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ABSTRACT
Researchers and practitioners dedicate a lot of effort to improving
spatial locality in their programs. Hardware caches rely on spa-
tial locality for efficient operation; when it is absent, they waste
memory bandwidth and cache space by fetching data that is never
used before it is evicted. Improving spatial locality is difficult. For
the most part, these are manual efforts by expert programmers,
requiring substantial insight into the program’s data layout and
data access pattern.

This work introduces Access Graphs: a novel abstraction of mem-
ory access patterns that exposes spatial locality features and allows
for automatic computation of better memory layouts. Using access
graphs and a set of analysis algorithms and tools, we are able to
significantly improve simulated cache miss rates by changing data
layout. Further, we use random forest classifiers to automatically
identify features of the data that correlate with how the data is
actually used. We build a memory allocator that uses these features
to guide data allocation at runtime and achieves a better spatial
locality and improved performance as a result.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; • Hardware → Memory and dense storage; • Software
and its engineering → Software performance; • Computing
methodologies → Machine learning algorithms; Simulation eval-
uation;
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memory performance, spatial locality, graph algorithms, random
forests
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1 INTRODUCTION
Memory wall is the phenomenon where the cost of memory ac-
cesses exceeds the cost of non-memory instructions to the point
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that the program spends most of its CPU time waiting on memory.
Wulf and McKee proposed that modern software would hit the
memory wall in the beginning of this millennium [31]. Ailamaki,
DeWitt, Hill and Wood showed in 1999 that database systems spent
20-50% of CPU time waiting on memory [1]. For modern “cloud”
workloads this figure is 50% on avearage, and reaches 90% for OLTP
benchmarks [12]. Caches mitigate memory latency, but it is be-
lieved that they will never catch up with the voracious appetite of
modern applications [12].

To navigate the limitations of hardware, programmers invest
substantial effort into software optimizations aimed at reducing
cache miss rates. One family of such optimizations is about rear-
ranging the program data in memory in order to improve spatial
locality. Spatial locality occurs when data items that are accessed
close together in time also happen to reside close together in mem-
ory. Hardware caches fundamentally rely on spatial locality for
efficient operation. Finding an optimal arrangement of objects in
memory is NP-hard. A guiding principle used in prior work on
memory layouts is to put objects that are frequently accessed
together close to each other in the address space. Literature re-
view has revealed that these optimizations are largely manual and
require deep understanding of the program’s algorithms and data
structures, making many of them the subjects of top-tier publica-
tions [3, 7, 10, 14, 15, 17, 21, 27, 29, 30, 33, 34]. These algorithms
deliver significant performance improvements, but are very difficult
to implement.

Many memory layout optimization algorithms rely on using
some features of data itself to inform the placement of objects in
memory. For example, it is common in mesh traversal algorithms
to pack mesh nodes and triangles according to their in-domain
proximity – objects with similar Cartesian coordinates. We aim to
generalize this approach to any program that operates on many ob-
jects in memory and automate the extraction of knowledge needed
to derive new layout strategies.

This work introduces access graphs – a novel representation of
a program’s memory access patterns, constructed from dynamic
memory access traces. Access graphs have memory objects for
nodes, and their edges show how frequently the program accesses
two objects together. Using access graphs, we reframe the mem-
ory layout problem as a combination of community detection and
graph linear arrangement – both well researched problems with
many good heuristic solutions. Based on these heuristics, we build
a new algorithm called Hierarchical Memory Layouts (HML) that
computes layouts with improved spatial locality. Hierarchical Mem-
ory Layouts combined with cache simulation give an estimate of
possible cache improvement through layout changes. We use the
output of HML to train random forest classifiers to automatically
extract the relationships between data features (e.g. Cartesian coor-
dinates) and memory access patterns (e.g. traversal). We then use
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the discovered relationships to improve the layout of the program
data in memory or on disk.

The contributions of this work are as follows:

(1) Access graphs: A novel way of representing memory access
patterns within a program. Access graphs reveal which ob-
jects in memory are accessed contemporaneously. They are
computed from allocation and access traces. By using our
proposed analysis techniques, programmers can automati-
cally extract expert knowledge of access patterns that is key
in most prior work on data layouts.

(2) Hierarchical Memory Layouts (HML): A new algorithm that
uses access graphs to automatically derive improved data lay-
outs for memory intensive programs. HML combines prior
work in graph community detection and linear arrangement
in a novel way in the context of spatial locality optimization.
Using HML, programmers can get an estimate of how much
room for improvement there is in a program’s data layout. In
certain workloads, HML can be used directly to recompute
layouts of data in storage.

(3) Data-Driven Locality: A novel application of Random Forest
Classifiers to detect correlations between memory access
pattern and data properties. We use random forests to learn
which features of data itself can be used at runtime to group
allocated objects, with the goal of improving spatial locality.
We use these techniques to automatically infer expert knowl-
edge from prior work on data structure layouts (graphs and
meshes), and expand the application to red-black trees. To
evaluate the performance gains we built Tidy, a hint-based
allocator wrapper that lets us use objects’ data field values
to guide allocation at runtime.

Figure 1 shows a detailed workflow diagram for the techniques
presented in this paper. We will not go into much detail about each
of the nodes in the diagram, but we encourage the reader to refer
back to it as they read through sections 2-4. It is divided into three
different stages, outlined with dotted lines. The first stage shows the
process of access graph creation, which is described in detail in §2.
The second stage is layout performance evaluation. In this stage, we
evaluate the potential for performance improvement from changing
the data layout of the program. Layout performance evaluation is
covered in §3. Finally, if the programmer deems it worth to change
the data layout based on cache simulation results, they proceed to
the third stage – Data-Driven Spatial Locality, described in §4. In
this stage, we use machine learning techniques to discover data
features that can be used as hints for Tidy, our allocator wrapper.

The only parts of the workflow that require human input are the
inspection of performance evaluation results and the modification
to the program’s allocator calls in the third stage. The automation of
the performance evaluation is possible simply by setting predefined
thresholds for cache miss improvement. We discuss the possibility
of automating allocator call changes in §7.

The rest of the paper contains evaluation and discussion of our
results in §5, a summary of related work in §6, envisioned future
work in §7 and conclusion in §8.

Access graph creation

Layout performance evaluation

Data-Driven Spatial Locality

Memory Access Trace

Object
Access
Trace

Object Map

Access Graph

Data-Driven Spatial Locality

Hierarchical Memory Layouts

Memory
Layout

Cache Simulator

Access
Graph

Communities

Cache Simulation Results

Extracted Locality Features

Tidy Allocator Wrapper

Program with improved spatial locality

Program

Figure 1: Workflow diagram

2 ACCESS GRAPHS
Access graphs are a novel way of aggregating a program’s memory
access trace to capture properties related to spatial locality. In this
section we formally define access graphs and explain how we use
them to reason about and improve spatial locality.

To refer to units of memory holding a datum of a specific type
we interchangeably use the terms data items, data elements and
data objects. The contents of the location could be an instance of a
C struct, a C++ object or another kind of data – this distinction is
not important for our tools.

Besides accesses to dynamically allocated (heap) objects, mem-
ory access traces contain accesses to global variables and local
(stack) variables. We focus on large data structures that generate
many cache misses – they are most likely to consist of dynamically
allocated objects. Therefore, we filter data objects of other kinds
from the trace.

Definition 2.1 (Object Access Trace). Object Access Trace is
a filtered form of a program’s dynamic memory access trace. It is
obtained by first removing all stack and global accesses from the
trace. Next, all the accesses that target heap objects are replaced with
accesses to the target objects’ base addresses.

Example: If an access writes to address 0xdeadbee8 and it is
determined that the address is within the bounds of an object with
base address 0xdeadbee0, the write to 0xdeadbee8 is replaced with
a write to 0xdeadbee0.
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Definition 2.2 (Object Map). An Object Map is a hash map
of all the allocated objects. It is generated by processing the original
memory access trace, before converting it into an Object Access Trace.
When an object is accessed, the offset at which the access was made is
recorded in the map, along with the type of access (read/write) and
the value read/written. Object Maps give information about the type
of object and the contents of all of its data fields.

Example: If an accesswrites the value 3.14 to address 0xdeadbee8
of the object at 0xdeadbee0, the Object Map entry for that object is
updated with information about a write with value 3.14 at offset 8.

Object maps allow us to connect memory addresses with proper-
ties of the corresponding objects. For example, the map may inform
us that the memory address 0xdeadbee0 contains an object of type
mesh_node_twith the value 12.34 at offset 0 (the x-coordinate field),
and the value 42.1 at offset 8 (the y-coordinate field). The mapping
between memory addresses and objects will be used later to find
correlations between the access pattern and the object properties
and to improve the data layout in memory or on disk. For example,
our algorithms will automatically discover that objects with similar
x ,y coordinates are accessed close together in time; by allocating
mesh objects with similar coordinates close together in space we
will improve spatial locality and reduce the execution time.

Definition 2.3 (Access Graph). An access graph is an undi-
rected graph where there is a vertex for every dynamically allocated
object in the Object Access Trace. Two vertices are connected by an
edge if there are at least two contemporaneous memory accesses to
the objects represented by these vertices. Two accesses are considered
contemporaneous if they occur within CL memory accesses of one
another.CL is called a locality constraint. Whenever we detect the first
contemporaneous access we create an edge between the two vertices
and assign it the weight of one. Whenever we detect another contem-
poraneous access to vertices already linked by an edge, we increment
the edge’s weight by one.

A B C A B B C

time

A B

CD

1

D

1

1
1

1
2

Object Access Trace

Figure 2: Access graph example

Figure 2 shows an example of an Object Access Trace with the
corresponding access graph for CL = 2. Note that D and C have no
edge between them because there are no contemporaneous accesses
to them in the trace. Objects B andC have an edge with the weight

of two, because there are two contemporaneous accesses to them
in the example trace.

Choice ofCL value for computing access graphs has two aspects
that should be considered: computational cost and captured informa-
tion. From the computational cost point of view, the CL value tells
us exactly how many edge additions/updates we have to perform
for each access in the Object Access Trace. Because of this, CL
should be as low as possible, while retaining important information
in the access graph. As for the second aspect, we empirically tested
higher values for CL for Hierarchical Memory Layout computation
(described in §3), but did not observe a significant improvement in
the quality of results. For our analysis techniques, we used CL = 2,
meaning we only consider two immediately adjacent accesses in
the Object Access Trace. Using access graphs for other purposes
may require reconsidering this choice.

From these definitions, we infer the following: The weight of
edges in an access graph tells us which objects get accessed contem-
poraneously the most. The more occurrences of accesses to A and
B within a window CL in the program’s memory access trace, the
heavier the weight of the edge between A and B.

As a result, access graphs enable the automation of spa-
tial locality optimizations that in the past, to the best of our
knowledge, were performed manually.

Given an access graph, how do we use it to improve spatial
locality? The graph tells us which objects are accessed contem-
poraneously. How do we translate this information into a more
efficent program? To answer this question, we will break it down
into two parts. First, we will find out if there is a potential to re-
duce the cache miss rate by using a different data layout. Given
an Object Access Trace and an Object Map, we will assume that
we can rearrange the memory addresses of the objects in any way
we like (without worrying how this could be achieved in practice),
replay the access trace in a simulator and evaluate the cache miss
rate resulting from the new layout. We compute the new layout
using the new Hierarchical Layout Algorithm that we describe in
§3. Although this is not a concrete solution that a programmer can
use directly, evaluating layout changes in an abstract way will help
us understand if there is a potential to improve performance by
changing the layout.

The second part of the question asks how we can improve the
data layout in a concrete program. Our work on Hierarchical Mem-
ory Layouts in §3 describes the process of obtaining good memory
layouts that can be used directly to reorder data in storage. Section
§4 presents a machine learning technique that trains on the Object
Map and discovers the properties of the data objects available at
object allocation time that can be used to guide object placement
in memory at runtime.

3 HIERARCHICAL MEMORY LAYOUT
In an access graph, objects that have a lot of contemporaneous
accesses are connected by heavily weighted, i.e., strong, edges. Re-
lying on this property, we can reframe our grouping objective as a
well-researched problem of community detection in networks.

Community detection algorithms detect groups of nodes in
graphs such that the connectivity within a group is strong (many
edges, higher weights), and the connectivity between groups is
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weak (few edges, lower weights). In the context of access graphs,
community detection algorithms would place into the same groups
objects that are often accessed contemporaneously, and would place
into different groups objects that are rarely accessed contempora-
neously.

Our Hierarchical Memory Layout algorithm extends a multilevel
community detection algorithm by Blondel et al [4]. Multilevel
community detection starts with every graph node representing its
own community. It expands communities by adding close neigh-
bours into them, making sure that the change will result in higher
inter-cluster separation, and intra-cluster proximity (together called
modularity). When such a change is impossible, the algorithm stores
the community assignment and transforms the graph by fusing all
nodes within a community into a single node, and aggregating all
edges to other such community nodes. This process is repeated on
the transformed graph until there are no changes that can be done
that improve modularity.

Applying Blondel’s algorithm on access graphs produces a hier-
archy of communities. We will refer to the level with the highest
number of small communities as the first level or bottom level,
interchangeably. Subsequent levels with fewer larger communities
will be referred to as being higher in the hierarchy.

Nodes in first level communities are not ordered internally. This
may not be a problem if the entire community fits within a unit of
spatial locality (e.g., cache line, VM page, disk page etc.). Unfortu-
nately, we cannot choose the size of the communities; it is dictated
by the access graph’s structure. Frequently, first level communi-
ties turn out to be so large that a random permutation of objects
within them loses any beneficial locality properties. In these cases
we need to find a good internal ordering of objects for first level
communities.

Ordering access graph nodes within first level communities has
the following rules:

• The stronger the edge between two objects, the closer they
should be placed in the layout

• Relative placement of object pairs that have no edge between
them is irrelevant.

These rules are in line with the optimization objective of the
Minimum Linear Arrangement problem (MinLA). Minimum Linear
Arrangement is a known NP-hard problem, for which researchers
have explored many heuristics [26]. Because access graph edges
are weighted, we use the weighted variant of the problem.

Definition 3.1 (Weighted Minimum Linear Arrangement).
Given a graph

G(V ,E), |V | = n,
find a one-to-one function
φ : V → {1, ..,n}
that minimizes the Linear Arrangement cost (LA), defined as
LA(G,φ) =

∑
(u,v)∈E |(φ(u) − φ(v)) ∗w |

Definition 3.1 states that Minimum Linear Arrangement has the
objective of linearly laying out graph nodes so that it minimizes
the distance between connected nodes. The weighted version of
the problem prioritizes reducing the distance between pairs of
nodes with stronger edges. In the context of access graphs, MinLA
heuristics will try and place objects that are frequently accessed
contemporaneously as close as possible in the memory layout.

In our work we use the Spectral Sequencing [16] heuristic pro-
posed by Juvan et al. to approximate solutions to MinLA on access
graphs’ communities.

Definition 3.2 (Spectral Seqencing). Spectral Sequencing
computes the Fiedler vector of the graph G – the eigenvector x (2)

corresponding to the second lowest eigenvalue λ2 of the Laplacian
matrix LG of the graph G.

It then produces the ordering function φ such that
φ(u) < φ(v) ⇔ x (2)(u) < x (2)(v)

Spectral Sequencing was shown [26] to give results of good
quality, at a low computational cost. Hierarchical Memory Layouts
use Spectral Sequencing as a sub-algorithm, but it can be replaced
with any suitable MinLA heuristic.

The Hierarchical Memory Layout algorithm operates on the
Access Graph (constructed from the Object Access Trace) in two
phases, utilizing the two previously described algorithms.

The first phase performs multilevel community detection, pro-
ducing community levels L1, ...,Ln , where L1 represents the first
computed community level – one with the largest number of small
communities. As the levels increase, communities become fewer in
number, and greater in size.

The second phase performs Spectral Sequencing on each com-
munity in L1. The objects within each L1 community are ordered
according to the linear arrangement obtained from Spectral Se-
quencing. Every community level contains all of the nodes in the
original graph – the only difference is how the nodes are grouped.

Our use of both community detection and Minimum Linear
Arrangement heuristics begs the question: Why not use Spectral Se-
quencing to lay out the entire access graph? This is a valid question,
and using only Spectral Sequencing would produce good layouts.
However, a linear layout of nodes in a graph obscures a property
that is needed for our data-driven spatial locality technique. Data-
driven spatial locality needs groups of data objects to use as training
class labels (the whole process is described in detail in §4). Commu-
nity detection algorithms output groups with desirable properties –
strong connections within a group, and weak connections to nodes
in other groups.

To construct the final layout, we label each object with a com-
munity vector. Community vector of an object is a set of indices
(In , I(n − 1), ..., I1, ISS ). Index Ik is simply a unique identifier for
the community at level k that the object belongs to. ISS is the lin-
ear layout index of the node within its L1 community. Due to the
nature of Blondel’s multilevel community detection algorithm, if
two nodes have the same Ik index, they are guaranteed to have the
same Ik+1 index.

We lexicographically sort the objects by their community vectors
to produce the final Hierarchical Memory Layout.

4



Data-driven Spatial Locality MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

A B CD E FG
Community 1_1 Community 1_2

Community 2_1

Spectral Sequencing 
Order

Figure 3: Hierarchical Memory Layout example

Figure 3 shows a simple example of the information produced by
Hierarchical Memory Layouts. The two detected first level commu-
nities ({A, D, B} and {E, C, G, F}) are internally ordered by Spectral
Sequencing. They belong to the same second level community and
will be placed next to each other in the final layout.

We use the output of Hierarchical Memory Layout for two pur-
poses. First, we rearrange the objects in the memory access trace
according to the layout and feed the new trace into the cache simu-
lator (§5.1) to estimate whether improving data layout is likely to
improve performance. Second, we train a machine learning model
(§4) to find out if any data features of the objects can be used dur-
ing data allocation phase to improve performance in a concrete
program.

4 DATA-DRIVEN LOCALITY
Prior work on memory layouts uses expert domain and algorithm
knowledge to obtain better layouts. These solutions often use fea-
tures of the data itself, such as object fields, to inform the generation
of layouts. For example, in mesh traversals, the visitation order goes
from one mesh object (triangle, point, edge) to its neighbours. Thus,
grouping these objects in memory based on their spatial proximity
(neighbours are close together in Euclidean space) yields layouts
that exhibit better spatial locality. Another example are iterative
graph algorithms such as PageRank. Solutions like GraphChi [17]
group edges by source and destination nodes to improve spatial
locality. However, the process of deriving these layouts is largely
manual and relies on expert knowledge in both the algorithm’s
domain and memory optimization.

We present a way to automate the discovery of correlations
between spatial locality expressed in the algorithm and the features
of data itself.

The question our technique aims to answer is the following:
Given the Object Map described in §2, and first level communities

detected by Hierarchical Memory Layout algorithm, is it possible to
decide which community an object belongs to, based only on its data
features?

We use random forest classifiers [5] for this task. Random forests
are a learning method for classification and regression that utilizes a
combination of multiple decision trees and overcomes the decision
trees’ tendency to overfit. We chose random forests for two main
reasons:

(1) They give good results and are relatively easy to set up
compared to other classifiers such as neural networks.

(2) They are less opaque than other techniques. This means
that it once a random forest learns to classify data from a

dataset, it is possible to extract the contribution of input
vector elements to the decision process (further explained
in §4.2).

However, our technique is not inherently tied to random forests.
It can use any other suitable classification algorithm without modi-
fication.

4.1 Generating input vectors
The input vectors for our classifier are generated from the set of all
detected data features. We split data features into three categories:
primary features, secondary features and meta-features.

The first, trivial, type of data features are primitive data fields -
primary features. Primary features are all non-pointer fields within
an object. An example of this would be the coordinates of an object
in a mesh.

The second type of data features are primitive features of neigh-
bouring objects - secondary features. Here, object A is a neighbour
of object B if B contains a pointer field that holds the value of A’s
memory address. Secondary features can be used in allocation poli-
cies when the neighbouring objects are initialized and known in
advance. For example, if the mesh traversal workload’s triangle
object is written so that it only contains pointers to the triangle’s
points, we can use the points’ Euclidean coordinate features to
inform the allocation of triangles (provided points are initialized
before triangles).

The third type of data features are meta-features. These are not
present in the data itself as object fields, but rather describe some
inherent properties of objects. Examples of meta-features are array
indices of objects, memory addresses assigned to objects within the
observed execution trace, size/type of object, allocation point in the
source code, etc. A correlation between spatial locality and array
index (or memory address) of objects can indicate that the current
layout already does well in terms of spatial locality. A correlation
between size and spatial locality would mean that one should use
an allocator that bins objects based on allocation size (a common
strategy [19] [11]).

4.2 Training methodology and evaluation
criteria

Our full dataset consists of all the objects in the access graph, with
their input feature vectors and community labels. When training
the classifier, we split the full dataset into randomly picked 80% /
20% subsets. The 80% partition is used for training, and we verify
and compute accuracy on the remaining 20%.

To extract the features that contribute the most to the accuracy
(feature importance), we use the gini method proposed by Breiman
[6], implemented in scikit-learn’s [23] RandomForestClassifier
class. This method evaluates a feature’s importance as the measure
of all decision tree splits that include the said feature, normalized
over the entire forest. The more decision tree splits a feature is
involved in, the more important it is deemed for the classifier. Cate-
gorical accuracy is the percentage of samples in the test dataset for
which the classifier predicted the correct label. Top-5 categorical
accuracy is the percentage of samples in the test dataset for which
the correct label was within the top 5 choices of the classifier. We
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report categorical accuracy, top-5 categorical accuracy and feature
importance information in §5.3.

4.3 Tidy: a memory allocator wrapper
To test the impact of using detected data features to inform layout
at runtime, we built Tidy. Tidy is an arena-based allocator, meaning
that it organizes allocated objects into different arenas. Unlike most
other arena-based allocators, Tidy chooses the arena for the newly
allocated object based on a hint provided by a programmer. In
our context, the hint is the feature of the object that correlates
with the desired object grouping – the feature that we discover
using random forests. The idea is that upon object allocation the
programmer would pass to the allocator wrapper the value of that
feature. For example, if the programmer is allocating a vertex of
a triangle, she would pass the X and Y coordinates to Tidy. Tidy
would then convert these values into an arena index, such that
vertices with similar X ,Y coordinates would get allocated in the
same arena. Using this method we achieve the desired grouping of
objects, the one suggested to us by the access graph, in a concrete
execution.

The idea of hint-based allocators is not new. Chilimbi et al. [9]
propose ccmalloc – a cache conscious allocator that accepts hints.
Hints in ccmalloc are addresses of previously allocated objects;
the allocator attempts to place the new item as close as possible
to the one whose address was provided as the hint. Tidy can be
adapted to use different kinds of data for hints, and we consider it
a generalization of the ccmalloc’s approach.

The hint taken by Tidy has a form of ann-dimensional vector; the
size of the vector is given to Tidy upon initialization and is stored
in a Tidy context. Tidy then allocates an n-dimensional array of
arenas, and the vector elements (modulo the size of the dimension)
will be used to index into that array. This implies a linear mapping
of hints to the arena space. Non-linear mappings are also possile;
we plan to explore them in the future.

To use Tidy, the programmer needs to replace calls to existing
memory allocators with calls to Tidy. If a call to a standard malloc
routine has the interface of:

malloc(size_t size);

a call to Tidy looks like:

tidy_alloc(tidy_ctx_t *ctx,
size_t size,
unsigned int *hint);

The programmer can configure the size of the arena as well as
the size of the dimension, or opt to use the default settings. More
experiments are needed to determine whether an optimal arena
size can be pre-determined from the properties of the access graph,
if it needs to be tuned individually for the workload or if there is
a single (perhaps architecture-dependent) default that works well
across the board.

The programmer needs not specify the total number of arenas in
advance or the total number of allocated elements; if Tidy runs out
of space in an arena, it allocates a new one for the same set of hints.
To allocate arenas, Tidy uses libc malloc, but it can be changed
to use any other allocator.

5 EVALUATION
In this section we first show how Hierarchical Memory Layouts
(§3) can be used to estimate potential performance improvements
from improved data layouts (§5.1). Following that, in §5.2 we show
how HML can be used directly to derive better data layouts in
storage. Finally, we show that data-driven layout techniques (§4)
can be used to detect correlations between data features of objects
and their layout, where such correlations exist, and guide dynamic
memory allocations.

In our experiments we use nine applications, two of which are
used to evaluate improved storage layout only. .

Simple data structure benchmarks. The three benchmarks in
this set are our own implementations of PageRank, mesh traversal
and red-black trees in C/C++.

PageRank stores data as node and edge objects. The graph is
initialized from an edge list file. Each node and edge is separately
allocated using C++’s operator new(). Nodes contain their ID, the
data field and vectors of pointers to their in-edges and out-edges.
Edges contain the IDs of the source and destination nodes, and a
floating point data field.

Mesh traversal operates on a 2D network of node and triangle
objects. Triangles contain pointers to their three nodes, and three
adjacent triangles. Nodes contain their x and y coordinates and a
vector of pointers to all adjacent triangles. The data is initialized
by allocating objects one by one, according to input from a node
and triangle list file.

Red-black trees are collections of nodes, where each node has
pointers to its parent and two children, a floating point payload,
and a colour field. The benchmark fills the tree with random nodes,
and then executes a series of lookups.

SPEC CPU2017 memory intensive benchmarks. SPEC
CPU2017 is the 2017 release of the popular benchmark suite. For
our experiments, we used three memory-intensive benchmarks
(according to Amaral et al.[2]): 505.mcf, 520.omnetpp and 531.deep-
sjeng. 505.mcf is a mass transportation route planning program
written in C. 520.omnetpp is a discrete event simulator of a large
10 gigabit network, written in C++. 531.deepsjeng is a speed-chess
program with deep positional understanding, written in C++. Each
manipulates a large number of heap objects, making them suitable
for applying our Hierarchical Memory Layout algorithm.

Kyoto Cabinet’s kcstashtest. Kyoto Cabinet is a key-value
database management library. It is a direct successor of Tokyo Cab-
inet, developed by FAL Labs and used by Japanese social network
Mixi. It contains multiple different implementations of the data
store back-end. The benchmark shown here, kcstashtest, performs
writes and reads in Kyoto Cabinet’s StashDB data store variant.
StashDB internally keeps records in hash tables.

Graph traversal benchmarks. To evaluate how using HML
can improve data layouts in storage, we use graph traversal bench-
marks of our own implementation.

We obtain the memory access traces required for generating the
access graphs using DINAMITE [22]. DINAMITE is an LLVM pass
that instruments every memory access and compiles the program,
such that information about memory allocations, accesses, and data
types is emitted to a log file. Our techniques would work with any
memory access tracing tool that provides this information.

6
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To estimate the performance effect of changing the data layout
via HML, we simulate a cache hierarchy using Dinero IV[13]. The
simulated Dinero cache is modelled after Intel® CoreTM i5-7600K.
L1 D-cache has the capacity of 64kB, and is 8-way set associative.
L2 has the capacity of 256kB, and is 4-way set associative. LLC
has the capacity of 8MB, and is 16-way set associative. Our DTLB
simulator has 128 4kB page entries, and is 4-way associative.

5.1 Hierarchical Memory Layouts
The main purpose of our Hierarchical Memory Layout algorithm is
to provide an estimate of the upper bound on performance improve-
ment from changing the data layout. The output of the algorithm
are multilevel communities produced by the first stage described
in §3 and the final layout which maps original object addresses to
addresses of the objects in the improved layout.
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Figure 4: Hierarchical Memory Layouts cache and DTLB
misses. Event counts are normalized to original layout re-
sults.

Figure 4 shows simulated cache event counts for the first seven
benchmarks after applying the Hierarchical Memory Layout algo-
rithm. The numbers are normalized to the simulated cache event
counts of the original layout. Five benchmarks out of seven show
significant improvements in cache miss rates.

We notice a consistent trend: HML improves the miss rate at the
higher levels of the memory hierarchy, such as the last-level cache
(LLC) and the TLB, to a larger extent than at the lower level of the
hierarchy (L1 and L2). That is because it is easier to organize objects
in larger groups accessed contemporaneously within a relatively
large time window (macro grouping) than into small groups ac-
cessed contemporaneously within a very short time window (micro
grouping).

Furthermore, performance improvements depend on the size of
data objects. In 505.mcf, for example most of the allocated objects
are over 100B in size and do not fit into a single cache line. Thus,
performance improvements that could occur due to more efficient
packing of objects within the same cache line do not happen.

From the red-black tree benchmark we learn that the extent of
improvements from HML also depends on the access pattern. In
red-black trees, the allocated objects are not as big as the ones in
505.mcf, but the tree itself exceeds the cachememory capacity by far.
The combination of the large dataset and random lookups means
that the algorithm does not revisit the same tree nodes often. The

improvement in cache performance is thus low. However, DTLB
misses improve by 51%.

Our conclusion is that the concrete performance gains fromHML
depend largely on the size of objects, size of the working set and the
access pattern of the program. Furthermore, HML tends to better
improve spatial locality at a coarser granularity: at the level of the
TLB or the LLC.

Let us look back on what these HML results mean. Our algo-
rithm operates under the assumption that it is possible to reorder
objects in memory in an arbitrary way. This assumption does not
hold for the majority of real-world programs. Recorded memory
access traces, on the other hand, are an idealized environment for
testing different layouts. The main purpose of HML is to give an
estimate of how much performance is to be gained from changing
the layout of items in the best case. We show that for the selected
memory-intensive benchmarks there is much room for performance
improvement from reordering data.

We explore twoways in which output fromHierarchical Memory
Layouts can be used in practice to achieve better performance in
programs. In §5.2 we explore the possibility of usingHML to directly
inform the layout of data in storage, and in §5.3 we show the results
of applying data-driven layout techniques (§4) to our benchmark
set.

When such optimizations are not possible in practice, Hierarchi-
cal Memory Layouts provide a starting point for work on layout
improvement. The output of HML is a concrete layout of data that
improves spatial locality, groups of objects that get accessed fre-
quently together within the given program, and a descriptive Object
Map which ties the previous two to the actual data within the pro-
gram. Researchers in the future can use these layouts as stepping
stones towards new locality optimization techniques.

5.2 Data layout in storage
Programs whose data layout is directly inherited from an input
file, for example those that mmap the input file to materialize data
in memory or those that dynamically allocate data objects in the
same order as they appear in the input file, can directly benefit from
the HML technique. We can reorganize the input data in the file in
the same order as suggested by the HML algorithm and as a result
obtain better spatial locality at runtime.

To evaluate such a scenario we wrote an application in C++ that
performs graph traversal using either breadth-first search (BFS) or
depth-first search (DFS) order. We ran two benchmarks. The first
one performs ten BFS traversals starting from a randomly selected
code each time. The second benchmark works the same way, but
uses DFS.

For these benchnmarks, an optimal strategy for spatial local-
ity would be to allocate the nodes in the same order as they are
traversed, but because the traversal begins with a different node
each time, there is not a single “optimal” layout that we can use.
Instead, we run the HML algorithm on the memory access traces for
these benchnmarks to suggest an improved layout. HML outputs
the order of the nodes, where each node is identified by its unique
ID. We then reorganize the input file such that the nodes appear in
the same order as suggested by HML. We create one input file for
the BFS benchmark and another one for DFS.
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Figure 5: Cache misses, TLB misses, and runtime for HML-
derived layouts in graph traversals. Normalized to original
layout metrics.

Figure 5 shows the runtime, cache misses and TLB misses ob-
tained using the HML, relative to the baseline layout, where nodes
in the input file are sorted by their numeric ID. These measure-
ments were obtained on the actual hardware. We do not provide
simulation results, because we are able to apply HML directly. We
observe an improvement in runtime of 14% for the BFS and 18% for
the DFS. L1 and L2 miss counts show a slight degradation, which
is made up for by a significant reduction in L3 and DTLB misses.
Again, we see the pattern observed in §5.1, where HML tends to
optimize better for L3 and TLB, while keeping L1 and L2 cache
misses the same or slightly worse than the original layout. The
improvements in L3 and DTLB misses outweigh this degradation
and produce a positive effect on the running time.

5.3 Data-driven locality
We applied the data-driven locality techniques to the first seven
benchmarks described in §5. In three of these,mesh traversal, PageR-
ank and red-black trees, our system identified data features that
could be used as hints for the Tidy memory allocator.

For PageRank and mesh traversal, our system automatically iden-
tified the same features that in the past were discovered manually:
source nodes for PageRank [17] and Cartesian coordinates formesh
traversal [33]. This was a positive confirmation of the effectiveness
of our techniques.

Figure 6 shows that the source node is the main contributor to
accurate community prediction in PageRank. The edge weight also
has high predictive power, but it is not available at runtime, so we
disregard it when testing new layout strategies with Tidy.

Figure 7 shows importance scores of mesh node fields in the
mesh traversal algorithm. We can see that the x and y Cartesian
coordinates were picked up by the random forest as being the most
important for classification. The community prediction accuracy is
high, meaning we can use the x and y coordinates to group objects
at allocation time with Tidy.

Red-black trees are considered difficult to optimize for spatial
locality, and we are not aware of any heuristics used in the past to
improve their layout. Our system, on the other hand, was able to
discover one. Figure 8 shows that the payload field, which is used to
rebalance the tree, has the highest predictive power. Right behind
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it are the child node payloads, which makes intuitive sense because
they are directly related to the current node’s payload. With cate-
gorical prediction accuracy of 0.98, red-black trees have the features
with the strongest predictive power of all three benchmarks.

We used the discovered fields in all three benchmarks to generate
hints for Tidy allocator wrapper. Our mapping is relatively simple,
performing one or two-dimensional binning. We bin values into
buckets by dividing the value space into a grid. Each grid cell corre-
sponds to one integer hint value. The grid size was experimentally
tuned to the best performing value, and the performance numbers
on real hardware are reported in Figure 9.

The results of our Tidy experiments are in line with the results
from the simulated evaluation presented in §5.1. We see a runtime
improvement of 25% for mesh traversal, 27% for PageRank and 14%
for red-black tree queries. These improvements correlate with the
reduction in cache/DTLBmisses. We observe the same trend we saw
in simulation – grouping items with Tidy does better for memories
with higher latencies, in case of red-black trees even degrading L1
and L2 miss counts by 20%. As we observed earlier, HML is better at
macro grouping than at micro grouping, providing improvements
at the higher level of the memory hierarchy (L3 and TLB), but
not necessarily at the lower level. This will sometimes result in L1
and L2 cache miss degradation, but L3 and DTLB improvements
typically outweigh these losses.
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Figure 9: Performance improvement from using Tidy alloca-
tor wrapper with hints based on the knowledge extracted by
random forests

Discrepancies in numbers between the simulation and Tidy re-
sults can be attributed to two factors. First, Tidy is a best-effort
layout strategy. It opportunistically allocates objects within the
same memory buckets without ordering them in the exact same
way as HML would. This is a limitation of using dynamic allocation
– we cannot expect the program to anticipate the exact place in
memory where each object should be stored. Second factor is the
imprecision in the simulator itself. We use Dinero IV, configured to
mimic the caches of our test hardware, however, we have no way
of knowing how it differs from the hardware itself.

6 RELATEDWORK
Cache-conscious structure layout and definition [8] [9] blazed the
trail for the ideas presented here. Collocating contemporaneously
accessed objects and hint-based allocators (the previously discussed
ccmalloc) were both explored by the authors. The access graphs
allow for novel analyses that help programmers understand which
data should be grouped at runtime.

Profile-based data layout optimizations were explored by Rubin
et al. [28] Their approach uses profiling techniques to identify ob-
jects that are top offenders to cache performance. This information
is used to apply a series of known layout optimizations, such as
structure splitting, field reordering and reordering of whole objects.
Our work attempts to solve the layout problem in a more holistic

fashion – by understanding the interplay between accesses to all
of the objects in a data set.

The use of data structure fields to inform data layout creation
was inspired by GraphChi [17]. The authors proposed a layout
specifically for bulk synchronous processing on graphs; we aspired
to capture the essence of these ideas, so they could be used for data
structures in general. With access graphs, we aimed to remove the
necessity of domain knowledge for reasoning about good layouts.
We showed that our techniques reach similar conclusions about
laying out edges for Pagerank.

Higher order theory of locality (HOTL) [32] sets up a mathemati-
cal framework for thinking about different locality metrics. From it,
Xiang et al. develop a novel low-overhead way of locality sampling,
and demonstrate the ability to predict miss rates from the acquired
information. While providing an excellent basis for reasoning about
locality, techniques presented in HOTL do not expose actionable
data on how to improve locality in a program. Access graphs take a
different approach of observing the full access trace and providing
insight into how objects relate to each other, in terms of access
locality. This level of detail, while incurring large overheads com-
pared to sampling techniques, brings new information on what can
be done to data layout to improve performance.

Yoon et al. [33] use a graph representation for generating a
cache-oblivious layout of the mesh, but their representation is very
different from locality graphs. Edges are formed between vertices
connected in a mesh; in other words this representation is specific
to the mesh data structure and requires knowing which vertices are
connected. Locality graphs operate on any generic memory access
trace and require no knowledge of data structure specifics.

Liu et al. propose a sampling tool [20] that correlates badmemory
performance with data objects: static or dynamically allocated vari-
ables. Similar approaches can be found in DProf [25] and MemProf
[18], which correlate cache misses and remote memory accesses
to data items. Looking at data as the first order citizen in memory
performance analysis is a good approach to helping programmers
better understand memory bottlenecks. Access graphs use a similar
data-centric approach, but aspire to bringmore actionable insight by
observing the entire execution trace and extracting locality-related
relationships between data objects.

Peled et al. propose a context-based cache prefetcher model
[24], that detects semantic locality and issues prefetches based on
it. Their approach is to implement a machine learning model in
hardware that observes "contexts" of memory accesses during exe-
cution. A context contains information such as register contents,
access and branch histories, compiler provided type information,
etc. The approach used by Peled et al., and our data-driven spatial
locality method are similar in that they both base their techniques
on data-centric contextual information. They are on two sides of
the trade-off spectrum: semantic locality is generally applicable out
of the box and has insight into lower-level information, but the
amount of data it can observe at any point in time is limited due to
hardware constraints. Access graphs and their related tools observe
a much larger body of information about the execution, but at a
higher level. They do not provide performance benefits on-the-fly,
but is used to derive better locality optimizations.

Previous allocator work such as dlmalloc [19] and jemalloc [11]
inspired Tidy’s arena-based allocation. However, these allocators
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rely on the information available through regular allocation calls,
namely the size of the object being allocated, to group data. Our
approach with Tidy was redefining what an allocation call looks
like, and showing that additional information can further improve
locality. We do not compare against dlmalloc or jemalloc, as our
work is mostly orthogonal – we show that informed hints can
improve a layout’s performance even when allocating objects of
the same size throughout the program. Tidy is a proof of concept
allocator wrapper, and our implementation does not focus on the
allocation speed. The insights from Tidy can be used to bring hint-
based allocation into state-of-the-art allocator libraries.

7 FUTUREWORK
In future work, we plan to explore the possibilities of using access
graphs and Hierarchical Memory Layouts for different kinds of
optimizations. In its current state, the HML algorithm optimizes
spatial locality at a relatively coarse granularity – the entire data
set. As we have seen in §5, this sometimes results in degradation in
smaller L1 and L2 cache performances. We would like to explore the
possibility of combining different techniques to consistently gain
performance over the entire cache hierarchy. Taking the concept of
locality a step further, we are interested in exploring the possibility
of using access graphs and HML to organize data over multiple
machines in a distributed environment.

We also plan to address the automation of changing allocator
calls to Tidy. This task can be split in two parts: changing the allo-
cator calls in the program and automatically finding a good mapping
function that translates data features into allocator hints. The first
part is engineering and can be tackled either from the compiler
level (writing an LLVM pass) or by changing the plain text source
code directly. The second part is a complex research question. One
approach would be to explore the relationship between detected
community sizes and the values their objects’ data. A different ap-
proach could be embedding the random forest classifier directly
into Tidy and using it at runtime. The main concern here is the
impact of adding a fully trained random forest on performance
of allocation calls. With the advent of hardware such as Google’s
TPU cores, it may be possible to use hardware-accelerated neural
networks for this task.

8 CONCLUSION
In this paper, we present a novel data-driven approach to spatial
locality. We introduced access graphs – our new abstraction of
memory access patterns. Access graphs capture the information
about which objects in a programs data set get accessed together
frequently. We show that our novel Hierarchical Memory Layout
(HML) algorithm can estimate the potential for cache performance
improvement based on access graphs. We demonstrate how Hier-
archical Memory Layouts can be used in practice, not only as a
performance estimation tool, but to directly generate better data lay-
outs in storage. Finally, we show a machine learning technique that
discovers features of data itself that can be used as hints for Tidy
– our hint-based allocator wrapper. We support our research with
measurements that show significant performance improvements
over a set of benchmarks.
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