
Operating System Support for Mitigating Software
Scalability Bottlenecks on Asymmetric Multicore

Processors

Juan Carlos Saez
Complutense University,

Madrid, Spain
jcsaezal@fdi.ucm.es

Alexandra Fedorova
Simon Fraser University,
Vancouver BC, Canada
fedorova@cs.sfu.ca

Manuel Prieto
Complutense University,

Madrid, Spain
mpmatias@dacya.ucm.es

Hugo Vegas
Complutense University,

Madrid, Spain
hugovegas@fdi.ucm.es

ABSTRACT
Asymmetric multicore processors (AMP) promise higher per-
formance per watt than their symmetric counterparts, and
it is likely that future processors will integrate a few fast
out-of-order cores, coupled with a large number of simpler,
slow cores, all exposing the same instruction-set architec-
ture (ISA). It is well known that one of the most effective
ways to leverage the effectiveness of these systems is to use
fast cores to accelerate sequential phases of parallel appli-
cations, and to use slow cores for running parallel phases.
At the same time, we are not aware of any implementation
of this parallelism-aware (PA) scheduling policy in an op-
erating system. So the questions as to whether this policy
can be delivered efficiently by the operating system to un-
modified applications, and what the associated overheads
are remain open. To answer these questions we created two
different implementations of the PA policy in OpenSolaris
and evaluated it on real hardware, where asymmetry was
emulated via CPU frequency scaling. This paper reports
our findings with regard to benefits and drawbacks of this
scheduling policy.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling

General Terms
Performance, Measurement, Algorithms

Keywords
Asymmetric multicore, Scheduling, Operating Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

1. INTRODUCTION
An asymmetric multicore processor (AMP) includes cores

exposing the same instruction-set architecture, but differing
in features, size, speed and power consumption [2, 8]. A
typical AMP would contain a number of simple, small and
low-power slow cores and a few complex, large and high-
power fast cores. It is well known that AMP systems can
mitigate scalability bottlenecks in parallel applications by
accelerating sequential phases on fast cores [2, 7, 12].

To leverage this potential of AMP systems, threads must
be mapped to cores in consideration of the amount of paral-
lelism in the application: if an application is highly parallel
its threads should be mapped to slow cores, but if the ap-
plication is sequential or is executing a sequential phase its
thread should be mapped to a fast core. A natural place for
this Parallelism-Aware (PA) policy is in the operating sys-
tem. This way, many applications can reap its benefits, po-
tentially without requiring any modifications, and the shar-
ing of scarce fast cores among multiple applications can be
fairly arbitrated by the operating system. To the best of our
knowledge, there are no OS-level implementations of the PA
scheduling policy. As a result, many questions regarding the
effectiveness and practicality of this policy remain open.

One open question is how can the operating system effec-
tively detect sequential phases in applications? In some ap-
plications unused threads block during the sequential phase,
and by monitoring the application’s runnable thread count,
which is exposed to the OS by most threading libraries, the
scheduler can trivially detect a sequential phase. In other
applications, however, unused threads busy-wait (or spin)
during short periods of time, and so the OS cannot de-
tect these phases simply by monitoring the runnable thread
count. To address these scenarios we designed PA Runtime
Extensions (PA-RTX) – an interface and library enhance-
ments enabling the threading library to notify the scheduler
when a thread spins rather than doing useful work. We im-
plemented PA-RTX in a popular OpenMP runtime, which
required only minimal modifications to support them, but
the extensions are general enough to be used with other
threading libraries.

Another open question is the overhead associated with the
PA policy. Any policy that prioritizes fast cores to specific

threads is bound to generate migration overheads – a per-
formance degradation that occurs when a thread is moved
from one core to another. Performance degradation results
from the loss of cache state accumulated on the thread’s old
core. Upon evaluating these overheads we found that they
can be significant (up to 18%) if the fast core is placed in
a different memory hierarchy domain from slow cores, but
a hardware configuration where a fast core shares a mem-
ory hierarchy domain with several slow cores coupled with a
topology-aware scheduler practically eliminates these over-
heads.

We evaluate the PA policy on a real multicore system,
where “slow” cores were emulated by reducing the clock fre-
quency on the processors, while “fast” cores were configured
to run at regular speed. We find that the main benefits from
the PA policy are derived for multi-application workloads
and when the number of fast cores relative to slow cores is
small. In this case, it delivers speedups of up to 40% relative
to the OpenSolaris default asymmetry-agnostic scheduler.
Previously proposed asymmetry-aware algorithms, which we
used for comparison, also do well in some cases, but unlike
our parallelism-aware algorithms they do not perform well
across the board, because they fail to consider the paral-
lelism of the application.

The key contribution of our work is the evaluation of the
operating system technology enabling next-generation asym-
metric systems. We are not aware of previous studies investi-
gating the benefits and drawbacks of the PA scheduling pol-
icy implemented in a real OS. Our findings provide insights
for design of future asymmetry-aware operating systems and
asymmetric hardware alike.

The rest of the paper is structured as follows. Section 2
presents the design and implementation of the PA schedul-
ing algorithm. Section 3 presents experimental results. Sec-
tion 4 discusses related work. Section 5 summarizes our
findings and discusses future work.

2. DESIGN AND IMPLEMENTATION
In Section 2.1 we describe two parallelism-aware algo-

rithms proposed in this work: PA and MinTLP. In Sec-
tion 2.2 we describe the runtime extensions to PA (PA-
RTX). A brief description of other asymmetry-aware algo-
rithms that we use for comparison is provided in Section 2.3.

2.1 PA and MinTLP algorithms
Our algorithms assume an AMP system with two core

types: fast and slow. Previous studies concluded that sup-
porting only two core types is optimal for achieving most of
the potential gains on AMP [8]; so we expect this configu-
ration to be typical of future systems. More core types may
be present in future systems due to variations in the fabrica-
tion process. In that case, scheduling must be complemented
with other algorithms, designed specifically to address this
problem [18].

The goal of the algorithm is to decide which threads should
run on fast cores and which on slow cores. In MinTLP, this
decision is straightforward: the algorithm selects applica-
tions with the smallest thread-level parallelism (hence the
name MinTLP) and maps threads of these applications to
fast cores. Thread-level parallelism is determined by exam-
ining the number of runnable (i.e., not blocked) threads. If
not enough fast cores are available to accommodate all these
threads, some will be left running on slow cores. MinTLP

makes no effort to fairly share fast cores among all “eligible”
threads. This algorithm is very simple, but not always fair.

The other proposed algorithm, PA, is more sophisticated.
It classifies threads dynamically into several categories: MP,
HP, and SP. The MP (mildly parallel) category includes
threads belonging to applications with a low degree of thread-
level parallelism, including the single-threaded applications.
The HP category includes threads belonging to highly par-
allel applications. The MP threads will run primarily on
fast cores, and the HP threads will run primarily on slow
cores. Threads of applications whose runnable thread count
exceeds hp_threshold fall into the HP category, the remain-
ing threads fall into the MP category.

A special class SP is reserved for threads of parallel ap-
plications that have just entered a sequential phase. These
threads will get the highest priority for running on fast cores:
this provides more opportunities to accelerate sequential
phases. To avoid monopolizing fast cores, SP threads are
downgraded by the scheduler into the MP class after spend-
ing amp_boost_ticks scheduling clock ticks in the SP class.

If there are not enough cores to run all SP and MP threads
on fast cores, the scheduler will run some of the threads on
slow cores, to preserve load balance. SP threads have a
higher priority in using fast cores. The remaining fast cores
will be shared among MP threads in a round-robin fashion.

The scheduler keeps track of the count of runnable threads
in each applicationto detect transitions between the afore-
mentioned classes and perform thread-to-core mapping ad-
justments accordingly. To avoid premature migrations and
preserve load balance, PA integrates a thread swapping mech-
anism to perform those adjustments periodically, instead of
reacting to those transitions immediately (MinTLP also in-
tegrates a similar swapping mechanism).

When the change in the thread-level parallelism cannot be
determined via the monitoring of the runnable thread count,
PA relies on the Runtime Extensions, described in the next
Section. We must also highlight that despite the fact that
our evaluation has been focused on multi-threaded single-
process applications, the PA and MinTLP algorithms can be
easily extended to support multi-process applications using
high-level abstractions provided by the operating system,
such as process sets.

Although sensitivity of the PA algorithm to its config-
urable parameters was studied, we are unable to provide
the results due to space constraints. We found, however,
that it is generally easy to choose good values for these pa-
rameters. After performing such a sensitivity study, we set
amp_boost_ticks to one hundred timeslices (1 second) and
hp_threshold to one greater than the number of fast cores.
These values ensure acceleration of sequential phases with-
out monopolizing fast cores.

2.2 PA Runtime Extensions
The base PA algorithm introduced so far relies on moni-

toring runnable thread count to detect transitions between
serial and parallel phases in the application. However, con-
ventional synchronization primitives found in most thread-
ing libraries use an adaptive two-phase approach where un-
used threads busy wait for a while before blocking to reduce
context-switching overheads. While blocking is coordinated
with the OS, making it possible to detect phase transitions,
spinning is not. Reducing the spinning phase enables the
OS to detect more serial phases. However, in our context

it may also lead to excessive migrations and cause substan-
tial overheads (as soon as a fast core becomes idle PA and
MinTLP will immediately migrate a thread to this core). In
the event these busy-waiting phases are frequent, it is help-
ful to give the scheduler some hints that would help it to
avoid mapping spinning threads to fast cores. To that end,
we propose two optimizations, which can be implemented in
the threading library (applications themselves need not be
changed).

2.2.1 Spin-then-notify mode
Our first proposal is a new spin-then-notify waiting mode

for synchronization primitives. Its primary goal is to avoid
running spinning threads on fast cores and save these“power-
hungry” cores for other threads. In this mode the synchro-
nization primitive notifies the operating system via a system
call after a certain spin threshold that the thread is busy-
waiting rather than doing useful work. Upon notification,
the PA scheduler marks this thread as a candidate for migra-
tion to slow cores. We have opted to mark threads as migra-
tion candidates instead of forcing an immediate migration
since this approach avoids premature migrations and allows
a seamless integration with the PA and MinTLP swapping
mechanisms. The synchronization primitive also notifies the
scheduler when a spinning thread finishes the busy wait. In
Section 3.2 we explore the advantages of using the new spin-
then-notify mode. For this purpose we have modified the
OpenMP runtime system to include this new mode in the
basic waiting function used by high-level primitives such as
mutexes or barriers.

Another potentially useful feature of this primitive may
arise in the context of scheduling algorithms that map threads
on AMP systems based on their relative speedup on fast vs.
slow cores (see Section 4). These algorithms typically mea-
sure performance of each thread on fast and slow cores and
compute its performance ratio, which determines the rela-
tive speedup [5, 9]. If a thread performs busy-waiting it can
achieve a very high performance ratio, since a spin loop uses
the CPU pipeline very efficiently1. As a result, the proposed
algorithms would map spinning threads to fast cores despite
they are not doing useful work. Even though these imple-
mentation issues could be solved via additional hardware
support [11], a spin-then-notify primitive could help avoid
the problem without needing extra hardware.

2.2.2 Exposing the master thread
We have also investigated a simple but effective optimiza-

tion allowing the application to communicate to the ker-
nel that a particular thread must have a higher priority
in running on a fast core. This optimization was inspired
by the typical structure of OpenMP do-all applications. In
these applications, there is usually a master thread that is in
charge of the explicit serial phases at the beginning, in be-
tween parallel loops, and at the end of the application (apart
from being in charge of its share of the parallel loops). Iden-
tifying this master thread to the kernel enables the scheduler
to give it a higher priority on the fast core simply because
this thread will likely act as the“serial”thread. This hint can
speed up do-all applications even without properly detect-
ing serial phases. Our PA Runtime Extensions enable the

1Best practices in implementing spinlocks dictate using al-
gorithms where a thread spins on a local variable [1], which
leads to a high instruction throughput.

runtime system to identify the master thread to the sched-
uler via a new system call. If the pattern of the application
changes and another thread gets this responsibility, the same
system call can be used to update this information.

To evaluate this feature, we have modified the OpenMP
runtime system to automatically identify the thread execut-
ing the main function as the master thread to the kernel,
right after initializing the runtime environment. In the same
way as the implementation of spin-notify mode, only the
OpenMP library needs to be modified, not requiring any
change in the applications themselves. Upon receiving this
notification, the PA scheduler tries to ensure that the master
thread runs on a fast core whenever it is active, but without
permanently binding the thread to that core as would be
done with other explicit mechanisms based on thread affini-
ties. This way, PA still allows different threads to compete
for fast cores according to its policies.

2.3 The other schedulers
We compare PA and MinTLP to three other schedulers

proposed in previous work. Round-Robin (RR) equally shares
fast and slow cores among all threads [5]. BusyFCs is a
simple asymmetry-aware scheduler that guarantees that fast
cores never go idle before slow cores [4]. Static-IPC-Driven,
which we describe in detail below, assigns fast cores to those
threads that experience the greatest relative speedup (in
terms of instructions per second) relative to running on slow
cores [5]. We implemented all these algorithms in Open-
Solaris. Our baseline for comparison is the asymmetry-
agnostic default scheduler in OpenSolaris, referred to here-
after as Default.

The Static-IPC-Driven scheduler is based on the design
proposed by Becchi and Crowley [5]. Thread-to-core as-
signments in that algorithm are done based on per-thread
IPC ratios (quotients of IPCs on fast and slow cores), which
determine the relative benefit of running a thread on a par-
ticular core type. Threads with the highest IPC ratios are
scheduled on fast cores while remaining threads are sched-
uled on slow cores. In the original work [5], the IPC-driven
scheduler was simulated. This scheduler samples threads’
IPC on cores of all types whenever a new program phase is
detected. Researchers who attempted an implementation of
this algorithm found that such sampling caused large over-
heads, because frequent cross-core thread migrations were
required [16]. To avoid these overheads, we have imple-
mented a static version of the IPC-driven algorithm, where
IPC ratios of all threads are measured a priori. This makes
IPC ratios more accurate in some cases [16] and eliminates
much of the runtime performance overhead. Therefore, the
results of the Static-IPC-Driven scheduler are somewhat op-
timistic and the speedups of PA and MinTLP relative to
Static-IPC-Driven are somewhat pessimistic.

3. EXPERIMENTS
The evaluation of the PA algorithm was performed on

an AMD Opteron system with four quad-core (Barcelona)
CPUs. The total number of cores was 16. Each core has
private 64KB instruction and data caches, and a private L2
cache of 512KB. A 2MB L3 cache is shared by the four cores
on a chip. The system has a NUMA architecture. Access
to a local memory bank incurs a shorter latency than access
to a remote memory bank. Each core is capable of running
at a range of frequencies from 1.15 GHz to 2.3 GHz. Since

Table 1: Classification of selected applications.

Categories Benchmarks
HP-CI EP(N), vips(P), fma3d(O), ammp(O), RNA(I), scalparc(M), wupwise (O)
HP-MI art(O), equake(O), applu(O), swim(O)
PS-CI BLAST(NS), swaptions(P), bodytrack(P), semphy(M), FT(N)
PS-MI MG(N), TPC-C(NS), FFTW(NS)
ST-CI gromacs(C), sjeng(C), gamess(C), gobmk(C), h264ref(C), hmmer(C), namd(C)
ST-MI astar(C), omnetpp(C), soplex(C), milc(C), mcf(C), libquantum(C)

Table 2: Multi-application workloads, Set #1.

Workload name Benchmarks
STCI-PSMI gamess, FFTW (12,15)
STCI-PSCI gamess, BLAST (12,15)
STCI-PSCI(2) hmmer, BLAST (12,15)
STCI-HP gamess, wupwise (12,15)
STCI-HP(2) gobmk, EP (12,15)
STMI-PSMI mcf, FFTW (12,15)
STMI-PSCI mcf, BLAST (12,15)
STMI-HP astar, EP (12,15)
PSMB-PSCI FFTW (6,8), BLAST (7,8)
PSMB-HP FFTW (6,8), wupwise_m (7,8)
PSCI-HP BLAST (6,8), wupwise_m (7,8)
PSCI-HP(2) semphy (6,8), EP (7,8)

each core is within its own voltage/frequency domain, we are
able to vary the frequency for each core independently. We
experimented with asymmetric configurations that use two
core types: “fast”(a core set to run at 2.3 GHz) and“slow”(a
core set to run at 1.15 GHz). We also varied the number of
cores in the experimental configurations by disabling some
of the cores.

We used three AMP configurations in our experiments:
(1) 1FC-12SC – one fast core and 12 slow cores, the fast
core is on its own chip and the other cores on that chip are
disabled; (2) 4FC-12SC – four fast cores and 12 slow cores,
each fast core is on a chip with three slow cores; (3) 1FC-
3SC – one fast core, three slow cores, all on one chip. Not
all configurations are used in all experiments.

Although thread migrations can be effectively exploited by
asymmetry-aware schedulers (e.g. to map sequential parts
of parallel applications on fast cores), the overhead that they
may introduce can lead to performance degradation. Since
we also aim to assess the impact of migrations on perfor-
mance we opted to select the default asymmetry-unaware
scheduler used in OpenSolaris (we refer to it as Default
henceforth) as our baseline scheduler. Despite Default keeps
threads on the same core for most of the execution time and
thus minimizes thread migrations, its asymmetry-unawareness
leads it to offer much more unstable results from run to run
than the ones observed for the other schedulers. For that
reason, a high number of samples were collected for this
scheduler, in an attempt to capture the average behavior
more accurately. Overall, we found that Default usually
fails to schedule single-threaded applications and sequential
phases of parallel application on fast cores, especially when
the number of fast cores is much smaller than the number
of slow cores, such as on the 1FC-12SC and 4FC-12SC con-
figurations.

We evaluate the base implementation of the PA algorithm
as well PA with Runtime Extensions. We compare PA to
RR, BusyFCs, Static-IPC-Driven, Min-TLP and to Default.
In all experiments, each application was run a minimum of
three times, and we measure the average completion time.
The observed variance was small in most cases (so it is not
reported) and where it was large we repeated the experi-
ments for a larger number of trials until the variance reached
a low threshold. In multi-application workloads the appli-
cations are started simultaneously and when an application
terminates it is restarted repeatedly until the longest appli-
cation in the set completes at least three times. We report
performance as the speedup over Default. The geometric
mean of completion times of all executions for a benchmark
under a particular asymmetry-aware scheduler is compared
to that under Default, and percentage speedup is reported.

In all experiments, the total number of threads (sum of the
number of threads of all applications) was set to match the
number of cores in the experimental system, since this is how
runtime systems typically configure the number of threads
for the CPU-bound workloads that we considered [19].

Our evaluation section is divided into four parts. In Sec-
tion 3.1 we introduce the applications and workloads used
for evaluation. In Section 3.2 we evaluate PA runtime ex-
tensions. In Section 3.3 we evaluate multi-application work-
loads. Finally, in Section 3.4 we study the overhead.

3.1 Workload selection
We used applications from PARSEC [6], SPEC OMP2001,

NAS [3] Parallel Benchmarks and MineBench [13] bench-
mark suites, as well as the TPC-C benchmark implemented
over Oracle Berkeley DB [14], BLAST – a bioinformatics
benchmark, FFT-W – a scientific benchmark performing
the fast Fourier transform, and RNA – an RNA sequencing

Table 3: Multi-application workloads, Set #2.

Workload name Benchmarks
2STCI-2STMI-1HP gamess, h264ref, astar , soplex, wupwise (12)
4STCI-1HP gromacs, gamess, namd, gobmk, EP (12)
3STCI-1STMI-1PSCI gamess, hmmer, gobmk, soplex, semphy (12)
2STCI-1STMI-1PSMI-1HP gamess, h264ref, soplex, FFTW (6), equake (7)
3STCI-3STMI-1HP gromacs, sjeng, h264ref, libquantum, milc, omnetpp, EP (10)
3STCI-3STMI-1PSCI gromacs, sjeng, h264ref, libquantum, milc, omnetpp, BLAST (10)

application. For multi-application workloads we also used
sequential applications from SPEC CPU2006.

We classified applications according to their architectural
properties: memory-intensive (MI) or compute-intensive (CI),
as well as according to their parallelism: highly parallel
(HP), partially sequential (PS) and single-threaded (ST).
Memory-intensity was important for fair comparison with
Static-IPC-Driven. CI applications have a higher relative
speedup on fast cores [16] and so it was important to include
applications of both types in the experiments. Parallelism
class was determined by tracing execution via OpenSolaris’
DTrace framework and measuring the fraction of time the
application spent running with a single runnable thread.
Parallel applications where this fraction was greater than 7%
were classified as PS, whereas the rest were classified as HP.
The ST class includes sequential applications. Table 1 shows
the classification of our selected applications according to
these classes. The text in parentheses next to the bench-
mark name indicates the corresponding benchmark suite: O
–SPEC OMP2001, P– PARSEC, M – Minebench, N– NAS,
C – SPEC CPU2006, and NS – other benchmarks not be-
longing to any specific suite.

By default, all OpenMP applications were compiled with
the native Sun Studio compiler. In order to evaluate PA
Runtime Extensions (Section 3.2) we had to modify the
OpenMP runtime system but the source code for the Sun
Studio OpenMP runtime system was not available to us. For
that reason, we resorted to using the Linux version of the
GCC 4.4 OpenMP runtime system in OpenSolaris2. Never-
theless, we observed that the performance of OpenMP ap-
plications with Sun Studio and GCC is similar.

Both OpenMP and POSIX threaded applications used
in section 3.3 and 3.4 run with adaptive synchronization
modes; as such sequential phases are exposed to the oper-
ating system in both cases. In these sections we do not use
runtime extensions with parallelism-aware algorithms. All
OpenMP applications run with the default adaptive syn-
chronization mode used by GCC 4.4 unless otherwise noted
(Sun Studio can be easily configured to use a similar adap-
tive mode). POSIX threaded applications (such as BLAST

or bodytrack) use full blocking modes on all synchroniza-
tion primitives but on those related to POSIX standard mu-
texes and synchronization barriers, where an adaptive im-
plementation is provided by OpenSolaris. Unlike OpenMP
applications, threads of POSIX applications spin for shorter
periods of time before blocking on those adaptive synchro-
nization primitives (these are the default parameters used
in OpenSolaris).

2Using such a version of the runtime system required aug-
menting OpenSolaris with a Linux compatible sys_futex
syscall)

0%

10%

20%

30%

40%

50%

60%

70%

RN
A

eq
ua

ke ar
t

ap
pl

u

fm
a3

d

am
m

p FT M
G

sc
al

pa
rc

se
m

ph
ySe

qu
en

tia
l F

ra
ct

io
n

Se
en

 b
y

th
e

O
S Sleep

Adaptive(1m)

Adaptive(10m)

Adaptive(100m)

Spin

Figure 2: Variations in the sequential fraction seen
by the OS when varying the synchronization mode
and blocking threshold.

For Section 3.2 we selected ten OpenMP applications:
art, applu, fma3d, ammp, FT, MG, scalparc, semphy and
RNA. These applications were chosen to cover a wide variety
of sequential portions. In the overhead section we analyze
ten parallel applications accross the aforementioned classes:
three HPCI (RNA, wupwise and vips), two HPMI (swim and
applu), three PSCI (swaptions, bodytrack and BLAST) and
two PSMI applications (TPC-C and FFTW) .

For Section 3.3, we constructed two sets of multi-application
workloads. The first set, shown in Table 2, comprises twelve
representative pairs of benchmarks across the previous cat-
egories mentioned above. For the sake of completeness, we
experimented with additional multi-application workloads
with more than two applications. Table 3 shows this second
set, consisting of six workloads.

3.2 PA Runtime Extensions
We begin by investigating the effect on performance when

using different synchronization waiting modes under the PA
scheduler. In these experiments we demonstrate that us-
ing a low blocking threshold effectively exposes sequential
phases to the scheduler, but performance can also suffer if
the threshold is set too low. Then we evaluate PA-RTX
and show that it offers comparable performance to purely
adaptive approaches and in some cases even improves it.

In the following experiment we used the 1FC-12SC config-
uration and tested three different waiting modes: spin, sleep
and adaptive. In spin mode unused threads busy-wait for
the entire time, in sleep mode, they block immediately. We
studied the effects of various synchronization modes on all
asymmetry-aware schedulers, but since our results showed

-50%

-40%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

RN
A

eq
ua

ke ar
t

ap
pl

u

fm
a3

d

am
m

p FT M
G

sc
al

pa
rc

se
m

ph
ySp

ee
du

p
ov

er
 D

ef
au

lt
(%

) PA (sleep)

PA (adaptive 1m)

PA (adaptive 10m)

PA (adaptive 100m)

PA (spin)

Figure 1: Speedup from PA using sleep, spin and adaptive modes with different blocking thresholds.

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

RNA equake art applu fma3d ammp FT MG scalparc semphy

Sp
ee

du
p

ov
er

 D
ef

au
lt

ad
ap

tiv
e

(%
)

PA-base (spin) PA-RTX (master thread)

PA-RTX (spin-notif 1k) PA-RTX (spin-notif 10k)

PA-RTX (spin-notif 100k) PA-RTX (spin-notif 1m)

PA-base (adaptive 10m) PA-base (adaptive 1m)

Figure 3: Speedup from PA with Runtime Extensions.

that across the schedulers the effects are largely the same,
we present the data for the PA scheduler only.

Figure 1 shows the results. PA runtime extensions are
not used in this case. When the spin mode is used, the base
PA algorithm delivers hardly any speedup, because it is not
aware of the sequential phases. With the adaptive and sleep
modes, applications on the right side of the chart experi-
ence noticeable speedup. They have large sequential phases
and switching to the adaptive or sleep mode exposes these
phases to the scheduler and enables their acceleration on the
fast core. Applications on the left side of the chart, however,
experience performance degradation. Those with the high-
est overhead (RNA, equake and applu) run frequent short
parallel loops. Despite being well-balanced applications, the
asymmetry of the platform causes the thread running on a
fast core to complete its share of these loops earlier. In this
case, the sleep mode makes the fast core become idle very
often, triggering frequent migrations that introduce substan-
tial overheads. An adaptive mode alleviates this issue, but
the blocking threshold must be sufficiently large to remove
the overheads completely.

Figure 2 shows how the fraction of time spent in sequen-
tial phases as seen by the OS changes for different block-
ing thresholds. This further underscores that the blocking
threshold for the adaptive mode must be chosen carefully:

choosing a very large threshold reduces the visibility of se-
quential phases for the OS, but a small one causes overhead,
as shown in Figure 1.

We now evaluate the PA algorithm with Runtime Ex-
tensions (PA-RTX). We test the spin-then-notify synchro-
nization mode using several spin thresholds. The blocking
threshold is set at 100m iterations in all experiments. We
also test the feature permitting the application to expose
the “master thread”. These scenarios are compared with
the Default scheduler where applications use the adaptive
mode, and with the base PA algorithm (no RTX) using the
spin mode (PA-base (spin)) and the adaptive mode (PA-base
(adaptive)). For PA-base (adaptive) we use the best block-
ing thresholds: 10m and 1m respectively. Figure 3 shows
the results.

Overall, we conclude that PA-RTX is less sensitive to
the choice of thresholds than PA-base (adaptive). PA-base
(adaptive) hurts performance for several applications, up to
a maximum of as much as 26%(!) when a low value of the
blocking threshold is used. PA-RTX hurts performance by
4% at most and only in one case, and that happens when the
spin threshold is set to an extremely small value of 1K iter-
ations. With adaptive synchronization, a trade-off must be
made when setting the blocking threshold: choosing a small
value may hurt performance, but choosing a value that is too

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

ga
m

es
s

FF
TW

ST
CI

-
PS

M
I

ga
m

es
s

BL
A

ST

ST
CI

-
PS

CI

hm
m

er

BL
A

ST

ST
CI

-
PS

CI
(2

)

ga
m

es
s

w
up

w
is

e

ST
CI

-H
P

go
bm

k EP

ST
CI

-
H

P(
2)

m
cf

FF
TW

ST
M

I-
PS

M
I

sp
ee

du
p

ov
er

 d
ef

au
lt

(%
)

RR BusyFCs Static-IPC-Driven PA Min-TLP

-30%
-20%
-10%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

m
cf

BL
A

ST

ST
M

I-
PS

CI

as
ta

r

EP

ST
M

I-H
P

FF
TW

BL
A

ST

PS
M

I-
PS

CI

FF
TW

w
up

w
is

e

PS
M

I-H
P

BL
A

ST

w
up

w
is

e

PS
CI

-H
P

se
m

ph
y EP

PS
CI

-
H

P(
2)sp

ee
du

p
ov

er
 d

ef
au

lt
(%

)

Figure 4: Speedup of asymmetry-aware schedulers on 1FC-12SC for multi-application workload set #1.

high will hide sequential phases to the scheduler. With spin-
then-notify primitive, choosing the right threshold is much
easier: the spin threshold can be safely set at a low value
of several hundred thousand or a million iterations, and the
blocking threshold can be set at a very high value to avoid
performance loss. Because of this flexibility, PA-RTX even
outperforms PA-base (adaptive) with the best threshold, by
as much as 5% in some experiments.

3.3 Multi-application workloads
Figure 6a shows that even simple asymmetry-aware sched-

ulers trivially accelerate sequential phases and beat the de-
fault scheduler when there is only one parallel application
running in the system. But as we demonstrate next, they fail
to achieve improvements comparable to PA in more realistic
multi-application scenarios.

This section shows our results for multi-application work-
loads. We study the performance of RR, BusyFCs, Static-
IPC-Driven, Min-TLP and PA and compare it with De-
fault on 1FC-12SC and 4FC-12SC configurations. Runtime
extensions are not used in this case, and the applications
are run under the adaptive synchronization mode with the
default blocking threshold. Tables 2 and 3 show the two
sets of multi-application workloads we used for our eval-
uation. The workload names in the left column of both
tables indicate the class of each application listed in the
same order as the corresponding benchmarks, so for ex-
ample in the STCI-PSMI category gamess is the single-
threaded compute-intensive (STCI) application and FFTW is
the partially sequential memory-intensive (PSMI) applica-
tion. Note that all highly parallel applications have been
presented as “HP” without distiction between memory- and
CPU-intensive subclasses. Their MI/CI suffix has been re-
moved deliberately to emphasize that schedulers that rely

on the number of active threads when making scheduling
decisions (Min-TLP and PA) map all threads of HP appli-
cations on slow cores regardless of their memory-intensity
(either HPCI or HPMI). Nevertheless, the class of each HP
application in the workloads can be found in Table 1.

The numbers in parentheses next to each parallel applica-
tion in Tables 2 and 3 indicate the number of threads chosen
for that application. In the first set, the first number corre-
sponds to the 1FC-12SC configuration and the second one to
the 4FC-12SC configuration. The workloads from the sec-
ond set (Table 3) were run on the 4FC-12SC configuration
only, so one thread number is included next to each parallel
application.

Figures 4 and 5 show the results for the workload set #1
on 1FC-12SC and the workload set #2 on 4FC-12SC config-
urations, respectively. Results for set #1 on 4FC-12SC are
omitted due to space limitations. In each graph, there is a
speedup bar for each application in the workload as well as
the geometric mean speedup for the workload as a whole,
labeled with the name of the workload from Tables 2 and 3.
We provide a detailed discussion of performance on the 1FC-
12SC scenario (results for the 4FC-12SC configuration are
interpreted with similar explanations).

Examining performance results of the simple asymmetry-
aware schedulers – BusyFCs and RR– in Figure 4, we see
that these algorithms deliver non-negligible speedups over
default for workloads with a low number of active threads,
i.e., pairs consisting of an ST and a PS application, or two
PS applications. When the number of threads is small, the
probability that these schedulers map the “most suitable”
thread to the fast core is rather high, so their performance
is close to more sophisticated schedulers. In cases where HP
applications are present, however, PA and MinTLP signif-
icantly outperform these simpler schedulers, delivering up

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

ga
m

es
s

h2
64

re
f

as
ta

r

so
pl

ex

w
up

w
is

e

2S
TC

I-2
ST

M
I-

1H
P

gr
om

ac
s

ga
m

es
s

na
m

d

go
bm

k EP

4S
TC

I-1
H

P

ga
m

es
s

hm
m

er

go
bm

k

so
pl

ex

se
m

ph
y

3S
TC

I-1
ST

M
I-

1P
SC

I

ga
m

es
s

h2
64

re
f

so
pl

ex

FF
TW

eq
ua

ke

2S
TC

I-1
ST

M
I-

1P
SM

I-1
H

P

sp
ee

du
p

ov
er

 d
ef

au
lt

(%
)

RR BusyFCs Static-IPC-Driven PA Min-TLP

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

gr
om

ac
s

sj
en

g

h2
64

re
f

lib
qu

an
tu

m

m
ilc

om
ne

tp
p EP

3S
TC

I-
3S

TM
I

-1
H

P

gr
om

ac
s

sj
en

g

h2
64

re
f

lib
qu

an
tu

m

m
ilc

om
ne

tp
p

BL
A

ST

3S
TC

I-
3S

TM
I

-1
PS

CI

sp
ee

du
p

ov
er

 d
ef

au
lt

(%
)

Figure 5: Speedup of asymmetry-aware schedulers on 4FC-12SC for multi-application workload set #2.

to 40% performance improvements (STCI-HP) over them as
well as over Default.

MinTLP and PA offer different performance in some cases.
Although PA is fairer, because it shares fast cores equally
among eligible threads, fairness sometimes comes at a cost.
This is especially evident in scenarios with STCI-PSMI and
STMI-PSMI workloads, where PA fair-shares the fast core
between the ST application and the thread running sequen-
tial phase of the PSMI application. Since the PS application
is memory-intensive, constantly migrating its serial thread
between fast and slow cores, which do not share a last-level
cache in this configuration, hurts performance. At the same
time, in workloads consisting of a single-threaded applica-
tion and a partially sequential compute-intensive application
(STCI-PSCI, STCI-PSCI(2) and STMI-PSCI), fair-sharing
the fast core enables PA to deliver fairness and even outper-
form Min-TLP.

The implication of these results is that migration over-
head must be reduced or taken into account if a scheduler
is to deliver both performance and fairness. This is ad-
dressed by a migration-friendly system configuration and
a topology-aware scheduler design, as will be explained in
Section 3.4. Figure 5, for the 4FC-12SC migration-friendly
topology, demonstrates this scenario. In this case, many
of the costly migrations of threads across memory hierar-
chy domains (i.e., among cores that do not share a last-
level cache) are eliminated, and so PA almost never under-
performs MinTLP for the workload as a whole.

We now turn our attention to the Static-IPC-Driven algo-
rithm. Overall, we see that this algorithm performs compa-
rably to PA and MinTLP only in some workloads including
an STCI application. In these cases, Static-IPC-Driven as-
signs the ST thread to the fast core, because it has the high-
est static IPC ratio due to its compute-bound nature. But

because this thread also happens to be the most suitable can-
didate from the thread-level parallelism stand-point, Static-
IPC-Driven makes a decision similar to MinTLP and PA.
However, in cases where the least suitable application (HP)
is more compute bound, e.g., EP in the STCI-HP(2) work-
load, Static-IPC-driven makes a wrong decision and per-
forms worse than PA and MinTLP. For the other workloads,
PA and MinTLP outperform Static-IPC-Driven. These re-
sults once again demonstrate that only parallelism-aware
schedulers perform well across the board for a wide range
of workloads.

3.4 Evaluating the overhead
Cross-core migrations are an essential mechanism in any

asymmetry-aware scheduler. Migrations can be especially
costly if the source core is in the different domain of the
memory hierarchy than the target core, i.e., the two cores
do not share a last level cache. Migration cost is defined
as the migration-induced performance loss relative to the
Default scheduler. To measure only the performance loss
and not the performance improvements resulting from the
asymmetry-aware policy we set all the cores in the system
to be slow. The asymmetry-aware scheduler, however, still
“thinks” that some cores are fast, so it still performs the
migrations in accordance with its policies, incurring the cost
but not reaping the benefit.

We hypothesized that migration overhead would be miti-
gated on systems with a migration-friendly topology: where
at least one fast core would be in the same memory-hierarchy
domain with several slow cores, and where the scheduler
would avoid cross-domain migrations when possible (topology-
aware). To evaluate this hypothesis, we study the overhead
of PA on several different configurations: 1FC-12SC, 1FC-
3SC, and 4FC-12SC. In the first configuration, the fast core

-10%

0%

10%

20%

30%

40%

50%

60%

70%

vi
ps

RN
A

w
up

w
is

e

ap
pl

u

sw
im

sw
ap

tio
ns

TP
C-

C

FF
TW

bo
dy

tr
ac

k

BL
A

ST

Sp
ee

du
p

ov
er

 D
ef

au
lt

(%
)

RR
BusyFCs
Static-IPC-Driven
PA
Min-TLP

(a)

-25%

-20%

-15%

-10%

-5%

0%

5%

vi
ps

RN
A

w
up

w
is

e

ap
pl

u

sw
im

sw
ap

tio
ns

TP
C-

C

FF
TW

bo
dy

tr
ac

k

BL
A

ST

Sp
ee

du
p

ov
er

 D
ef

au
lt

(%
)

PA-1FC-12SC
BusyFCs-1FC-12SC
PA-1FC-3SC
PA-4FC-12SC

(b)

Figure 6: (a) Speedups for single-application workloads on 4FC-12SC. (b) Migration overhead.

is in a separate memory hierarchy domain than the slow
cores. This is not a migration-friendly topology. In the
1FC-3SC configuration only one memory hierarchy domain
is used and all cores, fast and slow, are within that domain.
This is the most migration-friendly topology. Finally, the
4FC-12SC is a hybrid configuration where each fast core
shares a memory hierarchy domain with three slow cores.
This topology is complemented by policies that avoid cross-
domain migrations whenever possible3, and so this configu-
ration is also migration-friendly.

Figure 6b shows the overhead of migrations with the PA
algorithm on these three configurations. We use a set of
parallel applications exposing a wide variety of sequential
portion and memory-intensity. The numbers show the rel-
ative speedup over Default, so lower numbers mean higher
overhead. We also show the overhead for Busy-FCs on 1FC-
12SC, to demonstrate that migration overhead is fundamen-
tal to asymmetry-aware schedulers in general, not only to PA
and MinTLP.

We observe that the highest overheads are incurred on a
migration-unfriendly 1FC-12SC topology. On a migration-
friendly 1FC-3SC topology, the overheads become negligible.
On 4FC-12SC, a more realistic configuration, the migration
overheads are also very low.

Our conclusion is that asymmetry-aware policies can be
implemented with relatively low overhead on AMP systems,
even when it is not possible to ensure that all cores share a
single memory hierarchy domain. The key is to design the
system such that fast cores share a memory domain with at
least some slow cores and, very importantly, to extend the
scheduler to avoid cross-domain migrations when possible.

4. RELATED WORK
Previous studies on scheduling for asymmetric multicore

systems were united by a common goal of identifying the
threads or applications that benefited the most from run-
ning on fast cores, but the methods used to identify them
were different. One group of researchers, like us, focused
on using the amount of parallelism in the application as a
heuristic for deciding which threads to run on fast cores. The
second group relied on direct measurement or modelling of
the application’s relative speedup when running on a fast
core.

3PA, MinTLP as well as our implementations of RR,
BusyFCs and Static-IPC-Driven, are topology-aware.

We begin with the discussion of the research in the first
group. Hill and Marty [7] and Morad, Weiser and Kolody [12]
derived theoretical models for speedup on AMPs for paral-
lel applications with serial phases. These models assumed
a scheduler like PA, which maps serial phases to fast cores.
These groups demonstrated the benefits of the PA policy
theoretically, but the practical issues related to overhead
and effectiveness for real applications were not addressed.
Our study takes this work further and evaluates the PA
policy on a real system. Annavaram et al. [2] designed an
application-level scheduler that mapped sequential phases
of the applications to fast cores. This scheduler is effective
only when the application in which such a scheduler is im-
plemented is the only one running on the system, but not
in more realistic scenarios where there are multiple appli-
cations. We showed that a scheduler with a global knowl-
edge of the workload, like PA, is necessary to deliver the
best performance for multi-application workloads. Further-
more, Annavaram’s scheduler required manual changes to
the applications, whereas PA delivers its policy to unmodi-
fied applications. We also showed that additional speedups
are achieved by augmenting threading libraries with PA run-
time extensions.

ACS is a combination of hardware and compiler support
that was explicitly designed to accelerate lock-protected crit-
ical sections on AMPs [17]. Migrations are performed en-
tirely in hardware, so the design of an OS scheduler was not
addressed. Furthermore, like Annavaram’s work, the system
supports only single-application workloads. The authors in-
dicate that operating system assistance would be required
to support multi-application workloads. Our work provides
support similar to that which would be needed by ACS.

In the second group we find the algorithms that used rel-
ative speedup to determine which threads/applications to
assign to fast cores [5, 9, 16]. Kumar et al. proposed an
algorithm that monitored the speedup in the instructions
per second (IPS) rate of individual threads on fast cores rel-
ative to slow cores and mapped to fast cores those threads
that experienced the largest relative speedups [9]. Becchi
and Crowley proposed a very similar approach [5]. An al-
gorithm proposed by Shelepov et al. did not require online
monitoring of the speedup, but relied on offline-generated
architectural signatures for deriving its speedup estimates
[16]. None of these schedulers considered thread-level par-
allelism when mapping threads to cores, and so they are

not optimal for workloads that include multi-threaded ap-
plications, as we demonstrated in the experimental section.
Nevertheless, these algorithms are very effective for work-
loads consisting of single-threaded applications only, and so
we are investigating on algorithms that augment PA with
information about relative speedups [15].

In addition to the algorithms that attempted to opti-
mize the use of fast cores by discovering the most “effi-
cient” threads for running on these cores, several simpler
asymmetry-aware algorithms were proposed. An algorithm
proposed by Balakrishnan et al. ensured that the fast cores
do not go idle before slow cores [4] – this is the same ap-
proach used by the BusyFC algorithm, which we used in the
evaluation. An algorithm proposed by Li et al. also used
a BusyFC-like policy, but in addition ensured that the fast
cores were given a higher load than slow cores [10]. Neither
of these schedulers considered thread-level parallelism when
making scheduling decisions.

5. CONCLUSIONS AND FUTURE WORK
In this work we have evaluated the benefits and drawbacks

of parallelism-aware scheduling policies for AMP systems.
While some algorithms that do not consider TLP perform
comparably to the proposed algorithms PA and MinTLP
in some scenarios, none of them perform well across the
board. PA and MinTLP outperform the other schedulers
by as much as 40% in some cases. This indicates the impor-
tance of considering TLP in asymmetry-aware scheduling.
We have also proposed a small set of runtime extensions to
complement the OS scheduler and reduce the possibility of
wastefully scheduling busy-waiting threads on fast cores.

Overall, our results have shown that while PA and MinTLP
effectively schedule parallel workloads, an asymmetry-aware
algorithm that relies on relative speedup brings significant
performance improvements for single-threaded applications.
Designing a comprehensive scheduler that combines both the
TLP and relative speedup to cater to both single-threaded
and parallel workloads is an interesting avenue for future
work.

Acknowledgements
This research was funded by the Spanish government’s re-
search contracts TIN2008-005089 and the Ingenio 2010 Con-
solider ESP00C-07-20811, by the HIPEAC2 European Net-
work of Excellence, by the National Science and Engineering
Research Council of Canada (NSERC) under the Strategic
Project Grant program and by Sun Microsystems. Juan
Carlos Saez is supported by a MEC FPU fellowship grant.

6. REFERENCES
[1] T. Anderson. The Performance of Spin Lock

Alternatives for Shared-Money Multiprocessors. IEEE
TPDS, 1(1):6–16, 1990.

[2] M. Annavaram, E. Grochowski, and J. Shen.
Mitigating Amdahl’s Law through EPI Throttling. In
Proc. of ISCA’05, pages 298–309, 2005.

[3] D. H. Bailey, E. Barszcz, and J. T. Barton et al. The
NAS parallel benchmarks—summary and preliminary
results. In Supercomputing ’91, pages 158–165, 1991.

[4] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai.
The Impact of Performance Asymmetry in Emerging

Multicore Architectures. SIGARCH CAN,
33(2):506–517, 2005.

[5] M. Becchi and P. Crowley. Dynamic Thread
Assignment on Heterogeneous Multiprocessor
Architectures. In Proc. of Computing Frontiers ’06,
pages 29–40, 2006.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
PARSEC Benchmark Suite: Characterization and
Architectural Implications. In Proc. of PACT’08,
October 2008.

[7] M. D. Hill and M. R. Marty. Amdahl’s Law in the
Multicore Era. IEEE Computer, 41(7):33–38, 2008.

[8] R. Kumar, K. I. Farkas, and N. Jouppi et al.
Single-ISA Heterogeneous Multi-Core Architectures:
the Potential for Processor Power Reduction. In Proc.
of MICRO 36, 2003.

[9] R. Kumar, D. M. Tullsen, and P. Ranganathan et al.
Single-ISA Heterogeneous Multi-Core Architectures
for Multithreaded Workload Performance. In Proc. of
ISCA ’04.

[10] T. Li, D. Baumberger, and D. A. Koufaty et al.
Efficient Operating System Scheduling for
Performance-Asymmetric Multi-Core Architectures. In
Proc. of SC ’07, pages 1–11.

[11] T. Li, A. R. Lebeck, and D. J. Sorin. Spin Detection
Hardware for Improved Management of Multithreaded
Systems. IEEE TPDS, 17(6):508–521, 2006.

[12] T. Morad, U. Weiser, and A. Kolody. ACCMP –
Asymmetric Cluster Chip Multi-Processing. TR
CCIT, 2004.

[13] R. Narayanan, B. Ozisikyilmaz, and J. Z. et al.
MineBench: A Benchmark Suite for Data Mining
Workloads. 2006.

[14] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.
In Proc. of USENIX, pages 43–43, 1999.

[15] J. C. Saez, M. Prieto, A. Fedorova, and
S. Blagodourov. A Comprehensive Scheduler for
Asymmetric Multicore Systems. In Proc. of ACM
Eurosys ’10, 2010.

[16] D. Shelepov, J. C. Saez, and S. Jeffery et al. HASS: a
Scheduler for Heterogeneous Multicore Systems. ACM
Operating System Review, 43(2), 2009.

[17] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N.
Patt. Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures. In Proc. of
ASPLOS ’09, pages 253–264, 2009.

[18] R. Teodorescu and J. Torrellas. Variation-Aware
Application Scheduling and Power Management for
Chip Multiprocessors. In Proc. of ISCA ’08, 2008.

[19] R. van der Pas. The OMPlab on Sun Systems. In
Proc. of IWOMP’05, 2005.

