
Writes Hurt: Lessons in Cache Design for Optane
NVRAM

Alexandra Fedorova
MongoDB and University of

British Columbia
sasha.fedorova@mongodb.com

Keith A. Smith
MongoDB

keith.smith@mongodb.com

Keith Bostic
MongoDB

keith.bostic@mongodb.com

Susan LoVerso
MongoDB

Sue.LoVerso@mongodb.com

Michael Cahill
MongoDB

Michael.Cahill@mongodb.com

Alex Gorrod
MongoDB

alexander.gorrod@mongodb.com

ABSTRACT
Intel® Optane™ DC Persistent Memory resides on the mem-
ory bus and approaches DRAM in access latency. One avenue
for its adoption is to employ it in place of persistent storage;
another is to use it as a cheaper and denser extension of
DRAM. In pursuit of the latter goal, we present the design of
a volatile Optane NVRAM cache as a component in a storage
engine underlying MongoDB. The primary innovation in our
design is a new cache admission policy. We discover that on
Optane NVRAM, known for its limited write throughput, the
presence of writes disproportionately affects the throughput
of reads, much more so than on DRAM. Therefore, an admis-
sion policy that indiscriminately admits new data (and thus
generates writes), severely limits the rate of data retrieval
and results in exceedingly poor performance for the cache
overall. We design an admission policy that balances the rate
of admission with the rate of lookups using dynamically ob-
served characteristics of the workload. Our implementation
outperforms OpenCAS (an off-the-shelf Optane-based block
cache) in all cases, and Intel Memory Mode in cases where
the database size exceeds the available NVRAM. Our cache
is decoupled from the rest of the storage engine and uses
generic metrics to guide its admission policy; this design can
be easily adopted in other systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563461

ACM Reference Format:
Alexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso,
Michael Cahill, and Alex Gorrod. 2022. Writes Hurt: Lessons in
Cache Design for Optane NVRAM. In Symposium on Cloud Com-
puting (SoCC ’22), November 7–11, 2022, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 16 pages. https://doi.org/10.1145/3542929.
3563461

1 INTRODUCTION
Intel® Optane™ DC Persistent Memory is one of the first
widely available non-volatile memory (NVRAM) products,
released in 2019. At present the community is still grappling
with the question of how to best use it in the storage stack.
Although one way of adoption exploits its persistence (e.g.,
using it in place of another block storage device or turning
applications’ volatile memory into persistent), another av-
enue is to use it as a volatile extension to DRAM, a denser and
cheaper one at that. Our study explores the second option.

We design and implement NVCache: an Optane NVRAM-
resident volatile cache for WiredTiger [11] – the storage
engine underlying MongoDB [10]. At the heart of any cache
is an admission policy. An admission policy decides, upon a
cache miss, whether the missing block should be admitted,
i.e., kept in the cache after being retrieved from a lower level
of storage. With few exceptions, caches indiscriminately ad-
mit data on read misses, differing only in whether they admit
it on writes. We found that such a simplistic policy limits
the throughput of write-heavy workloads to only 20% of the
best achievable, that of read-only workloads to about 80%.
Admitting new data into a cache generates writes: every
newly inserted cache block must be written into the cache
memory. Limited write throughput is a well known property
of Optane NVRAM [39]. What was not previously known
was that writes to Optane NVRAM disproportionately affect
the throughput of simultaneously occurring reads. Although
writes affect simultaneously occurring reads on any storage
device, the effect is much larger on Optane NVRAM than on
its counterpart DRAM (see §2). Overly eager cache admission

https://doi.org/10.1145/3542929.3563461
https://doi.org/10.1145/3542929.3563461
https://doi.org/10.1145/3542929.3563461

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

will thus limit the rate at which existing data can be retrieved,
diminishing the utility of the cache. We confirm this claim
experimentally (Table 1 in §3.2.3). Admission policy must,
therefore, balance between the rate of admitting new
data and the rate of accessing existing data. Our main
contribution is a new admission policy that embodies this
principle.
Although our work is a case study exploring a specific

point in a vast design space, our findings apply broadly to
similar systems. NVCache is decoupled from the rest of the
storage engine and our new admission policy relies only
on the rates of data admission, removal and lookup for its
decisions, so our design is easy to adopt in other storage
engines or stand-alone caches. While our work addresses the
idiosyncrasy of one specific storage technology, the lessons
we learn apply for any caching device where writes dispro-
portionately impact reads.
The rest of the paper is organized as follows: §2 demon-

strates that writes disproportionately affect the throughput
of reads on Optane NVRAM. That section also puts our work
in the broader context of multi-tier caching systems, and
provides relevant background on WiredTiger. §3 presents
the basics of NVCache design, which relies on well-known
methods, and then unveils the design of the new admission
policy, backing its features with experimental data. §4 com-
pares NVCache with off-the-shelf alternatives: Intel Mem-
ory Mode [3] and OpenCAS [5], and reports the effect on
performance-per-$ of replacing part of system DRAM with
Optane NVRAM. §5 describes related work and §6 summa-
rizes our findings.

2 BACKGROUND AND MOTIVATION
2.1 Optane memory’s Achilles’ heel
Optane NVRAMhas a superpower: read andwrite latency for
small operations is competitive with DRAM, reads being only
about 2× slower and writes being roughly the same latency
as DRAM1 (see [39], Fig.2). Read throughput is impressive: se-
quential reads reach 6GB/s per NVDIMM (see [39], Fig.4(a)),
and with a single CPU supporting up to six NVDIMMs, the
throughput can climb into double digits.

Optane also has an Achilles’ heel: write throughput is slug-
gish and struggles with concurrency. Figure 1 shows sequen-
tial write throughput to Optane NVDIMMs (with one and
two DIMMs) and to an Optane SSD P4800X (built with the
same memory technology but packaged as an SSD). Writes

1Writes into NVRAM need only to reach the processor’s ADR (Asynchro-
nous DRAM refresh domain).

Figure 1: Sequential write throughput to Optane per-
sistent memory using one or two NVDIMMs, and to
Optane SSD. Parameters of the experimental system
are described in §3.2.1.

to Optane memory are barely competitive with the SSD us-
ing one thread, but show negative scaling as we use more
threads2.
Poor scalability of writes was reported before (see [39],

Fig.4(b)). What was less known is that the presence of writes
disproportionately affects the throughput of reads. Figure 2
shows the read throughput on Optane NVRAM dropping
precipitously in the presence of concurrent writers. Only
a single concurrent writer causes read throughput to drop
from a solid 12GB/s to a unimpressive 3.4 GB/s (a 72% loss).
With eight writer threads, reads proceed at only 0.8 GB/s (a
93% slowdown)3. The same experiment on DRAM produces
a milder degradation in read throughput, with a loss of only
18% with one concurrent reader and of 35% with eight.

The implication of this finding for cache design on Optane
NVRAM is that an admission policy that eagerly accepts
new data (and thus generates writes) will disproportionately
affect the speed of reads, i.e., cache lookups, severely limiting
the effectiveness of the entire system. An admission pol-
icy, must therefore carefully balance the rate of cache
admission relative to the rate of lookups.

2.2 Multi-tier caching systems
We contribute a new design of a single-tier volatile cache in
Optane NVRAM; since this cache co-exists with the DRAM

2Our data is for non-interleaved writes. Interleaved writes will achieve
higher throughput (and also negative scaling with more threads, see [39],
Fig.4(c)), but interleaving can only be used on NVDIMMs in the same NUMA
node, which was not the case on our system configured according to man-
ufacturer recommendations ([4], Table 17). NVRAM access was done via
memcpy from a mmaped file residing on a DAX file system in NVRAM. This
was the fastest method and it produced similar results as the fastest methods
discovered by others [39].
3Our system has 16 cores, so CPU contention is not the issue.

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 2: Read throughput for Optane NVRAM (two
NVDIMMs) and DRAM in with 8 reader threads and
with increasing concurrent writers. Parameters of the
experimental system are described in §3.2.1. This is a
NUMA configuration; we observed similar results on a
non-NUMA system. We made sure that file system or
address space contention are not present.

cache in our storage engine (see §3), it is helpful to discuss it
in the broader context of multi-tier caches and tieredmemory
systems. Here we provide a broad overview of these areas,
deferring the comparison with specific projects until §5.

A multi-tier caching system is comprised of multiple stor-
age devices organized as a hierarchy or a pool of caches [14,
16–20, 25, 26, 28, 30, 31, 36, 40, 41]. Tiers might include
DRAM and NVRAM in front of an SSD (as in our system), a
SSD in front of an HDD, or any other combination thereof,
but with faster, more expensive storage generally in front
of slower, less expensive type. Studies of these systems in-
vestigate how to divide the data between the tiers to maxi-
mize performance. Broadly speaking, there are two design
approaches: cooperative and independent. In a cooperative
design the tiers are tightly coupled: one tier may evict data
into another, and may inform it about the access patterns
observed within its space. In an independent design each
tier makes its own decisions about what data to admit and
evict. There is also a middle ground, where one tier may
take hints about data access characteristics from other tiers,
but does not directly accept data or directives about what to
cache. Independent caches are easier to design and maintain
from software engineering perspective, because they are less
coupled with the rest of the system, and for this reason they
are easier to port to other systems. Our design falls into the
independent category, as we explain in §3.
Multi-tier memory systems can be thought of as a sub-

category of multi-tier caches, where one tier is DRAM and
another is NVRAM or some other kind of slower mem-
ory [12, 13, 22, 27, 32, 35, 37? , 38]. These systems are typically
implemented in the kernel or in a language runtime [13, 35?

] and are transparent to applications. The main challenge in
building them is deciding which pages must go to the “fast”
tier and which ones to the “slow” one – the same problem
that must be addressed in cooperative caches.

Like all caches, multi-tier systems innovate on admission
and eviction policies. An admission policy tells the cache
when to insert new data; an eviction policy tells it which
data to evict when the space becomes scarce. Typical caches
always admit data on reads and vary as towhether they admit
data on writes: i.e., write-allocate or not. Multi-tier caches
may also admit data as it is evicted from another tier. While
most caches tune their admission algorithms to maximize the
hit rate, our algorithm takes into account the rate of admission
for reasons explained in §2.1. So our main contribution is
the admission policy that is based on a new principle. This
principle will be relevant for cache storage media where the
presence of writes disproportionately affects the throughput
of reads.

2.3 WiredTiger
WiredTiger is a persistent transactional key-value store [11].
Internally it uses a B+-tree to organize the data.WiredTigerma-
terializes data in memory (in its DRAM cache) in a different
format than it is stored on disk. Data on disk contains ef-
ficiently encoded keys and values. The keys in each block
are sorted, but not indexed. When WiredTiger reads a block
from disk it decodes and indexes it, so that the data can
be searched and updated efficiently. Furthermore, on-disk
data may be optionally compressed and/or encrypted, and
WiredTiger decompresses and decrypts it before placing it
in DRAM.

Themain advantages of this two-pronged approach to data
representation is that it provides efficient space utilization for
stored data and fast operations for cached data. It is also the
reason we adopted the independent design for our NVRAM
cache, as we explain in §3.1.

3 NVCACHE: A STEP-BY-STEP DESIGN
We first describe the baseline architecture ofNVCache, which
builds upon well-known techniques. Then we describe the
evolution of the new admission policy design, beginning
with a naïve architecture and presenting experiments that
motivate the next feature.

3.1 NVCache basics
As explained in §2.3 WiredTiger uses different formats for
data stored persistently on disk and for data materialized in
memory. On-disk data is stored in blocks. In-memory data,
which lives inside the engine’s fixed-sized DRAM cache,
is stored in pages. Blocks contain efficiently encoded keys

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

and values. Pages additionally contain indexing and other
structures to facilitate fast operations.

NVCache sits underneath the DRAM cache. Naturally we
had to make a decision whether to use NVCache for caching
pages, blocks or both. WiredTiger already has a DRAM cache
for pages, so caching pages would amount to extending the
existing cache to use both DRAM and NVRAM – a tiered
cache similar to the recent one in Meta’s RocksDB [28].
Caching blocks would entail creating a stand-alone block
cache that sits between the DRAM cache and the block device.
We decided to cache blocks, and not pages, for the following
reasons.

WiredTiger’s pages are organized in memory as a B+-tree
for efficient searching and updating, and pages contain point-
ers to other pages. If a page were to be manually copied (at
application level) from DRAM to NVRAM in a tiered cache,
the virtual addresses would change and any pointers would
have to be updated accordingly. Updating them is an error-
prone process that would require locking or other form of
synchronization. WiredTiger is lock-free on the read-path
and mostly lock-free on the write path: adding synchroniza-
tion would substantially compromise a core advantage of its
original design.
An alternative to implementing a tiered cache manually

would be to use transparent tiered memory implemented in
the kernel, such as Nimble [38] or HeMem [32], or to build
on top of CacheLib: Meta’s library for building caches that
provides support for tiered memory [15]. Kernel-based sys-
tems would require adopting an experimental kernel, which
was not an option in a production deployment. CacheLib
source became open on September 2, 2021 [1]; building upon
it is one alternative we may consider in the future, but ac-
cording to the authors, CacheLib is not the best option for
building a database’s internal page cache, and so it could not
be used as the substrate for RocksDB’s page cache (see [15],
Section 6 and discussion in §5). Thus, for our current design
we decided to use a stand-alone block cache, as it avoids
the aforementioned problems, is simple to integrate in the
existing storage engine and can be easily ported to other key-
value stores. We did however compare with a configuration
where the engine’s page cache transparently expands into
NVRAM configured to use Intel Memory Mode. This con-
figuration (see §4.3) could be thought of as hardware-based
tiered memory.

NVCache sits next to the block manager – the code respon-
sible for reading/writing the data from/to disk (see Fig. 3).
Read path: If the DRAM cache cannot locate searched-for
data, it issues a read to the block manager 1 . The block man-
ager checks if the block is present in NVCache 2 , accessing
it from NVCache if it is 3 and reading it from disk if it is not
4 . It then transforms the block into a page, decrypting and

decompressing it if needed, and hands it over to the DRAM
cache 5 . If the block is not present in NVCache, NVCache
has the discretion to admit it after the block manager has
read it from disk 6 . NVCache stores the blocks in the same
format as they are stored on disk: compressed/encrypted
if those configuration options were chosen. Storing com-
pressed blocks increases NVRAM effective capacity.
Write path: The write path is not symmetrical to the

read path, because WiredTiger does not modify disk blocks
in place. Updates are written into in-memory specific data
structures, and then formatted into blocks and written back
to disk during a process called reconciliation. Reconciliation
may occur when the DRAM cache evicts pages or as part
of a database checkpoint. Reconciliation always writes a
new page 7 , which the block manager turns into a new
block. When the block manager writes a new block 8 , it
notifies NVCache 9 ; NVCache has the discretion to admit it.
Obsolete blocks are eventually freed, at which time the block
manager instructs NVCache to invalidate cached copies of
the freed blocks 10 . The block manager always consults the
cache on reads and writes, so it does not need to do extra
work to keep the data consistent among NVCache and the
storage.
Within a broader context of multi-tier caching systems,

NVCache adopts an independent design (see §2). This is a nat-
ural consequence of our decision to cache blocks, as opposed
to pages. The kernel buffer cache also caches blocks, so there
is an opportunity for a cooperative design integrated with
the kernel: we did not pursue this avenue, because adopting
a custom kernel would not be practical in customer deploy-
ments. There are off-the-shelf NVRAM caching solutions
implemented in the kernel: device mapper write cache [2] and
OpenCAS [5]. We describe them, evaluate OpenCAS (the
more advanced of the two) and present the results in §4.
We experimented in the middle ground between an in-

dependent and a co-operative design, where the DRAM
cache informs the NVCache on evicting a clean page (so
the NVCache could bump its priority) or informs NVCache
about the reason for writing a dirty block (e.g., because of
eviction or a checkpoint). Using this information did not
improve NVCache effectiveness, and keeping track of it in-
troduced overhead, so we retained a purely independent
design. As a result, NVCache communicates with the block
manager via a narrow API, allowing its codebase to evolve
independently of the rest of the system.
Internally, NVCache is organized as a hash table with a

fixed number of buckets. Upon collision, blocks mapping
to the same bucket are chained in a linked list. A bucket is
protected with a spinlock, but our measurements showed
that the rate of collisions and the synchronization overhead
were negligible (with 32K buckets for a 252GB NVCache).

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 3: Interaction of NVCache with the rest of the storage engine.

We use PMDK’s [7] allocator (based on jemalloc) to allocate
NVRAM on admitting new blocks. NVCache metadata is in
DRAM, but PMDK’s jemalloc metadata is in the NVRAM.
NVCache does not use NVRAM’s persistent nature: upon
exit it loses cached data. This decision simplified our design
substantially, as we do not need to deal with crash consis-
tency. The downside is that we pay the cost of re-warming
the cache upon restart, and so we may revise our design in
the future.
When NVCache runs out of space it cannot admit new

blocks. Eviction is needed to purge blocks less likely to be
used in order to make space for new ones. We use a simple
LFRU eviction policy [29]. During eviction it targets blocks
that were not reused within a fixed time window and evicts
the least frequently used among those.We approximate track-
ing of the LRU and LFU information similarly to how the
clock algorithm does it [9], so there is no need to maintain
separate lists: the “clock hand” simply iterates over the buck-
ets and lists in the hash table. There is an eviction thread
that wakes up once a second and scans the cache for eviction
candidates.

3.2 NVCache Admission Policy Design
The NVCache admission policy is rooted in experimental
data; we therefore present the details of our experimental
system and the workloads prior to exploring its design.

3.2.1 Experimental system. Our system is a Lenovo ThinkSys-
tem SR360 built with two Intel Xeon Gold 5218 processors,
each having 16 hyper-threaded cores.

Memory: There are two Optane NVRAMmodules, 126GB
each, for a total capacity of 252GB. The modules are placed
in separate sockets as per manufacturer recommendation.
There is 196GB of DRAM; we modulate the amount available
for experiments either via software (by creating a large file in
ramfs) or hardware (by physically removing DRAM) in cases
where the experiments demand this. We used workloads
with a variety of database sizes to study conditions when
the working set fits into NVRAM and when it exceeds its
capacity.
Disk: We use Intel Optane P4800X SSD, built with the

same physical media as NVRAM DIMMs, but packaged as
an SSD on the PCIe bus. This SSD provides up to 2.5GB/s
sequential read bandwidth and up to 2.2GB/s sequential write
bandwidth.

3.2.2 Workloads. While for the final evaluation (§4) we used
the widely adopted YCSB [8, 21], during the design process
we used our in-house benchmarks. The in-house benchmarks
are configuration files for a WiredTiger-provided workload
generator application, specifying parameters such as the
number of records in the database, the sizes and distribu-
tions of keys and values, the mix of operations (read, update,
insert, modify, scan), the number of threads, whether or not
logging and transactions are enabled, the size of the DRAM
cache, the total running time, etc. The benchmarks are de-
signed to either emulate customer workloads or to stress a
particular feature (e.g., checkpoints, eviction). When present-
ing the throughput for a benchmark we break it down by
operation type: for example, if the benchmark bm performs a
mix of reads, inserts and updates, we report the throughput
as bm.READ, bm.INS and bm.UPD.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

The workloads fall into two categories: (1) those that do
not stand to benefit from NVCache (e.g., they use small data
sets fitting entirely in DRAM, and/or they perform mostly
writes) and (2) those that do (large data sets, read-dominant).
We initially focus on benchmarks in the first category, many
of which have small data sets. The database pages are cached
in the engine’s DRAM cache, and its blocks are cached in the
kernel buffer cache4. So OS buffer cache would comfortably
fit blocks of small workloads. Since NVRAM caching can-
not benefit these workloads, they make for an easy demon-
stration of the implementation overhead and are excellent
workloads for exploring how to minimize it.

3.2.3 Lessons learned. Our design rests on the three lessons
that we learned in the process: (1) Bypass NVRAM for small
workloads, (2) Throttle the admission rate, and (3) NVRAM
cache benefit is limited to read-dominant workloads. Lesson
#2 embodies our main contribution; the others, while not
novel, were also crucial for building a well-performing cache.

Lesson #1: Bypass NVRAM for small datasets. Our simplest
admission policy, alloc-read-write, was always admitting a
block to the NVCache when it is read from or written to disk
by the block manager. Figure 4 shows the performance degra-
dation of running with 16GB DRAM and 252GB NVCache5
for the first category of benchmarks that will not benefit
from any additional caching. We disable eviction in these
experiments to tease apart the sources of overhead; because
we use benchmarks that don’t benefit from caching the evic-
tion policy is irrelevant to their performance. We enable
eviction for the experiments, where caching matters (at the
end of this section). We observe that performance penalty
under this policy is substantial across the board, reaching
91% slowdown for evict-btr-str-m.
The trivial reason for overhead is that it is not useful

to cache data for small workloads that fit into either the
engine’s cache or the OS buffer cache, both of which are
in DRAM. So our first lesson is to bypass NVCache for
datasets fitting into DRAM . We call this feature small-
bypass, and implement it by having the NVCache monitor
the aggregate size of all database files used by the workload
and abstain from admitting any blocks until the dataset size
outgrows the available DRAM. The bar labelled small-bypass
in Fig. 4 shows the overhead being significantly reduced by
this feature.
Small-bypass, in a way, approximates cooperation with

the OS buffer cache. NVCache cannot know which blocks
the buffer cache holds, but it roughly approximates this in-
formation by juxtaposing the workload’s data size and the
amount of DRAM.

4§3.1 explains the difference between blocks and pages.
5We ran with larger DRAM sizes too, but reached the same conclusions.

Lesson #2: Throttle the admission rate. The small-bypass
feature all but eliminated the overhead for some workloads,
but made only a small dent for others. To show why, Fig-
ure 5 presents the number of blocks removed from NVCache
because they were outdated and freed by the block man-
ager as a percent of all admitted blocks. We observe that
the benchmarks whose overhead is still substantial after the
introduction of small-bypass are those that overwrite many
existing blocks.

When an application generates new data, either by insert-
ing new key-value pairs or updating the old ones, the block
manager generates new data blocks. The blocks containing
old invalid data are eventually freed by the block manager
and are removed from NVCache. Removing a block from
NVCache frees its associated memory in NVRAM. Since the
PMDK allocator keeps its metadata in NVRAM, freeing a
block produces writes into NVRAM. Moreover, removing
old blocks creates space for new blocks, and NVCache ea-
gerly admits data in the freed space. That also generates
writes. As we showed in §2 writes disproportionately affect
the throughput of reads, i.e., of cache lookups.
One could simply disable the cache for write-intensive

workloads, but even read-dominant workloads will suf-
fer from the interference of writes if an overly eager
eviction policy makes room for the admission of new
blocks at a high rate. Consider data in Table 1 for the three
read-dominant workloads from Table 2 (this table contains
workloads with large working sets, for which cachingmay be
beneficial). Table 1 shows data for experiments with eviction
configured to eagerly evict unused blocks and for experi-
ments configured to run without any eviction at all. Even
though the cache hit rate is higher with eager eviction (this
is expected – eviction makes space for newer, frequently
reused blocks), the throughput is substantially worse than
without any eviction at all. That is because the number of
cache writes produced with eviction is substantially greater
than without it, and the writes slow down the reads.
The question we then ask is: how to balance the rate

of block admission and removal, which generate writes,
with the rate of cache lookups, which produce reads? To
address it, we introduce the overhead bypass ratio (OBP):

𝑂𝐵𝑃 =
𝑏𝑙𝑜𝑐𝑘𝑠_𝑖𝑛𝑠𝑒𝑟𝑡𝑒𝑑+𝑏𝑙𝑜𝑐𝑘𝑠_𝑟𝑒𝑚𝑜𝑣𝑒𝑑

𝑏𝑙𝑜𝑐𝑘𝑠_𝑙𝑜𝑜𝑘𝑒𝑑_𝑢𝑝

Intuitively, the quantity in the numerator captures the
cost of using the cache: the write-generating insertions and
removals. The quantity in the denominator captures the ben-
efit: cache lookups. OBP thus expresses the balance between
the cost and benefit of using the cache; we experimentally
determined that a target ratio of 10% works best for our
hardware. If OBP were to be ported and tuned for differ-
ent hardware, the thresholds would be adjusted according
to the degree to which concurrent writes affect the reads.

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 4: Throughput degradation for workloads that do not stand to benefit fromNVRAM caching. Lower numbers
are better. Eviction is disabled during these experiments to simplify the analysis of the overhead.

Figure 5: Cached blocks that were outdated and freed.
Data corresponds to the experiment in Fig. 4. These are
aggregate data for the entire workload, so we do not
show the breakdown by operation type.

E.g., on hardware where writes have a smaller effect on the
performance of reads, acceptable OBP thresholds would be
higher.
NVCache continuously updates OBP and abstains from

admitting or evicting cache blocks if OBP exceeds its target
(10%). The OBPmetric proved remarkably stable across work-
loads and cache sizes. We also found OBP to work better than
a simple no-write-allocate policy or OBP used in conjunction
with the no-write-allocate policy. The small-bypass+OBP bar
in Figure 4 shows that small-bypass and OBP completely
eliminate the overhead for the benchmarks that do not stand
to benefit from caching.

We did study the sensitivity of performance to the value of
the OBP threshold and found that the values between 5% and
30% generated similar performance across all the workloads.
Since OBP includes parameters that do capture the workload
characteristics (the rate of insertions, removals and lookups
will vary across workloads), OBP is workload-sensitive by

Eager eviction No eviction

WL ops/sec hit rate ops/sec hit rate

evict-
btree-
large

61,699 48% 162,690 44%

evict-
btree-

scan.read

97,491 45% 134,404 36%

medium-
btree-
large

62,012 48% 164,644 44%

Table 1: Throughput of read-dominant workloads suf-
fers substantially with aggressive eviction despite it
producing a higher cache hit rate. Aggressive eviction
generates many writes that hurt the throughput of
cache lookups (reads).

design. So even though the OBP threshold is statically set,
the resultant rate of cache admission will largely depend
on the workload. E.g., we will admit very few blocks for
write-intensive workloads, while filling up the cache for the
read-intensive ones.

Lesson #3: Only read-dominant workloads benefit. To under-
stand what workloads benefit from NVCache here we switch
to workloads with large datasets that exceed the available
DRAM, reconfiguring previously used ’small’ workloads as
necessary. They teach us the third lesson: NVRAM cache
benefits only read-dominant workloads. A prior study of a
custom NVRAM cache for Meta’s RocksDB came to a similar
conclusion [28].

Table 2 shows the large-sized workloads and their charac-
teristics. The rate of operations marked with an asterisk (e.g.,

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

Workload Op mix
(threads),
data size

DRAM cache
size

NVCache hit
ratio

Removed /
inserted ratio

Amount of
data written

to SSD

Amount of
data admitted

to cache

500m-btree-
50r50u

50% read, 50%
update (20),
163GB

28GB 6% 98% 2190GB 191GB

chkpt-stress 100% update
(6), 134GB

28GB 2% 94% 780GB 36GB

evict-bt-
stress-multi

80% read, 20%
update (100),

250GB

1GB 20% 94% 1740GB 424GB

evict-btree 100% read (16),
120GB

28GB 97% 0% 120GB 115GB

evict-btree-
scan

95% read, 4%
insert*, 1%

update* (430),
250GB

28GB 97% 47% 400GB 300GB

medium-
btree

100% read (16),
120GB

28GB 97% 0% 120GB 115GB

overflow-
130k

50% read, 50%
update (20),

253GB

21GB 6% 95% 2000GB 127GB

update-
chkpt-btree

90% insert, 5%
read, 5%
update (5),
185GB

25GB 6% 95% 1720 GB 137GB

update-delta-
mix1

100% updates
(6), 125GB

20GB 2% 98% 2000GB 93GB

update-grow-
stress

96% update, 4%
inserts* (5),
190GB

20GB 2% 97% 2100GB 98GB

Table 2: Properties of ‘large’ workloads.

insert, update for evict-btree-scan) is kept constant by the
workload generator, and so we do not report their through-
put, because it is largely insensitive to the system configu-
ration. The data size reported in the second column is the
on-disk size of the database reported at the end of the run.
The intermediate database size may be much larger at points
when many new blocks were written to disk, but the out-
dated ones were not yet freed. Column six reports the total
amount of data written to SSD during the run. This amount
is non-zero even for read-only workloads, because it includes
the data written to populate the database prior to the mea-
sured benchmark run. Although NVCache is enabled during
the populate phase, it hardly admits any blocks, because OBP
throttles the admission rate during this write-only phase. So
when the measured run begins, NVCache is empty; it warms

up during the measured run. All benchmarks run for 60 min-
utes, with the exception of 500m-btree-50r50u, which runs
for 120.

Figure 9 presents the throughput of large workloads with
32GB DRAM and 252GB of NVCache. (Data with other mem-
ory sizes leads to similar conclusions, so we omit it.)

Read-intensive workloads benefit from NVCache substan-
tially, running over 3× faster with the cache than without
it (e.g., evict-btree-scan,READ). But even a small proportion
of writes substantially limits performance potential: evict-bt-
stress-m performs 20% of update operations, but the perfor-
mance boost it gets from NVCache is only 12%.

Write-intensive workloads do not benefit from NVCache,
or from any other block caching, because they make most of
the cached content obsolete (remember thatWiredTiger does
not overwrite blocks). Table 2 shows the NVCache hit ratio

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Figure 6: Workloads with large datasets. 32GB DRAM
and 252GBNVCache.Workload names are abbreviated.

and the fraction of removed blocks relative to those inserted.
The data tells us two things: (1) workloads that don’t benefit
from the cache have a very low hit ratio, (2) the low hit ratio
is because they make obsolete most of the blocks they insert.
They write terabytes of data throughout the run (Column 6),
even though their database size at the end of the run is no
larger than a couple hundred gigabytes (Column 2).
These data suggest that admitting zero blocks for write-

dominant workloads would be the most practical strategy,
but since the degree of write-intensity is not always known
a priori, we rely on the OBP feature to limit the damage.
As Figure 9 shows, OBP effectively prevents performance
overhead for write-dominant workloads, and columns 6 and
7 of Table 2 show that OBP filters the majority of the write
traffic to NVRAM.
WiredTiger does not update existing blocks in place. A

storage engine that does may be less sensitive to the phe-
nomenon described in this section, but given a limited write
throughput of Optane NVRAM we expect the lesson learned
here to be broadly applicable.

3.2.4 Summary. We presented three lessons in design Op-
tane NVRAM-resident caches:
(1) Detect workloads that fit into the OS buffer cache and

do not admit their blocks.
(2) Admitting blocks intoOptaneNVRAMproduceswrites,

which slow down the reads, i.e., cache lookups. The
admission policy must balance the cost of admitting
data into the cache against the benefit of using it later.

(3) Optane NVRAM caches benefit read-dominant work-
loads. For write-dominant workloads, the admission
policy must minimize the number of admitted blocks.

Our admission policy uses the small-bypass feature to
embody the first lesson, and the OBP feature to embody the
second and third.

4 EVALUATION
Weevaluate NVCache primarily using the YCSB benchmarks [8,
21]. Since we tuned the algorithms and the parameters of the
NVCache using our in-house benchmarks (e.g., a “training
set”, to use an analogy from statistical modeling), we had to
make sure that the algorithms perform well on previously
unseen workloads (i.e., the “test set”), and we chose YCSB to
fulfill that purpose. We provide supplementary figures show-
ing our in-house benchmarks to add nuance to the results.
We ran experiments on the system described in §3.2.1,

varying the amount of DRAM and NVRAM. Parameters of
the YCSB benchmarks are shown in Table 36. The DRAM
cache size was set to half of the available DRAM7, but capped
at 40GB, except in the experiments where the goal was to
observe the variation in engine’s cache size (§4.3).

Workload Op mix, threads Dataset

YCSB-A 50% read, 50% update, 20 130GB
YCSB-B 50% read, 50% update, 20 194GB
YCSB-C 100% read, 20 259GB
YCSB-D 95% read, 5% insert, 100 219GB
YCSB-E 95% scan, 5% insert, 20 210GB

Table 3: YCSB characteristics

Our evaluation asks three questions:
(1) How does NVCache compare to off-the-shelf solutions

pursuing similar goals ?
(2) What is the effect of using anNVRAMcache on performance-

per-$?
(3) Does using NVRAM block cache perform better than

using hardware tieredmemory and a larger page cache?

4.1 Comparison with off-the-shelf
solutions

4.1.1 Baselines used for comparison. We compare with two
solutions that permit using NVRAM as an extensions of
DRAM, available in off-the shelf Optane systems: Intel Mem-
oryMode (MM) [3] and Intel Open Cache Acceleration Software
(OpenCAS) [3]. For potential future deployment of NVRAM
in the field, it was important for us that these alternatives
were available in standard Linux servers and did not require
custom unsupported kernels.

Intel MemoryMode is a hardware configuration that presents
Optane NVRAM to the rest of the system as regular volatile
6We did not include YCSB-F: it is modify-heavy, and modify operations in
our storage engine were designed to trade performance for smaller cache
footprint and smaller log records. Therefore, the overall throughput in
modify operations was very low and insensitive to memory configurations.
7The engine’s cache and the OS buffer cache share the available DRAM, so
this setting gives each an equal share.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

memory, and uses DRAM transparently as its cache, with
data transferred between the two in units of cache lines.
This is an attractive alternative, because it permits using
NVRAM as an extension to DRAM without requiring any
code changes, and makes it available for all data structures,
in user space and kernel alike. In contrast, NVCache makes
NVRAM available only for caching database file blocks.
Memory Mode can be enabled only in specific hardware

configurations ([4], Table 17). We were able to successfully
configure MM such that each NVDIMM was “paired” with a
DRAM DIMM, meaning that it must be placed in the unused
slot of the same channel of the same iMC (integrated mem-
ory controller) as the NVDIMM. Using additional DRAM
DIMMs that were not paired with NVDIMMs produced con-
figuration errors on our system, so we could only use the
configuration with two NVDIMMs and two DRAM DIMMs.
Our DRAM DIMMs were 16GB in size, so that restricted us
to a configuration with 32GB of DRAM. Fortunately, MM
could be configured to use all or part of the NVRAM, so we
were able to vary the amount of NVRAM in the experiments.

In MM, the amount of total system memory is reported to
be the same as the size of the NVRAM dedicated to MM. To
answer questions (1) and (2) the WiredTiger’s DRAM cache
is configured to be half the size of the physical DRAM (see
the beginning of §4). In that case, the kernel buffer cache will
dynamically expand to use more plentiful system memory
as the NVRAM size grows, using NVRAM for caching file
blocks, just like NVCache. To answer question (3), we will
vary the size of the WiredTiger page cache to use additional
system memory.
OpenCAS is an open-source software project supported

by Intel that allows using a fast block device as a cache for a
slow block device, and it can be configured so that NVRAM
acts as a block cache for the SSD – same idea as NVCache.
OpenCAS can be configured in several modes [6]: write-
back, write-through, write-around, pass-through (disabled)
and write-only (allocate blocks only on write). Based on the
lessons learned during admission policy design,write-around
seemed the most appropriate configuration option: “In write-
around mode, the caching software writes data to the flash
device if and only if that block already exists in the cache and
[...] further optimizes the cache to avoid cache pollution in cases
where data is written and not often subsequently re-read.” [6]

Alternative baselines not pursued: Other alternatives
to compare would be device mapper write cache (dm-wc) [2]
and First Responder [33] – both OS-level block caches, and
tieredmemory systems, such as Nimble [38] andHeMem [32].
We considered comparing to dm-wc (the source code for
First Responder is not available at the time of the writing),
but upon analysing its properties we discovered that dm-wc
admits blocks only on writes and does not throttle the ad-
mission rate. These properties contradict the lessons learned

in this work. For example, dm-wc would admit zero blocks
for read-only workloads, depriving the workloads that could
benefit themost from aNVRAMcache. OpenCAS, in contrast,
can be configured with flexible admission policies, supersed-
ing dm-wc in that regard.

Nimble [38] and HeMem [32] are tiered memory systems
that transparently move application pages between DRAM
and NVRAM depending on how the pages are accessed. We
did not compare against them, because they both required
custom kernels, which would be impractical to adopt in pro-
duction. Furthermore, HeMem uses the NVRAM tier only
for large allocations exceeding 1GB (HeMem specifically tar-
gets “big data” systems), so it would not use NVRAM for
our engine’s pages or blocks, whose size is on the order of a
dozen kilobytes. In §4.3 we evaluate using a larger page cache
with MM, which in many respects is similar to a transpar-
ent tiered-memory system. Strictly speaking, Intel Memory
Mode is not a tiered system, because DRAM acts as a cache
for NVRAM, but it comes close.

4.1.2 Results. Figure 7 shows the throughput of the memory
mode (MM), OpenCAS and NVCache with 32GB DRAM and
64GB, 128GB and 252GB of NVRAM relative to using no
NVRAM at all. We make the following observations:

Observation 1: OpenCAS cache derives no performance
benefit from NVRAM. This occurs because OpenCAS does
not throttle the admission rate. OpenCAS delivers similar or
better read hit rate as the NVCache (numbers not shown), but
also makes two orders of magnitude more writes to NVRAM.
Even for read-only workloads, admitting data into cache
produces writes. Failing to throttle the admission rate
to NVRAM is the main reason why OpenCAS fails to
perform.

Observation 2:Memory mode outperforms or performs
comparably to NVCache when NVRAM is ample, as shown
in Figure 7(c). In that configuration, the size of the NVRAM
is 252GB, and the marginal utility of NVCache is small after
the memory size reaches 128GB. For example, increasing the
NVRAM size from 64GB to 128GB, NVCache hit rate grows
by about 20%, but going from 128GB to 252GB, it grows
by only another 5%. So as NVRAM grows beyond 128GB,
NVCache brings little extra benefit, but MM, being able to
cache not only file blocks but other data structures (including
the kernel buffer cache), brings further improvements.

On the other hand, we observe that Memory Mode hurts
performance of the write-intensive YCSB-A (by about 30%),
while NVCache keeps it unchanged.

Observation 3:When the dataset size exceeds NVRAM
capacity, NVCache provides substantially better performance
than Memory Mode. As shown in Fig. 7(a), NVCache outper-
forms the memory mode by between 30% (for YCSB-B) and
169% (YCSB-C). Further, the memory mode hurts YCSB-A’s

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

(a) 64GB NVRAM (b) 128GB NVRAM (c) 252GB NVRAM

Figure 7: YCSB throughput undermemorymode, OpenCAS and NVCache relative to 32GBDRAM and zero NVRAM.

update throughput by about 18% relative to the DRAM-only
baseline, while NVCache doesn’t. We conclude that a cache
tailored to throttle the admission rate can be superior to
Memory Mode when the dataset size substantially exceeds
the available NVRAM.

4.1.3 Combining Memory Mode and NVCache. We also ex-
perimented with configurations where part of the NVRAM
is dedicated to MM and the remainder is used for NVCache,
reasoning that we could size NVCache such that its marginal
utility is highest (128GB), and the rest of the NVRAM could
be used as MM’s systemmemory for the benefit of other data
structures. Unfortunately, we observed orders of magnitude
worse throughput than with either MM or NVCache alone,
and did not pursue this avenue further.

4.2 Performance vs. cost
In this experiment we take a fixed memory budget of 96GB
and vary the fraction used by DRAM and NVRAM as shown
in Table 48. We perform the experiments in this section using
only NVCache, as we are unable to vary the amount of DRAM
used in MM (see §4.1.1) and OpenCAS proved to be not
competitive.

NVRAM DRAM Relative cost

0GB 96GB 1
16GB 80GB 0.90
32GB 64GB 0.79
48GB 48GB 0.69
64GB 32GB 0.59

Table 4: NVRAM and DRAM amounts and the cost of
all system memory relative to an all-DRAM setup.

We use the NVRAM/DRAM per-byte cost ratio of 0.38,
same as in a recent study with Optane memory [28]. As
8We do not use the configuration with 16GB DRAM, because a scarce DRAM
amount triggered a known kernel bug in the DAX code (at fs/inode.c:530).

the amount of NVRAM increases and the amount of DRAM
decreases, the total cost of system memory also decreases,
as shown in Column 3.
Figure 8(a) shows the performance of YCSB normalized

to the 96GB DRAM configuration and divided by the cost
ratio in Column 3. In other words, these are performance/$
numbers relative to the DRAM-only configuration. Positive
numbers mean that the performance decreased less than
the memory cost. Read-only or read-mostly workloads that
benefit from the NVCache (see cache hit ratios in Fig. 8(b))
experience a positive gain, as expected.

While in most cases performance predictably drops as the
amount of DRAM decreases, YCSB-C in configuration with
64GB NVRAM and 32GB DRAM actually performs better
than it does with 96GB DRAM – so we decrease the system
cost and improve performance in absolute terms. This oc-
curs because beyond 32GB DRAM the utility of additional
DRAM (and a larger page cache) is smaller than the loss in
performance due to a smaller NVCache.

YCSB-A, whose write intensity makes caching futile, suf-
fers the overall loss in terms of performance/$. Its perfor-
mance drops at a steeper rate than the memory cost as we
decrease the amount of DRAM.
We also performed identical experiments using our in-

house benchmarks (see Figure 9). As most of them are write-
intensive and their performance does not change with the
introduction of NVCache (see §3), here we present read-
intensive benchmarks (with large datasets): evict-btree (read-
only), evict-btree-scan (95% reads), medium-btree (read-only),
and evict-btree-stress-multi (80% reads, 20% updates). See
Table 2 for their characteristics. The results show the same
pattern as with YCSB. Performance/$ increases favourably
as the NVRAM size increases for benchmarks that perform
only or mostly reads. Although 80% of the operations in evict-
btree-stress-multi are reads, the prominent presence of writes
means that trading DRAM for NVRAM is not cost-effective.
We conclude that NVRAM is a cost-effective method of

reducing memory cost while balancing the impact on perfor-
mance for read-dominant workloads, where in some cases we

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

(a) Performance per $ (b) NVCache hit ratio

Figure 8: YCSB performance per dollar and NVCache hit ratio under increasing NVRAM and decreasing DRAM.

Figure 9: Performance per dollar under increasing
NVRAM and decreasing DRAM for several in-house
benchmarks.

can both reduce cost and improve performance. At the same
time, even a modest presence of writes can render NVRAM
unprofitable relative to DRAM – an observation shared by
the authors of the Meta’s RocksDB study [28]. .

4.3 A larger page cache with memory mode
We explored using NVRAM for a block cache, but another
alternative is to use it as a transparent extension of sys-
tem volatile memory to enable a larger WiredTiger page
cache. In the experiments described in this section we use
NVRAM in the Memory Mode, and increase the size of the
WiredTiger page cache. We compare this configuration to
the NVCache configuration from the previous section.
Figure 10 shows the throughput of YCSB with 32GB of

DRAMand 64GB, 126GB and 252GB of NVRAM. TheNVCache
configuration uses a 16GB WiredTiger page cache, as in the
previous section. For the configurations without NVCache,
we vary the size of the WiredTiger page cache as much as
the NVRAM capacity allows: 16GB, 32GB, 40GB, 80GB and
160GB.

Our conclusions are similar to those in the previous sec-
tion: When the amount of NVRAM is small relative to the

dataset size, using NVCache is superior to using the Memory
Mode, even if we allow theWiredTiger page cache to expand.
When NVRAM is plentiful (the 252GB configuration), using
Memory Mode is often (though not always) advantageous
to using the block cache, in some cases by a large margin.
In-between those extremes using NVCache is preferable for
some workloads, but not for others.
One anomaly evident in Figure 10 is a very large varia-

tion in running times that we often observed in the Mem-
ory Mode, but never with the NVCache9. We don’t fully
understand this phenomenon, but the variability suggests
that Memory Mode is not consistently keeping the hottest
WiredTiger data in DRAM. If MemoryMode used direct map-
ping when caching NVRAM-resident data in DRAM, conflict
misses could be the reason for performance variability, but
we could not confirm this hypothesis. In any case, a more
predictable performance of NVCache positions it as a better
candidate for production deployment.

4.4 Summary
Our evaluation revealed that the memory mode is a com-
petitive off-the-shelf alternative to a custom NVRAM cache
when the amount of NVRAM is ample, but when it is scarce
a custom cache solution such as NVCache will deliver bet-
ter performance. OpenCAS is not competitive with either
NVCache or the memory mode.
NVRAM is a cost-effective method of reducing memory

cost while balancing the impact on performance for read-
dominant workloads, where in some cases we can both re-
duce cost and improve performance as DRAM is swapped in
favour of NVRAM. For write-intensive workloads, however,
replacing part of DRAM with NVRAM is not a cost-effective
option.

9We did not include error bars in our other figures, because the variance
was always small.

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

(a) 64GB NVRAM

(b) 128GB NVRAM

(c) 252GB NVRAM

Figure 10: YCSB throughput inmemorymode and with
NVCache. Bars labeled MM.NGB correspond to config-
urations in memory mode with varying sizes of the
WiredTiger page cache, where 𝑁 stands for the size
of the page cache. The NVCache configuration uses a
16GB DRAM page cache and the NVRAM block cache,
which has the size of the available NVRAM. The num-
bers are normalized to MM.16GB.

5 RELATEDWORK
The most similar and recent counterpart to our study is
a volatile Optane-resident cache for Meta’s RocksDB [28].
That work takes RocksDB’s DRAM block cache and turns
it into a two-tiered cache of DRAM and NVRAM, making it
similar to tiered memory systems. Like other tiered memory
systems, it addresses the question of how to split the cached
data between the DRAM and the NVRAM tiers. We present
a different design, one that uses a stand-alone block cache
interposed between the DRAM cache and the block device.
Although the RocksDB study also used Optane NVRAM as
the cache media, it does emphasize the impact of writes on
simultaneously occurring reads – a new finding in our work
– and does not factor this phenomenon into the admission
policy.
HeuristicDB [40] is a cooperative block layer cache that

uses a fast Optane SSD as a caching tier in front of a slower
drive. HeuristicDB admits all blocks read from and written
to the block device, except those part of sequential access
pattern. While this generous admission policy might work
for Optane SSDs, we demonstrated that it is unacceptably
costly for Optane NVRAM.
MyNVM is another key-value store based on RocksDB

that uses Optane SSD as the medium for an internal block
cache [25]. Similarly to NVCache, MyNVM caters its ad-
mission policy to the properties of the Optane device, but
pursues different goals: (1) to extend its endurance MyNVM
admits only carefully selected keys, and (2) to maximize its
bandwidth it accumulates keys into relatively large 128KB
blocks before writing them to the device. While we did not
focus on improving endurance, write throttling performed in
NVCache should increase it. The second goal is potentially
applicable to our NVRAM device too, but prior experiments
([39], Fig. 5) showed that writing into Optane NVRAM blocks
larger than those that we already write (e.g., 16KB+) does
not improve its bandwidth.

Flashield [24] admission policy aims to predict which ob-
jects will be frequently read, but not updated and caches
those objects by writing them in large chunks. (CacheLib’s
ML policy [1, 15] is similar, modeled on that of Flashield.) So
for read-only workloads, Flashield could potentially admit
objects at a high rate, generating writes into the cache. In
contrast, we found that admission throttling is crucial even
for read-only workloads (see §3.2.3, Lesson 2). Admission
rate can become high even for workloads without updates,
if popularity of cached read-only blocks fades rapidly and
new blocks are admitted in their place. If that occures, our
policy will throttle admission and limit the harmful effect
of writes, while Flashield would not. In summary, Flashield
offers a useful approach for predicting which blocks will be
most useful to cache, but for caches built on Optane NVRAM

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

admission throttling proposed in our work is a crucial design
feature.
CacheLib, by default, admits objects into a cache with a

probability 𝑝 . Although setting 𝑝 to a low number could
accomplish a similar effect to that of OBP, 𝑝 in CacheLib is
a statically configured parameter. We found that admission
throttling rate must cater to the workload properties. E.g.,
NVCache would admit hardly any blocks for write-intensive
workloads, while filling up the cache for read-intensive ones.

The work by Arulraj et al. [14] establishes a broad frame-
work for reasoning about multi-tiered caching systems com-
prised of DRAM, persistent memory and SSDs. The authors
propose an algorithm for data placement that dynamically
tunes the following probabilities: the probability of bypassing
DRAMon reads andwrites (where datawould be read/written
directly from/to NVRAM) and the probability of bypassing
the NVRAM on reads and writes. Bypassing DRAM is not
applicable in our engine, because our DRAM cache stores
data in a different format than our NVRAM cache, but by-
passing NVRAM is exactly the question we investigated in
the design of our admission policy. Within Arulraj’s frame-
work, our admission policy proposes a solution for tuning
the variables 𝑁𝑟 (the probability of bypassing the NVRAM
cache during reads) and 𝑁𝑤 (the probability of bypassing
the NVRAM cache during writes) – see Sections 3.3 and 3.4
in [14]. Similar to our work, Arulraj et al. express the opti-
mization function as the combination of cost (writes) and
benefit (throughput). In our system, with the OBP metric we
approximate the cost via insertions and removals (writes),
and the benefit via lookups, which also correlate with the
throughput of our storage engine. The difference of Arulraj’s
work is that their system is tuned using simulated annealing,
while we use a single metric that dynamically controls the
admission rate and is robust across different workloads. Us-
ing a simple metric is advantageous for a large production
codebase.
Estro et al. explored the relationship of performance and

cost and the effects of different cache settings (such as write-
through vs. writeback) in multi-tier caching configurations
on real hardware [26]. Performing similar analysis would
be a natural extension of our work, but can only be done
after understanding the idiosyncrasies of cache design using
recently adopted memory technology, contributed by our
study.

Dulong et al. built an eponymous system (NVCache) that
acts as a user-level write cache for the file system [23]. De-
spite sharing the name, that system is orthogonal to ours:
it uses NVRAM solely for caching writes. It is very similar
to the device mapper write cache (discussed in §4), except it
gains efficiency from running at user level.
The design of Orthus [36] was driven by an observation

similar to ours: a seemingly faster device (Optane SSD, in

their case) outperforms a slower device (a flash-based SSD)
in general, but lags behind it under high concurrency. Orthus
embraces a hybrid design: initially, a faster device acts as a
cache for a slower device, admitting all blocks until a desired
hit rate is accomplished. Then Orthus switches to a ‘’tiered
mode”, where the load is distributed among both devices to
maximize the overall throughput. Our OBP feature accom-
plishes a somewhat similar effect when it begins throttling
the admission rate to NVCache, and as a result more reads
are being sent to the storage device over time. In contrast
to Orthus, NVCache throttles the admission rate based on
the observed cost/benefit metric, and not as a consequence
of achieving a certain hit rate. In fact, we observed (§3.2,
Lesson 2) that it may be beneficial for overall performance
to throttle the admission rate at the expense of the reduced
hit rate.

Multi-tiered memory systems focus primarily on policies
for selecting the right tier for a memory page, and (to that
end) efficiently tracking page access patterns [12, 13, 22, 27,
32, 35, 37? , 38]. Our decision to make NVCache indepen-
dent from the DRAM cache makes these techniques comple-
mentary. We evaluated Intel Memory Mode as a hardware
based tiered memory-like system, where the WiredTiger
page cache can expand into the additional memory provided
by NVRAM, and saw mixed results. We did not evaluate
software solutions, such as Nimble [38] and HeMem [32]:
they required custom kernels that were impractical do adopt
in the field.

6 CONCLUSION
Although it was well known that Optane NVRAM deliv-
ers limited write throughput, it was not known that writes
disproportionately affect the throughput of reads. We dis-
covered that in the presence of a single writer thread, the
throughput of reads drops almost by a factor of 4×. In con-
trast, with DRAM used in the same experiment the impact on
read throughput was only 18%. This discovery led us to pro-
pose a new admission policy for Optane-resident caches. Our
policy throttles the rate of writes to the cache (generated by
the admission of new data, removal of invalid data and evic-
tion), with the rate of reads, i.e., cache lookups. The metric
capturing this principle, the Overhead Bypass Threshold, is
generic and can be applied in any cache residing on hardware
with similar properties. Our implementation outperforms an
off-the-shelf cache from OpenCAS across the board, and the
hardware tiered memory system (Intel Memory Mode) in all
cases where the dataset size exceeds the amount of NVRAM.

7 AVAILABILITY
TheWiredTiger source code, including NVCache, is available
as open source software [11].

Writes Hurt: Lessons in Cache Design for Optane NVRAM SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

REFERENCES
[1] 2021. CacheLib, Facebook’s open source caching engine for web-

scale services. https://engineering.fb.com/2021/09/02/open-source/
cachelib.

[2] 2021. Device Mapper Write Cache. www.kernel.org/doc/html/latest/
admin-guide/device-mapper/cache.html.

[3] 2021. Intel Memory Mode. https://software.intel.com/content/www/
us/en/develop/articles/qsg-intro-to-provisioning-pmem.html.

[4] 2021. Intel® Server Board S2600WF Product Family. Technical Prod-
uct Specification. https://www.intel.com/content/dam/support/us/en/
documents/server-products/server-boards/S2600WF_TPS.pdf.

[5] 2021. Open Cache Acceleration Software. https://open-cas.github.io.
[6] 2021. Open Cache Acceleration Software: Admin Guide. https://open-

cas.github.io/guide_configuring.html.
[7] 2021. Persistent Memory Development Kit. https://pmem.io/pmdk.
[8] 2021. Yahoo! Cloud Serving Benchmark, Git Repo. https://github.com/

brianfrankcooper/YCSB.
[9] 2022. Clock Page Replacement Algorithm. Wikipedia. https://en.

wikipedia.org/wiki/Page_replacement_algorithm#Clock.
[10] 2022. MongoDB. https://www.mongodb.com.
[11] 2022. WiredTiger Storage Engine. Block cache. https://github.com/

wiredtiger/wiredtiger/blob/develop/src/block_cache/block_cache.c.
[12] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-

Transparent Page Management for Two-Tiered Main Memory. SIG-
PLAN Not. 52, 4 (April 2017), 631–644.

[13] Shoaib Akram, Kathryn S. McKinley, Jennifer B. Sartor, and Lieven
Eeckhout. 2018. Managing Hybrid Memories by Predicting Object
Write Intensity. In Conference Companion of the 2nd International Con-
ference on Art, Science, and Engineering of Programming (Nice, France)
(Programming’18 Companion). Association for Computing Machinery,
New York, NY, USA, 75–80.

[14] Joy Arulraj, Andy Pavlo, and Krishna Teja Malladi. 2019. Multi-Tier
Buffer Management and Storage System Design for Non-Volatile Mem-
ory. CoRR abs/1901.10938 (2019). arXiv:1901.10938 http://arxiv.org/
abs/1901.10938

[15] Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory R. Ganger. 2020. The CacheLib
Caching Engine: Design and Experiences at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, 753–768.

[16] Muhammad Bilal and Shin-Gak Kang. 2017. A Cache Management
Scheme for Efficient Content Eviction and Replication in Cache Net-
works. IEEE Access 5 (2017), 1692–1701.

[17] Mustafa Canim, George A. Mihaila, Bishwaranjan Bhattacharjee, Ken-
neth A. Ross, and Christian A. Lang. 2010. SSD Bufferpool Extensions
for Database Systems. Proceedings of the VLDB Endowment 3, 2 (2010),
1435–1446.

[18] Yuxia Cheng, Wenzhi Chen, Zonghui Wang, Xinjie Yu, and Yang Xiang.
2015. AMC: an adaptive multi-level cache algorithm in hybrid storage
systems. Concurrency and Computation: Practice and Experience 27, 16
(2015), 4230–4246.

[19] Yuxia Cheng, Yang Xiang, Wenzhi Chen, Houcine Hassan, and Ab-
dulhameed Alelaiwi. 2018. Efficient cache resource aggregation using
adaptive multi-level exclusive caching policies. Future Gener. Comput.
Syst. 86 (2018), 964–974.

[20] Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.
2015. Dynacache: Dynamic Cloud Caching. In 7th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 15). USENIX Association,
Santa Clara, CA.

[21] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). 143–154.

[22] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data Tiering in Heterogeneous Memory Systems. In
Proceedings of the Eleventh European Conference on Computer Systems
(London, United Kingdom) (EuroSys ’16). Association for Computing
Machinery, New York, NY, USA, Article 15, 16 pages.

[23] Rémi Dulong, Rafael Pires, Andreia Correia, Valerio Schiavoni, Pe-
dro Ramalhete, Pascal Felber, and Gaël Thomas. 2021. NVCache: A
Plug-and-Play NVMM-based I/O Booster for Legacy Systems. In 51th
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 21).

[24] Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan
Stutsman, Mohammad Alizadeh, and Sachin Katti. 2019. Flashield: a
Hybrid Key-value Cache that Controls Flash Write Amplification. In
16th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 19).

[25] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe,
Siying Dong, Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin
Katti. 2018. Reducing DRAM Footprint with NVM in Facebook. In
Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (Eu-
roSys ’18). Association for Computing Machinery, New York, NY, USA,
Article 42, 13 pages.

[26] Tyler Estro, Pranav Bhandari, Avani Wildani, and Erez Zadok. 2020.
Desperately Seeking ... Optimal Multi-Tier Cache Configurations. In
12th USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage 20). USENIX Association.

[27] Sudarsun Kannan, AdaGavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS: OS Design for Heterogeneous Memory Management
in Datacenter. In Proceedings of the 44th Annual International Sym-
posium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17).
Association for Computing Machinery, New York, NY, USA, 521–534.

[28] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaib-
hav Gogte, and Ronald Dreslinski. 2021. Improving Performance
of Flash Based Key-Value Stores Using Storage Class Memory as a
Volatile Memory Extension. In 2021 USENIX Annual Technical Confer-
ence (USENIX ATC 21). 821–837.

[29] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. 1999. On the Existence of a
Spectrum of Policies That Subsumes the Least Recently Used (LRU)
and Least Frequently Used (LFU) Policies. In Proceedings of the 1999
ACM SIGMETRICS International Conference on Measurement and Mod-
eling of Computer Systems (Atlanta, Georgia, USA) (SIGMETRICS ’99).
Association for Computing Machinery, New York, NY, USA, 134–143.

[30] Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng
Liu. 2014. vCacheShare: Automated Server Flash Cache Space Man-
agement in a Virtualization Environment. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14). USENIX Association, Philadel-
phia, PA, 133–144.

[31] Sundaresan Rajasekaran, Shaohua Duan, Wei Zhang, and Timothy
Wood. 2016. Multi-cache: Dynamic, Efficient Partitioning for Multi-tier
Caches in Consolidated VM Environments. In 2016 IEEE International
Conference on Cloud Engineering (IC2E). 182–191.

[32] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In 28th ACM Symposium on Operat-
ing Systems Principles (SOSP’21).

[33] Hyunsub Song, Shean Kim, J. Hyun Kim, Ethan JH Park, and Sam H.
Noh. 2021. First Responder: Persistent Memory Simultaneously as

https://engineering.fb.com/2021/09/02/open-source/cachelib
https://engineering.fb.com/2021/09/02/open-source/cachelib
www.kernel.org/doc/html/latest/admin-guide/device-mapper/cache.html
www.kernel.org/doc/html/latest/admin-guide/device-mapper/cache.html
https://software.intel.com/content/www/us/en/develop/articles/qsg-intro-to-provisioning-pmem.html
https://software.intel.com/content/www/us/en/develop/articles/qsg-intro-to-provisioning-pmem.html
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://www.intel.com/content/dam/support/us/en/documents/server-products/server-boards/S2600WF_TPS.pdf
https://open-cas.github.io
https://open-cas.github.io/guide_configuring.html
https://open-cas.github.io/guide_configuring.html
https://pmem.io/pmdk
https://github.com/brianfrankcooper/YCSB
https://github.com/brianfrankcooper/YCSB
https://en.wikipedia.org/wiki/Page_replacement_algorithm##Clock
https://en.wikipedia.org/wiki/Page_replacement_algorithm##Clock
https://www.mongodb.com
https://github.com/wiredtiger/wiredtiger/blob/develop/src/block_cache/block_cache.c
https://github.com/wiredtiger/wiredtiger/blob/develop/src/block_cache/block_cache.c
https://arxiv.org/abs/1901.10938
http://arxiv.org/abs/1901.10938
http://arxiv.org/abs/1901.10938

SoCC ’22, November 7–11, 2022, San Francisco, CA, USAAlexandra Fedorova, Keith A. Smith, Keith Bostic, Susan LoVerso, Michael Cahill, and Alex Gorrod

High Performance Buffer Cache and Storage. In 2021 USENIX Annual
Technical Conference (USENIX ATC 21). 839–853.

[34]]panthera Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris
Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and Guoqing Harry Xu.
[n. d.]. Panthera: Holistic Memory Management for Big Data Process-
ing over Hybrid Memories.

[35] Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen.
2015. Exploiting Program Semantics to Place Data in Hybrid Memory.
In 2015 International Conference on Parallel Architectures and Compi-
lation, PACT 2015, San Francisco, CA, USA, October 18-21, 2015. IEEE
Computer Society, 163–173.

[36] Kan Wu, Zhihan Guo, Guanzhou Hu, Kaiwei Tu, Ramnatthan Ala-
gappan, Rathijit Sen, Kwanghyun Park, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. 2021. The Storage Hierarchy is Not
a Hierarchy: Optimizing Caching on Modern Storage Devices with
Orthus. In 19th USENIX Conference on File and Storage Technologies
(FAST 21). USENIX Association, 307–323.

[37] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime Data
Managementon Non-Volatile Memory-Based Heterogeneous Main
Memory. In Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (Denver, Colorado)

(SC ’17). Association for Computing Machinery, New York, NY, USA,
Article 58, 14 pages.

[38] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Nimble Page Management for Tiered Memory Systems. In 2019 Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’19). 331–345.

[39] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steve Swanson. 2020. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. In 18th USENIX Conference on File and
Storage Technologies (FAST 20). USENIX Association, Santa Clara, CA,
169–182.

[40] Jinfeng Yang, Bingzhe Li, and David J. Lilja. 2021. HeuristicDB: A
Hybrid Storage Database System Using a Non-Volatile Memory Block
Device. Association for Computing Machinery, New York, NY, USA.

[41] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers,
David Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ningfang Mi,
and Steven Swanson. 2017. AutoTiering: Automatic data placement
manager in multi-tier all-flash datacenter. In 36th IEEE International
Performance Computing and Communications Conference, IPCCC 2017,
San Diego, CA, USA, December 10-12, 2017. IEEE Computer Society,
1–8.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Optane memory's Achilles' heel
	2.2 Multi-tier caching systems
	2.3 WiredTiger

	3 NVCache: a step-by-step design
	3.1 NVCache basics
	3.2 NVCache Admission Policy Design

	4 Evaluation
	4.1 Comparison with off-the-shelf solutions
	4.2 Performance vs. cost
	4.3 A larger page cache with memory mode
	4.4 Summary

	5 Related Work
	6 Conclusion
	7 Availability
	References

