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ABSTRACT

Multicore processors have become commonplace in both desk-
top and servers. A serious challenge with multicore proces-
sors is that cores share on and off chip resources such as
caches, memory buses, and memory controllers. Competi-
tion for these shared resources between threads running on
different cores can result in severe and unpredictable per-
formance degradations. It has been shown in previous work
that the OS scheduler can be made shared-resource-aware
and can greatly reduce the negative effects of resource con-
tention. The search space of potential scheduling algorithms
is huge considering the diversity of available multicore archi-
tectures, an almost infinite set of potential workloads, and a
variety of conflicting performance goals. We believe the two
biggest obstacles to developing new scheduling algorithms
are the difficulty of implementation and the duration of test-
ing. We address both of these challenges with our toolset
AKULA which we introduce in this paper. AKULA pro-
vides an API that allows developers to implement and debug
scheduling algorithms easily and quickly without the need to
modify the kernel or use system calls. AKULA also provides
a rapid evaluation module, based on a novel evaluation tech-
nique also introduced in this paper, which allows the created
scheduling algorithm to be tested on a wide variety of work-
loads in just a fraction of the time testing on real hardware
would take. AKULA also facilitates running scheduling al-
gorithms created with its API on real machines without the
need for additional modifications. We use AKULA to de-
velop and evaluate a variety of different contention-aware
scheduling algorithms. We use the rapid evaluation module
to test our algorithms on thousands of workloads and assess
their scalability to futuristic massively multicore machines.
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1. INTRODUCTION

One of the key challenges of multicore systems is mini-
mizing contention for shared computing resources, such as
caches, memory controllers, and interconnects. Modern mul-
ticore systems consist of multiple memory-domains, which
are clusters of cores sharing computing resources (Figure 1).
On such architectures, intelligent placement of threads into
memory domains becomes crucial, especially for CPU-bound
workloads, which are particularly sensitive to variations in
CPU performance. Given T threads and M memory do-
mains, how to place the threads into memory domains in
order to minimize contention for shared resources? Which
threads should be placed in the same domain, and which
threads should be placed apart? The difference between a
good thread placement policy and a poor one can be quite
significant. Our experiments show that a policy that avoids
contention may improve performance by as much as 50% for
some applications. In this context thread placement refers
to an instance of the scheduling problem where a scheduler
decides how to space share the hardware among threads. In
other words, the threads which are to be run on the machine
are assigned, i.e., mapped, to specific cores. In the event
that the number of threads exceeds the number of cores,
some cores will also be time shared by multiple threads.
We will use the terms thread placement and thread schedule
interchangeably. Even for a small number of cores, mem-
ory domains, and threads, there are a great many possible
thread placements to choose from and this number grows
exponentially with the number of cores and threads. Select-
ing the optimal schedule depends on the characteristics of
the threads, the architecture of the machine, and the metric
that the scheduler is trying to optimize.

The problem is made even more difficult by the fact that
the threads to be scheduled on a machine may have vastly
diverse characteristics. We use characteristic to mean micro-
architectural properties that determine how the threads will
compete for shared resources if scheduled to the same mem-
ory domain. Moreover, thread characteristics may not be
known a priori and will need to be discovered online with
the use of the available performance counters. On top of
this, there is no guarantee that scheduling solutions that
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Figure 1: A schematic view of a system with two
memory domains and two cores per domain. Cores
in each domain share the last-level (L2) cache, the
memory controller, and the pre-fetching hardware.

work well on systems with two cores per memory domain
will carry over to systems with four or six cores per domain,
or even to future generations of the same processor. All this
creates an enormous design space of scheduling algorithms
for developers to explore, while the mounting pile of evi-
dence [4, 8, 25] points to the importance of finding good
scheduling algorithms for CMPs.

We created the AKULA toolset specifically to aid devel-
opers in narrowing down and rapidly exploring the design
space of scheduling algorithm. AKULA addresses what we
believe to be two of the biggest difficulties in scheduling algo-
rithm development: the difficulty of implementation and the
duration of testing. The difficulty of implementation refers
to the time and effort needed to convert an idea into the ac-
tual code that places threads on cores and migrates them be-
tween cores when needed. Implementing a thread placement
algorithm inside the kernel is not a trivial task. Implement-
ing a thread placement algorithm as a user level process,
which relies on system calls to read performance counters
and to bind threads to cores, may be easier than kernel
programming but is also far from trivial. The duration of
testing refers to the large amount of time required to test
and validate a scheduling algorithm with sufficiently many
workloads. Popular benchmark suites like SPEC CPU2006
typically have applications with run times of several minutes
and hence testing a variety of workloads constructed from
these benchmarks will take hours or even days.

The difficulty of implementation and the duration of test-
ing make it infeasible to explore many different schedul-
ing algorithms. AKULA aims to change this by making
it easy to implement thread placement algorithms via our
user friendly API and to rapidly test algorithms using our
novel performance evaluation technique called the bootstrap
method.

The need for the AKULA toolset is motivated by a re-
newed interest in research in scheduling algorithms for mul-
ticore systems. Since scheduling algorithms were shown to
be extremely effective in improving system performance by
controlling resource allocation, dozens of new scheduling al-
gorithms have emerged [25, 4, 11, 17, 1, 2, 10, 19, 22, 20,
16, 9, 15, 5, 7, 13, 24]. Commercial operating systems, such
as Solaris and Linux, have also made recent updates to their
schedulers. In designing AKULA, we hoped to provide a
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powerful tool that would aid research in this highly active
and fruitful area.

Using the AKULA toolset we discovered interesting prob-
lems with existing contention-aware scheduling algorithms,
and found effective solutions. For example, we found that
existing algorithms, such as those proposed in [4, 11, 25],
were effective in eliminating contention only in cases where
the workload consisted of threads that could be clearly cat-
egorized as either compute-intensive (those with a very low
last-level cache miss rate) or memory-intensive (those with
a very high cache miss rate). But when the workload had
threads that could not be easily assigned to any of these
coarse categories, the algorithms failed to effectively reduce
contention. Using AKULA we were able to quickly de-
sign an algorithm that works effectively for a wider range
of workloads. Using AKULA we also confirmed, using a
very large number of experiments, earlier findings that while
contention-aware algorithms produce modest performance
improvements on average for all applications in a given work-
load [25], they are able to significantly reduce the worst-
case execution time by preventing pathological thread place-
ments that can be chosen by a contention-unaware scheduler.
We also explored the scalability of these algorithms to fu-
turistic massively multicore systems.

The rest of the paper is structured as follows. The AKULA
toolset is discussed in detail in Section 2. We showcase
AKULA’s utility in Section 3 in a series of case studies where
AKULA is used to develop and evaluate different schedul-
ing algorithms. That section also validates results obtained
using AKULA against those obtained using experiments on
real systems. Section 4 discusses related work, and Section 5
summarizes our findings.

2. THE AKULA TOOLSET

The purpose behind the AKULA toolset is to allow algo-
rithm developers to quickly and painlessly convert an idea
for a scheduling algorithm into a working scheduling algo-
rithm, which can then be rapidly evaluated. If the evalu-
ation shows that the algorithm achieves the desired goals
then the developer can move onto implementing this sched-
uler inside the kernel having high confidence that it will be
a successful scheduler. On the other hand, if the evaluation
shows the scheduling algorithm is lacking in certain aspects
then the developer can work on improving this algorithms
or move on to a completely different idea without having
wasted significant time or effort on this first algorithm.

Figure 2 shows the flow chart for the intended use of the
AKULA toolset. Once an abstract idea for a scheduling
algorithm is converted into the actual implementation us-
ing the AKULA API and library, it is first rapidly evalu-
ated using the Bootstrapping Module. This first evaluation
step is done in mere seconds, thanks to our new bootstrap
evaluation methodology, which we describe later. The Boot-
strapping Module is a great first step for rapidly filtering
out unsuccessful algorithms. Schedulers that are success-
ful in the bootstrap evaluation are then evaluated on a real
machine using the Wrapper Module, which translates the
simplified implementation of the scheduler into a real one.
If successfully evaluated on a real machine then the devel-
oper, confident that this scheduling algorithm will achieve
the desired goals, may proceed to spend the time and effort
to implement the algorithm inside the kernel.

To make evaluations easier, the statistics from each ex-
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Figure 2: Using AKULA.

public class NAIVE_SPREAD {

private int PREVIOUSPoP = 0;

public void LAUNCHTHREAD(THREAD READYTHREAD, MACHINE M, INT CURRENT_TIME){

READYTHREAD . ACTIVATE (CURRENT_TIME) ;
M. ADDTHREAD (READYTHREAD) ;
PREVIOUSPOP += 1;

}

public void UPDATESCHEDULE(MACHINE M, INT CURRENTTIME){
if (M.TOTALLOAD() != PREVIOUSPOP){
M.BALANCEL0AD() ;
M.BALANCEDOMAINS () ;
PREVIOUSPOP = M.TOTALLOAD();

Figure 3: The implementation of Naive_Spread algo-
rithm with AKULA

periment are output in tabular form, which can be imported
into popular statistical packages, using the Statistics Mod-
ule.

2.1 Implementing a Scheduling Algorithm with

AKULA

A scheduling algorithm is implemented in the AKULA
toolset with a Java class that supports two functions:
launchThread and updateSchedule. The function
launchThread (AKULAthread, Machine) is called whenever
a new thread is ready to be launched on the machine so
that the scheduler can assign the new thread to a particu-
lar core. The function updateSchedule(Machine) is called
whenever a thread terminates as well as every scheduling
interval (whose length is configured by the user) so that the
scheduler may modify the thread mappings. The machine
is represented by an instance of the Machine class. This
class contains members of the Chip class, which represent
the memory domains of the machine. The Chip class con-
tains several members of the Core class that represent the
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cores. All threads running on the machine are instances of
the AKULAThread class.

The AKULAThread class contains basic data about a thread
such as its name, source, the time launched, the time spent
on processor, etc. Data about the thread’s performance ob-
tained from performance counters is also stored in the mem-
ber variables of the AKULAThread object. The developer may
specify which performance counters should be monitored for
each thread or opt to use one of the default performance
counter combinations, such as IPC (instructions per cycle)
or the last-level cache miss rate.

For example, to measure the IPC for threadA the AKULA
scheduler would invoke threadA.addParameter ("IPC"). Then,
every scheduling interval the IPC of threadA will be recorded
and the scheduler may read its value by calling
threadA.readParameter ("IPC").

Threads are mapped to cores by adding them to the in-
stances of the Core class. For example, to add threadA to
the first core of the first memory domain of the Machine in-
stance M, the AKULA scheduler would call
M.getDomain(0) .getCore(0) .addThread (threadA).

AKULA provides a variety of useful functions for gather-
ing information about cores, memory domains, threads, as
well as changing their state. For example, to evenly spread
all threads across the cores in memory domain zero of Ma-
chine M, the AKULA scheduler would call
M.getDomain(0) .balancelLoad(). Functions that manipu-
late the cores themselves are also available in the AKULA
API. For instance, if the hardware supports dynamic fre-
quency scaling, then it is possible to change a core’s fre-
quency using a method Core.setFreq(). If the hardware
supports dynamic enabling/disabling of pre-fetching, AKULA
also allows to dynamically turn it on or off. The reason for
supporting these functions is that they can be useful for alle-
viating contention in certain situations, as shown in previous
work [23].

The AKULA scheduler enforces the assignment of threads
to cores, as specified by the algorithm developer, via system
calls that create an affinity between a thread and a core.
System calls for enforcing affinity are available in modern
operating systems. In the event that more than one thread
was assigned to a given physical core, the OS will time-share
the core among the threads. However, it is also possible
to directly manipulate how time sharing is performed us-
ing methods in the AKULA API. Although thread mapping
via affinity system calls can also be performed directly via
the system calls, the main advantage of using AKULA is
the simplicity of implementation. The developer can create
complex scheduling algorithms without ever worrying about
affinity masks, reading performance counters or having to
deal with many other system details that make thread ma-
nipulation difficult.

To demonstrate how simple it is to create a new schedul-
ing algorithm using AKULA, Figure 3 shows sample code for
a scheduling algorithm to which we refer as Naive_Spread.
This algorithm balances the thread load across all cores. Al-
though this particular algorithm is rather uninvolved, this
example vividly demonstrates the simplicity of using AKULA.
Those familiar with implementation of scheduling algorithms
in the kernel, or even with their prototyping at user level,
would appreciate how much simpler the AKULA code is
compared to what would be needed to express the same pol-
icy in a real implementation.



2.2 Bootstrapping Module: Rapid Evaluation

Once a scheduling algorithm has been created it must be
evaluated to determine how it meets performance goals, such
as throughput and fairness. The evaluation process can be
very time consuming if one wishes to evaluate a wide range
of different workloads. AKULA provides a rapid evaluation
option via its Bootstrapping Module.

The Bootstrapping Module does not actually execute any
benchmarks to evaluate the scheduling algorithm (this task
is done by the Wrapper Module described below). Instead,
the Bootstrapping Module uses previously obtained perfor-
mance data to roughly approximate relative performance of
different scheduling algorithm via a coarse simulation.

The key components of the bootstrap data are the applica-
tion’s solo execution time, measured on a real system when
an application runs alone, without contention from other ap-
plications, and the degradation matrix, which contains, for
a set of target applications, performance degradation val-
ues when each application is co-scheduled with every other
application in the same memory domain.

Bootstrap data must be obtained on a real system prior
to running an evaluation. The user can obtain her own data
by picking her own benchmarks and running her own ex-
periment, or use the pre-built data available in the AKULA
repository. The process of gathering the bootstrap data may
be time consuming and tedious, and so to make it simple and
automatic we developed the Profiler Module within AKULA.
Given this module, the user can collect the bootstrap data
by supplying a set of executables, which will be used as the
benchmarks during the measurement. On machines with
a large number of cores in a memory domain, the process
of bootstrap data collection can be especially time consum-
ing, because many thread combinations must evaluated. To
overcome this limitation, we are developing a method that
would use very short representative periods from the ex-
ecution of each thread to test it in each co-schedule. This
method would significantly reduce the time needed to collect
the bootstrap data. We omit a more detailed description of
this method due to space constraints.

Although the process of obtaining the bootstrap data may
take anywhere from a few hours to a few days depending
on the number of applications and their running time, this
data must be obtained only once. After that, the user can
run evaluations of sophisticated scheduling policies on large
multicore systems in just seconds, saving many hours of time
with each experiment.

Consider a machine that consists of two memory domains
with two cores each, such as in Figure 1. We launch four
threads A, B, C, and D on this machine simultaneously.
(These four threads could be, for instance, four benchmarks
from the SPEC CPU2006 suite.) Table 1 and Table 2 show
the necessary bootstrap data to perform this evaluation. Ta-
ble 1 gives the execution times of each of the threads when
they run alone on a memory domain without any contention.
Table 2 gives the slowdown that each thread would experi-
ence if sharing the memory domain with every other thread.
For example, the entry at row A and column B shows that
when thread A is co-scheduled to the same memory domain
as thread B it executes at only 0.5 of the speed it has when
running alone on a memory domain. The entry at row B
and column A shows that in this scenario thread B executes
at 0.6 of the speed it has when running alone on a memory
domain.
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Solo Exec. (s)
A 100
B 150
C 175
D 200

Table 1: Solo Execution Times

alone | with A | with B | with C | with D
A 1.00 0.75 0.50 0.98 0.99
B | 1.00 0.60 0.30 0.95 0.97
C | 1.00 0.99 0.98 1.00 1.00
D 1.00 1.00 1.00 1.00 1.00

Table 2: A degradation matrix for four applications.
Each cell shows the degradation from the solo exe-
cution time when the two applications in the corre-
sponding row and column are co-scheduled on the
same memory domain.

In addition to the bootstrap data the developer also pro-
vides to AKULA the machine architecture on which to per-
form the evaluation (in this case a system with two cores
and two memory domains). Other system details, such as
CPU speed and memory hierarchy, need not be specified,
because their effects on applications are implicitly captured
in the bootstrap data. As will be explained shortly, the
Bootstrapping Module does not attempt to precisely simu-
late the execution of workloads under different schedulers,
but only roughly estimate the effects of various thread place-
ment policies.

Finally, the user also supplies the workload configuration
file. This file contains all the threads that will be run in this
experiment and the wall clock time when each thread will
be launched.

AKULA supports multi-phased threads that are repre-
sented as arrays of single-phased threads. In the example
provided we specify the workload to consist of four single-
phased threads A, B, C and D, whose bootstrap data is
described in Table 1 and Table 2, set to be launched at time

= 1 second.

An evaluation proceeds by repeating the following four
steps in a loop until all threads in the workload have termi-
nated. The simulated time interval between each iteration of
the loop, known as a tick, is set by the user prior to running
an evaluation.

1. Calculate the progress of each thread in the system.

2. Determine if any threads completed; remove them from
the system and send all their associated performance
data to the Statistics Module.

3. Check if any threads in the workload file are ready for
launch; if yes then call the scheduler so that it places
these threads onto the system.

4. Call the scheduler to allow it to modify the current
thread placement.

The key to this evaluation methodology is the ability to
calculate the progress that each thread makes in each time
interval. This progress is calculated using the bootstrap data
and the formula shown in Equation 1.



tick

Progress(X) = 100% = Solo(X)

x deg(X, Neighb(X)) (1)

Progress(X) refers to the fraction of total work that a
thread completes in a given scheduling interval. T'ick refers
to the length of the scheduling time interval. Solo(X) is the
thread’s solo completion time obtained from the bootstrap
data and deg(X, Neighb(X)) is the slowdown (or degrada-
tion) that thread X experiences when it shares a domain
with the neighbour or neighbours assigned to it in the given
thread schedule.

When a thread runs in a memory domain alone, the progress
that it makes is equal to the length of the scheduling clock
interval (i.e., tick) divided by the time to execute the entire
thread. When other threads compete for resources we must
scale this value by the performance degradation that these
“neighbours” impose on the target thread.

In our example we set the length of the tick to be one
second. Table 1 and Table 2 are the bootstrap data used in
this evaluation.

Figure 4 shows the results of the evaluation step by step.
The progress is calculated for each thread at each tick using
Eq. 1 and the total progress is tabulated over all the previ-
ous steps. At time 0 the machine is empty and threads have
not been launched so they have zero progress. At time I the
threads are loaded and the calculation of progress begins.
Contention for resources is very high in this placement, and
so the scheduler moves the threads into a different mapping
at time 2, so threads begin making better progress. This
configuration remains in place until time 103 when Thread
A terminates and is removed from the machine. The evalu-
ation now continues with three threads.

While this example demonstrated how to perform rapid
evaluation of an algorithm that aims to reduce resource con-
tention, algorithms with many other goals can be also pro-
totyped and evaluated using AKULA.

Since the time needed to calculate the progress of a thread
over a tick is usually much shorter than the length of the tick
itself, this methodology allows for a very fast evaluation of
various thread schedulers. Typically, we perform evaluations
which would take hours to run on a real machine in only sec-
onds. The great speed with which experiments can be per-
formed once bootstrapping data has been gathered acts as a
direct counterweight to the time needed to gather this data
in the first place. Gathering bootstrapping data for a partic-
ular machine and benchmark set needs to be done only once
and then an unlimited number of experiments can be done
with this data. To further mitigate the research overhead
of gathering this data we make all the bootstrap data that
we have ever gathered freely available in our data repository
which can be found at: http://synar.cs.sfu.ca/akula. We
also hope that other researchers who will use AKULA in
the future will contribute their data to this repository.

2.3 The Wrapper Module

While rapid evaluation with the Bootstrapping Module al-
lows for quick evaluation and filtering of initial ideas, even-
tually the algorithm designer would want to evaluate the
algorithm on a real system. AKULA provides the Wrapper
Module that significantly simplifies this evaluation.

To use the Wrapper Module the developer would rely on
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exactly the same code that was written to express the schedul-
ing algorithm for the Bootstrapping Module. The difference
is that when this code is given to the Wrapper Module,
AKULA would run the algorithm on a real system, using
thread affinity bindings. When using the Wrapper Module
there is no longer a need for the bootstrap data, but the
user must supply to AKULA the real executables that the
AKULA will launch to evaluate the scheduling algorithms.

In order to use the Wrapper Module the test machine must
run Linux and have the performance monitoring perfmon
module installed. A port of AKULA to other operating sys-
tems is planned for the future. Additionally, if the developer
wants to use power management, cpufrequtils must also
be installed.

When AKULA is first loaded onto a machine the Con-
figuration Module will learn the architecture of the machine
and will automatically set up the available memory domains
and cores in the development environment. This module will
also detect if perfmon and cpufrequtils are installed and
automatically integrate the available performance counters
and frequency settings into the development environment.

The developer needs to supply the code for the schedul-
ing algorithm, such as the one shown in Figure 3 and which
is no different than the code that would be supplied to the
Bootstrapping Module, as well as the workload file. A work-
load file lists the applications that will be launched and the
wall clock time when each application should be launched.
The user must supply the path to the executable for every
application that AKULA must launch.

In order to perform the scheduler evaluation the Wrapper
Module enters the following loop:

1. Determine if any threads completed and supply their
runtime statistics to the Statistics Module.

2. Update the thread counters as specified by the sched-
uler.

3. Check the workload file to see if any threads are ready
to be launched; if so, launch the threads; call the sched-
uler to allow it to assign the threads to cores.

4. Call the scheduler to allow it to modify the current
thread placement.

5. Sleep until the next scheduling interval expires.

The actual implementation of the Wrapper Module relies
on daemons (not Java code) which interact with the OS to
perform the tasks requested by the scheduler and shared
files to transfer data and instructions. New applications are
launched with the AKULA API by calling threadX.activate()
at which point the wrapper spawns a new daemon that will
create a separate run directory for the application, copy
its input files (if any), and launch it on the machine re-
turning its process id (pid) and other details to the Wrap-
per Module. To save time or memory during experiments
the module can be configured to simply its launch proce-
dures such as foregoing the data copying. These details
will be hidden from the developer. Instead, an instance
of the AKULAThread class representing this new application
will be created and handed to the AKULA scheduler via
the launchThread() function. When the scheduler changes
the mappings of threads to cores using the functions pro-
vided in the AKULA API, the Wrapper Module will convert



Domain 1 Domain 2 Thread A Thread B Thread C Thread D

Time | Core0 | Corel | Core0 | Corel | PR. | Total PR. | PR. | Total PR. | PR. | Total PR. | PR. | Total PR.
0 - - - - 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00 0.00

1 A C D 0.50 0.50 | 0.40 0.40 | 0.57 0.57 | 0.50 0.50

2 B A C 0.98 1.48 | 0.65 1.05 | 0.57 1.14 | 0.50 1.00

3 B A C 0.98 2.46 | 0.65 1.69 | 0.57 1.70 | 0.50 1.50
103 B D A C 0.98 100.00 | 0.65 66.36 | 0.57 58.42 | 0.50 51.50
104 B - D 0.00 100.00 | 0.67 67.03 | 0.57 58.99 | 0.50 52.00

Figure 4: Step by step example of using the bootstrap module

these mappings into affinity masks and launch a daemon
that will enforce these masks via system calls to the OS.
When the AKULA scheduler adds performance counters to
threads such as threadX.addParameter ("IPC") the Wrap-
per Module translates IPC into the needed perfmon counters
and launches a daemon to attach the necessary performance
monitors.

Whenever the Wrapper Module returns from sleep it first
launches daemons to check the state of the machine: i.e.,
which threads are alive, which cores they are bound to, and
to gather the latest performance counters. This data is made
available to the scheduler via the simplified AKULA API.

2.4 Code Availability

The AKULA source code is freely available to the research
community under a General Public License and can be found
through our website at: http://synar.cs.sfu.ca/akula

3. CASE STUDIES

We show the utility of the AKULA toolset by provid-
ing case studies of scheduling algorithms we developed and
evaluated with the help of AKULA. Using the Bootstrap-
ping module we were able to evaluate our algorithms us-
ing a wide variety of workloads and test the scalability of
the algorithms as the number of domains grows well beyond
what is currently available. All of these things would have
been impossible without the help of AKULA. We also vali-
date the Bootstrapping Module against results produced on
a real machine with the Wrapper Module.

3.1 The Scheduling Algorithms

The main goal of a contention-aware scheduler is to map
threads onto cores of a multicore machine in such a way as
to minimize the performance loss that threads experience
due to competition for shared resources. Different schedul-
ing algorithms use different strategies for determining which
threads should be scheduled close together and which should
be scheduled further apart. The schedulers vary in their
complexity, the frequency with which they migrate threads
to enforce scheduling decisions, and as a result their effec-
tiveness for different kinds of workloads. We explore six
different scheduling algorithms on a wide variety of work-
loads.

As the baseline for our experiment we employ two schedul-
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ing algorithms either of which can be typically used as the
default scheduling policy in modern operating systems. These
algorithms are contention-unaware and we refer to them as
naive schedulers. Naive_Cluster tries to utilize as few mem-
ory domains as possible without causing load imbalance be-
tween different cores. For example, if Naive_Cluster were
to schedule 2 threads onto the system shown in Figure 1 it
would place the threads on cores 0 and 1 of one of the do-
mains. The logic behind using policies like Naive_Cluster in
the OS is that empty memory domains can be brought into
a low power state. The other naive scheduler is Naive_Spread
which attempts to limit shared resource contention by spread-
ing threads among the memory domains as much as possi-
ble. Returning to the previous example of two threads be-
ing scheduled onto the machine in Figure 1, Naive_Spread
would allocate them onto core 0 of the different memory do-
mains. We note that the scheduling solutions found by the
naive schedulers depend on the spawning order of threads
as opposed to any properties or performance characteris-
tics of these threads. We also note that Naive_Spread and
Naive_Cluster are essentially the same algorithm when the
number of threads is equal to or greater than the number
of cores. The algorithms only differ in scheduling solutions
and performance if the number of threads is less than the
number of cores. Since we evaluate workloads consisting of
threads with varied runtimes we encounter lengthy periods
where the number of threads is less than the number of cores
which makes the inclusion of both algorithms interesting.
The next class of schedulers that we consider is based on
research by [25] which shows that threads with high last
level cache miss rates should be scheduled far apart. In [25]
the authors demonstrate that applications with a high LLC
miss rate, which they call devils, aggressively compete for
the entire memory hierarchy and as a result suffer as well as
induce a high performance penalty when scheduled “near”
other devils. Applications with a low LLC miss rate, which
they call turtles, do not compete for shared resources and
as such do not cause or experience performance degradation
regardless of how they are scheduled. The contention-aware
scheduler proposed in [25] called Distributed Intensity (DI)
sorts all the threads on the machine based on their miss rate
and pairs applications which are the most dissimilar ensuring
that the overall LLC misses are spread out as evenly as pos-
sible among all the memory domains. We implement DI as
well as a simplified version called Threshold. The threshold



algorithm divides all the threads into two categories (dev-
ils and turtles) based on whether their miss rate is above
or below the threshold value. The devils are then spread
among the memory domains while turtles are placed on any
remaining cores (so long as load balance is preserved).

The final class of algorithms that we consider is based
on dynamic optimization. The swap algorithm schedules
newly spawned threads naively on the machine much like
Naive_Spread does but after some period of time when the
workload has not changed (called the stability period) it
begins to optimize its solution. Swap first picks 2 memory
domains at random and records the average Instructions per
Cycle (IPC) of all the threads in these 2 domains. Swap then
picks one thread from each of these domains and swaps them
(exchanges the two threads between the memory domains).
It then records the new average IPC of the two domains. If
the IPC has gone up then the swap is successful; otherwise
swap will migrate the two threads back to their original do-
mains. In either case the migration is recorded in a log so
as to not be repeated again. The frequency of migrations is
controlled by the frequency parameter which can be manu-
ally adjusted inside swap. DI swap combines the DI and the
swap scheduling algorithms. Every time the thread popula-
tion changes on the machine the DI algorithm is used to sort
and place threads onto cores. When the workload has sta-
bilized the swap algorithm is activated to try and improve
the solution found by DI.

3.2 Well Behaved Workloads

We begin our evaluation with the Bootstrapping module
by emulating a machine identical to the one on which the
bootstrapping data was gathered. The machine consists of
two memory domains each with 4 cores where the 4 cores
share the L3 cache as well as a NUMA memory bank. This
machine is especially well suited for the bootstrapping ex-
perimental methodology since threads running on different
memory domains (so long as their memory is also placed in
different NUMA banks) have negligible effect on each other’s
performance. Therefore the implicit assumption made by
the bootstrapping methodology that contention stops at the
memory domain level holds. All workloads which are exe-
cuted on this machine consist of 8 single threaded applica-
tions. All 8 threads are spawned at the same time (t = 0)
and the evaluation continues until all threads have finished.
Every time a new thread is spawned or a thread terminates
the scheduler is called as well as the scheduler is called every
scheduling period which we set to 1 second. When a thread
terminates its completion time is recorded and compared to
its solo execution time in order to calculate the performance
degradation that it experienced Eq. 2.

WorkloadTime — SoloTime
SoloTime

Perf_Degrad = 100% x* (2)

The performance of a scheduling algorithm for a given work-
load is evaluated based on two factors: average performance
and worst case performance. Average performance is calcu-
lated as the aggregate of the performance degradations of
the 8 threads in the workload. The worst case performance
is calculated as the maximum performance degradation of
the 8 threads in the workload. While improving average
performance is beneficial for the entire system and can lead
to energy savings (allowing the machine to powered down
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Category Name | # Devils | # Turtles
DO0_T8 0 8

D1.T7
D2.T6
D3.T5
D4 T4
D5.T3
D6._T2
D7_T1
D8_T0

QO | O OY =] W DO —
O = N W | U O

Table 3: “Well Behaved” Workloads

Category Name | # Devils | # Semi-Devils | # Turtles
DO0_S8_TO0 0 8 0
D1.S6_T1 1 6 1
D2.S4 T2 2 4 2
D3.S2.T3 3 2 3

Table 4: “Badly Behaved” Workloads

sooner) improving worst case performance is useful for QoS
and predictable performance.

Given the nature of the DI and Threshold algorithms
which are designed to separate devils and turtles we begin
our exploration by creating workloads which consist of only
devils and turtles we call these workloads “well behaved”.
Applications are selected from the SPEC CPU2006 bench-
mark suite which can be clearly identified as devils (high
miss rate and contention sensitive) or turtles (low miss rate
and contention insensitive). Nine categories of workloads are
created which differ based on their ratio of devils to turtles.
Table 3 summarizes the workload categories. For each cate-
gory we create 100 workloads. The workloads are created by
randomly selecting which devils and turtles will be included
in the workload as well as randomizing the spawning order
of the threads.

Each workload is then evaluated using the AKULA Boot-
strapping module for each of the 6 scheduling algorithms.
Results are reported as averages of the 100 workloads in a
given category. Due to the sheer number of results we found
it necessary to focus on the workload categories which of-
fer the biggest potential speedup and hence are the most
interesting. We evaluate the potential speedup of a cate-
gory by looking at the variance of the results produced by
the 6 schedulers on workloads within that category. Having
high variance mean that some algorithms were able to do
significantly better than others and hence there is potential
for speedup in this category. Low variance means that all
algorithms performed similarly. The categories which offer
the largest speedups are those with a fair mix of devils and
turtles and these are highlighted in Table 3. All results will
be reported only for these four categories.

Figure 5 and Figure 6 show the average and worst case
performance for our six algorithms respectively. The results
are normalized to the best performing algorithm in each cat-
egory.

The results for these experiments indicate that the con-
tention aware algorithms that we explored can significantly
improve performance, especially worst case performance, as
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Figure 5: Worst Case Performance Degradation
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Figure 6: Average Performance Degradation “Well
Behaved” Workloads. Normalized to the best per-
forming algorithm in each category

compared to a naive scheduler. We also note that in terms
of the average performance naive_spread appears to perform
almost as well as threshold and DI. This is mostly due to
the fact that applications have varied run times and as such
the workload soon shrinks to a level where the number of
threads is less than the number of cores. If on the other
hand the load was kept high naive_spread would be identi-
cal to naive_cluster which shows very poor performance. We
also note that although swap and DI_swap offer the superior
performance in this study the gains that they deliver over
DI and threshold are small especially in terms of average
performance (about 1%). Thus, we may conclude that in
the case of “well behaved” workloads the 4 smart schedulers:
threshold, DI, swap, and DI_swap are roughly equivalent.

3.3 Semi-Devil Workloads

Scheduling algorithms like DI and Threshold were de-
signed specifically to handle applications which nicely fall
into two categories (devils and turtles). However, in real life
not all applications fit into these boxes. Some applications
have an “intermediate” miss rate and less predictable behav-
ior in terms of performance degradation. We call this class
of applications semi-devils. We evaluate how our algorithms
handle workloads which include a varied number of semi-
devils. Table 4 shows the for workload categories that we
considered and the number of threads of each type. Once
again 100 workloads make up every category.
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All workloads were executed with each of the 6 schedulers
and for every scheduler the per category averages were ob-
tained. Analysis of potential speedup allows us to exclude
the workload category D0_S8_TO.

Figure 7 and Figure 8 show the worst case performance
degradations and average performance degradations for work-
loads which include semi-devils. As we can see when the
workload includes semi-devils which can exhibit unpredictable
behavior that is not proportional to their miss rate, algo-
rithms like DI and Threshold are no longer sufficient. Dy-
namically optimizing algorithms like swap are necessary to
find the best solutions. This tells us that when “badly be-
haved” applications are involved whose performance cannot
be easily predicted a trial and error method needs to be
employed to discover their behavior online.
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Figure 7: Worst Case Performance Degradation

“Badly Behaved” Workloads. Normalized to the
best performing algorithm in each category
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Figure 8: Average Performance Degradation “Badly
Behaved” Workloads. Normalized to the best per-
forming algorithm in each category

3.4 Scalability of Algorithms

Having determined in the previous section that online op-
timization is necessary in order to achieve good performance
when the workload is “badly behaved” we wish to determine
how online optimization scales with an increasing number
of cores and threads. Algorithms like DI and Threshold are
fully centralized and are invoked whenever the thread pop-
ulation changes. As such, although these algorithms may
become computationally inefficient as the number of cores
and threads increases they will not become less effective on
a bigger machine. On the other hand, algorithms like swap



Category Name | # Devils | # Semi-Devils | # Turtles
D128_T0 128 0 0
D96_T32 96 0 32
D64_T64 64 0 64
D32_T96 32 0 96
D16_-S96_T'16 16 96 16
D32_S64_-T32 32 64 32
D48_S32_T48 48 32 48

Table 5: Workloads for the 128 core machine

and DI_swap do optimizations every predetermined time pe-
riod; if the number of threads and cores increases the num-
ber of optimizations performed per unit time will remain
unchanged. This means that the number of possible con-
figurations that these algorithms explore remains constant.
As the number of cores and threads grows the number of all
possible configurations grows rapidly and algorithms which
consider only a fixed number of these configurations will be-
come less effective.

To evaluate how our algorithms scale to highly multicore
machines we use the Bootstrapping module to simulate a
machine with 128 cores which are divided in 32 memory
domains of 4 cores each. We generate workloads with 128
threads in each. Similarly to the previous section we create
seven workload categories which have different ratios of dev-
ils, turtles, and semi-devils. Table 5 summarizes the work-
load categories used. For each category we create and run
100 different workloads with each of our algorithms and re-
port the average results. We also note that since threshold
and DI produce such similar results and this is a study fo-
cusing on online optimization we exclude threshold from all
subsequent results.

Figure 9 shows the worst case performance degradation for
all the workloads. These results indicate that for a highly
multicore machine the swap algorithm is less effective than
the DI algorithm. This point is best highlighted by looking
at the workload category D48_S32_T48. Swap performs on
average 30% worse than DI for workloads of this category.
Looking back at the small machine, Figure 7, we see that for
the category D4_S2_T4 which has the same ratios of devils,
turtles, and semi-devils as D48_S32_T48, swap was BET-
TER than DI by nearly 50%. The relative performance of
DI and swap switched by almost 80% for the same kind of
workloads when the machine increased in size. This suggests
that the effect described above where online optimizing algo-
rithms become less effective as the number of cores increases
is a reality. On a positive note, we see that the combination
of DI and swap, DI_swap, which contains the best of both
worlds, is superior for all workload categories.

The centralized nature of DI and DI_swap will most cer-
tainly result in large overheads as the size of the machine
increases so it would still be advantageous to be able to
make the fully decentralized swap algorithm scalable with
the number of cores. To this end we experiment with a vari-
ant of swap called swap-X, where X stands for the number of
potential swaps in a given time period. Every swap-interval
swap-X exchanges up to X randomly chosen pairs of threads,
checks the resultant IPC, and undoes the exchanges that
did not yield better performance. The exact algorithm for
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swap-X relies on well known distributed computing imple-
mentations and is not discussed further in this work.

Figure 10 shows the worst-case performance degradation
averaged over all 700 workloads, from Table 5, for swap-X
with X ranging from 1 to 16. Swap-1 is the original swap
algorithm which considers only 1 pair of threads at a time.
Swap-16 can consider up to 16 pairs of threads every swap
period. Since the threads being considered for a swap must
ALL come from different memory domains, swap-16 is the
most aggressive version of swap-X possible for the machine
in question. Figure 10 indicates that as X increases swap-
X obtains better performance. However, we also see that
the biggest performance jump occurs between swap-1 and
swap-2. This indicates that swap-2 would be the ideal swap
algorithm for the machine in questions since it obtains re-
sults nearly identical to more aggressive versions of swap
but performs significantly fewer migrations resulting in less
overhead.
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Figure 9: Worst Case Performance Degradation on
128-core machine. Normalized to the best perform-
ing algorithm in each category
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Figure 10: Worst Case Performance Degradation on
128-core machine for swap-X. Not normalized

3.5 Validating the Bootstrapping Module and
Data

The methodology that we used for gathering bootstrap-
ping data is the short run methodology where each combi-
nation of threads is executed for one minute and the degra-
dation in IPC of every application is measured. Given such
a coarse method of gathering bootstrapping data as well as
the generally coarse evaluation technique employed by the
Bootstrapping Module it would be unreasonable to expect



that per thread execution times could be accurately pre-
dicted. Instead we focus on validating that given a workload
and two different scheduling algorithms that Bootstrapping
Module can accurately predict which algorithm will perform
better for that workload on average. To that end we selected
10 workloads from Sections 3.2 and 3.3 at random. For each
workload we selected a pair of scheduling algorithms from
the six described in Section 3.1 also at random. We exe-
cuted the workload with the two different algorithms using
both the Bootstrapping Module and the Wrapper Module
(on a real machine). We obtained the difference in average
degradation between the two scheduling algorithms on a real
machine and compared it to the same difference obtained by
the Bootstrapping Module. We found that for all workloads
and algorithms tested if the difference in performance on a
real machine of the two algorithms is larger than 5% then
the Bootstrapping Module will correctly predict which of the
two algorithms performs better. Since our goal is to predict
which scheduling algorithms will perform better for different
workloads these results show that the bootstrapping tech-
nique is sufficiently accurate as a first step evaluation tool.

4. RELATED WORK

Multiple computer simulation projects have been proposed
in the past. Perhaps the most popular among them are:
Simics [12], an accurate functional full system simulator,
SimpleScalar [18], which simulates the work of an out-of-
order processor, and the PowerPC architecture simulator
called Turandot [14]. All of these projects, while being
very useful for modeling the specific computing hardware,
are nevertheless not ideally suited for evaluating the OS
scheduling algorithms. Cycle-accurate simulations are very
time consuming, and they model details, which are beyond
what is needed for the evaluation of a scheduling policy. To
make the evaluation of the schedulers as fast as possible, we
instead focus only on the aspects of system behavior that
matter in making a scheduling decision: a coarse grained
configuration of the system (cores, shared caches, memory
nodes), the workload distribution across the cores at any
moment in time, and the degree of performance degradation
that the applications will experience in a particular place-
ment.

More theoretical work on scheduling solutions for multi-
core processors in the presence of contention has also been
extensively explored. Most notably [6, 21] have proposed
methodologies for finding the optimal scheduling solution
given a workload and a multicore machine. We view AKULA
as complementary to this work as it is an actual toolset
which allows developers to create and evaluate their schedul-
ing algorithms. Although, AKULA does not facilitate find-
ing optimal solutions it allows for a much wider exploration
of potential workloads than [6, 21] by allowing multiphase
applications, thread spawning at arbitrary times, and more
threads than cores. Furthermore, AKULA allows the same
scheduling algorithm to be evaluated on a real machine.

Calandrino et al. proposed LinSched, a user-level simu-
lator for the Linux kernel scheduler [3]. The tool runs as a
user-space program and allows specifying simulated system
configuration and priorities for the simulated workload. Lin-
Sched implements the default Linux scheduler which tries to
balance runqueue lengths on different cores. AKULA, on the
other hand, focuses on evaluating thread placement policies
that handle shared resource contention. Since these policies
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can be used along with load balancing policies already im-
plemented inside Linux kernel, we see LinSched [3] as the
work which is complimentary to ours.

The idea of distributing programs with high miss rates
across the memory domains was suggested in several prior
studies [25, 8, 4]. Our work is broader in a sense that we
explore the limitations of these algorithms as well as intro-
duce new scheduling algorithms based on online optimiza-
tion through trial and error. Furthermore, we also analyze
how these algorithms would scale to futuristic multicore ma-
chines.

S. CONCLUSIONS

We introduced the AKULA toolset which is designed to
help developers create and test contention-aware scheduling
algorithms for multicore machines. The AKULA API al-
lows easy development of scheduling algorithms. The boot-
strapping module and the bootstrapping evaluation tech-
nique facilitate a preliminary evaluation of the developed
scheduling algorithm in a fraction of the time that the same
experiments would take on a real machine. AKULA also
includes the Wrapper Module which allows scheduling algo-
rithms written with the AKULA API to manage threads on
a real machine. The intended use of the toolset is to quickly
and easily explore the vast search space of scheduling algo-
rithms. The bootstrapping module is designed to detect and
filter out bad solutions with minimal time invested on them.
The wrapper module is designed to be applied to promising
solutions to validate them on real hardware. Those schedul-
ing algorithms which satisfy performance goals when imple-
mented and tested with AKULA can be implemented inside
the kernel with the knowledge that the time and effort in-
vested in kernel programming is worthwhile since these solu-
tions work! After all a kernel implementation more efficient
than the Wrapper Module implementation and should there-
fore deliver even better performance than was measured by
AKULA.

We demonstrated the utility of the AKULA toolset by im-
plementing and evaluating several contention-aware schedul-
ing algorithms using AKULA. We focused on three types of
scheduling algorithms: those that schedule naively and are
contention unaware, those that separate threads with high
miss rates, and those that dynamically optimize by trial and
error. We found that for workloads with “well behaved” ap-
plications (those whose performance properties can be pre-
dicted from their miss rates) both types of contention aware
algorithms perform equally well and are superior to the naive
algorithms. If the workloads contain “badly behaved” appli-
cations the algorithms that rely on miss rate perform signif-
icantly worse than the dynamically optimizing ones; though
they are still better than the naive algorithms. We evalu-
ated how an algorithm that relies solely on dynamic opti-
mization, called swap, would perform on a massively mul-
ticore machine and showed that it does not scale well and
that its performance will drop significantly as the number
of cores increases. We showed, however, that swap can be
made much more scalable if the number of applications that
are exchanged during every swap phase increases. For a ma-
chine with 128 cores exchanging two pairs of threads every
swap-phase achieves nearly optimal performance. We also
showed that a hybrid algorithm consisting of the miss rate
based algorithm DI and the dynamically optimizing algo-



rithm swap called DI_swap, will perform exceptionally well
in all scenarios.

The results described above were obtained using the boot-
strapping module; an evaluation of this magnitude would
not have been possible without it. We also validated that
results obtained using the bootstrapping technique translate
into similar results if tested on a real machine.
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