The Last CPU

Joel Nider

University of British Columbia
joel@ece.ubc.ca

ABSTRACT

Since the end of Dennard scaling and Moore’s Law have
been foreseen, specialized hardware has become the focus for
continued scaling of application performance. Smart mem-
ory, smart disks, and smart NICs are common examples of
programmable accelerators that are now being integrated
into our systems. Many accelerators can be programmed
to process their data autonomously and require little or no
intervention during normal operation. Chaining different
accelerators together can enable entire applications to be
offloaded from the CPU, leaving it only the responsibilities
of initialization, coordination and error handling.

We claim that these responsibilities can also be handled in
simple hardware other than the CPU and that it is wasteful
to use a CPU for these purposes. We explore the role and
the structure of the OS in a system that has no CPU and
demonstrate that all necessary functionality can be moved
to other hardware. We show that almost all of the necessary
pieces for such a system design are already available today.
The responsibilities of the operating system must be split
between self-managing devices and a system bus that handles
privileged operations.

ACM Reference Format:

Joel Nider and Alexandra (Sasha) Fedorova. 2021. The Last CPU.
In Workshop on Hot Topics in Operating Systems (HotOS °21), May
31-FJune 2, 2021, Ann Arbor, MI, USA. ACM, New York, NY, USA,
8 pages. hitps://doi.org/10.1145/3458336.3465291

1 INTRODUCTION

In the beginning, CPUs were designed for a single purpose:

performing logical operations on stored memory. Co-processors

(such as IO channel processors, interrupt controllers, float-
ing point processors), were added to the system to provide
functionality that was not provided by the CPU because they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8438-4/21/05...$15.00
https://doi.org/10.1145/3458336.3465291

Alexandra (Sasha) Fedorova
University of British Columbia
sasha@ece.ubc.ca

could perform certain specialized tasks faster and more ef-
ficiently. They enhanced system performance by allowing
the CPU to focus on application logic and general system
functions, while the simpler co-processors handled mundane
tasks.

For high-performance applications, the situation is com-
pletely reversed. Programmable devices are responsible for
application logic, while the CPU is needed only to support
them in these tasks. It is well known that application-specific
hardware can perform tasks more efficiently than software
running on a general purpose CPU. Accelerators for many
applications such as image recognition [42], computer vision
[22], key-value stores [14, 29], data warehouses [26], big data
[10, 18, 41], deep learning [12], neural networks [23] (and
many more) are commonly used to reduce overall system
cost and increase performance orders of magnitude beyond
the capabilities of a general-purpose instruction set.

In the past, only the most computationally-intensive por-
tions of the program were offloaded to accelerators. More
recently, it is becoming common to offload entire applica-
tions to accelerators such as SSDs, GPUs and FPGAs that
the CPU is needed only for initial setup and error handling
[8,10,11, 14, 16, 29, 41]. We believe that systems have evolved
to the point that the CPU is an appendage that can be com-
pletely removed.

At first glance, extending the design of the CPU to include
additional accelerator functionality seems like a viable al-
ternative. To improve performance, extensions have already
been made to the base instruction set to provide accelerator-
like capabilities on general purpose CPUs, such as vector
instructions (AVX, ARM Neon, POWER VMX) and encryp-
tion [1, 3, 5]. Chiplets are now being used to further increase
the density of CPUs and reduce manufacturing costs [31].
These additional functions complicate the verification of the
already complicated monolithic CPU and require more sili-
con area (and possibly more components such as interposers
in the case of chiplets), which increases the CPU’s base cost
and energy consumption even if these functions are never
used [17, 25]. In addition, the development cycle to release a
new CPU can take many years, meaning that existing sys-
tems will not easily be upgraded or changed. The general
purpose approach of CPU design has been successful but
has started to hit some hard limits. Hardware components
that are designed to solve specific problems are becoming
prevalent, because they can do the job more efficiently (and


https://doi.org/10.1145/3458336.3465291
https://doi.org/10.1145/3458336.3465291

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

often much faster) than general purpose CPUs. From the
perspective of efficiency, system management is no differ-
ent: many CPUs are far too powerful and expensive once
the critical processing tasks have been offloaded to other
hardware.

Accelerator-centric systems with centralized control, such
as Omni-X [37], M*X [4] and IX [7], rely on the CPU to handle
only the mundane tasks of initialization, coordination and
error handling. We believe that decentralized control breaks
the dependency on an expensive general-purpose CPU and
can improve performance isolation [2]. Control tasks can
be boiled down to simple operations that can be handled in
other hardware, with the cooperation of the accelerators and
programmable devices.

Operating systems provide three key functions: virtual-
ization, which includes multiplexing and address translation,
isolation and resource management. We propose that these
functions shift from the centralized OS kernel to a decen-
tralized model that consists of self-managed hardware. The
missing component is the system management bus that is
needed for devices to cooperate with one another. It is this
bus that performs security-sensitive configuration and is
responsible for task life cycle management (initialization,
setup, teardown). The introduction of the system manage-
ment bus as a specialized control plane in combination with
self-managing devices for a simpler data plane enables the
complete removal of the CPU from the system. The operat-
ing system is still the control plane[34] but no longer runs
on the CPU.

Our contributions are:

(1) Understanding the role and form of the operating sys-
tem in a system without a CPU. In particular, we show
how cooperation between a system management bus
and self-managing devices can replace the functions
of a modern OS. We arrive at the specification of func-
tions that the OS must perform in a CPU-less system
and where this functionality can be implemented.

(2) Enumerating the division of responsibility (i.e. mem-
ory isolation, context isolation and resource manage-
ment) between the system management bus and self-
managing devices that enable the implementation of
the CPU-less system.

In the rest of the paper, Section 2 outlines the design of
system that does not rely on a CPU to coordinate or configure
the devices and Section 3 describes a complete end-to-end
application example, showing how all the components work
together. Section 4 outlines open questions.

2 DESIGN
To break dependence on the CPU, two things must happen:

Joel Nider and Alexandra (Sasha) Fedorova

‘ System Bus (inter-device communication)

Legacy
Controller Controller
I PCle Bus
PIM-enabled
SmartNIC e GPU o | Mok,
mal Controller 1 [ DRAM DRAM
| I I Controller Controller
IOMMU_————/ IOMMU \ [ 1oMmu —

‘ Data Interconnect (physical address space) ‘

Figure 1: Proposed architecture without a CPU

(1) Devices must be self-managed A device must man-
age its own internal state. It must expose the services
it provides, and provide a separate context for each
instance of a service (multiplexing) to ensure isolation
between applications.

(2) Devices must communicate autonomously A de-
vice must be able to discover services it needs and
request them without relying on an external entity to
configure it.

Each of the OS functions - virtualization (which includes
multiplexing and address translation), isolation and resource
management are essential to create a secure and scalable sys-
tem. We break up the responsibility for these functions and
distribute them among the devices and the bus. The system
is thus composed of self-managing devices coordinated by
the system bus. The following description explains how the
responsibilities of the operating system are divided among
the hardware components.

2.1 Self-Managing Devices

A device is responsible for running application logic and
offering one or more resources that other devices may use. A
device can offer any combination of resource types (physical
memory, FPGA blocks, GPU cores, storage space, etc.), expos-
ing each one as a service. Devices can also offer management
services for system maintenance. For example, devices that
store their applications internally (i.e., on-board flash) must
expose a loader service that can be used to upload a new
binary image. To be considered self-managing, a device must
be able to manage allocation of their resources on behalf of
devices in the system and expose them in a standardized way.
To do so, each device must implement logic to multiplex its
resources into multiple instances, provide isolation between
the instances and handle error conditions. This echos the re-
quirements of a resource monitor as in the LegoOS splitkernel
design [36].

Isolation. Devices will likely support multiple clients or
connections to any particular service. For example, a smart
SSD that exposes a file system can allow multiple files to be



The Last CPU

opened simultaneously by multiple applications. In such a
case, it is important that the device implement an isolation
mechanism to prevent data leakage between instances. De-
vices can implement isolation of their resources in hardware
or software. Fine-grained resource allocation in hardware
has already been implemented in devices such as RDMA
controllers and SR-IOV (single root I/O virtualization) NICs
in which hardware is partitioned into a fixed number of
instances that are exposed and controlled independently. Dy-
namic isolation of FPGA resources for multiple applications
has been described in AmorphOS [27]. Software techniques
(such as time sharing) can be used if the device contains
an embedded CPU (which is common on devices like smart
SSDs). No matter the implementation, the device must be
able to expose its functionality in a systematic and standard
way that can be consumed easily by other devices wishing
to use that functionality.

VIRTIO. VIRTIO is a standardized protocol for managing
paravirtual devices from a virtual machine [40]. VIRTIO can
provide an ideal interface for exposing resources from self-
managing devices. Similar to other protocols, it is based on a
set of unidirectional queues of memory descriptors [20, 37].
Hardware vendors are now starting to make real devices
that comply with the VIRTIO standard [19, 30]. The main
advantage is that many VIRTIO compliant devices (from
different hardware vendors) can be operated with a single
driver. Exposing all resources and services in a standard
and consistent way simplifies the logic needed to use these
devices to the point that their services may be consumed
by devices with modest hardware. The VIRTIO protocol is
able to describe a wide range of devices (more than 20 device
types have already been specified) across different levels of
abstraction (NICs, disks, consoles, sockets, etc.) that all work
in a consistent way.

2.2 System Bus

We propose the use of a new system bus specifically for the
purpose of inter-device communication, similar to TMNT
[2]. The system bus (as seen in Figurel) acts as the control
plane that enables devices to control each other but does
not carry data. The system bus only provides a mechanism
for device communication and contains no policies. Unlike
LegoOS [36] and Barrelfish [6], no entity sees the entire sys-
tem and there is no global state replication. The bus enables
devices to communicate their resource needs in a standard
way and enables devices to broadcast their capabilities so
that other devices may discover them. This is accomplished
by devices sending messages on the bus to request services
such as allocation of memory or opening a file. It operates
as a privileged device and is the mechanism for maintaining
virtualization.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

System Initialization. When the system starts, all hardware
devices in the system undergo a period of initialization in
which they can perform a self-test. When the device deter-
mines that it is functioning normally, it will send a message
to the system bus, which will record that it is alive. After-
wards, the device will load its applications, of which there
can be many. Applications can require one or more services
that are provided by other devices. For example, a NIC might
need to read data stored in a file on an SSD. Before a device
can use a resource, it must first discover which devices in
the system can provide access to that resource. The device
discovery mechanism is similar to the SSDP (simple service
discovery protocol) from the UPnP suite [15], or USB device
attachment messages.

Address Translation. An application can be distributed
across many devices, but what uniquely identifies it is its
virtual address space. As in currently deployed systems, ad-
dress translation remains the cornerstone of data isolation
in shared memory. From a security standpoint, it is not a
good idea for a device to be responsible for its own mappings
because a compromised device could potentially gain access
to resources that it is not authorized for. Therefore, it is the
responsibility of the privileged system bus to create virtual-
to-physical mappings by updating IOMMU page tables, as
instructed by the resource controller (i.e. the memory con-
troller). Similarly, the resource controller cannot be allowed
to access the IOMMU of another device directly, since this
will lead to security vulnerabilities. Instead, the system bus
updates the page tables of a device only when it is instructed
to do so by the controller of that particular resource.

Memory management. Virtual memory management is
necessary to share memory among different components of
the same application, while protecting that memory from
other applications. This is largely accomplished through the
IOMMU, which gates access to the physical memory from
each device, as is commonly done today. When allocating
memory, the system bus provides the mechanism for up-
dating virtual to physical mappings, but does not provide
the policy. The mappings are set by the memory controller,
which manages its own allocation tables internally for each
application, similarly to how the mComponent — the hard-
ware memory component that is implemented in the LegoOS
system [36]. These mappings are sent to the system bus
which programs the appropriate page tables for the IOMMU
of the requesting device.

Protocol Support. Devices that coordinate via the system
bus will be required to adhere to the bus protocol. This is
not unlike compliance with existing bus protocols, such as



HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

PCle. Every device will need to conform to a minimum be-
haviour to interoperate and share services with other de-
vices. Today, operating systems communicate with devices
through controller-specific interfaces such as AHCI (SATA
controllers) and EHCI (USB controllers). Devices and con-
trollers already participate in these control protocols with
hardware and firmware on the device. That communication
would be replaced with higher level protocols to request ser-
vices directly from a device. The system bus protocol is not
expected to be more computationally intensive or to have
more complicated logic than many existing control protocols
such as those previously mentioned (and may possibly be
simpler). Therefore, we expect most devices and controllers
that exist today will not require significant changes to their
hardware requirements to support the system bus.

2.3 Dataplane

We require two different functions from our interconnects:
memory access — data plane, and device configuration - con-
trol plane. We believe these functions should be separate,
from a system design and performance perspective. In tradi-
tional systems, the CPU is responsible for setting up address
spaces during initialization. Since we cannot rely on the CPU,
there must be an independent method of addressing devices
before virtual address spaces are set up. PCle partially con-
flates these two functions by providing both memory access
and a certain degree of device configuration through the
standard config space and BAR regions by addressing de-
vices by physical address (bus, device, function). Sinces most
devices will support multiple virtual address spaces (one per
application), they must have the ability to select which vir-
tual address space is in use for each memory operation (like
a PASID [33]). The memory bus must have high throughput
and low latency, while the system management bus need not.
On the other hand, the system management bus must be able
to process messages, so it can update the management tables
on behalf of applications. While it is not impossible to design
a bus that incorporates both functions (high speed memory
access and message decoding) we do not see a compelling
reason to combine them. There are many existing system
interconnects that appear to be good candidates such as PCle,
CCIX [9], GenZ [28], openCAPI [32] and CXL [13].

Notifications. Notifications are a method for a device to
signal that it requires some attention. This can be caused by
normal operation such as notifying that some requested data
is ready. It can also be used to signal an error condition, such
as a failed DMA transaction due to an invalid virtual address.
Notifications to the CPUs are often sent using interrupts
but can be sent over the interconnect as a memory write
to a special address. This is similar to the method used to
implement MSI (message signalled interrupts) of the PCI

Joel Nider and Alexandra (Sasha) Fedorova

standard. Some protocols such as RDMA call this a "doorbell"
[24].

Coherency. Cache coherence takes on a different meaning
in a system that has no CPU. The purpose of the cache is
to improve performance of the CPU by avoiding expensive
trips to the main memory. It is convenient to think of a cache
as belonging to the memory hierarchy, which obscures the
fact that most caches reside in the same physical package
(and most often on the same die) as the CPU. Therefore in
a system with no CPU, we must carefully reconsider the
placement and purpose of cache and cache coherency in the
system. Since the cache is private to a device, if a device
uses memory only to share data with other devices, caching
will not provide much benefit. Devices and applications will
certainly continue to use huge amounts of RAM and will
benefit from a cache hierarchy in the device (as exemplified
by GPUs today). Cache coherency however, is only required
in programming models that rely on implicit memory sharing
between different processing units. Many distributed systems
(such as IX [7] and LegoOS [36]) rely instead on explicit
message passing and discard coherency completely. Most
of the interconnects mentioned in section 2 support cache
coherency messages, but do not require them. In short, each
device can choose whether or not to participate in cache
coherency of the system, based on its hardware capabilities
and the needs of the application.

2.4 'What we can build today

Some devices already exist that may be programmed to be
used in our system. Certain smart NICs and smart SSDs
could be augmented with monitor software relatively easily.
What prevents us from removing the CPU completely is that
there is no existing hardware component that can act as our
system bus. To complete the system, we need a discrete mem-
ory controller and interconnect controller that are separate
from the CPU package (similar to Intel’s Memory Controller
Hub[21] or IBM’s MXT [39] which not longer exist, as far as
we know).

We can emulate the operation of the system bus in soft-
ware that runs on a CPU. Each device (assuming the devices
are really self-managed) would behave as usual — sending
and receiving messages from the system bus - but these
would be tunneled over shared memory to our emulator. The
emulator would still intercept any memory allocation mes-
sages and reprogram the IOMMU s accordingly. The emulator
would also need to play the role of any resource monitor
that cannot yet be embedded in a device: for example, the
memory controller. Building an emulated CPU-less system,
which is the next step of our research, will permit answering
research questions about viability, security and performance
of such a system.



The Last CPU

3 PUTTINGIT ALL TOGETHER

To show a complete example of how the system works, we de-
scribe how a hypothetical key-value store application (KVS)
would work on a system without a CPU. The data (keys and
values) are stored in a file hosted by a smart SSD, while the
operations (get, insert, update, etc.) are processed in a smart-
NIC. The NIC exposes a KVS interface to other machines
over the network by listening on a socket [16, 38] or RDMA
connection [29].

Figure 2 shows the initialization sequence, as the KVS
application running in the NIC connects to the SSD to access
its data file. (1) The NIC sends a broadcast message (con-
taining the file name) via the system bus to discover which
storage service owns the file. (2) The SSD responds that it
can offer a service for that file. (3) The NIC sends a request to
open the service (including an authorization token) to gain
access to the file. (4) The SSD responds with the connection
details and the amount of shared memory required. (5) The
NIC sends a request to the memory controller (including
the virtual address), asking it to allocate the shared memory.
@ Upon seeing the response from the memory, the system
bus programs the IOMMU belonging to the NIC, giving it
access to the shared memory at the specified virtual address.
(7) The NIC sends another message to the system bus to
grant access to the shared memory to the SSD. The NIC may
then establish the connection by programming the VIRTIO
queues in the SSD using virtual addresses.

‘ System Bus (inter-device communication) ‘

A
7~
ﬁ—/ A
V' )storage
" Controller
Controller

‘ A7)
=< [ 1OMMU I_\r/
‘ Data Interconnect (physical address space) ‘

Figure 2: KV-Store application initialization sequence

The IOMMUs protect the memory by translating all mem-
ory accesses by the devices to a virtual memory space. To
create a shared memory area, the IOMMUs must be pro-
grammed to map virtual addresses used by two devices to
the same physical addresses. In a system with CPUs, the
operating system kernel is responsible for memory man-
agement, because it contains a mapping of each processes’
address space and is able to perform privileged tasks. An
application would invoke a system call (such as mmap on
Linux) for the kernel to create a shared memory mapping.

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Without a CPU, the responsibilities are split between the
memory controller, which keeps track of physical memory
allocations for each device, and the privileged system bus
that can update mappings. Instead of a system call, a device
sends a control message. Once the action is authorized by the
memory controller, the system bus performs the operation.
Access to a memory region may be granted by the device
that owns the region to another device, but must be first
authorized by the memory controller.

4 OPEN QUESTIONS

Access Control. If fine-grained access control is needed,
an access control service can be provided by a smart stor-
age controller, such as a smart SSD. This would be roughly
equivalent to the ’login’ program and ’passwd’ file on Linux.
Access control to an individual file is implemented by the
file system service, on the device that provides that service
(likely a smart SSD). A user that wishes to open a file would
enter commands through a console app which would use that
user’s identifier when requesting files from the file system
service. Similarly, loader services (to load new microcode,
firmware or application code to a device) can also use the
same authentication service before replacing sensitive data.

Error Handling. We are not aware of any work on offload-
ing applications to accelerators that addresses how to handle
programming bugs. Existing systems have the privilege of
relying on the CPU and operating system to handle a variety
of unspecified errors. We must be more precise in defining
the types of errors that will occur, and how they are to be
handled. Recoverable errors are those that do not require a
reset of the device. Page faults are caused when the trans-
lation hardware (MMU or IOMMU) fails to find a mapping,
or if an access is attempted to memory without the correct
permissions. In a system with no CPU, the IOMMU would
deliver any faults to its attached device. Each device would
be responsible to handle its own faults appropriately (i.e.
reset the service or stop the application). The failure model
is not worse than in a system with a centralized CPU. The
major difference is the responsibility of error handling has
shifted to the device itself rather than an external entity.

Similarly, if a resource suffers a fatal error but the device
survives, the device is responsible for handling the error
itself. It must send a message to any consumer using that
resource and then reset the resource. It is the responsibility
of the application logic running on the consumer to recover
from this scenario. If the entire device fails, the resource bus
must send messages to all other devices in the system that
may be using a resource of the failed device. The bus can
also send a reset signal to the failed device in an attempt to
restart it.



HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

System Maintenance. We have described in section 3 how
a key/value store application would work and assume that
such an application can write to a log file during normal
operation. A system operator may periodically wish to view
these logs to gather statistics or tune some parameters. We
did not describe how an operator may view the logs. It is
likely that such a machine will be deployed as a server in
a data center and will not have a local console. Remote op-
eration would be the best option if many such systems are
deployed in a data center, because one remote console can
be used to manage many CPU-less systems. The logs could
be accessed remotely by another machine over the network
through a remote access service. User authentication can
be performed by an authentication service running on any
device.

Programmability. One of the biggest questions that arises
for such an unfamiliar system is how to program it. The main
point to keep in mind is that you are writing an application
to run on a programmable device, that could use services
from one or more other devices. The applications are devel-
oped on a machine that has a development environment (i.e.
toolchain) for the target hardware. Since each device can
have a different instruction set or implementation language,
multiple toolchains would be required. In many cases how-
ever, the development process would target only one device.
To use our KV-store application as an example, all applica-
tion logic would be compiled to run on the smartNIC. The
development environment for the smartNIC would include
a library that encapsulates the functionality of the system
bus, and provide functions for service discovery, resource
allocation, etc. This depends on the other devices in the sys-
tem (SSD, memory controller, etc.) being able to expose the
required resources in an appropriate manner. Developing
the app on the target machine without a CPU would require
one of the accelerators to run the compiler, which does not
have any apparent benefit.

Security. We rely on virtual memory to prevent unautho-
rized access to the memory of another application. We rely
on the implementation of the devices to provide isolation
between applications running on the same device. There are
certainly other security issues that will arise when designing
commonly used services such as a file system. This is non
unlike designing a security model for an NFS service, which
also exposes an abstraction of a file to a remote device[35].

5 CONCLUSION

Demand for higher performance is pushing system design
towards specialized hardware. Individual devices are rapidly
developing to manage themselves, relaxing the dependency
on the CPU and traditional operating system. While there are

Joel Nider and Alexandra (Sasha) Fedorova

many further developments that need to be made, we have
already seen huge progress towards self-managing hardware
with high levels of abstractions. These higher level interfaces
replace traditional software implementations that run on a
CPU with more efficient implementations that run on the
device.

We have taken an extreme position as a thought exper-
iment. Anything less than contemplating the complete re-
moval of the CPU from a system allows us to fall back to
the existing way of viewing systems. Such a drastic change
forced us (and hopefully you) to think about system design
in a new way and the impact it will have on how we manage
such a system for our applications. We, of course, realize that
not all systems require accelerators and some problems are
just easier to solve on a CPU. However, we now have a new
question to ask - what would it look like if we reintroduced a
CPU to such a system with self-managing hardware devices?
Would it fundamentally change how software is written on
a CPU? The CPU is no longer a central component in many
of our existing systems and it may not be long before we see
systems that are built without a CPU at all. We must consider
how such changes will impact system design and what shape
operating systems will take in a completely decentralized
system.

REFERENCES

[1] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford,
E. Ozturk, G. Wolrich, and R. Zohar. Breakthrough AES performance
with Intel® AES new instructions. In Intel Whitepaper. Intel,
2010. URL https://software.intel.com/sites/default/files/m/d/4/1/d/8/
10TB24_Breakthrough_AES_Performance_with_Intel _AES_New_
Instructions.final.secure.pdf.

A. Akshintala, V. Miller, D. E. Porter, and C. J. Rossbach. Talk to
my neighbors transport: Decentralized data transfer and scheduling
among accelerators. Proceedings of the 9th Workshop on Systems for
Multi-core and Heterogeneous Architectures, 2018. URL https://par.nsf.
gov/biblio/10060951.

ARM Inc. Arm cryptocell-300 family. ARM Developer, 2020. URL https:
//developer.arm.com/ip-products/security-ip/cryptocell-300-family.
[4] N. Asmussen, M. Roitzsch, and H. Hartig. M3x: Autonomous acceler-
ators via context-enabled fast-path communication. In 2019 USENIX
Annual Technical Conference (USENLX ATC 19), pages 617-632, Renton,
WA, July 2019. USENIX Association. ISBN 978-1-939133-03-8. URL
https://www.usenix.org/conference/atc19/presentation/asmussen.

L. S. Barbosa. Power8 in-core cryptography. IBM DeveloperWorks,
2015. URL https://www.ibm.com/developerworks/library/se-power8-
in-core-cryptography/index.html.

[6] A.Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schiipbach, and A. Singhania. The multikernel: A new os
architecture for scalable multicore systems. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP *09,
page 29£1A§44, New York, NY, USA, 2009. Association for Computing
Machinery. ISBN 9781605587523. doi: 10.1145/1629575.1629579. URL
https://doi.org/10.1145/1629575.1629579.

A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating

[2

—

[3

[t}

5

—

7

—


https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/10TB24_Breakthrough_AES_Performance_with_Intel_AES_New_Instructions.final.secure.pdf
https://par.nsf.gov/biblio/10060951
https://par.nsf.gov/biblio/10060951
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://developer.arm.com/ip-products/security-ip/cryptocell-300-family
https://www.usenix.org/conference/atc19/presentation/asmussen
https://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/index.html
https://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/index.html
https://doi.org/10.1145/1629575.1629579

The Last CPU

[10

[11

[12

(13

(14

[15

[16

(17

[18

(19

[20

—

—

]

—

—

=

]

]
]

]

]

]

=

Systems Design and Implementation (OSDI 14), pages 49-65, Broom-
field, CO, Oct. 2014. USENIX Association. ISBN 978-1-931971-16-4.
URL https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/belay.

A. Caulfield, P. Costa, and M. Ghobadi. Beyond smartnics: Towards a
fully programmable cloud: Invited paper. In 2018 IEEE 19th Interna-
tional Conference on High Performance Switching and Routing (HPSR),
pages 1-6, 2018. doi: 10.1109/HPSR.2018.8850757.

CCIX Consortium. CCIX cache coherency interface. online, 2019. URL
https://www.ccixconsortium.com/.

B. Y. Cho, W. Seob Jeong, D. Oh, and W. W. Ro. Xsd: Accelerating
mapreduce by harnessing the gpu inside an ssd. In WoNDP: 1st Work-
shop on Near-Data Processing in Conjunction with the 46th IEEE/ACM
International Symposium on Microarchitecture (MICRO-46), Davis, Cali-
fornia, USA, Dec. 2013.

C. Chung, J. Koo, J. Im, Arvind, and S. Lee. Lightstore: Software-defined
network-attached key-value drives. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 9394A$953, New
York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362405. doi: 10.1145/3297858.3304022. URL https://doi.org/10.
1145/3297858.3304022.

E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger. Serving dnns in real time at datacenter
scale with project brainwave. IEEE Micro, 38(2):8-20, 2018. doi:
10.1109/MM.2018.022071131.

CXL Consortium. Compute express link™: The breakthrough
cpu-to-device interconnect.  online, 2020. URL https://www.
computeexpresslink.org/.

A. De, M. Gokhale, R. Gupta, and S. Swanson. Minerva: Accelerat-
ing data analysis in next-generation ssds. In 2013 IEEE 21st Annual
International Symposium on Field-Programmable Custom Computing
Machines, pages 9-16, 2013. doi: 10.1109/FCCM.2013.46.

A. Donoho, B. Roe, M. Bodlaender, J. Gildred, A. Messer, Y. Kim, B. Fair-
man, and J. Tourzan. Upnp device architecture 2.0. online, 2020.

H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein. Nica: An
infrastructure for inline acceleration of network applications. In Pro-
ceedings of the 2019 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC 19, page 3452A$361, USA, 2019. USENIX
Association. ISBN 9781939133038.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. SSIGARCH
Comput. Archit. News, 39(3):3654A$376, June 2011. ISSN 0163-5964.
doi: 10.1145/2024723.2000108. URL https://doi.org/10.1145/2024723.
2000108.

W. Fang, B. He, Q. Luo, and N. K. Govindaraju. Mars: Accelerating
mapreduce with graphics processors. IEEE Transactions on Parallel and
Distributed Systems, 22(4):608-620, 2011. doi: 10.1109/TPDS.2010.158.
S. Hajnoczi and M. Tsirkin. Virtio without the "virt". online, Nov. 2019.
URL https://lwn.net/Articles/805235/.

T.J. Ham, J. L. AragAsn, and M. Martonosi. Desc: Decoupled supply-
compute communication management for heterogeneous architec-
tures. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 191-203, 2015. doi: 10.1145/2830772.
2830800.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

Intel®. 5100 memory controller hub.  online, 2009. URL
https://www.intel.com/content/dam/doc/datasheet/5100-memory-
controller-hub-chipset-datasheet.pdf.

S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, and J. Jiang.
Accelerating mobile applications at the network edge with software-
programmable fpgas. In IEEE INFOCOM 2018 - IEEE Conference on
Computer Communications, pages 55-62, 2018. doi: 10.1109/INFOCOM.
2018.8485850.

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S.Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-1. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hog-
berg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Ka-
plan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, ]. Laudon,
J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean,
A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snel-
ham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon. In-datacenter performance analysis of a tensor pro-
cessing unit. SIGARCH Comput. Archit. News, 45(2):15A§12, June
2017. ISSN 0163-5964. doi: 10.1145/3140659.3080246. URL https:
//doi.org/10.1145/3140659.3080246.

A. Kalia, M. Kaminsky, and D. G. Andersen. Design guidelines for
high performance RDMA systems. In 2016 USENLX Annual Technical
Conference (USENIX ATC 16), pages 437-450, Denver, CO, June 2016.
USENIX Association. ISBN 978-1-931971-30-0. URL https://www.
usenix.org/conference/atc16/technical-sessions/presentation/kalia.
A. Kannan, N. E. Jerger, and G. H. Loh. Enabling interposer-based
disintegration of multi-core processors. In Proceedings of the 48th Inter-
national Symposium on Microarchitecture, MICRO-48, page 5463AS558,
New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450340342. doi: 10.1145/2830772.2830808. URL https:
//doi.org/10.1145/2830772.2830808.

K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for intelligent
disks (idisks). SIGMOD Rec., 27(3):424AS52, Sept. 1998. ISSN 0163-
5808. doi: 10.1145/290593.290602. URL https://doi.org/10.1145/290593.
290602.

A.Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Ross-
bach. Sharing, protection, and compatibility for reconfigurable fabric
with amorphos. In Proceedings of the 13th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI'18, page 1074AS$127,
USA, 2018. USENIX Association. ISBN 9781931971478.

M. Krause and M. Witkowski. Gen-Z DRAM and persistent memory
theory of operation. online, 2019. URL https://genzconsortium.org/.
B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang. Kv-direct: High-performance in-memory key-value store
with programmable nic. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, page 1374AS$152, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450350853. doi: 10.1145/3132747.3132756. URL https://doi.org/10.
1145/3132747.3132756.

Mellanox Inc.  Bluefield dpu sw manual v3.1.0.11424.  online,
2020. URL https://docs.mellanox.com/display/BlueFieldSWv31011424/
VirtlO-net%20Emulated%20Devices.

S. K. Moore. Chiplets are the future of processors: Three advances
boost performance, cut costs, and save power. IEEE Spectrum, 57(5):
11-12, 2020. doi: 10.1109/MSPEC.2020.9078405.

OpenCAPI consortium. OpenCAPI consortium. online, 2019. URL
https://opencapi.org/.


https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.ccixconsortium.com/
https://doi.org/10.1145/3297858.3304022
https://doi.org/10.1145/3297858.3304022
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108
https://lwn.net/Articles/805235/
https://www.intel.com/content/dam/doc/datasheet/5100-memory-controller-hub-chipset-datasheet.pdf
https://www.intel.com/content/dam/doc/datasheet/5100-memory-controller-hub-chipset-datasheet.pdf
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3140659.3080246
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1145/2830772.2830808
https://doi.org/10.1145/290593.290602
https://doi.org/10.1145/290593.290602
https://genzconsortium.org/
https://doi.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756
https://docs.mellanox.com/display/BlueFieldSWv31011424/VirtIO-net%20Emulated%20Devices
https://docs.mellanox.com/display/BlueFieldSWv31011424/VirtIO-net%20Emulated%20Devices
https://opencapi.org/

HotOS 21, May 31-June 2, 2021, Ann Arbor, MI, USA

[33] PCI-SIG. Process address space id (pasid). online, 2011. URL https:

[34

(35

(36

(37

(38

(39

[40

(41

]

=

[l

]

]

]

]

]

—

//members.pcisig.com/wg/PCI-SIG/document/12366.

S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe. Arrakis: The operating system is the
control plane. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 1-16, Broomfield, CO, Oct. 2014.
USENIX Association. ISBN 978-1-931971-16-4. URL https://www.
usenix.org/conference/osdil4/technical-sessions/presentation/peter.

R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and Implementation of the Sun Network Filesystem, page 3794A$390.
Artech House, Inc., USA, 1988. ISBN 0890063370.

Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A disseminated,
distributed OS for hardware resource disaggregation. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 69-87, Carlsbad, CA, Oct. 2018. USENIX Association. ISBN
978-1-939133-08-3. URL https://www.usenix.org/conference/osdi18/
presentation/shan.

M. Silberstein. Omnix: An accelerator-centric os for omni-
programmable systems. In Proceedings of the 16th Workshop on Hot Top-
ics in Operating Systems, HotOS 17, page 69:1A§75, New York, NY, USA,
2017. Association for Computing Machinery. ISBN 9781450350686.
doi: 10.1145/3102980.3102992. URL https://doi.org/10.1145/3102980.
3102992.

G. Siracusano and R. Bifulco. Is it a smartnic or a key-value store?
both! In Proceedings of the SSIGCOMM Posters and Demos, SSIGCOMM
Posters and Demos 17, page 138§A§140, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450350570. doi: 10.
1145/3123878.3132014. URL https://doi.org/10.1145/3123878.3132014.
R. B. Tremaine, T. B. Smith, M. Wazlowski, D. Har, K.-K. Mak, and
S. Arramreddy. Pinnacle: Ibm mxt in a memory controller chip. IEEE
Micro, 21(2):564AS$68, Mar. 2001. ISSN 0272-1732. doi: 10.1109/40.
918003. URL https://doi.org/10.1109/40.918003.

M. Tsirkin and C. Huck. Virtual i/o device (virtio) version 1.1. on-
line, 2019. URL https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/
virtio-v1.1-csprd01.html.

M. Yoshimi, R. Kudo, Y. Oge, Y. Terada, H. Irie, and T. Yoshinaga.
An fpga-based tightly coupled accelerator for data-intensive applica-
tions. In 2014 IEEE 8th International Symposium on Embedded Multi-
core/Manycore SoCs, pages 289-296, 2014. doi: 10.1109/MCSo0C.2014.47.
C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks.
In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’15, page 161aAS170, New
York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450333153. doi: 10.1145/2684746.2689060. URL https://doi.org/10.
1145/2684746.2689060.

Joel Nider and Alexandra (Sasha) Fedorova


https://members.pcisig.com/wg/PCI-SIG/document/12366
https://members.pcisig.com/wg/PCI-SIG/document/12366
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi18/presentation/shan
https://www.usenix.org/conference/osdi18/presentation/shan
https://doi.org/10.1145/3102980.3102992
https://doi.org/10.1145/3102980.3102992
https://doi.org/10.1145/3123878.3132014
https://doi.org/10.1109/40.918003
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060

