for all studied queries.
JumpGate’s software NCA pipelines currently operate at a
mean of 8Gbps, up to 17.6Gbps. 30 Gbps is within the capa-
bilities of a DPDK-based system (§5.5), 40 Gbps SmartNICs,
and Barefoot Network’s Tofino ASIC (6.4 Tbps). This is a
promising result for the feasibility of future NCA develop-
ment.

5.5 Performance: Programmable
Dataplane Switches

Wenow look at how JumpGate can accelerate data processing
using a Tofino programmable switch from Barefoot Networks.
We used P4 to implement a group-by NCA that operates
on 64-bit integers (programmable switches typically do not
support floating point arithmetic [48]). It maintains a sum
and count per group using a 64K entry hashtable using on-
chip SRAM. On a table collision, the packet is forwarded to a
final group-by NCA written in software. The entire pipeline
set up by JumpGate consists of (1) a software NCA that parses
ORC, converts the data to NTF, and sends it to the group-by
NCA, (2) the group-by NCA operating on the switch, (3) the
final group-by software NCA.

Our P4 implementation of the group-by NCA is ≈700 LoC.
We integrated this operator into JumpGate using only 186
LoC, including the detection of applicable operations and
the modification of control plane rules in the switch.

Our experimental setup uses a 6.4Tbps Barefoot Networks
Tofino switch [7], and dual NUMA node, 2.4 GHz Intel Xeon
E5-2407 v2 servers with 8 CPU cores, connected to the switch
with Intel XL710 40GbE NICs.

TPC-DS queries only aggregate floating point values and
cannot use this group-by NCA. We wrote our own query
that performs a group-by over TPC-DS store_sales table (at
SF=100) counting unique items and summing up their sale
price as integers. Running this query, the NCA reduces the
volume of data by 43×, to 2.29% of the original input, so there
is high potential for improvement (Factor 1).

Dataplane programmable switches always operate at net-
work line-rate, and so the group-by NCA will run at the
speed of the switch hardware: 6.4 Tbps. So, end-to-end per-
formance will be determined by how fast data can be sent to
and received from the NCA (Factor 2). To illustrate, we ran
two experiments:

#1: Fast NCA and slow parsing means low through-
put.We had the ORC parser send small UDP packets via the

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

send syscall, resulting in low throughput (0.288Gbps). The
parser is the bottleneck, because it is slow to both process
data and to send it (Factor 2), so there is no improvement in
end-to-end processing.

#2: Programmable switch performance is unlocked
with faster format parsing. To improve ORC parser per-
formance, we send pre-recorded NTF packets to eliminate
the parsing bottleneck and use DPDK [45] to bypass the ker-
nel and reduce the sending bottleneck. Sending pre-recorded
NTF packets mimics having an accelerator for parsing or
using many hosts to send data to the switch. With this setup,
the ORC parser sends NTF packets at up to 27Gbps, and
the final aggregator works at 12Gbps. The group-by NCA
on the switch reduces the data volume by 43× and overall
completion time is 1.8× faster.
Overall, this test shows that JumpGate can successfully

use programmable switches and highlights the limitations
of current hardware, including the need to accelerate input
parsing to achieve performance improvements.

6 SUMMARY
When will NCAs be a win? Our study shows NCAs are a
win when the accelerators can outperform the client system
on the offloaded operations and the network is able to move
data quickly between NCAs and the client. We saw that
NCAs can improve performance in these conditions and our
findings also point towards fruitful designs for future NCAs.
We expect even better performance will come with hardware
and software NCAs that accelerate format conversion and
reduce intermediate data volume by fusing operations.

JumpGate enables future research. JumpGate is a nec-
essary step in exploring how NCAs can accelerate analytics
tasks. JumpGate’s design allows existing analytics systems
to execute queries on NCAs and in turn allows new NCAs to
be easily added and evaluated. Before JumpGate, this would
have required the development of format converters, client
integration, and potentially hand orchestrating query execu-
tion. Researchers must still develop NCA implementations,
but JumpGate relieves researchers from wrestling with inte-
gration tasks so they can start asking deeper questions about
using NCAs.

REFERENCES
[1] AL Danial. [n.d.]. cloc Github repository. https://github.com/AlDanial/

cloc.
[2] Apache Software Foundation. [n.d.]. Apache Arrow. http://arrow.

apache.org/.
[3] Apache Software Foundation. [n.d.]. Apache ORC Core C++. https:

//orc.apache.org/docs/core-cpp.html.
[4] Apache Software Foundation. [n.d.]. Apache Parquet. http://parquet.

apache.org/.
[5] Apache Software Foundation. [n.d.]. Apache Spark. http://spark.

apache.org/.

[6] Apache Software Foundation. [n.d.]. Hadoop. http://hadoop.apache.
org/.

[7] Barefoot Networks. [n.d.]. Barefoot Tofino Switches. https://www.
barefootnetworks.com/products/brief-tofino-2/.

[8] Eric Boutin, Paul Brett, Xiaoyu Chen, Jaliya Ekanayake, Tao Guan,
Anna Korsun, Zhicheng Yin, Nan Zhang, and Jingren Zhou. 2015.
JetScope: reliable and interactive analytics at cloud scale. Proceedings
of the VLDB Endowment 8, 12 (2015), 1680–1691.

[9] Databricks. 2018. Spark SQL Performance Tests. https://github.com/
databricks/spark-sql-perf.

[10] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. 2013. Query Processing on
Smart SSDs: Opportunities and Challenges. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data (New
York, New York, USA) (SIGMOD ’13). ACM, New York, NY, USA, 1221–
1230. https://doi.org/10.1145/2463676.2465295

[11] Sanjay Ghemawat and Paul Menage. 2009. Tcmalloc: Thread-caching
malloc.

[12] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P Grosvenor,
Allen Clement, and Steven Hand. 2015. Musketeer: all for one, one for
all in data processing systems. In Proceedings of the Tenth European
Conference on Computer Systems. ACM, 2.

[13] Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad
Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchu-
bievsky, Vladimir Koushnir, Lion Levi, Alex Margolin, Tamir Ronen,
Alexander Shpiner, Oded Wertheim, and Eitan Zahavi. 2016. Scal-
able Hierarchical Aggregation Protocol (SHArP): A Hardware Ar-
chitecture for Efficient Data Reduction. In Proceedings of the First
Workshop on Optimization of Communication in HPC (Salt Lake City,
Utah) (COM-HPC ’16). IEEE Press, Piscataway, NJ, USA, 1–10. https:
//doi.org/10.1109/COM-HPC.2016.6

[14] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, Jaeheon Jeong, and Duckhyun Chang. 2016. Biscuit: A
Framework for Near-data Processing of Big Data Workloads. In Pro-
ceedings of the 43rd International Symposium on Computer Architecture
(Seoul, Republic of Korea) (ISCA ’16). IEEE Press, Piscataway, NJ, USA,
153–165. https://doi.org/10.1109/ISCA.2016.23

[15] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven Streaming
Network Telemetry. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM ’18). ACM, New York, NY, USA, 357–371. https://doi.org/
10.1145/3230543.3230555

[16] John L. Hennessy and David A. Patterson. 2011. Computer Architecture,
Fifth Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

[17] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. 2011.
Mesos: A platform for fine-grained resource sharing in the data center..
In NSDI, Vol. 11. 22–22.

[18] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-
terly. 2007. Dryad: distributed data-parallel programs from sequential
building blocks. InACM SIGOPS operating systems review, Vol. 41. ACM,
59–72.

[19] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: In-
telligent Distributed Storage. Proc. VLDB Endow. 10, 11 (Aug. 2017),
1202–1213. https://doi.org/10.14778/3137628.3137632

[20] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun
Lee, Masoud Moshref, and Robert Soulé. 2019. Fast String Searching
on PISA. In Proceedings of the 2019 ACM Symposium on SDN Research
(San Jose, CA, USA) (SOSR ’19). ACM, New York, NY, USA, 21–28.

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
http://arrow.apache.org/
http://arrow.apache.org/
https://orc.apache.org/docs/core-cpp.html
https://orc.apache.org/docs/core-cpp.html
http://parquet.apache.org/
http://parquet.apache.org/
http://spark.apache.org/
http://spark.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://github.com/databricks/spark-sql-perf
https://github.com/databricks/spark-sql-perf
https://doi.org/10.1145/2463676.2465295
https://doi.org/10.1109/COM-HPC.2016.6
https://doi.org/10.1109/COM-HPC.2016.6
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.14778/3137628.3137632

SYSTOR’21, June 14-16, 2021, Haifa, Israel C. Mustard et al.

https://doi.org/10.1145/3314148.3314356
[21] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert

Soulé, Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-
RTT Coordination. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton,
WA, 35–49. https://www.usenix.org/conference/nsdi18/presentation/
jin

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China)
(SOSP ’17). ACM, New York, NY, USA, 121–136. https://doi.org/10.
1145/3132747.3132764

[23] Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun
Cho, Daniel D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: A High-
performance Database System Leveraging In-storage Computing. Proc.
VLDB Endow. 9, 12 (Aug. 2016), 924–935. https://doi.org/10.14778/
2994509.2994512

[24] Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, DesislavaDimitrova,
Matthew Forshaw, and Timothy Roscoe. 2018. Three Steps is All You
Need: Fast, Accurate, Automatic Scaling Decisions for Distributed
Streaming Dataflows. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (Carlsbad, CA, USA)
(OSDI’18). USENIX Association, USA, 783–798.

[25] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM,
New York, NY, USA, 67–81. https://doi.org/10.1145/2872362.2872367

[26] Gunjae Koo, Kiran Kumar Matam, Te I, H. V. Krishna Giri Narra, Jing
Li, Hung-Wei Tseng, Steven Swanson, and Murali Annavaram. 2017.
Summarizer: Trading Communication with Computing Near Storage.
In Proceedings of the 50th Annual IEEE/ACM International Symposium
onMicroarchitecture (Cambridge,Massachusetts) (MICRO-50 ’17). ACM,
NewYork, NY, USA, 219–231. https://doi.org/10.1145/3123939.3124553

[27] Kubernetes. [n.d.]. Production-Grade Container Orchestration. https:
//kubernetes.io/.

[28] Geoff Langdale and Daniel Lemire. 2019. Parsing Gigabytes of JSON
per Second. CoRR abs/1902.08318 (2019). arXiv:1902.08318 http:
//arxiv.org/abs/1902.08318

[29] I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping
Zhang, and Jim Sukha. 2015. On-the-Fly Pipeline Parallelism. ACM
Trans. Parallel Comput. 2, 3, Article 17 (Sept. 2015), 42 pages. https:
//doi.org/10.1145/2809808

[30] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Al-
fons Kemper, and Thomas Neumann. 2015. How Good Are Query
Optimizers, Really? Proc. VLDB Endow. 9, 3 (Nov. 2015), 204–215.
https://doi.org/10.14778/2850583.2850594

[31] Alberto Lerner, Rana Hussein, and Philippe Cudre-Mauroux. 2019. The
Case for Network-Accelerated Query Processing (CIDR 2019).

[32] Yinan Li, Nikos R. Katsipoulakis, Badrish Chandramouli, Jonathan
Goldstein, and Donald Kossmann. 2017. Mison: A Fast JSON Parser
for Data Analytics. Proc. VLDB Endow. 10, 10 (June 2017), 1118–1129.
https://doi.org/10.14778/3115404.3115416

[33] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon
Peter, and Karan Gupta. 2019. Offloading Distributed Applications
Onto smartNICs Using iPipe. In Proceedings of the ACM Special Interest
Group on Data Communication (Beijing, China) (SIGCOMM ’19). ACM,
NewYork, NY, USA, 318–333. https://doi.org/10.1145/3341302.3342079

[34] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-EfficientMicroservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). USENIX Association, Renton, WA, 363–378. https:
//www.usenix.org/conference/atc19/presentation/liu-ming

[35] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,
Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to
Host Networking. In Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 399–413.
https://doi.org/10.1145/3341301.3359657

[36] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: Interac-
tive Analysis of Web-scale Datasets. Proc. VLDB Endow. 3, 1-2 (Sept.
2010), 330–339. https://doi.org/10.14778/1920841.1920886

[37] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. 2013. Naiad: A Timely Dataflow System.
In ACM Symposium on Operating Systems Principles (SOSP) (Farminton,
Pennsylvania). ACM, New York, NY, USA, 439–455. https://doi.org/
10.1145/2517349.2522738

[38] Raghunath Othayoth Nambiar and Meikel Poess. 2006. The making
of TPC-DS. In Proceedings of the 32nd international conference on Very
large data bases. VLDB Endowment, 1049–1058.

[39] Apache ORC. [n.d.]. ORC Specification v1. https://orc.apache.org/
specification/ORCv1/.

[40] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2018.
Filter Before You Parse: Faster Analytics on Raw Data with Sparser.
Proceedings of the VLDB Endowment 11, 11 (2018).

[41] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman Amarasinghe, Samuel Madden, and
Matei Zaharia. 2018. Evaluating End-to-end Optimization for Data
Analytics Applications in Weld. Proc. VLDB Endow. 11, 9 (May 2018),
1002–1015. https://doi.org/10.14778/3213880.3213890

[42] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia,
and Stanford InfoLab. 2017. Weld: A common runtime for high per-
formance data analytics. In Conference on Innovative Data Systems
Research (CIDR).

[43] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-
mon Peter, Rastislav Bodik, and Thomas Anderson. 2018. Floem: A
Programming System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). USENIX Association, Carlsbad, CA, 663–679. https:
//www.usenix.org/conference/osdi18/presentation/phothilimthana

[44] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. 2002. TPC-
DS, Taking Decision Support Benchmarking to the Next Level. In
Proceedings of the 2002 ACM SIGMOD International Conference on Man-
agement of Data (Madison, Wisconsin) (SIGMOD ’02). ACM, New York,
NY, USA, 582–587. https://doi.org/10.1145/564691.564759

[45] DPDK Project. [n.d.]. Data Plane Development Kit (DPDK). https:
//www.dpdk.org/.

[46] Alexander Rasmussen, Vinh The Lam, Michael Conley, George Porter,
Rishi Kapoor, and Amin Vahdat. 2012. Themis: An I/O-Efficient
MapReduce. In Proceedings of the Third ACM Symposium on Cloud
Computing (San Jose, California) (SoCC ’12). Association for Com-
puting Machinery, New York, NY, USA, Article 13, 14 pages. https:
//doi.org/10.1145/2391229.2391242

https://doi.org/10.1145/3314148.3314356
https://www.usenix.org/conference/nsdi18/presentation/jin
https://www.usenix.org/conference/nsdi18/presentation/jin
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.14778/2994509.2994512
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/3123939.3124553
https://kubernetes.io/
https://kubernetes.io/
https://arxiv.org/abs/1902.08318
http://arxiv.org/abs/1902.08318
http://arxiv.org/abs/1902.08318
https://doi.org/10.1145/2809808
https://doi.org/10.1145/2809808
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3115404.3115416
https://doi.org/10.1145/3341302.3342079
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://www.usenix.org/conference/atc19/presentation/liu-ming
https://doi.org/10.1145/3341301.3359657
https://doi.org/10.14778/1920841.1920886
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2517349.2522738
https://orc.apache.org/specification/ORCv1/
https://orc.apache.org/specification/ORCv1/
https://doi.org/10.14778/3213880.3213890
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://doi.org/10.1145/564691.564759
https://www.dpdk.org/
https://www.dpdk.org/
https://doi.org/10.1145/2391229.2391242
https://doi.org/10.1145/2391229.2391242

JumpGate: Automating Integration of Network Connected Accelerators
PRELIMINARY DRAFT SYSTOR’21, June 14-16, 2021, Haifa, Israel

[47] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-Network Computation is a Dumb Idea
Whose Time Has Come. In Proceedings of the 16th ACM Workshop on
Hot Topics in Networks (Palo Alto, CA, USA) (HotNets-XVI). ACM, New
York, NY, USA, 150–156. https://doi.org/10.1145/3152434.3152461

[48] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kal-
nis, Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan
R. K. Ports, and Peter Richtárik. 2019. Scaling Distributed Machine
Learning with In-Network Aggregation. CoRR abs/1903.06701 (2019).
arXiv:1903.06701 http://arxiv.org/abs/1903.06701

[49] Omar Sefraoui, MohammedAissaoui, andMohsine Eleuldj. 2012. Open-
Stack: toward an open-source solution for cloud computing. Interna-
tional Journal of Computer Applications 55, 3 (2012), 38–42.

[50] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N.
Yegitbasi, H. Jin, E. Hwang, N. Shingte, and C. Berner. 2019. Presto:
SQL on Everything. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE). 1802–1813. https://doi.org/10.1109/ICDE.2019.
00196

[51] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2019.
Cheetah: Accelerating Database Queries with Switch Pruning. In Pro-
ceedings of the ACM SIGCOMM 2019 Conference Posters and Demos
(Beijing, China) (SIGCOMM Posters and Demos ’19). ACM, New York,
NY, USA, 72–74. https://doi.org/10.1145/3342280.3342311

[52] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating Database Queries with Switch Pruning. SIG-
MOD (2020). https://doi.org/10.1145/3342280.3342311

[53] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Adrian Schuepbach,
and Bernard Metzler. 2018. Albis: High-Performance File Format
for Big Data Systems. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18). USENIX Association, Boston, MA, 615–630. https:
//www.usenix.org/conference/atc18/presentation/trivedi

[54] X. [n.d.]. Removed for double blind review, Ref 1.
[55] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, et al.

2016. Bluecache: A scalable distributed flash-based key-value store.
Proceedings of the VLDB Endowment 10, 4 (2016), 301–312.

[56] Youngseok Yang, Jeongyoon Eo, Geon-Woo Kim, Joo Yeon Kim, Sanha
Lee, Jangho Seo,WonWook Song, and Byung-Gon Chun. 2019. Apache
Nemo: A Framework for Building Distributed Dataflow Optimization
Policies. In 2019 USENIX Annual Technical Conference (USENIX ATC
19). USENIX Association, Renton, WA, 177–190. https://www.usenix.
org/conference/atc19/presentation/yang-youngseok

[57] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion
Stoica, and Xin Jin. 2019. Harmonia: Near-Linear Scalability for Repli-
cated Storage with in-Network Conflict Detection. Proc. VLDB Endow.
13, 3 (Nov. 2019), 376–389. https://doi.org/10.14778/3368289.3368301

https://doi.org/10.1145/3152434.3152461
https://arxiv.org/abs/1903.06701
http://arxiv.org/abs/1903.06701
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1109/ICDE.2019.00196
https://doi.org/10.1145/3342280.3342311
https://doi.org/10.1145/3342280.3342311
https://www.usenix.org/conference/atc18/presentation/trivedi
https://www.usenix.org/conference/atc18/presentation/trivedi
https://www.usenix.org/conference/atc19/presentation/yang-youngseok
https://www.usenix.org/conference/atc19/presentation/yang-youngseok
https://doi.org/10.14778/3368289.3368301

	Abstract
	1 Introduction
	2 Background and Related Work
	3 JumpGate Design
	3.1 Overview
	3.2 JumpGate Step-by-Step
	3.3 APIs used in JumpGate
	3.4 Staged Networked Pipelines
	3.5 Network Tuple Formats

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Client Integration: Apache Spark
	5.3 JumpGate Overhead
	5.4 Performance: Understanding NCA Behaviour on Real Queries
	5.5 Performance: Programmable Dataplane Switches

	6 Summary
	References

