
The Linux Scheduler: a Decade of Wasted Cores

Jean-Pierre Lozi
Université Nice Sophia-Antipolis

jplozi@unice.fr

Baptiste Lepers
EPFL

baptiste.lepers@epfl.ch

Justin Funston
University of British Columbia

jfunston@ece.ubc.ca

Fabien Gaud
Coho Data

me@fabiengaud.net

Vivien Quéma
Grenoble INP / ENSIMAG

vivien.quema@imag.fr

Alexandra Fedorova
University of British Columbia

sasha@ece.ubc.ca

Abstract
As a central part of resource management, the OS thread
scheduler must maintain the following, simple, invariant:
make sure that ready threads are scheduled on available
cores. As simple as it may seem, we found that this invari-
ant is often broken in Linux. Cores may stay idle for sec-
onds while ready threads are waiting in runqueues. In our
experiments, these performance bugs caused many-fold per-
formance degradation for synchronization-heavy scientific
applications, 13% higher latency for kernel make, and a 14-
23% decrease in TPC-H throughput for a widely used com-
mercial database. The main contribution of this work is the
discovery and analysis of these bugs and providing the fixes.
Conventional testing techniques and debugging tools are in-
effective at confirming or understanding this kind of bugs,
because their symptoms are often evasive. To drive our in-
vestigation, we built new tools that check for violation of the
invariant online and visualize scheduling activity. They are
simple, easily portable across kernel versions, and run with a
negligible overhead. We believe that making these tools part
of the kernel developers’ tool belt can help keep this type of
bug at bay.

1. Introduction
“And you have to realize that there are not very many
things that have aged as well as the scheduler. Which is
just another proof that scheduling is easy.”

Linus Torvalds, 2001 [43]

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901326

Classical scheduling problems revolve around setting the
length of the scheduling quantum to provide interactive re-
sponsiveness while minimizing the context switch overhead,
simultaneously catering to batch and interactive workloads
in a single system, and efficiently managing scheduler run
queues. By and large, by the year 2000, operating systems
designers considered scheduling to be a solved problem; the
Linus Torvalds quote is an accurate reflection of the general
opinion at that time.

Year 2004 brought an end to Dennard scaling, ushered in
the multicore era and made energy efficiency a top concern
in the design of computer systems. These events once again
made schedulers interesting, but at the same time increas-
ingly more complicated and often broken.

Our recent experience with the Linux scheduler revealed
that the pressure to work around the challenging properties
of modern hardware, such as non-uniform memory access
latencies (NUMA), high costs of cache coherency and syn-
chronization, and diverging CPU and memory latencies, re-
sulted in a scheduler with an incredibly complex implemen-
tation. As a result, the very basic function of the scheduler,
which is to make sure that runnable threads use idle cores,
fell through the cracks.

The main contribution of this work is the discovery and
study of four performance bugs in the Linux scheduler.
These bugs cause the scheduler to leave cores idle while
runnable threads are waiting for their turn to run.1 Resulting
performance degradations are in the range 13-24% for typi-
cal Linux workloads, and reach 138× in some corner cases.
Energy waste is proportional. Since these bugs undermine
a crucial kernel sub-system, cause substantial, sometimes
massive, degradation of performance, and evade conven-
tional testing and debugging techniques, understanding their
nature and provenance is important.

1 This occurs even though the scheduler is not explicitly configured to save
power by purposefully leaving cores unused so they can be brought into a
low-power state.

These bugs have different root causes, but a common
symptom. The scheduler unintentionally and for a long
time leaves cores idle while there are runnable threads
waiting in runqueues. Short-term occurrences of this condi-
tion are acceptable: the system may temporarily enter such
a state when, for instance, a thread exits or blocks or when
a thread is created or becomes unblocked. Long-term occur-
rences are not an expected behavior. The Linux scheduler is
work-conserving, meaning that it should never leave cores
idle if there is work to do. Long-term presence of this symp-
tom is, therefore, unintentional: it is due to bugs and it hurts
performance.

We provide fixes to these bugs, and observe substan-
tial performance improvements. Synchronization-intensive
applications experienced many-fold speedups; one barrier-
heavy scientific application ended up running 138 times
faster.2 Kernel make and a TPC-H workload on a widely
used commercial DBMS improved performance by 13% and
14% respectively. The TPC-H query most affected by the
bug sped up by 23%.

Detecting these bugs is difficult. They do not cause the
system to crash or hang, but eat away at performance, often
in ways that are difficult to notice with standard performance
monitoring tools. With the TPC-H workload, for example,
the symptom occurred many times throughout the execution,
but each time it lasted only a few hundreds of milliseconds
– too short to detect with tools like htop, sar or perf. Yet,
collectively these occurrences did enough damage to slow
down the most affected query by 23%. Even in cases where
the symptom was present for a much longer duration, the
root cause was difficult to discover, because it was a result
of many asynchronous events in the scheduler.

We initially suspected scheduler bugs when we observed
unexplained performance in the TPC-H database workload,
which we were evaluating for a different project. Conven-
tional tools were unhelpful to us in either confirming the
bugs or understanding their root causes. To that end, we de-
signed two new tools. The first tool, which we call a sanity
checker, periodically checks for the violation of the afore-
mentioned invariant, catches the bugs on a live system and
collects a trace with relevant information for offline analy-
sis. The second tool visualizes traces of scheduling activity
to expedite debugging. These tools were easy to port be-
tween kernel versions (from Linux 3.17 through 4.3), ran
with negligible overhead and consistently detected invariant
violations. Keeping them in the standard tool belt can help
reduce future occurrence of this class of bugs.

The rest of the paper is organized as follows. Section 2
describes the architecture of the Linux scheduler. Section 3
introduces the bugs we discovered, analyzes their root causes
and reports their effect on performance. Section 4 presents
the tools. In Section 5 we reflect on the lessons learned as

2 As we explain later in the paper, scheduling shortcomings exacerbated
lock contention.

a result of this study and identify open research problems.
Section 6 discusses related work and Section 7 summarizes
our findings.

2. The Linux Scheduler
We first describe how Linux’s Completely Fair Scheduling
(CFS) algorithm works on a single-core single-user system
(Section 2.1). From this perspective, the algorithm is quite
simple. Then, in (Section 2.2) we explain how limitations of
modern multicore systems force developers to work-around
potential performance bottlenecks, which results in a sub-
stantially more complex and bug-prone implementation.

2.1 On a single-CPU system, CFS is very simple
Linux’s CFS is an implementation of the weighted fair
queueing (WFQ) scheduling algorithm, wherein the avail-
able CPU cycles are divided among threads in proportion
to their weights. To support this abstraction, CFS (like most
other CPU schedulers) time-slices the CPU among the run-
ning threads. The key decisions made in the scheduler are:
how to determine a thread’s timeslice? and how to pick the
next thread to run?

The scheduler defines a fixed time interval during which
each thread in the system must run at least once. The interval
is divided among threads proportionally to their weights.
The resulting interval (after division) is what we call the
timeslice. A thread’s weight is essentially its priority, or
niceness in UNIX parlance. Threads with lower niceness
have higher weights and vice versa.

When a thread runs, it accumulates vruntime (runtime of
the thread divided by its weight). Once a thread’s vruntime
exceeds its assigned timeslice, the thread is pre-empted from
the CPU if there are other runnable threads available. A
thread might also get pre-empted if another thread with a
smaller vruntime is awoken.

Threads are organized in a runqueue, implemented as a
red-black tree, in which the threads are sorted in the increas-
ing order of their vruntime. When a CPU looks for a new
thread to run it picks the leftmost node in the red-black tree,
which contains the thread with the smallest vruntime.

2.2 On multi-core systems, CFS becomes quite
complex

In multicore environments the implementation of the sched-
uler becomes substantially more complex. Scalability con-
cerns dictate using per-core runqueues. The motivation for
per-core runqueues is that upon a context switch the core
would access only its local runqueue, when it looks for a
thread to run. Context switches are on a critical path, so they
must be fast. Accessing only a core-local queue prevents the
scheduler from making potentially expensive synchronized
accesses, which would be required if it accessed a globally
shared runqueue.

However, in order for the scheduling algorithm to still
work correctly and efficiently in the presence of per-core

runqueues, the runqueues must be kept balanced. Consider a
dual-core system with two runqueues that are not balanced.
Suppose that one queue has one low-priority thread and an-
other has ten high-priority threads. If each core looked for
work only in its local runqueue, then high-priority threads
would get a lot less CPU time than the low-priority thread,
which is not what we want. We could have each core check
not only its runqueue but also the queues of other cores,
but this would defeat the purpose of per-core runqueues.
Therefore, what Linux and most other schedulers do is pe-
riodically run a load-balancing algorithm that will keep the
queues roughly balanced.

“I suspect that making the scheduler use per-CPU
queues together with some inter-CPU load balancing
logic is probably trivial . Patches already exist, and I
don’t feel that people can screw up the few hundred lines
too badly.”

Linus Torvalds, 2001 [43]

Conceptually, load balancing is simple. In 2001, CPUs
were mostly single-core and commodity server systems typ-
ically had only a handful of processors. It was, therefore,
difficult to foresee that on modern multicore systems load
balancing would become challenging. Load balancing is an
expensive procedure on today’s systems, both computation-
wise, because it requires iterating over dozens of runqueues,
and communication-wise, because it involves modifying re-
motely cached data structures, causing extremely expensive
cache misses and synchronization. As a result, the scheduler
goes to great lengths to avoid executing the load-balancing
procedure often. At the same time, not executing it often
enough may leave runqueues unbalanced. When that hap-
pens, cores might become idle when there is work to do,
which hurts performance. So in addition to periodic load-
balancing, the scheduler also invokes “emergency” load bal-
ancing when a core becomes idle, and implements some
load-balancing logic upon placement of newly created or
newly awoken threads. These mechanisms should, in theory,
ensure that the cores are kept busy if there is work to do.

We next describe how load balancing works, first explain-
ing the algorithm and then the optimizations that the sched-
uler employs to maintain low overhead and to save power.
Later we show that some of these optimizations make the
code more complex and cause bugs.

2.2.1 The load balancing algorithm
Crucial for understanding the load balancing algorithm is the
metric that the CFS scheduler uses to track load. We begin by
explaining the metric and then describe the actual algorithm.

The load tracking metric. A strawman load-balancing
algorithm would simply ensure that each runqueue has
roughly the same number of threads. However, this is not
necessarily what we want. Consider a scenario with two run-

queues, where one queue has some number of high-priority
threads and another queue has the same number of low-
priority threads. Then high-priority threads would get the
same amount of CPU time as low-priority threads. That is
not what we want. One idea, then, is to balance the queues
based on threads’ weights, not their number.

Unfortunately, balancing the load based solely on thread
weights is not sufficient either. Consider a scenario with
ten threads in two runqueues: one thread is of high priority
and nine threads are of low priority. Let us assume that the
weight of the high-priority thread is nine times higher than
those of the low-priority threads. With the load balanced
according to threads’ weights, one runqueue would contain
the high-priority thread, while the other would contain the
nine low-priority threads. The high-priority thread would get
nine times more CPU than the low-priority threads, which
appears to be what we want. However, suppose that the high-
priority thread often sleeps for short periods of time, so the
first core often goes idle. This core would have to frequently
steal work from the other core’s runqueue to keep itself
busy. However, we do not want work stealing to become the
common case, because this defeats the purpose of per-core
runqueues. What we really want is to balance the runqueues
in a smarter way, accounting for the fact that the high priority
thread does not need a whole core.

To achieve this goal, CFS balances runqueues not just
based on weights, but based on a metric called load, which is
the combination of the thread’s weight and its average CPU
utilization. If a thread does not use much of a CPU, its load
will be decreased accordingly.

Additionally, the load-tracking metric accounts for vary-
ing levels of multithreading in different processes. Consider
a scenario where we have one process with lots of threads,
and another process with few threads. Then the threads of the
first process combined will receive a lot more CPU time than
the threads of the second process. As a result, the first pro-
cess would use most of the CPU cycles and starve the other
process. This would be unfair. So as of version 2.6.38 Linux
added a group scheduling feature to bring fairness between
groups of threads (cgroup feature). When a thread belongs
to a cgroup, its load is further divided by the total number
of threads in its cgroup. This feature was later extended to
automatically assign processes that belong to different ttys
to different cgroups (autogroup feature).

The load-balancing algorithm. A basic load balancing
algorithm would compare the load of all cores and then
transfer tasks from the most loaded core to the least loaded
core. Unfortunately this would result in threads being mi-
grated across the machine without considering cache local-
ity or NUMA. Instead, the load balancer uses a hierarchical
strategy.

The cores are logically organized in a hierarchy, at the
bottom of which is a single core. How the cores are grouped
in the next levels of the hierarchy depends on how they

Figure 1: A machine with 32 cores, four nodes (eight cores
per node) and SMT-level sharing among pairs of cores. The
four grey areas represent the scheduling domains relative to
the first core of the machine. Note that at the second level
of the hierarchy we have a group of three nodes. That is
because these three nodes are reachable from the first core in
one hop. At the 4th level, we have all nodes of the machines
because all nodes are reachable in 2 hops. Figure 4 shows
the connectivity between the nodes on our system.

share the machine’s physical resources. In the example pro-
vided here we describe the hierarchy on our experimental
machine (see Table 5), where pairs of cores share functional
units (e.g., FPU), and groups of eight cores share a last-level
cache (LLC). A group of eight cores sharing an LLC form a
NUMA node. Different NUMA nodes have varying connec-
tivity as explained below and as shown in Figure 4. Conse-
quently, on our target system, at the second level of the hier-
archy we have pairs of cores, and at the next level we have
groups of eight cores, each sharing an LLC (e.g., a NUMA
node). NUMA nodes are further grouped according to their
level of connectivity [23]. Nodes that are one hop apart from
each other will be at the next level, and so on. An example
of such a hierarchy is shown in Figure 1. Each level of the
hierarchy is called a scheduling domain.

The load balancing algorithm is summarized in Algo-
rithm 1. Load balancing is run for each scheduling domain,
starting from the bottom to the top. At each level, one core
of each domain is responsible for balancing the load. This
core is either the first idle core of the scheduling domain
if the domain has idle cores whose free CPU cycles can be
used for load balancing, or the first core of the scheduling
domain otherwise (Lines 2–9). Following this, the average
load is computed for each scheduling group of the schedul-
ing domain (Line 10), and the busiest group is picked, based
on heuristics that favor overloaded and imbalanced groups
(Line 10). If the busiest group’s load is lower than the lo-
cal group’s load, the load is considered balanced at this level
(Line 16). Otherwise, the load is balanced between the lo-
cal CPU and the busiest CPU of the group, with a tweak
to ensure that load balancing works even in the presence of
tasksets (Lines 18–23).

Assume, for the time being, that this algorithm is run by
all cores in every load-balancing period; in the next section
we will explain that, as an optimization, not all cores actually
do. A core executing the algorithm begins at the second-

Algorithm 1 Simplified load balancing algorithm.

{Function running on each cpu cur cpu:}
1: for all sd in sched domains of cur cpu do
2: if sd has idle cores then
3: first cpu = 1st idle CPU of sd
4: else
5: first cpu = 1st CPU of sd
6: end if
7: if cur cpu 6= first cpu then
8: continue
9: end if

10: for all sched group sg in sd do
11: sg.load = average loads of CPUs in sg
12: end for
13: busiest = overloaded sg with the highest load

(or, if nonexistent) imbalanced sg with highest load
(or, if nonexistent) sg with highest load

14: local = sg containing cur cpu
15: if busiest.load ≤ local.load then
16: continue
17: end if

18: busiest cpu = pick busiest cpu of sg
19: try to balance load between busiest cpu and cur cpu
20: if load cannot be balanced due to tasksets then
21: exclude busiest cpu, goto line 18
22: end if

23: end for

to-lowest level of the hierarchy and balances the load one
level below. For example, on the system in Figure 1 the core
will begin at the pair-of-cores level and will balance the load
between the two individual cores contained therein. Then, it
will proceed to the level of the NUMA node, balancing the
load one level below (among pairs of cores, in this case),
but not between individual cores of the NUMA node. In a
scheduling domain, the sets of cores among which the load
balancing is performed are called scheduling groups. At the
NUMA node domain, there will be four scheduling groups,
each corresponding to a pair of cores. The core will find the
busiest scheduling group other than its own and will steal
tasks from the busiest core in that group.

2.2.2 Optimizations
The scheduler prevents duplicating work by running the
load-balancing algorithm only on the designated core for the
given scheduling domain. When each active core receives a
periodic clock tick and begins running the load-balancing
algorithm, it checks whether it is the lowest-numbered core
in the domain (if all cores are busy), or if it is the lowest-
numbered idle core (if any core is idle). This is shown in Line
2 of the Algorithm. If this condition holds, the core deems
itself as designated and continues to run the algorithm.

Power-related optimizations may further reduce the fre-
quency of load balancing on an idle core. Originally, idle
cores were always awoken on every clock tick; at this point
they would run the load-balancing algorithm. However,
since version 2.6.21 Linux has the option (now enabled by
default) to avoid periodically waking up sleeping cores: they
enter a tickless idle state, in which they can reduce their en-
ergy use. The only way for a core in this state to get work
when another core is overloaded is to be awoken by another
core. To this end, on each scheduling tick, if a core deems it-
self “overloaded”, it checks whether there have been tickless
idle cores in the system for some time, and if so, it wakes
up the first tickless idle core and assigns it the role of NOHZ
balancer. The NOHZ balancer core is responsible, on each
tick, to run the periodic load balancing routine for itself and
on behalf of all tickless idle cores.

On top of periodic load balancing, the scheduler also
balances load when waking up threads. When a thread wakes
up, after sleeping or waiting for a resource (e.g., locks, I/O),
the scheduler tries to place it on the idlest core. Special rules
apply when the thread is awoken by another thread (waker
thread). In that case the scheduler will favour cores sharing
a cache with the waker thread to improve cache reuse.

3. Bugs
“Nobody actually creates perfect code the first time
around, except me. But there’s only one of me.”

Linus Torvalds, 2007 [44]

With so many rules about when the load balancing does
or does not occur, it becomes difficult to reason about how
long an idle core would remain idle if there is work to do and
how long a task might stay in a runqueue waiting for its turn
to run when there are idle cores in the system. Since there are
very few developers who “create perfect code the first time
around”, this complexity leads to bugs. Understanding the
bugs is necessary to appreciate why they evade conventional
testing and debugging tools. Therefore, we describe the bugs
first and delay the presentation of the tools that we used
to confirm and understand them until Section 4. Table 4
summarizes the bugs described in this section.

3.1 The Group Imbalance bug
The bug. We encountered this bug on a multi-user machine
which we used to perform kernel compilation and data anal-
ysis using the R machine learning package. We suspected
that this system, a 64-core, eight-node NUMA server, did
not use all available cores for highly-threaded computations,
instead crowding all threads on a few nodes. We illustrate
this bug with the output from our visual tool, shown in Fig-
ures 2a and 2b.

In the time period shown in the figure, the machine
was executing a compilation of the kernel (make with
64 threads), and running two R processes (each with one

thread). The make and the two R processes were launched
from 3 different ssh connections (i.e., 3 different ttys).
Figure 2a is a heatmap colour-coding the number of threads
in each core’s runqueue over time. The warmer the colour,
the more threads a core hosts; white corresponds to an idle
core. The chart shows that there are two nodes whose cores
run either only one thread or no threads at all, while the rest
of the nodes are overloaded, with many of the cores having
two threads in their runqueue.

After investigation, we found that the scheduler is not
balancing load because of (i) the complexity of the load-
tracking metric, and (ii) the hierarchical design. Let us first
focus on the load. Remember that a threads’ load is a com-
bination of its weight and how much CPU it needs. With
autogroups, the thread’s load is also divided by the num-
ber of threads in the parent autogroup. In our case, a thread
in the 64-thread make process has a load roughly 64 times
smaller than a thread in a single-threaded R process.

Discrepancies between threads’ loads are illustrated in
Figure 2b, which shows the combined load of threads in each
core’s runqueue: a darker colour corresponds to a higher
load. Nodes 0 and 4, the ones running the R processes, each
have one core with a very high load. These are the cores that
run the R threads. The Linux load balancer steals work from
other runqueues based on load; obviously the underloaded
cores on Nodes 0 and 4 should not steal from the overloaded
core on their own node, because that core runs only a single
thread. However, they must be able to steal from the more
loaded cores on other nodes. Why is this not the case?

Remember that to limit algorithmic complexity, the load
balancing algorithm uses a hierarchical design. When a core
attempts to steal work from another node, or, in other words,
from another scheduling group, it does not examine the load
of every core in that group, it only looks at the group’s
average load (line 11 of Algorithm 1). If the average load
of the victim scheduling group is greater than that of its
own, it will attempt to steal from that group; otherwise it
will not. This is the exact reason why in our situation the
underloaded cores fail to steal from the overloaded cores
on other nodes. They observe that the average load of the
victim node’s scheduling group is not any greater than their
own. The core trying to steal work runs on the same node
as the high-load R thread; that thread skews up the average
load for that node and conceals the fact that some cores are
actually idle. At the same time, cores on the victim node,
with roughly the same average load, have lots of waiting
threads.

A valid question to ask is whether work stealing should
occur in this case, since theoretically we want threads with a
higher load to get more CPU time than threads with a lower
load. The answer to that question is “yes”: the Linux CFS
scheduler is work-conserving in nature, so threads may get
more than their fair share of CPU cycles if there are idle
cores in the system; in other words, idle cores should be

(a) #threads in each core’s runqueue over time (b) Load of each core’s runqueue over time (c) Same as (a), with fix applied

Figure 2: The Group Imbalance bug. Y-axis shows CPU cores. Nodes are numbered 0-7. Each node contains eight cores.

always given to waiting threads. As we have seen in the
scenario illustrated here, this is not necessarily the case.

The fix. To fix the bug, we changed the part of the algo-
rithm that compares the load of scheduling groups. Instead
of comparing the average loads, we compare the minimum
loads (lines 11 and 15 of Algorithm 1). The minimum load
is the load of the least loaded core in that group. If the min-
imum load of one scheduling group is lower than the mini-
mum load of another scheduling group, it means that the first
scheduling group has a core that is less loaded than all cores
in the other group, and thus a core in the first group must
steal from the second group. This algorithm ensures that no
core of the second group will remain overloaded while a core
of the first group has a smaller load, thus balancing the load
across cores. Note that this fix works, because load is also
balanced inside the groups (because of load balancing calls
at lower levels of the hierarchy). Just as the original algo-
rithm, we use the special cases of group imbalance (line 13
of Algorithm 1) to deal with corner cases due to tasksets.
These modifications add no algorithmic complexity to the
scheduler as computing the minimum load of a scheduling
group and its average have the same cost. In our experience,
this fix does not result in an increased number of migrations
between scheduling groups (ping-pong effect).

Impact on performance. Figure 2c is a trace of the ex-
ecution of that workload with the fix applied (showing a
heatmap of runqueue sizes, in the same fashion as Figure 2a).
After we fixed the bug, the completion time of the make

job, in the make/R workload described earlier in this section,
decreased by 13%. The completion time of the two R pro-
cesses did not change. Performance impact could be much
higher in other circumstances. For example, in a workload
running lu from the NAS benchmark3 with 60 threads, and
four single threaded R processes, lu ran 13× faster after fix-
ing the Group Imbalance bug. lu experienced a super-linear
speedup, because the bug exacerbated lock contention when
multiple lu threads ran on the same core.

3 The NAS benchmark comprises a set of small programs designed to help
evaluate the performance of supercomputers [32].

3.2 The Scheduling Group Construction bug
The bug. Linux defines a command, called taskset, that
enables pinning applications to run on a subset of the avail-
able cores. The bug we describe in this section occurs when
an application is pinned on nodes that are two hops apart.
For example, in Figure 4, which demonstrates the topology
of our NUMA machine, Nodes 1 and 2 are two hops apart.
The bug will prevent the load balancing algorithm from mi-
grating threads between these two nodes. Since threads are
created on the same node as their parent thread, the net ef-
fect is that the pinned application runs only on one node, no
matter how many threads it has.

The bug is due to the way scheduling groups are con-
structed, which is not adapted to modern NUMA machines
such as the one we use in our experiments. In brief, the
groups are constructed from the perspective of a specific core
(Core 0), whereas they should be constructed from the per-
spective of the core responsible for load balancing on each
node. We explain with an example.

Node 0

Node 6

Node 5

Node 3

Node 4

Node 2

Node 1

Node 7

Figure 4: Topology of our 8-node AMD Bulldozer machine

In our machine, shown in Figure 4, the first scheduling
group contains the cores of Node 0, plus the cores of all the
nodes that are one hop apart from Node 0, namely Nodes 1,
2, 4 and 6. The second scheduling group contains the cores
of the first node not included into the first group (Node 3),
plus cores of all nodes that are one hop apart from Node 3:
Nodes 1, 2, 4, 5, 7. The first two scheduling groups are thus:

{0, 1, 2, 4, 6}, {1, 2, 3, 4, 5, 7}

Note that Nodes 1 and 2 are included in both scheduling
groups. Further note that these two nodes are actually two
hops apart from one another. If the scheduling groups were
constructed from the perspective of Node 1, Node 1 and 2

Figure 3: Several instances of the Overload-on-Wakeup bug.

would not be together in all groups. Let us see what this
implies for load balancing.

Suppose that an application is pinned on Nodes 1 and
2 and that all of its threads are being created on Node 1
(Linux spawns threads on the same core as their parent
thread; when an application spawns multiple threads during
its initialization phase, they are likely to be created on the
same core – so this is what typically happens). Eventually
we would like the load to be balanced between Nodes 1 and
2. However, when a core on Node 2 looks for work to steal,
it will compare the load between the two scheduling groups
shown earlier. Since each scheduling group contains both
Nodes 1 and 2, the average loads will be the same, so Node
2 will not steal any work!

The bug originates from an attempt to improve the per-
formance of Linux on large NUMA systems. Before the in-
troduction of the bug, Linux would balance the load inside
NUMA nodes and then across all NUMA nodes. New lev-
els of hierarchy (nodes 1 hop apart, nodes 2 hops apart, etc.)
were introduced to increase the likelihood for threads to re-
main close to their original NUMA node.

The fix. We modified the construction of scheduling groups
so that each core uses scheduling groups constructed from
its perspective. After the fix, when cores of Node 1 and 2 try
to steal tasks at the level of the machine, Nodes 1 and 2 are
no longer included in all scheduling groups. The cores are
thus able to detect an imbalance and to steal work.

Impact on performance. Table 1 presents the perfor-
mance difference in NAS applications with and without
the Scheduling Group Construction bug. Applications are
launched on two nodes with as many threads as there are
cores. The maximum slowdown of 27× is experienced by
lu. The slowdown is a lot more than the expected 2× be-
cause of locking effects. NAS applications use spinlocks and
spin-barriers; when all threads execute on the same node
due to the taskset bug, the thread that executes the critical
section may be descheduled in favour of a thread that will
waste its timeslice by spinning. lu is an extreme example of

Application Time w/
bug (sec)

Time w/o
bug (sec)

Speedup
factor (×)

bt 99 56 1.75
cg 42 15 2.73
ep 73 36 2
ft 96 50 1.92
is 271 202 1.33
lu 1040 38 27
mg 49 24 2.03
sp 31 14 2.23
ua 206 56 3.63

Table 1: Execution time of NAS applications with
the Scheduling Group Construction bug and without
the bug. All applications are launched using numactl

--cpunodebind=1,2 <app>.

this: it uses a pipeline algorithm to parallelize work; threads
wait for the data processed by other threads. When multiple
threads are forced to execute on the same core, this results
in large performance losses [22].

3.3 The Overload-on-Wakeup bug
The bug. The gist of this bug is that a thread that was
asleep may wake up on an overloaded core while other
cores in the system are idle. The bug was introduced by an
optimization in the wakeup code (select task rq fair

function). When a thread goes to sleep on Node X and
the thread that wakes it up later is running on that same
node, the scheduler only considers the cores of Node X for
scheduling the awakened thread. If all cores of Node X are
busy, the thread will wake up on an already busy core and
miss opportunities to use idle cores on other nodes. This
can lead to a significant under-utilization of the machine,
especially on workloads where threads frequently wait.

The rationale behind this optimization is to maximize
cache reuse. Essentially, the scheduler attempts to place the
woken up thread physically close to the waker thread, e.g., so

both run on cores sharing a last-level cache, in consideration
of producer-consumer workloads where the woken up thread
will consume the data produced by the waker thread. This
seems like a reasonable idea, but for some workloads waiting
in the runqueue for the sake of better cache reuse does not
pay off.

This bug was triggered by a widely used commercial
database configured with 64 worker threads (1 thread per
core) and executing the TPC-H workload. This workload,
in combination with transient short-lived threads from other
applications, triggers both the Group Imbalance bug4 and
the Overload-on-Wakeup bug. Since we already described
the Group Imbalance bug in Section 3.1, we disabled auto-

groups in this experiment in order to better illustrate the
Overload-on-Wakeup bug.

Figure 3 illustrates several instances of the wakeup bug.
During the first time period (noted ¶), one core is idle while
a thread that ideally should be scheduled on that core keeps
waking up on other cores, which are busy. During the second
time period (noted ·), there is a triple instance of the bug:
three cores are idle for a long time, while three extra threads
that should be scheduled on those cores keep waking up on
other busy cores.

The Overload-on-Wakeup bug is typically caused when a
transient thread is scheduled on a core that runs a database
thread. This occurs when the kernel launches tasks that
last less than a millisecond to perform background opera-
tions, such as logging or IRQ handling. When this happens,
the load balancer observes a heavier load on the node that
runs the transient thread (Node A), and migrates one of the
threads to another node (Node B). This is not an issue if
the transient thread is the one being migrated, but if it is
the database thread, then the Overload-on-Wakeup bug will
kick in. Node B now runs an extra database thread, and the
threads, which often sleep and wake up, keep waking up on
Node B, even if there are no idle cores on that node. This
occurs, because the wakeup code only considers cores from
the local node for the sake of better cache reuse.

We now understand how a thread might wake up on a
loaded core despite the presence of idle cores in the system.
Note in Figure 3 that the system eventually recovers from
the load imbalance: the load balancing algorithm finally
migrates threads from overloaded cores to idle cores. The
question is, why does it take several milliseconds (or even
seconds) to recover?

Note that there are two kinds of idle cores in the system:
short-term and long-term. Short-term idle cores go idle for
short periods, because the database thread running on that

4 The commercial database we are using relies on pools of worker threads:
a handful of container processes each provide several dozens of worker
threads. Each container process is launched in a different autogroup,
which means that worker threads also belong to different autogroups.
Since different container processes have a different number of worker
threads, different worker threads have different loads. The bug occurs for
the same reasons as explained in Section 3.1.

core intermittently sleeps due to a synchronization or I/O
event. Ideally we want the load balancing events to migrate
a thread from an overloaded core to a long-term idle core.
Migrating to a short-term idle core is of little help: a thread
that used to run on that core will shortly awaken, and as we
have seen, the scheduler may place it on another loaded core
in the same node due to the cache locality optimization.5 The
imbalance will thus persist.

Unfortunately, when the scheduler considers where to mi-
grate a thread from the overloaded core, it makes no dis-
tinction between short-term and long-term idle cores. All it
does is to check whether the core is idle at the moment when
the load-balancer is invoked. Remember from Section 2.2.1
that the load balancing algorithm is invoked at different lev-
els of the hierarchy by the “designated core”. If there are
multiple idle cores eligible to be “designated”, only one gets
chosen. If we are lucky, the long-term idle core gets chosen,
and the balance is restored. This is exactly what happens in
Figure 3, when the system eventually recovers from the im-
balance. However, as we observed, pure luck is not enough
to maintain optimal performance.

The fix. To fix this bug, we alter the code that is executed
when a thread wakes up. We wake up the thread on the local
core—i.e., the core where the thread was scheduled last—
if it is idle; otherwise, if there are idle cores in the system,
we wake up the thread on the core that has been idle for
the longest amount of time. If there are no idle cores, we
fall back to the original algorithm to find the core where the
thread will wake up.

Waking up the thread on a long-term idle core may have
implications for power consumption. Cores that have been
idle for a long time usually go into a low-power mode. Wak-
ing up a thread on that core will force the core to exit that
mode and run at full power. For that reason, we only en-
force the new wakeup strategy if the system’s power man-
agement policy does not allow cores to enter low-power
states at all. Furthermore, our fix only matters for workloads
where threads frequently go to sleep and awaken and where
the system is intermittently oversubscribed (there are more
threads than cores). In these situations, waking up threads on
long-term idle cores makes sense. In other situations, since
thread wakeups are rare, our fix does not significantly alter
the behavior of the scheduler.

Looking for a long-term idle core in the system adds no
overhead to the wakeup function: the kernel already main-
tains a list of all idle cores in the system, so picking the first
one (this is the one that has been idle the longest) takes con-
stant time.

Impact on performance. This bug has a major impact on
the database TPC-H workload, because the threads often
wait for each other, which means that any two threads that

5 Actually, thread migrations to short-term idle cores explain why the extra
threads are not always located on the same cores in Figure 3.

Bug fixes
TPC-H request

#18
Full TPC-H
benchmark

None 55.9s 542.9s
Group Imbalance 48.6s (−13.1%) 513.8s (−5.4%)

Overload-on-Wakeup 43.5s (−22.2%) 471.1s (−13.2%)
Both 43.3s (−22.6%) 465.6s (−14.2%)

Table 2: Impact of the bug fixes for the Overload-on-
Wakeup and Group Imbalance bugs on a popular commer-
cial database (values averaged over five runs).

are stuck on the same core end up slowing down all the re-
maining threads. This effect is visible in Figure 3: during ¶
and ·: many threads have gaps in their execution, i.e., they
all sleep at the same time, waiting for “straggler” threads that
are sharing a core. When all instances of the bug are resolved
(rightmost part of the graph), the gaps disappear.

Table 2 shows the performance impact of our bug fixes
for the Overload-on-Wakeup and Group Imbalance bugs on
the commercial database. We use two workloads: (1) the 18th

query of TPC-H, which is one of the queries that is most sen-
sitive to the bug, and (2) the full TPC-H benchmark. Our bug
fix for the Overload-on-Wakeup improves performance by
22.2% on the 18th query of TPC-H, and by 13.2% on the full
TPC-H workload. Using the Group Imbalance bug fix in ad-
dition to the Overload-on-Wakeup bug fix improves perfor-
mance by 22.6% on the 18th query of TPC-H, and by 14.2%
on the full TPC-H benchmark. The effect of the Group Im-
balance bug fix is small in these experiments, because the
Group Imbalance bug only occurs at the level of a pair of
cores (i.e., one core is idle while another one is overloaded),
and only during some parts of the experiments.

Figure 5: The Missing Scheduling Domains bug, from the
point of view of Core 0. The vertical blue lines represent the
cores considered by Core 0 for each (failed) load balancing
call. There is one load balancing call every 4ms. We can see
that Core 0 only considers its sibling core and cores on the
same node for load balancing, even though cores of Node 1
are overloaded.

3.4 The Missing Scheduling Domains bug
The bug. When a core is disabled and then re-enabled us-
ing the /proc interface, load balancing between any NUMA
nodes is no longer performed. The bug is due to an incor-
rect update of a global variable representing the number of
scheduling domains in the machine. When a core is disabled,
this variable is set to the number of domains inside a NUMA
node. As a consequence, the main scheduling loop (line 1 of
Algorithm 1) exits earlier than expected.

As a result, threads can only run on the node on which
they ran before the core had been disabled (even if the node
they run on is not the same as that on which the core was
disabled and then re-enabled). For processes created after
disabling the core, all threads will run on the same node as
their parent process. Since all processes are usually created
from the same “root” process (e.g., sshd daemon and the
ssh processes it spawns), this bug usually results in all newly
created threads executing on only one node of the machine,
regardless of the number of threads.

Figure 5 shows a visualization of this bug. An application
with 16 threads is launched on the machine. After the threads
have been created, all cores on Node 1 run two threads
(orange horizontal lines). The blue vertical lines originating
from Core 0 represent the cores considered by Core 0 when
it tries to steal work. Because the loop exits earlier than it
should, Core 0 only considers cores local to its node, and
not cores of Node 1.

The fix. We traced the root cause of the bug to the code that
regenerates the machine’s scheduling domains. Linux regen-
erates scheduling domains every time a core is disabled. Re-
generating the scheduling domains is a two-step process: the
kernel regenerates domains inside NUMA nodes, and then
across NUMA nodes. Unfortunately, the call to the function
generating domains across NUMA nodes was dropped by
Linux developers during code refactoring. We added it back,
and doing so fixed the bug.

Application Time w/
bug (sec)

Time w/o
bug (sec)

Speedup
factor (×)

bt 122 23 5.24
cg 134 5.4 24.90
ep 72 18 4.0
ft 110 14 7.69
is 283 53 5.36
lu 2196 16 137.59
mg 81 9 9.03
sp 109 12 9.06
ua 906 14 64.27

Table 3: Execution time (in seconds) of NAS applications
with the Missing Scheduling Domains bug and without it.

Impact on performance. Table 3 summarizes the impact
of the Missing Scheduling Domains bug on several NAS

applications, after disabling and reenabling one core in the
system. Applications are launched with 64 threads, the de-
fault configuration on our 64-core machine. The Missing
Scheduling Domains bug causes all threads of the applica-
tions to run on a single node instead of eight. In some cases,
the performance impact is greater than the 8× slowdown that
one would expect, given that the threads are getting 8× less
CPU time than they would without the bug (they run on one
node instead of eight). lu, for example, runs 138× faster!
Super-linear slowdowns occur in cases where threads fre-
quently synchronize using locks or barriers: if threads spin
on a lock held by a descheduled thread, they will waste even
more CPU time, causing cascading effects on the entire ap-
plication’s performance. Some applications do not scale ide-
ally to 64 cores and are thus a bit less impacted by the bug.
The minimum slowdown is 4×.

CPUs
8 × 8-core Opteron 6272 CPUs
(64 threads in total)

Clock frequency 2.1 GHz
Caches 768 KB L1 cache, 16 MB L2 cache,
(each CPU) 12 MB L3 cache
Memory 512 GB of 1.6 Ghz DDR-3
Interconnect HyperTransport 3.0 (see Figure 4)

Table 5: Hardware of our AMD Bulldozer machine.

3.5 Discussion
The first question to ask is whether these bugs could be
fixed with a new, cleaner scheduler design that is less error-
prone and easier to debug, but still maintains the features we
have today. Historically though, this does not seem like it
would be a long-term solution, in addition to the fact that the
new design would need to be implemented and tested from
scratch. The Linux scheduler has gone through a couple ma-
jor redesigns. The original scheduler had high algorithmic
complexity, which resulted in poor performance when highly
multithreaded workloads became common. In 2001, it was
replaced by a new scheduler with O(1) complexity and bet-
ter scalability on SMP systems. It was initially successful
but soon required modifications for new architectures like
NUMA and SMT. At the same time, users wanted better
support for desktop use cases such as interactive and audio
applications which required more changes to the scheduler.
Despite numerous modifications and proposed heuristics, the
O(1) scheduler was not able to meet expectations and was
replaced by CFS in 2007. Interestingly, CFS sacrifices O(1)
complexity for O(log n) but it was deemed worthwhile to
provide the desired features.

As the hardware and workloads became more complex,
CFS too succumbed to bugs. The addition of autogroups
coupled with the hierarchical load balancing introduced the
Group Imbalance bug. Asymmetry in new, increasingly
more complex NUMA systems triggered the Scheduling

Group Construction bug. “NUMA-ness” of modern sys-
tems was responsible for the Missing Scheduling Domains
bug. Cache-coherency overheads on modern multi-node ma-
chines motivated the cache locality optimization that caused
the Overload-on-Wakeup bug.

The takeaway is that new scheduler designs come and go.
However, a new design, even if clean and purportedly bug-
free initially, is not a long-term solution. Linux is a large
open-source system developed by dozens of contributors. In
this environment, we will inevitably see new features and
“hacks” retrofitted into the source base to address evolving
hardware and applications.

The recently-released Linux 4.3 kernel features a new
implementation of the load metric. This change is reported
to be “done in a way that significantly reduces complexity
of the code” [5]. Simplifying the load metric could get rid
of the Group Imbalance bug, which is directly related to it.
However, we confirmed, using our tools, that the bug is still
present.6

Kernel developers rely on mutual code review and testing
to prevent the introduction of bugs. This could potentially be
effective for bugs like the Missing Scheduling Domains and
Scheduling Group Construction that are easier to spot in the
code (of course, it still was not effective in these cases), but
it is unlikely to be reliable for the more arcane types of bugs.

Catching these bugs with testing or conventional perfor-
mance monitoring tools is tricky. They do not cause the
system to crash or to run out of memory, they silently eat
away at performance. As we have seen with the Group Im-
balance and the Overload-on-Wakeup bugs, they introduce
short-term idle periods that “move around” between dif-
ferent cores. These microscopic idle periods cannot be no-
ticed with performance monitoring tools like htop, sar or
perf. Standard performance regression testing is also un-
likely to catch these bugs, as they occur in very specific situa-
tions (e.g., multiple applications with different thread counts
launched from distinct ttys). In practice, performance test-
ing on Linux is done with only one application running at
a time on a dedicated machine – this is the standard way of
limiting factors that could explain performance differences.

In summary, conventional testing techniques and debug-
ging tools were not helpful to us in either confirming the
bugs, after we initially suspected them, or understanding
their root causes. Our experience motivated us to build new
tools, using which we could productively confirm the bugs
and understand why they occur. The following section de-
scribes the tools.

4. Tools
4.1 Online Sanity Checker
Sanity checker is a term we use to describe a mechanism for
periodically checking an invariant that must be maintained

6 All our fixes will be submitted to the kernel developers shortly.

Name Description Kernel
version

Impacted
applications

Maximum measured
performance impact

Group Imbalance
When launching multiple applications with
different thread counts, some CPUs are idle
while other CPUs are overloaded.

2.6.38+ All 13×

Scheduling Group
Construction

No load balancing between nodes that are 2-
hops apart 3.9+ All 27×

Overload-on-
Wakeup

Threads wake up on overloaded cores while
some other cores are idle. 2.6.32+ Applications

that sleep or wait 22%

Missing Scheduling
Domains

The load is not balanced between NUMA
nodes 3.19+ All 138×

Table 4: Bugs found in the scheduler using our tools.

by the software. The invariant verified by our sanity checker
is shown in Algorithm 2. It verifies that no core is idle while
another core’s runqueue has waiting threads. We strived to
keep the code simple, perhaps at the expense of a higher
algorithmic complexity, to minimize the chance of bugs in
the sanity checker itself.

Algorithm 2 “No core remains idle while another core is
overloaded”

1: for all CPU1 in CPUs do
2: if CPU1.nr running ≥ 1 {CPU1 is not idle} then
3: continue
4: end if
5: for all CPU2 in CPUs do
6: if CPU2.nr running ≥ 2 and can steal(CPU1,

CPU2) then
7: Start monitoring thread operations
8: end if
9: end for

10: end for

Our sanity checker is different from an assertion or a
watchdog in that, in our case, it must be specifically tailored
to check for conditions that are acceptable for a short pe-
riod of time, but unacceptable if they persist. While an as-
sert would fire as soon as the desired invariant is violated,
a sanity checker must minimize the probability of flagging
short-term transient violations, and catch long-term viola-
tions with a high probability.

To meet this requirement we implement the sanity checker
as follows. The invariant check is invoked periodically at an
interval S. If the invariant violation is detected, we actively
monitor additional scheduler events (described below) for
a short time period M to see if this is a “legal” short-term
violation that is promptly fixed by the scheduler. If it is not
fixed, we record profiling information (described below) and
flag a bug.

We set S and M to minimize the overhead and the prob-
ability of false positives and to maximize the probability of
detecting the actual bugs. Our setting for S is one second;

this helps ensure that the invariant violation is detected for
all but very short programs and keeps the overhead low. We
measured the overhead to be under 0.5% on our system for
workloads of as many as 10,000 threads when S = 1.

The load balancer runs every 4ms, but because of the hi-
erarchical design multiple load balancing attempts might be
needed to recover from invariant violation in a bug-free sys-
tem. We conservatively set M to 100ms to virtually elimi-
nate the probability of false positives. The monitoring that
occurs during that period tracks thread migration, creation
and destruction, because it is these events that can help the
system to recover. Tracking these events requires adding a
function call in the move thread, fork and exit functions
that check where threads are migrated. The overhead of this
function call is negligible.

The probability of detecting the actual bugs, i.e., long-
term invariant violations, depends on the frequency and du-
ration of the invariant violation. In most cases we described,
once the bug triggers an invariant violation, the system never
recovers. Such invariant violations are trivially detected by
the sanity checker. In one case (the Overload-on-Wakeup
bug), invariant violations persisted for shorter periods, on
the order of hundreds of milliseconds, then disappeared and
reappeared again. In this case, the probability of catching the
violation depends on the total fraction of time that the system
spends in the undesirable state. If the fraction is small, the
chances of detecting the bug are also small, but so is the im-
pact on performance. Longer-lasting and/or more frequently
occurring violations are detected with a higher probability.
Furthermore, if the bug-triggering workload keeps running,
the chances that the sanity checker detects the bug during at
least one of the checks keep increasing.

If the bug is detected, the sanity checker begins gather-
ing profiling information to include in the bug report. We
use systemtap to profile calls to all load balancing func-
tions (e.g., load balance, select task rq fair) along
with all the statements executed by these functions and the
values of the variables they use. We used these profiles to
understand how the load-balancing functions were executed
and why they failed to balance the load. Note that we do not

record the part of the execution where the bug is triggered,
but this is not an issue because we only want to understand
why all load balancing calls fail during a significant period
of time. Monitoring with systemtap has a high overhead
(around 7% in our measurements), so we only begin profil-
ing after detecting the bug and stop profiling after 20ms.

Thanks to its small size, the sanity checker is eas-
ily portable between kernel versions, and does not con-
flict with patches that modify the scheduler. We origi-
nally implemented the sanity checker in Linux 3.17. Port-
ing to 4.3 only required changing one line of code (the
do posix clock monotonic gettime function, that we
used to get timing data, changed its name).

4.2 Scheduler Visualization tool
The visualization tool we are about to describe was tremen-
dously helpful in gauging the nature of bug symptoms and
further understanding their root causes. The tool illustrates
salient scheduling activity over time (the charts from this
tool were shown to illustrate the bugs in the previous sec-
tion). These charts rely on additional instrumentation of the
kernel, whose overhead is negligible. Our visual tool makes
it possible to profile and to plot (1) the size of run queues,
(2) the total load of run queues, and (3) the cores that were
considered during periodic load balancing and thread wake-
ups. In order to provide maximum accuracy, it does not use
sampling, instead, it records every change in the size of run
queues or load, as well as a set of considered cores at each
load rebalancing or thread wakeup event. To keep the over-
head low, we store all profiling information in a large global
array in memory of a static size. Each element of this array
is an event that corresponds to either (1), (2), or (3):

• For (1), we instrument kernel functions add nr running

and sub nr running, which are the only functions that
directly alter the variables that stores the size of each run
queue. In these functions, we store an event in our global
array that contains a timestamp, the core number, and the
new runqueue size.

• Similarly, for (2), we instrument kernel functions
account entity enqueue and account entity de-
queue, which are the only functions that directly alter the
variables that store the load of each run queue. In these
functions, we store an event in our global array that con-
tains a timestamp, the core number, and the new load.

• Finally, for (3), we instrument kernel functions
select idle sibling, update sg lb stats, find -
busiest queue and find idlest group. In these
functions, we store an event in our global array that
contains a timestamp, as well as a bit field with 0’s for
cores that were not considered during the operation, and
1’s for cores that were.

Implementing these changes in the Linux kernel took less
than 150 lines of code. In order to write an event, a thread

uses an atomic increment instruction to find the position in
the array where to write the event; it then writes its event to
memory which may incur a cache miss. On our architecture,
20 bytes are sufficient to store each event. In Section 3, the
application that produced events at the highest frequency
was the commercial database: it produces around 60,200
events of type (1) per second, 58,000 events of type (2)
per second, and 68,000 events of type (3) per second, for
a total of around 186,200 events per second. Consequently,
when active our profiler uses 3.6 MB of RAM per second
on a machine with 64 cores. In practice the profiler is only
active when a bug is detected, and its impact on performance
negligible in the non-buggy case.

In addition to the changes in the Linux kernel, we also
wrote a kernel module that makes it possible to start and
end a profiling session on demand, and to output the global
array to a file. We also wrote scripts that plot the results.
Figures 2, 4, and 5 are examples of these plots.

In our experience, confirming and understanding the
tricky performance bugs described in this paper, and detect-
ing them across kernel versions was substantially more pro-
ductive after we developed these tools. Since the tools catch
important bugs, while at the same time being simple, virtu-
ally overhead-free and easy to port across kernel versions,
we believe that it is a good idea to keep them as part of a
standard kernel developers’ tool belt.

5. Lessons Learned
We now reflect on the lessons learned during this study and
identify open problems.

The bugs we described resulted from developers want-
ing to put more and more optimizations into the scheduler,
whose purpose was mostly to cater to complexity of modern
hardware. As a result, the scheduler, that once used to be a
simple isolated part of the kernel grew into a complex mon-
ster whose tentacles reached into many other parts of the sys-
tem, such as power and memory management. The optimiza-
tions studied in this paper are part of the mainline Linux, but
even more scheduling optimizations were proposed in the
research community.

As of circa 2000, dozens of papers described new
scheduling algorithms catering to resource contention, co-
herency bottlenecks and other idiosyncrasies of modern mul-
ticore systems. There were algorithms that scheduled threads
so as to minimize contention for shared caches, memory
controllers and multithreaded CPU pipelines [8, 9, 24, 29,
34, 42, 46]. There were algorithms that reduced commu-
nication distance among threads sharing data [41] and de-
termined the optimal number of cores to allocate to mul-
tithreaded workloads [17]. There were algorithms that ad-
dressed the scheduling of threads on asymmetric multicore
CPUs [22, 35] and algorithms that integrated scheduling
with the management of power and temperature [19]. Fi-
nally, there were algorithms that managed the memory on

NUMA systems, which was closely tied to how threads are
being scheduled [7, 14, 18, 38], and algorithms that sched-
uled threads to minimize communication latency on systems
with an asymmetric interconnect [23]. All of these algo-
rithms showed positive benefits, either in terms of perfor-
mance or power, for some real applications. However, few of
them were adopted in mainstream operating systems, mainly
because it is not clear how to integrate all these ideas in
scheduler safely.

If every good scheduling idea is slapped as an add-on to
a single monolithic scheduler, we risk more complexity and
more bugs, as we saw from the case studies in this paper.
What we need is to rethink the architecture of the scheduler,
since it can no longer remain a small, compact and largely
isolated part of the kernel. We now understand that rapid
evolution of hardware that we are witnessing today will mo-
tivate more and more scheduler optimizations. The scheduler
must be able to easily integrate them, and to have a way of
reasoning about how to combine them. We envision a sched-
uler that is a collection of modules: the core module and
optimization modules. The core module embodies the very
basic function of the scheduler: assigning runnable threads
to idle cores and sharing the cycles among them in some fair
fashion. The optimization modules suggest specific enhance-
ments to the basic algorithm. For example, a load-balancing
module might suggest an alternative load balancing sched-
ule that avoids excessive overhead. A cache affinity module
might suggest waking up a thread on a core where it re-
cently ran. A resource contention module might suggest a
placement of threads that reduces the chances of contention-
induced performance degradation. The core module should
be able to take suggestions from optimization modules and
to act on them whenever feasible, while always maintaining
the basic invariants, such as not letting cores sit idle while
there are runnable threads. Deciding how to combine mul-
tiple optimizations when they conflict, e.g., if a cache affin-
ity module and a resource contention module suggest dif-
ferent thread placements or if a load balancer risks to break
memory-node affinity as it moves threads among runqueues,
is a difficult open problem in scheduling.

Another lesson we learned as a result of this work is the
crucial importance of visualization tools. Understanding the
root causes of the bugs we described would not have been
possible without visualization of the execution events rele-
vant to the problem. Visualizing execution is definitely not a
new idea. While isolated clusters of system developers (e.g.,
certain engineering teams at Google [26, 40]) have embraced
it, the developer community at large is missing effective vi-
sualization tools. There are many great trace-gathering tools,
such as systemtap, Pivot tracing [27], or Intel Processor
Tracing. However, without effective visualization, develop-
ers tend to only summarize and aggregate the information
available in the traces, which obscures outliers that are re-
sponsible for bugs and performance problems (think of the

Overload-on-Wakeup bug!). Though visualization is con-
ceptually simple, implementing effective tools is not easy.
Execution traces can be very large, so visualizing everything
is not feasible and not useful. Understanding what to visual-
ize and how to let the user effectively explore the trace when
the user does not know what they are looking for is an im-
portant open problem. There most certainly exists research
on this topic in the visualization community, but the systems
community needs to more actively embrace those techniques
and adapt them to the specificity of the problems we solve in
systems.

6. Related Work
Performance bugs. Performance bugs are a recurring
problem for operating systems. The Linux Kernel Perfor-
mance project [13] was started in 2005 to combat perfor-
mance regressions. Despite this effort, performance bugs are
repeatedly reported by OS researchers. Boyd et al. [10] re-
ported a variety of scalability bugs, and Harji et al. [20] re-
ported other kinds performance bugs in 2.6 kernels.

Mollison et al. [30] proposed a tool that performs re-
gression testing specifically for schedulers. It targets real-
time schedulers implemented as plug-ins for the LInux
Testbed for MUltiprocessor Scheduling in Real-Time Sys-
tems (LITMUSRT) project. The tool is limited (e.g., it does
not take blocking into account) and does not target the Linux
kernel’s fair scheduling policy (CFS).

To combat performance bugs, Perl et al. [33] proposed
to add assertions to kernels to check that function calls fin-
ish in a timely manner. Shen et al. [39] built a throughput
model for checking the performance of I/Os. These tech-
niques detect performance bugs using assertions, which is
not applicable for detecting a problematic load imbalance in
the scheduler. Temporary load imbalances are expected and
not problematic. Therefore, our online sanity checker uses
a different design to discriminate between problematic and
non-problematic invariant violations.

Kernel correctness. A large body of work has also been
done on verifying system correctness. RacerX [15] and
Eraser [37] detect deadlocks and race conditions. Erickson
et al. [16] detect data races in kernel modules. It would be
ideal to extend these systems to target performance bugs,
which do not necessarily result in systems crash; however,
this is a difficult problem because short-term invariant viola-
tions are acceptable in our environment.

D3S [25], Likely Invariants [36], and ExpressOS [28]
use invariants and predicates to check correctness of sim-
ple operations (e.g., ensure that a variable is within a certain
range). Our online sanity checker makes it possible to detect
more subtle incorrect states of the system (i.e., systems with
cores that are idle for a long time while other cores are over-
loaded), and it could be integrated into operating systems to
validate higher-level design choices.

Model checking has also been used to detect bugs in ker-
nels. CMC [31] inject states in the kernel to find implemen-
tation bugs. Yang et al. [45] found errors in file systems (e.g.
deadlocks) using model checking. Model checking is a use-
ful approach to find bugs before they happen. The scheduler
is particularly challenging to model check due to the large
number of possible workloads and intricacies with hardware
behavior (e.g., topology, behavior of sleeping cores). Model
checkers could be used to find crash bugs in the scheduler,
but to the best of our knowledge, none of these works could
be used to detect more subtle performance bugs.

Formal verification is a method for proving software cor-
rectness by analyzing the source code. Traditionally, formal
verification was limited to small codebases and languages
other than C, but recently, through heroic efforts of several
OS researchers, formal verification was applied to OS ker-
nels [11, 12, 21]. Even so, these state-of-the-art methods do
not apply to the bugs described here, because they are lim-
ited to single-threaded environments and do not have a way
of reasoning about time. Formal tools work by describing
the system as series of state transitions, pre-conditions and
post-conditions, and then reason whether any state transi-
tions may lead to violation of post-conditions given the pos-
sible pre-conditions. The problem is that in our environment,
short and intermittent violations of post-conditions (i.e., idle
cores in the presence of waiting threads) are totally accept-
able. It is the long-term violations that are problematic. Un-
fortunately, existing tools do not have the mechanisms al-
lowing to reason how timing affects transient violation of in-
variants. Extending these tools to work in multithreaded en-
vironments and to reason about time could make them more
suitable, but having Linux developers write formal specifi-
cations will be another hurdle for adoption of these tools.

Tracing. Due to the complexity of some of the bugs we en-
countered, the Overload-on-Wakeup bug in particular, profil-
ing tools were not sufficient to fully understand their causes:
we needed traces in order to precisely follow the behavior of
the scheduler.

Many tracing tools have been proposed to help detect
performance bugs. Event Tracing for Windows [2] and
DTrace [1] are frameworks that make it possible to trace
application and kernel events, including some scheduler
events, for the Microsoft Windows, Solaris, MacOS X and
FreeBSD operating systems. The Linux kernel comes with
its own set of tracers, such as Ftrace [3] and SystemTap [6].
Some additional tools such as KernelShark [4] produce
graphical traces.

Our online sanity checker does not provide a novel way
to monitor events, and directly relies on SystemTap for this
purpose. What our sanity checker does that is not included in
these tools, however, is detecting an invariant violation in or-
der to only monitor events while a performance bug is occur-
ring: running existing tracing tools all the time would be of
little use to detect performance bugs, since they would pro-

duce large amounts of data that would overwhelmingly con-
sist of non-buggy execution traces, with no way to jump to
the buggy sections of these traces. Moreover, our visualiza-
tion tool is capable of monitoring very fine-grained sched-
uler events that were crucial to understanding some of the
performance bugs presented in this paper, such as individ-
ual scheduling events (which makes it possible to plot which
scheduling event was responsible each time a thread moves
across cores), or individual iterations in the work-stealing
loop (which makes it possible to monitor which cores are
considered during load balancing).

7. Conclusion
Scheduling, as in dividing CPU cycles among threads was
thought to be a solved problem. We show that this is not the
case. Catering to complexities of modern hardware, a sim-
ple scheduling policy resulted in a very complex bug-prone
implementation. We discovered that the Linux scheduler vi-
olates a basic work-conserving invariant: scheduling waiting
threads onto idle cores. As a result, runnable threads may
be stuck in runqueues for seconds while there are idle cores
in the system; application performance may degrade many-
fold. The nature of these bugs makes it difficult to detect
them with conventional tools. We fix these bugs, understand
their root causes and present tools, which make catching and
fixing these bugs substantially easier. Our fixes and tools will
be available at http://git.io/vaGOW.

References
[1] DTrace. http://dtrace.org/.

[2] Event Tracing for Windows. https://msdn.microsoft
.com/en-us/library/windows/desktop/bb968803(v=
vs.85).aspx.

[3] Ftrace. https://www.kernel.org/doc/Documentation/t
race/ftrace.txt.

[4] KernelShark. http://people.redhat.com/srostedt/ker
nelshark/HTML/.

[5] Linux 4.3 scheduler change “potentially affects every SMP
workload in existence”. http://www.phoronix.com/scan.p
hp?page=news item&px=Linux-4.3-Scheduler-SMP.

[6] SystemTap. https://sourceware.org/systemtap/.

[7] J. Antony, P. P. Janes, and A. P. Rendell. Exploring thread
and memory placement on NUMA architectures: Solaris and
Linux, UltraSPARC/FirePlane and Opteron/HyperTransport.
In Proceedings of the 13th International Conference on High
Performance Computing, HiPC’06, 2006.

[8] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention-
aware scheduling on multicore systems. ACM Trans. Comput.
Syst., 28:8:1–8:45, 2010.

[9] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A
case for NUMA-aware contention management on multicore
systems. In Proceedings of the 2011 USENIX Annual Techni-
cal Conference, USENIX ATC’11, 2011.

http://git.io/vaGOW
http://dtrace.org/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803(v=vs.85).aspx
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://www.kernel.org/doc/Documentation/trace/ftrace.txt
http://people.redhat.com/srostedt/kernelshark/HTML/
http://people.redhat.com/srostedt/kernelshark/HTML/
http://www.phoronix.com/scan.php?page=news_item&px=Linux-4.3-Scheduler-SMP
http://www.phoronix.com/scan.php?page=news_item&px=Linux-4.3-Scheduler-SMP
https://sourceware.org/systemtap/

[10] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of Linux
scalability to many cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementa-
tion, OSDI’10, 2010.

[11] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using Crash Hoare logic for certifying the
FSCQ file system. In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP ’15, 2015.

[12] H. Chen, D. Ziegler, A. Chlipala, M. F. Kaashoek, E. Kohler,
and N. Zeldovich. Specifying crash safety for storage systems.
In 15th Workshop on Hot Topics in Operating Systems (HotOS
XV), Kartause Ittingen, Switzerland, May 2015.

[13] T. Chen, L. I. Ananiev, and A. V. Tikhonov. Keeping ker-
nel performance from regressions. In Linux Symposium, vol-
ume 1, pages 93–102, 2007.

[14] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management: a
holistic approach to memory placement on NUMA systems.
In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, 2013.

[15] D. Engler and K. Ashcraft. RacerX: Effective, static detec-
tion of race conditions and deadlocks. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Princi-
ples, SOSP ’03, 2003.

[16] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk.
Effective data-race detection for the kernel. In Proceedings
of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, 2010.

[17] J. R. Funston, K. El Maghraoui, J. Jann, P. Pattnaik, and A. Fe-
dorova. An SMT-selection metric to improve multithreaded
applications’ performance. In Proceedings of the 2012 IEEE
26th International Parallel and Distributed Processing Sym-
posium, IPDPS ’12, 2012.

[18] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova,
and V. Quéma. Large pages may be harmful on NUMA sys-
tems. In Proceedings of the 2014 USENIX Annual Technical
Conference, USENIX ATC’14, 2014.

[19] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-
and-run: leveraging SMT and CMP to manage power den-
sity through the operating system. In Proceedings of the 11th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XI,
2004.

[20] A. S. Harji, P. A. Buhr, and T. Brecht. Our troubles with Linux
and why you should care. In Proceedings of the Second Asia-
Pacific Workshop on Systems, APSys ’11, 2011.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Nor-
rish, T. Sewell, H. Tuch, and S. Winwood. seL4: formal veri-
fication of an OS kernel. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, SOSP ’09,
2009.

[22] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Proceedings of the

5th European Conference on Computer Systems, EuroSys ’10,
2010.

[23] B. Lepers, V. Quéma, and A. Fedorova. Thread and memory
placement on NUMA systems: asymmetry matters. In Pro-
ceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’15, 2015.

[24] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient
operating system scheduling for performance-asymmetric
multi-core architectures. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, 2007.

[25] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. F. Kaashoek, and Z. Zhang. D3S: debugging deployed
distributed systems. In Proceedings of the 5th USENIX Sym-
posium on Networked Systems Design and Implementation,
NSDI’08, 2008.

[26] D. Luu. The Nyquist theorem and limitations of sampling
profilers today, with glimpses of tracing tools from the future.
http://danluu.com/perf-tracing.

[27] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: dy-
namic causal monitoring for distributed systems. In Proceed-
ings of the 25th Symposium on Operating Systems Principles,
SOSP ’15, 2015.

[28] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan.
Verifying security invariants in ExpressOS. In Proceedings
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS ’13, 2013.

[29] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious
scheduling for energy efficiency on multicore processors. In
Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, 2010.

[30] M. S. Mollison, B. Brandenburg, and J. H. Anderson. Towards
unit testing real-time schedulers in LITMUSRT. In Proceed-
ings of the 5th Workshop on Operating Systems Platforms for
Embedded Real-Time Applications, OSPERT ’09, 2009.

[31] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. L. Dill. CMC: a pragmatic approach to model checking
real code. SIGOPS Oper. Syst. Rev., 36(SI), Dec. 2002.

[32] NAS Parallel Benchmarks. http://www.nas.nasa.gov/pub
lications/npb.html.

[33] S. E. Perl and W. E. Weihl. Performance assertion checking.
In Proceedings of the Fourteenth ACM Symposium on Oper-
ating Systems Principles, SOSP ’93, 1993.

[34] K. K. Pusukuri, D. Vengerov, A. Fedorova, and V. Kaloger-
aki. FACT: a framework for adaptive contention-aware thread
migrations. In Proceedings of the 8th ACM International Con-
ference on Computing Frontiers, CF ’11, 2011.

[35] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A
comprehensive scheduler for asymmetric multicore systems.
In Proceedings of the 5th European Conference on Computer
Systems, EuroSys ’10, 2010.

[36] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve. Using likely
invariants for automated software fault localization. In Pro-
ceedings of the Eighteenth International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’13, 2013.

http://danluu.com/perf-tracing
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. An-
derson. Eraser: a dynamic data race detector for multithreaded
programs. ACM Trans. Comput. Syst., 15(4), Nov. 1997.

[38] L. T. Schermerhorn. A matter of hygiene: automatic page
migration for Linux. 2007. URL https://linux.org.au/c
onf/2007/talk/197.html.

[39] K. Shen, M. Zhong, and C. Li. I/O system performance debug-
ging using model-driven anomaly characterization. In Pro-
ceedings of the 4th USENIX Conference on File and Storage
Technologies - Volume 4, FAST’05, pages 23–23, 2005.

[40] D. Sites. Data center computers: modern challenges in
CPU design. https://www.youtube.com/watch?v=QBu2A
e8-8LM.

[41] D. Tam, R. Azimi, and M. Stumm. Thread clustering: sharing-
aware scheduling on SMP-CMP-SMT multiprocessors. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, 2007.

[42] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: approximating L2 miss rate curves on commod-

ity systems for online optimizations. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XIV, 2009.

[43] L. Torvalds. The Linux Kernel Mailing List. http://tec
h-insider.org/linux/research/2001/1215.html, Feb.
2001.

[44] L. Torvalds. Tech Talk: Linus Torvalds on git, Google. http:
//www.youtube.com/watch?v=4XpnKHJAok8, Mar. 2007.

[45] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using
model checking to find serious file system errors. ACM Trans.
Comput. Syst., 24(4), Nov. 2006.

[46] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing shared resource contention in multicore processors via
scheduling. In Proceedings of the Fifteenth Edition of AS-
PLOS on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XV, 2010.

https://linux.org.au/conf/2007/talk/197.html
https://linux.org.au/conf/2007/talk/197.html
https://www.youtube.com/watch?v=QBu2Ae8-8LM
https://www.youtube.com/watch?v=QBu2Ae8-8LM
http://tech-insider.org/linux/research/2001/1215.html
http://tech-insider.org/linux/research/2001/1215.html
http://www.youtube.com/watch?v=4XpnKHJAok8
http://www.youtube.com/watch?v=4XpnKHJAok8

	Introduction
	The Linux Scheduler
	On a single-CPU system, CFS is very simple
	On multi-core systems, CFS becomes quite complex
	The load balancing algorithm
	Optimizations

	Bugs
	The Group Imbalance bug
	The Scheduling Group Construction bug
	The Overload-on-Wakeup bug
	The Missing Scheduling Domains bug
	Discussion

	Tools
	Online Sanity Checker
	Scheduler Visualization tool

	Lessons Learned
	Related Work
	Conclusion

