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Abstract
Heterogeneous systems that integrate a multicore CPU and a GPU
on the same die are ubiquitous. On these systems, both the CPU
and GPU share the same physical memory as opposed to using
separate memory dies. Although integration eliminates the need to
copy data between the CPU and the GPU, arranging transparent
memory sharing between the two devices can carry large overheads.
Memory on CPU/GPU systems is typically managed by a software
framework such as OpenCL or CUDA, which includes a runtime
library, and communicates with a GPU driver. These frameworks
offer a range of memory management methods that vary in ease
of use, consistency guarantees and performance. In this study, we
analyze some of the common memory management methods of the
most widely used software frameworks for heterogeneous systems:
CUDA, OpenCL 1.2, OpenCL 2.0, and HSA, on NVIDIA and AMD
hardware. We focus on performance/functionality trade-offs, with
the goal of exposing their performance impact and simplifying the
choice of memory management methods for programmers.

CCS Concepts •Computer systems organization ! Heteroge-
neous (hybrid) systems; •Computing methodologies ! Paral-
lel programming languages

Keywords Heterogeneous systems, GPGPU, APU

1. Introduction
Copying data over the Peripheral Component Interconnect (PCI) bus
is often limiting performance on discrete GPU systems. Integrated
CPU-GPU systems address this problem by placing the CPU and the
GPU on the same die (Fig. 1), with the added advantage of reduced
area and power footprint. In integrated CPU-GPU systems, both
the CPU and the GPU share the physical memory of the system.
Therefore, it might appear that this tight integration allows for
seamless data sharing. As we explain in this paper, this is not the
case. There is still a lot of software and hardware restrictions on
CPU-GPU integrated systems that forbid complete and seamless
unification of memory.

Software frameworks such as CUDA and OpenCL provide a
number of memory management methods to simplify programmabil-
ity. For example, one method might allocate a memory area that can
be seamlessly accessed from either the CPU or the GPU without the
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Figure 1. A high level view of the NVIDIA integrated CPU-GPU
system used in this work.

need to manually translate the pointers or copy data; another might
provide a memory area that can be used for atomic accesses. These
memory management methods are hidden in the runtime library and
the GPU driver. Their implementation details are poorly understood,
and the effects on performance remain somewhat of a mystery. For
example, to enable seamless sharing of memory between the CPU
and the GPU, a memory buffer could be configured uncacheable or
access-protected by the driver, which means that an interrupt will be
handled every time the memory is accessed. Although many of these
design choices are justifiable from the standpoint of programmabil-
ity, they can introduce large performance overheads.

The variety of memory management methods and poor under-
standing of their internals introduce the uncertainty as to which
method a programmer should use, and whether reduced perfor-
mance is worth the improved programmability. In this work we in-
vestigate how these different memory management methods behave
in terms of performance and functionality. Our main contribution
is revealing the performance trade-offs that these memory manage-
ment strategies make and explaining the technical reasons for these
performance effects, which required thorough analysis and some
reverse-engineering effort due to lack of documentation. For our
study we use an NVIDIA system with the CUDA programming
framework and an AMD APU with the OpenCL 1.2, OpenCL 2.0
and HSA programming frameworks. We believe that our choice of
platforms and frameworks covers a wide spectrum of current and
future integrated CPU-GPU systems.

The rest of the paper provides background on GPU systems
(Sec. 2), presents our evaluation of a NVIDIA/CUDA platform
(Sec. 3 and 4) and of an AMD APU system with OpenCL and HSA
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(Sec. 5 and 6). Sec. 7 discusses related work and Sec. 8 summarizes
our findings.

2. Background
GPUs are massively parallel processors containing thousands of
cores that aim at hiding latency by having thousands of instructions
in-flight to ensure that there will always be something executing on
the available cores. If, for example, a thread running on one GPU
core issues a memory instruction and the data is not immediately
available, the thread will be de-scheduled and a new thread will start
executing immediately. On the contrary, a typical CPU consists of
tens of processing cores that are more complex because they imple-
ment architectural techniques, such as deep out-of-order pipelines,
branch predictors and multi-level cache hierarchies, aiming to re-
duce the latency of a sequential instruction stream.

Applications to be accelerated on a GPU typically have sequen-
tial and parallel regions. Sequential regions do not benefit from
running on the GPU, since its specialty is massively parallel SIMT
(Single Instruction Multiple Threads) code. Parallel regions can
either be offloaded to the GPU, or continue running on the CPU.
The portion of code that runs on the GPU is called a kernel. In
CUDA terminology, each kernel is composed of a number of blocks.
The blocks are further broken down into warps, which consist of
32 threads each. In other words, a GPU kernel consists of blocks
of warps of threads. In the OpenCL and HSA models the blocks
are called workgroups that are subdivided into wavefronts, each
consisting of 64 threads or work items. The decision of how to best
distribute the parallel regions between the CPU and the GPU can be
very complex as it depends on multiple factors such as the offloading
overhead, the cost of data transfer, the acceleration potential on the
GPU, and memory requirements.

On current systems, interacting with the GPU occurs through
a programming framework, which typically consists of a program-
ming language (or an extension to a language), a runtime, and a
driver. The two most widely used programming frameworks are
CUDA and OpenCL. Furthermore, AMD introduced HSA, a lower-
level framework that utilizes hardware features such as shared page-
able memory and user-space work queues [7]. All frameworks have
APIs that allow specifying how to allocate memory and how to
launch kernels on the GPU.

At the hardware level, GPUs schedule warps (or wavefronts)
rather than individual threads for execution. GPUs follow a single-
instruction multiple-thread (SIMT) paradigm. Hence, a group of 32
(or 64) threads execute instructions in lockstep. Divergence between
the individual threads is allowed and tracked by the GPU so that
possible re-convergence can be resumed at a later point in execution.
This type of divergence is referred to as thread divergence. There is
some overhead with divergence, so it is best for all threads to follow
the same execution path. Another type of divergence is referred to
as memory divergence. It is best for the threads within a warp to
access consecutive words in memory. This way of accessing memory
allows the GPU to coalesce these memory accesses into a single
access which loads or stores all of the consecutively accessed data.
If, however, each thread tries to access a random memory location,
the memory unit of the GPU will generate multiple memory requests
and performance can degrade.

Although this study targets platforms that integrate CPUs and
GPUs, it is applicable to any system in which two types of heteroge-
neous units need to communicate with each other. Instead of relying
on simulators, we chose to present our analysis on real systems
employing different software models and implementing different
CPU-GPU coherency schemes. Future systems ranging from mobile
devices to exascale computing are expected to house such integrated
chips to accommodate a variety of applications [18].

3. The NVIDIA/CUDA System
The NVIDIA system used in our study includes a Kepler GPU with
192 cores and an ARM quad-core CPU; further details are provided
in Section 4. There is no hardware coherency between the CPU
and the GPU caches; software must take care of keeping the data
consistent. The programming framework used on this platform is
CUDA. We discover that memory management methods offered by
CUDA sometimes apply restrictions on how the data is cached and
whether it can be accessed concurrently by the CPU and the GPU.
We now explain how these methods work.

cudaMalloc: The first and most commonly used method of man-
aging memory is to allocate it on the host (CPU) using malloc()
and on the device (GPU) using cudaMalloc(). This method does
not utilize shared virtual memory, so the CPU uses a different virtual
address space than the GPU. Therefore, two different buffers need to
be allocated with different pointers pointing to each buffer. Data allo-
cated on the host cannot be accessed from the device and vice versa,
but it can be copied back and forth between the two buffers using
cudaMemcpy(); the DMA copy engine will perform the copying
from one location on the unified physical memory to another. It is
up to the programmer to explicitly invoke cudaMemcpy() when the
data is needed. As a result, the resulting code may end up cluttered
with allocations and copy commands and can be difficult to debug
and maintain. We will refer to this allocation scheme throughout the
paper as the default scheme.

cudaHostAlloc: On integrated systems, data allocated with
cudaHostAlloc() is placed in an area that is accessible from
both the CPU and the GPU without the need to perform explicit
memory copies. From our experiments, we found that the data is
allocated on a device-mapped region /dev/nvmap; nvmap is the
GPU memory management driver on integrated NVIDIA systems.
This region physically resides in the system’s main memory, shared
by the CPU and the GPU, but has different access properties than
other virtual regions. Our investigations revealed that this region is
configured uncacheable on the CPU and the GPU. As a result, any
read or write from or to that memory region goes directly to main
memory, bypassing caches. We will refer to this allocation scheme
as hostalloc.

cudaMallocManaged: Managed memory was introduced in
CUDA 6.0 to eliminate the need for explicit data copying between
the CPU and the GPU by providing a unified shared address space
across the CPU and GPU. This unified address space allows seam-
less pointer sharing across both processing units. A managed mem-
ory buffer is allocated via cudaMallocManaged(), and similarly
to hostalloc, there is no need to explicitly copy data between
the host and device. Furthermore, just like hostalloc, the data is
mapped to a /dev/nvmap region. In contrast to hostalloc, data is
cached in CPU caches, and in the GPU L2 caches. The price of unre-
stricted caching is that the memory cannot be accessed concurrently
by the CPU and the GPU. Once the host launches a GPU kernel, it
is not allowed to access data in the same managed region as the one
accessed by the GPU until the kernel completes; an attempt to do so
will cause a SEGFAULT. If the host wishes to access a managed area
after the GPU kernel completes, it must issue an explicit CUDA API
synchronization call, which flushes caches to ensure a consistent
view of the data. This restriction is not an issue for programs where
the CPU and the GPU execute sequentially, but can be a limitation
for programs where the CPU and the GPU concurrently access data
in the same allocated region (even if the actual data is disjoint). We
will refer to this allocation scheme as managed.

These memory management schemes fall into different parts
of the spectrum of the trade-off between the functionality and
ease of use and restrictions on memory accesses (which leads to
performance degradation, as we will show later). While the default
scheme places no restrictions on memory accesses, it is the most
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1  // Initialize context 
2  cudaFree(0); 
3  // Inform Linux that next allocation will be sharedalloc 
4  gpu_hook(INIT); 
5  // Allocate data using the same syntax as cudaHostAlloc 
6  cudaHostAlloc(data, size, flags); 
7  // Work on data using CPU 
8  cpu_work(data); 
9  // Flush CPU caches to push data to main memory  
10  gpu_hook(FLUSH_CPU); 
11  // Launch kernel to manipulate data on the GPU 
12  kernel<<<blocks, threads>>>(data, ...); 
13  // Wait for kernel to finish 
14  cudaDeviceSynchronize();  
15  // Flush GPU caches to push data to main memory 
16  gpu_hook(FLUSH_GPU); 
 

Figure 2. sharedalloc usage example

difficult to use for the programmer, because a pointer allocated
on the CPU cannot be accessed on the GPU (and vice versa), so
data must be manually copied if sharing between the devices is
desired. The managed scheme obviates the need for copying, but
prevents concurrent access to data by the CPU and the GPU, so
that caches can be flushed on kernel invocation boundary. This is
a coarse consistency management method, which ensures that the
programmer sees consistent copies of shared data at the expense of
restrictions when the memory can be accessed. Finally, hostalloc
makes another choice with respect to consistency management: it
does not restrict concurrent access, but “shields” the programmer
from accidentally reading inconsistent data by disabling caching.

We observe that there is another point in this spectrum that is not
covered by the available memory management methods: allowing
the programmer seamless memory sharing without concurrency or
caching restrictions, but requiring them to manually flush caches
when consistency management is required. To explore this point, we
introduce a new configuration scheme that we call sharedalloc.

sharedalloc: Like hostalloc, it allows concurrent accesses
to data from the CPU and the GPU, but at the same time allows
caching, like the managed method. To implement sharedalloc
we modified the Tegra Linux kernel code to introduce a new system
call, gpu_hook(), that hooks into the GPU driver and allows us
to control caching and explicitly flush caches to maintain data
consistency.

We control caching by setting two flags that are passed as
arguments to ioctl(). These flags make data cacheable on the
CPU and the GPU. We discovered how to use these flags by tracing
calls to ioctl() and examining the (limited) publicly available
source code from NVIDIA. Once these flags are set, we can
simply use cudaHostAlloc() to allocate memory without caching
restrictions.

In our implementation of sharedalloc, the programmer must
manually flush the CPU/GPU caches on kernel launch boundaries
by invoking gpu_hook(). However, in programs adhering to a data-
race-free synchronization model, the invocation of this function
could be embedded into synchronization functions. Figure 2 shows
an example using sharedalloc. The difference between using
sharedalloc and hostalloc is the additional gpu_hook() sys-
tem calls.

A summary of caching and concurrency trade-offs for the
different memory allocation schemes is shown in Table 1.

Table 1. Summary of allocation schemes
Allocation scheme CPU caching GPU caching CPU-GPU concurrency
default cached cached difficult + copy overhead
hostalloc not cached not cached easy
managed cached cached not possible
sharedalloc cached cached easy

4. Evaluation of the NVIDIA/CUDA System
4.1 Hardware/Software
We performed our experiments on the NVIDIA Jetson TK1 board,
a K1 SoC integrating a CPU and a GPU. The CPU is a "4-Plus-1"
2.32GHz ARM quad-core Cortex-A15, and the GPU is a Kepler
"GK20a" GPU with 192 SM3.2 CUDA cores. There is 2GB of
DDR3L DRAM running at 933MHz with 64-bit data width. All 192
CUDA cores share 32K registers, 64KB L1 cache/shared memory,
and a 128KB L2 cache. Global memory is normally cached only in
L2, unless the application is compiled with a flag enabling caching
in L1. The cache line size is 32 bytes. The system software is Linux
For Tegra R21.4 with CUDA 6.5.

In all of our experiments, we set the board in the "performance"
mode and we maximize the CPU and GPU clock rates. We also
maximize the system and memory bus clocks.

4.2 Benchmarks and Experiments
We run four types of tests to analyze the memory management
behaviour on this platform:

Bandwidth Experiments: We run microbenchmarks measuring
read and write bandwidth from the CPU and the GPU under vari-
ous memory management schemes and highlight the performance
differences.

Rodinia Benchmarks: We port a number of applications from
the Rodinia benchmark suite [5] to use the memory management
methods described in the previous section. The original implemen-
tation of Rodinia uses the default method.

GPU Caching Behaviour: We explore the behaviour of caching
on the GPU using microbenchmarks.

Concurrent Workload Experiments: We analyze the perfor-
mance of applications where the CPU and GPU concurrently access
portions of data from the same allocated region. To that end, we
wrote a microbenchmark and modified four applications from Ro-
dinia to perform concurrent work by the CPU and the GPU.

4.2.1 Bandwidth Experiments

0	
2	
4	
6	
8	

10	
12	
14	
16	
18	
20	

8B
	

25
6B

	

8K
B	

16
KB

	

32
KB

	

64
KB

	

12
8K

B	

25
6K

B	

51
2K

B	

1M
B	

2M
B	

4M
B	

8M
B	

W
rit
e	
Ba

nd
w
id
th
	(G

B/
s)
	

Array	size	

GPU-default/managed/sharedalloc	 GPU-hostalloc	 CPU-default	 CPU-hostalloc	

Figure 3. Write bandwidth under different memory management
methods.

To demonstrate the impact of caching restrictions on perfor-
mance, we measured the read and write memory bandwidth achieved
by either the CPU or the GPU with the different memory manage-
ment methods. For the CPU tests, a single CPU thread sequentially
reads or writes a data array, which we vary in size. For the GPU
tests, we launch many threads to read or write the array in parallel,
each thread reading its own array entry. We vary the size of the
array, and the number of threads varies with it. For example, for an
8MB array, we have 220 of 8-byte entries, and so we launch that
many GPU threads to access these entries. We perform 10 million
iterations over the array in total, so caching will be beneficial where
it is used and when the array fits. The reported bandwidth is the total
number of accessed bytes divided by the run time.
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Figure 3 shows the write bandwidth. We omit the read bandwidth
numbers, because they are almost identical. The legend reports
the device performing the access and the memory management
method. For example, the line labeled GPU-hostalloc refers to the
GPU accessing a hostalloc’ed region; the line labelled CPU-
hostalloc refers to the same region accessed by the CPU. (The CPU
and GPU tests are run, separately, not concurrently.) We show a
single line labeled GPU-default/managed/sharedalloc, because the
performance of these memory management methods on the GPU
is the same in this simple experiment, as expected; neither of them
disables caching.

We observe that caching restrictions imposed by the hostalloc
method have a significant performance impact on both the CPU
and the GPU. The CPU loses more than half the bandwidth when
caching is disabled. For the GPU, the managed, default and
sharedalloc scheme are able to exceed the available bandwidth
of roughly 12GB/s when the data fits into the cache (the array size
is smaller than 128KB), while hostalloc runs much slower due to
the lack of caching. When the data no longer fits into the cache, all
systems become limited by the hardware throughput and deliver the
same performance (notice the sharp drop at 128KB).

The managed, default, and sharedalloc deliver the highest
read/write bandwidth. The restriction on the CPU/GPU concurrency
imposed by managed is not evident from this very simple test. How-
ever, many recent studies demonstrated benefits of truly concurrent
execution by the CPU and the GPU [4, 6, 11, 12, 16]; for these
applications, the restriction on CPU/GPU concurrency may be a
limitation. We demonstrate a potential effect of these limitations
with Concurrent experiments later in this section.

4.2.2 Rodinia Benchmarks
Figure 4 shows the running time under different memory man-
agement methods, normalized to default for Rodinia benchmarks.
Figure 4a shows the overall runtime, Figure 4b shows the run-
time of the GPU kernel only. In addition to the memory manage-
ment schemes described in the previous section we also experiment
with hostalloc-cache. This is an intermediate option between
hostalloc and sharedalloc that enables caching on the CPU,
but not on the GPU.

Due to caching restrictions, hostalloc causes performance
degradation for most benchmarks; lud suffers the largest slowdown
of 9.5⇥. The slowdown can be attributed to CPU caching, GPU
caching, or both. We can deduce which effect is dominant by
comparing hostalloc-cache, which only enables CPU caching,
to sharedalloc, which also lifts restrictions on GPU caching.
Additionally, we can compare Figures 4a and 4b, which separate
the overall runtime (affected by CPU and GPU caching) from the
runtime of the GPU kernel (affected by GPU caching only). For
example, the hostalloc version of kmeans does not suffer any
slowdown on the GPU side, but its overall runtime is affected,
leading us to conclude that the culprit is lack of caching on the
CPU side. Particlefinder, lud and streamcluster suffer from both
CPU and GPU caching restrictions. For many benchmarks, the lack
of GPU caching is the main source of overhead and this is what the
kernel runtime figure shows. We also verified that the actual costs
of the allocation calls are negligible; it is the cost of accesses that
have the major impact on performance.

The managed scheme performs closely to the default, because
both use identical caching configurations. The exception is dwt2d,
which actually uses hostalloc, and not default, in the baseline
implementation. Managed may result in worse performance than
default in scenarios where the cost of cache flushing through the
synchronization call is high; with the default scheme the data is
copied by the programmer, so they have the option of cherry-
picking what to copy, while the managed scheme will always flush

caches on kernel launches to maintain consistency. However, for
the applications presented here, the costs of the infrequent cache
flushing and the costs of copying data between the CPU and the
GPU was measured to be very small across the board (not having to
go through the PCIe bus certainly helps), so this effect is not obvious.
We will show later in the paper that for concurrent CPU-GPU
applications the frequent cache flushing can have high overheads.

Summary: For applications without concurrent CPU/GPU ac-
cesses to the same data, the managed method provides equivalent
performance to default with substantially better programmability.
Hostalloc takes a toll on performance because it disables caching,
and sharedalloc does not deliver any performance benefits over
managed because the applications analyzed here do not have any
CPU/GPU concurrency.

4.2.3 GPU Caching Behaviour
In this section, we attempt to shed light on GPU caching restrictions
implemented by hostalloc. The details of its behaviour are not
publicly available, so we infer them from simple microbenchmarks.

Figure 5 shows the performance of a GPU kernel, launched with
an increasing number of threads, that accesses an array managed
either by hostalloc or managed. Each entry in the array is either
padded to ensure that each entry is 32 bytes (the size of the cache
line in the L2 cache) or not padded. Figure 5a shows a version of the
kernel where each thread accesses its respective entry in the array
(data[tid]++); Figure 5b shows a version where all threads access
the first entry (data[0]++).

This experimental design enables us to observe how performance
changes as more and more threads access the same cache line. In the
padded version where each thread accesses its own array element,
each thread also accesses its own cacheline. In the unpadded version
of the same experiment, several threads access the same cache line.
In the experiment where all threads access the same element, the
cache line is shared by all threads.

We observe that as the number of threads accessing the same L2
cache line increases, performance gets worse with hostalloc, but
is unaffected when the managed scheme is used. Hostalloc aims
for a stricter consistency model between the GPU and the CPU, and
to that end it restricts caching on the GPU by disabling L2 caching
altogether. This explains why writing to the same cache line slows
down the execution: there is more competition so writing to the
same cache line causes significant slowdown since every write has
to go to main memory to ensure consistency. Hence, hostalloc is
more appropriate for code that performs fine-grained data sharing.
We explore this implication in the next section.

Figure 6 shows the results when data is cached in L1 caches
in addition to L2. By default, global data are not cached in the
L1 cache on Kepler class GPUs. However, this can be overridden
using a compiler flag. The effects are less apparent when enabling
L1 caching; however as the data set size increases and spills
to the L2 cache, the behavior becomes similar to the previous
case. Furthermore, enabling the caching in L1 for global data can
negatively affect applications which rely on shared (local) memory.
The L1 cache is used for caching shared memory by default, so
having global memory cached as well can reduce the effective usage
of this cache.

4.2.4 Concurrent Workload Experiments
In this section we demonstrate the utility of sharedalloc and
hostalloc for workloads that utilize both the CPU and the GPU
concurrently. We use a microbenchmark, and modify four Rodinia
applications to have the CPU and GPU collaboratively work on
allocated data.

In the microbenchmark, we allocate a 128 MB integer array
(32M entries) using the different allocation methods. The array is
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Figure 4. Performance of Rodinia applications with the different global memory allocation methods. (a) Overall. (b) Kernel-only.
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Figure 5. Accesses are cached in L2. (a) Each GPU thread accesses its respective array index. (b) All GPU threads access the same array
index.
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Figure 6. Accesses are cached in L1. (a) Each GPU thread accesses its respective array index. (b) All GPU threads access the same array
index.

accessed 100 times in total. In the first iteration, the GPU increments
the entries of the first half of the array and the CPU increments
the entries of the second half. In the second iteration, the CPU
works on the first half, and the GPU works on the second. The
pattern continues until all iterations are completed. Each iteration is
executed concurrently by the CPU and the GPU. However, when the
data is allocated using managed, the CUDA runtime does not allow
the GPU and the CPU to access the allocated region concurrently.
One way to overcome this limitation is to split the allocated region
into multiple allocations, so that the CPU and the GPU work on

different allocations at any given time. While this would be feasible
for very simple programs where the boundaries of data division are
known a priori, for more complicated scenarios where shared data is
arbitrarily split across threads, such a solution would be substantially
more complicated to implement. Therefore, for the managed case,
we execute the GPU and the CPU portions in lockstep: i.e., the GPU
kernel finishes execution, then the CPU code begins to run. Under
default, the data has to be copied between the CPU and GPU in-
between iterations since each iteration depends on the values from
the previous iteration.
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The default applications in Rodinia do not impose much inter-
actions and sharing between threads running on the CPU and GPU.
This has been explored in some details in a recent paper [8]. So, we
modified a number of applications to introduce such interactions. In
the modified Rodinia applications, the kernel works on half of the
data by launching half as many GPU threads as in the original. The
second half of the data is processed by CPU threads (via OpenMP)
concurrently with the GPU threads, except for the managed scheme
where they run in lockstep.
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Figure 7. CPU-GPU concurrent benchmarks. Both the CPU and
GPU work on independent data. Default-conc (y-axis) is the default
implementation of the concurrent version of the benchmark where
data has to be explicitly copied between the CPU/GPU

Figure 7 shows the performance under all memory management
methods compared to default. In terms of programmability, the
default version is the most cumbersome since data accesses can
be non-trivial and figuring out which portion of the data to copy
back and forth may be difficult. For managed, hostalloc, and
sharedalloc, the data is visible on both the CPU and GPU without
the need of explicit copies. sharedalloc improves performance by
more than 156% over the default method for the microbenchmark,
and over 45% over the managed scheme. For hostalloc, the
main cause of the performance degradation is restricted caching.
Although concurrency is possible with hostalloc, the overhead
of not caching data on the CPU and GPU far exceeds concurrency
benefits. Comparing sharedalloc and managed, sharedalloc is
superior to managed because the CPU and the GPU are able to work
concurrently. Cfd, and gaussian gain 25-50% performance relative
to managed; bfs and kmeans gain a modest 4%.

The applications presented in Figure 7 perform coarse-grained
data sharing. That is, threads run a computation on disjoint sets
of data and any data exchanges between threads (i.e., where one
thread reads the data that another thread wrote) are infrequent. In
the following experiment we explore a fine-grained sharing scenario
and demonstrate the behaviors of the hostalloc and sharedalloc
schemes in this case.

To support a realistic scenario, we implemented a locking
algorithm based on the Peterson’s lock [14] with some additions to
account for the specifics of the GPU execution model. The algorithm
uses three locks: a CPU-local lock (a TAS lock), a GPU-local lock
(a TAS lock), and a shared Peterson’s lock. Threads running on the
CPU will first compete for the CPU-local lock; threads running on
the GPU will first compete for the GPU-local lock. The thread that
acquired each lock is called the leader thread. The leader threads
on the CPU and the GPU will then compete to acquire the shared
Peterson’s lock. This arrangement is needed to avoid a deadlock on
the GPU, which would occur if multiple threads within the warp
contended for the shared lock.

Once the lock is acquired, the thread in the critical section
accesses a shared data region, allocated either with hostalloc or
sharedalloc. Following the critical section, the thread performs
accesses to a non-shared region. We vary the number of accesses
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Figure 8. The locking scheme used in fine-grained sharing

in the non-critical section relative to the critical section. Figure 8
illustrates the fine-grained scenario.

While the shared region itself can be allocated using hostalloc
or sharedalloc, the shared lock must be always allocated using
hostalloc, because it requires strict consistency between the CPU
and the GPU.
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Figure 9. Fine-grained sharing benchmark showing the perfor-
mance of hostalloc and sharedalloc

Figure 9 shows the results. When the number of accesses outside
the critical section is small, hostalloc is superior to sharedalloc.
Since hostalloc does not cache the data, we don’t need to flush
the caches after we release the shared lock since the latest copy of
the data is already in main memory. However, for sharedalloc,
we need to flush the caches after releasing the lock. sharedalloc
flushes the entire cache, not discriminating the data that was actually
modified in the critical section, causing higher overhead. However,
as the number of accesses outside the critical section increases (the
critical section becomes relatively less important), this advantage of
hostalloc evaporates, and the caching advantage of sharedalloc
begins paying off as better performance.

Summary: The managed memory management method is a
significant improvement in programmability relative to default
because it enables accessing the same memory on the CPU and
the GPU without explicit copy statements. However, the downside
is that the CPU and the GPU are unable to access the same
allocated region concurrently even if they access disjoint data. The
hostalloc method does not impose the concurrency restriction,
but at the expense of disabling caching on the CPU and the GPU.
sharedalloc neither restricts caching nor prevents concurrency,
but needs to flush the caches when data written on one device
must be made visible on another. Cache flushing calls could be
embedded into the CUDA API so there would be no negative

64



impact on programmability. The downside of sharedalloc is
in indiscriminate flushing of the entire cache when only a small
portion of the data needs to be synchronized. This becomes evident
in fine-grained sharing scenarios, where hostalloc might be
advantageous depending on the size of the shared buffer and the
number of accesses performed in the critical section.

5. AMD Kaveri APU
In this section, we turn our focus to another platform that implements
a unified memory system. We evaluate an AMD A10-7850K Kaveri
APU. There are several programming frameworks available for the
AMD APU. We briefly describe the programming frameworks used
on the AMD APU and then evaluate their performance.

5.1 OpenCL 1.2 and OpenCL 2.0
Memory management in OpenCL 1.2 is similar in programmability
to the default scheme in CUDA. The CPU and the GPU do not share
the same virtual address space. Therefore memory buffers have to
be explicitly managed and communicated between the two devices.
A pointer on the CPU is inaccessible on the GPU and vice versa.

OpenCL 2.0 makes memory management considerably simpler
by introducing Shared Virtual Memory (SVM). With SVM, the
CPU and the GPU see a unified virtual address space, similarly to
CUDA’s managed method.

OpenCL 2.0 allows allocating a memory buffer either as coarse-
grained or fine-grained. Coarse-grained buffers are allocated for
access primarily on a single device (the CPU or the GPU), while
fine-grained buffers are suitable for fine-grained sharing by the two
devices. Coarse-grained buffers need to be mapped and unmapped
using API calls, which act as synchronization points to ensure proper
address translation and consistency when one type of device accesses
the data after it might have been written by another. Fine-grained
buffers do not need to be mapped or unmapped and are guaranteed to
be consistent at kernel launch and kernel completion. Fine-grained
buffers can also be declared with an atomic flag; in that case, they
would be kept consistent between the CPU and the GPU even during
kernel execution with the proper use of synchronization primitives.

5.2 HSA: Heterogeneous System Architecture
The HSA framework is a low-level software layer that gives pro-
grammers finer control over the underlying integrated hardware.
Similar to OpenCL 2.0, HSA employs a unified virtual address
space, where pointers can be seamlessly accessed from both the
CPU and GPU.

Using a special compiler, CL Offline Compiler [2], unmodified
OpenCL kernels can be compiled to HSAIL (HSA Intermediate
Language) and BRIG (a binary representation of HSAIL) which can
then be loaded and run by the HSA runtime. However, the host-side
source has to be modified, as OpenCL APIs are different from those
in HSA. The main modifications are related to the initialization of
HSA and in launching the kernels.

On the Kaveri system, there are three different memory buses,
named GARLIC, ONION and ONION+ (see Figure 10), and memory
accesses on the GPU may take one of these three paths [15]. If
coherence with the CPU is not required as in the case for coarse-
grained buffers, memory requests take the GARLIC path which
leads directly to main memory without communication with the
CPU. If kernel-granularity coherence with the CPU is required, as
would be the case with fine-grained buffers, memory requests take
the ONION path. If instruction-granularity coherence is required
(fine-grained buffers with atomics), the requests take the ONION+
path. This path allows the bypassing of the L1/L2 caches from
the GPU side and snooping to invalidate the CPU caches [15].
For the workloads that we used in the paper, both fine-grained

and fine-grained-with-atomics memory allocations had identical
performance, so we only present the analysis for fine-grained. Fine-
grained-with-atomics need to be used along with synchronization
primitives to ensure consistency. This would be similar to the fine-
grained concurrent setting on the NVIDIA system. We do not present
our evaluation of such concurrent scenarios on the AMD platform
in this paper; however, performance trends are similar.
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Figure 10. Memory system architecture of AMD Kaveri. Figure
reproduced from [15]. CP: Command Processor, GNB: Garlic North
Bridge, UNB: Unified North Bridge.

6. Evaluation of the AMD APU System
6.1 Hardware/Software
We perform our OpenCL and HSA experiments on an AMD A10-
7850K Kaveri Quad-Core 3.7 GHz system. Each pair of CPU cores
share a 2MB L2 cache. The integrated GPU is an AMD Radeon R7
720 MHz Sea Islands family (GCN 1.1). It has eight Compute Units
(CU). The GPU L2 cache is implemented as a physically partitioned
and distributed cache among the CUs. The total L2 cache size is 512
KB with each cache slice 64-128 KB [1]. The OpenCL software
stack uses the proprietary FGLRX driver, while the HSA framework
uses the Radeon Open Compute Platform (ROCm).

6.2 Benchmarks and Experiments
First, we compare the performance of the memory management
methods available in OpenCL 1.2, OpenCL 2.0, and HSA using
microbenchmarks. Then, we explore the caching behaviour of GPU
accesses. Finally, we study the performance of Rodinia benchmarks,
which we ported to OpenCL 2.0 and HSA.

The AMD platform offers us more data points to compare relative
to the NVIDIA platform, because there are three programming
frameworks and three types of memory allocation schemes (coarse-
grained, fine-grained and fine-grained with atomics). To make the
results easier to read and qualitatively comparable to the other
system, we focus on the following combinations of the frameworks
and the memory management methods.

1. OpenCL 1.2, coarse-grained: The memory is allocated using
clCreateBuffer with the CL_MEM_READ_WRITE flag. This
method is qualitatively similar to the default scheme on the
NVIDIA/CUDA platform. It is the most cumbersome in terms
of programmability and provides no data consistency between
the devices and no sharing of virtual addresses.

2. OpenCL 2.0, SVM, fine-grained: The memory is allocated using
clSVMAlloc specifying a fine-grained buffer. SVM is similar
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to CUDA’s managed in that it provides a unified virtual address
space for the CPU and the GPU. Fine-grained buffers are
kept consistent between the two devices at kernel invocation
boundaries at the expense of performance, similarly to CUDA
managed. Unlike CUDA managed, this configuration does not
restrict concurrent access by the CPU and the GPU; however
there is no guarantee on data consistency if the data is accessed
concurrently by both devices1.

3. HSA, fine-grained: This is similar to the above method but
utilizes the HSA framework. The memory is allocated using
the default system malloc call, which is a major portability
advantage for HSA.

From now on, we refer to the three chosen configurations simply
as OpenCL 1.2, OpenCL 2.0 and HSA, for brevity.

6.2.1 Bandwidth Experiments
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Figure 11. Write memory bandwidth for OpenCL 1.2 (coarse),
OpenCL 2.0 (SVM) and HSA (fine-grained).

We measure the read and write bandwidth under the three chosen
configurations using the same test as in Section 4: we vary the size
of the allocated array, and each GPU thread reads or writes its own
dedicated 8-byte entry. The number of threads is, therefore, the same
as the number of array entries. We verified both experimentally and
by reading the code and documentation that none of the memory
management methods on the AMD system disable CPU caching or
affect memory access latency on the CPU, so we only report the
results of experiments on the GPU.

Figure 11 shows the results for the write bandwidth test. (We do
not present the read bandwidth results, because they were almost
identical to the write test.) We observe that the three different
configurations deliver vastly different performance. For large buffer
sizes, OpenCL 1.2 delivers the highest bandwidth, limited only
by the speed of the hardware. HSA delivers roughly 10% lower
throughput, and OpenCL 2.0 is almost 2⇥ worse. For small buffer
sizes, the performance differences are smaller, with HSA slightly
trailing the OpenCL versions.

HSA enhances programmability over OpenCL 1.2 in two main
ways: (1) HSA provides a unified virtual address space between the
CPU and the GPU, (2) HSA configures the memory to be coherent
between the CPU and the GPU. Both of these programmer-friendly
features come at a cost. Providing a unified virtual address space
requires the GPU to perform address translation using CPU page
tables. As described in a recent article that includes several co-
authors from AMD [17], the GPU on the Kaveri system has a multi-
level TLB hierarchy that is accessed for address translation. Upon
a TLB miss, a translation request is dispatched to the IOMMU
(Input/Output Memeory Managament Unit) that has its own TLB

1 For truly concurrent and consistent accesses the programmer is expected to
use fine-grained buffers with atomics along with synchronization primitives.

hierarchy and walks CPU page tables upon a TLB miss. If the
translation is not found in the page table, IOMMU dispatches a page
fault handling request to the CPU. The address translation process
has overhead; and this is part of the reason why HSA delivers lower
throughput for large array sizes.

The second cause of overhead is the cost of maintaining co-
herency between the CPU and GPU. We couldn’t confirm that the
platform implements hardware features enabling coherency, so this
cost is either the actual cost of hardware coherency or the cost of
the software driver to functionally emulate hardware coherency. We
refer to this cost as functional hardware coherency. To isolate the
overhead of coherency from the address translation overhead, we
perform a simple experiment where multiple GPU threads concur-
rently update a single memory location. This way, the overhead of
address translation is negligible. We compare two configurations:
(1) the memory is allocated (with HSA) as a fine-grained buffer,
just like in Figure 11, and (2) the memory is allocated (with HSA)
as a coarse-grained buffer. While the first configuration enables
functional hardware coherence, the second one does not. Figure 12
shows the results, and demonstrates that functional hardware co-
herence, either implemented in software or hardware, does incur
15-25% overhead, which increases with the number of concurrent
accesses.

Getting back to Figure 11, for small buffer sizes, the address
translation overhead is small, so HSA trails the OpenCL imple-
mentations because of the functional hardware cache coherency
overhead. With larger buffer sizes address translation overhead be-
comes dominant, so HSA benefits from the the functional hardware
support relative to OpenCL 2.0 (which handles address translation
in software), but loses to OpenCL 1.2, which provides no unified
virtual address space and this incurs a smaller address translation
overhead.

Table 2 presents the number of data TLB loads and the number
of interrupts, both measured on the CPU-side, for the experiment
from figure 11 for the 1MB array size. Indeed, OpenCL 1.2 performs
a lot fewer TLB accesses than OpenCL 2.0 and HSA; that is because
it uses a coarse-grained allocation. OpenCL 2.0 and HSA perform
a similar number of TLB loads if memory allocation is configured
as coarse-grained. What we find surprising is that OpenCL 1.2
generates the most interrupts and yet delivers the best performance.
That could be explained by a high cost of address translation on the
Kaveri platform (dissected in details in a recent work [17]); OpenCL
1.2 wins because it performs fewer of these expensive operations on
a coarse-grained memory buffer.

Table 2. Data TLB loads and Interrupts
Metric OCL 1.2 (coarse) OCL 2.0 (SVM) HSA (fine)
dTLB loads (billion) 17.7 28.2 25.9
K interrupts/s 21.1 14.7 7.6

OpenCL 2.0 delivers the worst performance of all, which is
attributed to the runtime/driver implementation. OpenCL 2.0 SVM
implementation provides the convenience of a unified virtual address
space and data consistency in software (runtime/driver). Profiling
confirmed that a significant portion of the time spent by OpenCL 2.0
workloads is attributed to the driver. The GPU driver is responsible
for producing a unified virtual address space on systems with no
associated hardware support. The driver allocates a GPU page table
for a given range of CPU virtual addresses and performs address
translation. These driver activities incur performance overhead,
which could explain poor performance of OpenCL 2.0. Furthermore,
OpenCL 2.0 flushes caches once the kernel has finished running to
ensure that the CPU sees consistent data. That, and other software
overhead is responsible for lower performance with this framework.
Table 2 shows that OpenCL 2.0 performs more TLB loads than
both OpenCL 1.2 and HSA, and generates almost twice as many
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Figure 12. Write throughput as multiple threads concurrently up-
date a single memory location allocated as coarse (non-coherent) or
fine (coherent) with HSA.

interrupts as HSA, further pointing to driver overhead in this
framework. Unfortunately, the OpenCL stack on our platform is
proprietary, so we could not find further details on software overhead
by examining the source code.

Summary: Similarly to our analysis of the NVIDIA platform,
we observe that programmability comes at a cost. Unified virtual
address space requires performing address translation. Enabling the
CPU and the GPU to see consistent copies of data incurs overhead.
OpenCL 2.0 pays a substantial cost for supporting these features
whereas HSA delivers them at a substantially lower overhead.

6.2.2 Exploring GPU Caching Behaviour
In order to further understand the performance differences related
to GPU caching, similarly to our experiments with the NVIDIA
platform we varied the padding of array entries written by the
threads. Unlike our NVIDIA experiments, we show the results for
a single array size (as opposed to showing the performance across
array sizes), to highlight interesting performance effects that are
unique to the AMD platform. In this experiment, each thread writes
its own eight-byte array entry in a 64MB array. The entry is either
not padded, padded to 32 bytes, or to 64 bytes. The size of the L2
cache line is 64 bytes, so we vary how many cache lines are accessed.
Figure 13a shows the results. Unlike the NVIDIA platform, the "no
padding" case has much better performance across the board. The
reason is that the GPU can utilize memory coalescing to read/write
each of the eight array entries with a single memory access. This
effect was not obvious on the NVIDIA platform, but is significant
here.

Once the entries are padded to 32 bytes, performance deteriorates
for HSA and OpenCL 2.0 because the GPU can no longer coalesce
memory accesses since each cache line now contains only two
entries. The second reason becomes apparent if we compare the
OpenCL 2.0 bars in the figure. Except for the "no padding" case
which utilizes coalescing, whenever the cache line contains more
than one entry that might be accessed concurrently by more than one
GPU thread, performance drops drastically especially for OpenCL
2.0 (and to some extent for HSA).

We believe that the observed caching behaviour is similar to
the cache behaviour we noticed with hostalloc memory on the
NVIDIA platform. We do not see these effects with OpenCL 1.2
since the buffer is not shared between the CPU and GPU. With
OpenCL 2.0, this software-triggered cache behaviour maintains the
consistency of SVM buffers and hence the drastic drop in perfor-
mance. HSA also seems to experience similar behaviour but to a
lesser extent. As discussed earlier, HSA utilizes some hardware fea-
tures which eliminate some software coherency overheads. However,
we notice that the 64-byte padding case seems to perform worse than
OpenCL 2.0. As the number of cache lines used increases (which

is the case with 64-byte array entries), any hardware mechanism
would be inferior to simply flushing the cache.

Figure 13b further demonstrates the case of performance deterio-
ration for OpenCL 2.0 whenever coalescing cannot be utilized and
the cacheline contains multiple accessed entries. Since only even-
numbered threads will write to the array entries, the "no padding"
case means that the cacheline contains 4 accessed entries, and hence
the huge performance drop for OpenCL 2.0. Finally, figure 14 shows
the performance slowdown of OpenCL 2.0 compared to OpenCL 1.2
as we increase the padding size (i.e. decrease the number of entries
in each cacheline). Except for utilizing coalescing (the 0-padding
case), the figure confirms that the more the entries accessed on the
same cacheline, the larger is the slowdown.

6.2.3 Rodinia Benchmarks
To further compare the memory management methods on the
AMD system, we ported four applications (BFS, Gaussian, kmeans,
streamcluster) from their original implementation in OpenCL 1.2 to
OpenCL 2.0 and HSA. For the OpenCL 2.0 version, we allocate all
the data used by the CPU and GPU as SVM fine-grain buffers. Also,
we remove all data copies since they become unnecessary once data
is allocated as SVM-fine buffers. Programmability is increased as
the lines of code associated with data copies and the multiple CPU
and GPU allocations are eliminated. For HSA, we port by using
the HSA APIs for initialization and kernel launching on the CPU
side. The application kernels themselves are not modified from the
implementations in OpenCL 1.2 and 2.0. We use the CL Offline
Complier (CLOC) to generate a BRIG binary module that can be
read using an HSA API call.

Figure 15 shows the running times of the three implementations
normalized to the running time with OpenCL 1.2. Based on the
analysis of microbenchmarks in the previous sections, the perfor-
mance slowdowns when using OpenCL 2.0 and HSA are expected.
For BFS and kmeans the slowdowns are mainly attributed to slower
executions of the GPU kernel due to the effects highlighted earlier.
Although the OpenCL 1.2 version actually does copy data between
the CPU and GPU in this realistic test in contrast to the previous
section’s microbenchmarks, the copying is performed only once in
each direction. The kernels are executed multiple times, amortizing
the overhead of data copying.

For streamcluster, the overhead of HSA is higher than OpenCL
2.0. The reason is because the HSA version does not use local
memory on the GPU in contrast to the OpenCL 1.2 and OpenCL 2.0
versions. We were not able to allocate local memory in HSA, so we
used global memory instead. This caused the HSA version to have a
higher overhead than the OpenCL 2.0 version.

The performance speedup of HSA compared to OpenCL 1.2
for Gaussian is because the initialization of HSA takes less time
than the initialization of OpenCL (25 ms vs 300 ms). Since the
application runs for only about 2 seconds, the initialization overhead
is significant.

Summary: Performance overheads shown with the microbench-
marks that stress the memory system do not necessarily apply to
real applications that perform substantially more computation. Pro-
grammability does not always come at a higher cost. Exploring
the overheads of programmability in applications with concurrent
access to data by the CPU and the GPU, such as those introduced in
recent work [4, 6, 11, 12, 16], would further elucidate this trade-off.
We defer this analysis for future work.

7. Related Work
Prior to our work, Hestness, Keckler and Wood [9] analyzed the
CPU and GPU memory system behavior on a simulator. Their analy-
sis focused on how the memory behaviour of an application changes
when it runs on the CPU vs on the GPU; they find significant differ-
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Figure 13. Latency of OpenCL 1.2, OpenCL 2.0, HSA kernel execution time. Array size = 64 MB and each array entry is either not
padded, padded to 32 Bytes, or padded to 64 Bytes (cache line size). (a) Kernel: memory[idx]++;. (b) Kernel: if(idx %2 == 0 )
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Figure 15. Runtime of Rodinia applications normalized to OpenCL
1.2

ences and attribute them to the differences in memory hardware. Our
work studies the cost of memory accesses in different programming
frameworks and analyses how programmability enhancements may
affect their overhead.

The same authors as in [9] also analyzed the impact of hardware
cache coherency on applications [10]. In contrast to our work, they
used a simulated system. Similarly to our experience, they found
that many existing GPGPU applications do not benefit much from
the physically unified memory, because they were written at the
time when this convenience was not available on GPU systems. To
accommodate their study, they modify a number of applications to
take advantage of the unified physical memory and cache coherence,

and show that adapting the software is key to capturing the benefits
of the hardware.

Implementing a full-blown CPU-like cache coherency on inte-
grated CPU-GPU systems has practical limitations, so prior work
looked at alternative software/hardware methods to implement par-
tial coherency [3]. The authors relied on a simulator to evaluate
their scheme which eliminates the need for CPU-GPU hardware co-
herency. Our evaluation on a real system showed that software-only
designs may incur large overheads.

Similar to our performance analysis of the AMD platform, the
authors in [13] characterize the benefits of the new features of
OpenCL 2.0 and HSA. Our work focuses mainly on the cost of
memory accesses under the different allocation methods on multiple
frameworks.

The authors in [16] present a benchmark suite that explores the
collaborative execution patterns on the CPU and GPU using an
AMD APU. In our work, we evaluate the performance of existing
platforms from a memory management scope. We briefly touch
on concurrency workloads but mainly focus on memory access
performance.

8. Conclusions and Future Work
We presented an analysis of memory management methods on real
integrated CPU-GPU systems. We analyzed the cost of programma-
bility enhancements, such as the unified virtual address space and
data consistency. Future platforms promise hardware support for
these features, which will enable comparing the cost of these en-
hancements in software and in hardware. We see two potential
avenues for future work. (1): Hardware improvements to decrease
the overhead of virtual address translation and cache coherency.
(2): Improvements to software frameworks that discretely use these
expensive features. However, to enable meaningful analysis in these
future studies, there is a need for applications that truly rely on and
exercise the features such as the unified virtual address space and
cache coherency.
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