
6
Leveraging Core Specialization via OS Scheduling to Improve
Performance on Asymmetric Multicore Systems

JUAN CARLOS SAEZ, Complutense University of Madrid
ALEXANDRA FEDOROVA, Simon Fraser University
DAVID KOUFATY, Intel Labs
MANUEL PRIETO, Complutense University of Madrid

Asymmetric multicore processors (AMPs) consist of cores with the same ISA (instruction-set architecture),
but different microarchitectural features, speed, and power consumption. Because cores with more com-
plex features and higher speed typically use more area and consume more energy relative to simpler and
slower cores, we must use these cores for running applications that experience significant performance im-
provements from using those features. Having cores of different types in a single system allows optimizing
the performance/energy trade-off. To deliver this potential to unmodified applications, the OS scheduler
must map threads to cores in consideration of the properties of both. Our work describes a Comprehensive
scheduler for Asymmetric Multicore Processors (CAMP) that addresses shortcomings of previous asymmetry-
aware schedulers. First, previous schedulers catered to only one kind of workload properties that are crucial
for scheduling on AMPs; either efficiency or thread-level parallelism (TLP), but not both. CAMP overcomes
this limitation showing how using both efficiency and TLP in synergy in a single scheduling algorithm can
improve performance. Second, most existing schedulers relying on models for estimating how much faster
a thread executes on a “fast” vs. “slow” core (i.e., the speedup factor) were specifically designed for AMP
systems where cores differ only in clock frequency. However, more realistic AMP systems include cores that
differ more significantly in their features. To demonstrate the effectiveness of CAMP on more realistic sce-
narios, we augmented the CAMP scheduler with a model that predicts the speedup factor on a real AMP
prototype that closely matches future asymmetric systems.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Scheduling; C.1.3
[Processor Architectures]: Other Architecture Styles—Heterogeneous (hybrid) systems

General Terms: Algorithms, Performance, Measurement

Additional Key Words and Phrases: Asymmetric multicore, operating systems, scheduling

ACM Reference Format:
Saez, J. C., Fedorova, A., Koufaty, D., and Prieto, M. 2012. Leveraging core specialization via OS scheduling
to improve performance on asymmetric multicore systems. ACM Trans. Comput. Syst. 30, 2, Article 6
(April 2012), 38 pages.
DOI = 10.1145/2166879.2166880 http://doi.acm.org/10.1145/2166879.2166880

This research was funded by the Spanish government’s research contracts TIN2008-005089 and the Ingenio
2010 Consolider ESP00C-07-20811, by the HIPEAC2 European Network of Excellence and by the National
Science and Engineering Research Council of Canada (NSERC) under the Strategic Project Grant program.
Authors’ addresses: J. C. Saez and M. Prieto, ArTeCS Group, Complutense University of Madrid, Spain;
email: {jcsaezal, mpmatias}@pdi.ucm.es; A. Fedorova, SyNAR Group, Simon Fraser University, Burnaby,
B.C., Canada; email: fedorova@cs.sfu.ca; D. Koufaty, Intel Labs; email: david.a.koufaty@intel.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0734-2071/2012/04-ART6 $10.00

DOI 10.1145/2166879.2166880 http://doi.acm.org/10.1145/2166879.2166880

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:2 J. C. Saez et al.

1. INTRODUCTION

Asymmetric multicore processors (AMP) [Kumar et al. 2003, 2004] were proposed as
a more power-efficient alternative to conventional multicore processors that consist of
identical cores. A performance-asymmetric multicore processor contains at least two
core types, “fast” and “slow,” which support the same instruction-set architecture, but
differ in microarchitectural features, size, power consumption and performance. Fast
cores operate at higher clock speeds and may implement sophisticated microarchitec-
tural features to deliver high single-threaded performance. Slow cores operate at lower
clock speeds and may have a simpler pipeline, thus occupying a smaller area and con-
suming less power than fast cores. The resulting savings in area and power of these
cores allow higher integration to achieve power-efficient execution of applications with
thread-level parallelism (TLP).

Early studies have demonstrated that having just two core types is sufficient to
extract most of the benefits from AMPs [Kumar et al. 2003] and this also simplifies
their design. Nevertheless, we expect future AMP designs to exhibit a wide variety of
fast–to–slow core performance ratios, possibly targeting different market segments [Li
et al. 2010].

An AMP can potentially deliver a higher performance per watt than a CMP (Chip
Multi-Processor) consisting of identical cores [Hill and Marty 2008; Kumar et al. 2003].
Recent research highlighted that this potential can be realizable by matching each
instruction stream with the type of core best suited to this stream [Becchi and Crowley
2006; Kumar et al. 2004]. We refer to this notion of preferring certain types of cores
for certain types of computation as specialization. The two most common types of
specialization are efficiency specialization and TLP specialization.

Efficiency specialization. Some programs are able to use complex and powerful “fast”
cores efficiently. These programs typically have high instruction-level parallelism
(ILP), which enables them to effectively use super-scalar out-of-order execution en-
gines typical of fast cores. Other programs, such as memory-bound applications, ben-
efit little from this complex hardware. Efficiency specialization is about mapping to
fast cores predominantly instruction streams that use those cores efficiently, which
experience performance improvements running on these cores relative to slow cores.

TLP specialization. Consider a workload consisting of parallel and sequential applica-
tions, or alternatively of parallel applications with sequential phases. Previous work
has shown that it is roughly twice as energy efficient to run highly parallel code on
a large number of small and low-power cores than on a smaller number of fast and
powerful cores comparable in area and power [Annavaram et al. 2005]. The fast cores
provide fewer parallel engines per unit of area and power than smaller and simpler
slow cores, and so the parallel code will experience worse performance/watt. On the
other hand, sequential code usually performs poorly on simple slow cores. AMP sys-
tems offer the best of both worlds: fast cores can be used to accelerate sequential code,
while slow cores enable power-efficient execution of parallel code, thus optimizing per-
formance/watt for code of both types.

To actually benefit from specialization, the system must be equipped with a thread
scheduler that maps threads to cores according to the properties of both. Two kinds of
operating system schedulers emerged to address this challenge. The first type targeted
efficiency specialization [Becchi and Crowley 2006; Kumar et al. 2004; Shelepov et al.
2009]; the second type targeted TLP specialization, by mapping application sequential
phases to fast cores and parallel phases to slow cores [Saez et al. 2010b]. Both types
of schedulers showed real performance benefits, but the problem is that they each ad-
dressed an isolated group of workloads. In this work, we present a comprehensive

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:3

algorithm CAMP that combines these two specialization types in a single algorithm.
Unlike earlier work, CAMP addresses both multithreaded and single-threaded work-
loads, and in some cases gives better performance than any algorithm that delivers
only a single type of specialization.

The biggest challenge in making this possible is to equip the CAMP scheduler with
an effective mechanism for deciding which threads are more “profitable” candidates
for running on fast cores. To this end, the scheduler must determine the relative
benefit that an application would experience when running on fast cores relative to
running on slow ones. For single-threaded applications, this benefit can be determined
by approximating the speedup factor (SF); that is, how much quicker an application
retires instructions on a fast core relative to a slow core. In order to estimate this
relative benefit for multithreaded applications, we introduce the new metric Utility
Factor (UF), which accounts for both the speedup factor of the application’s threads
and its TLP and produces a single value that approximates how much the application
as a whole will improve its performance if its threads are allowed to occupy all the
fast cores available on that system. The utility factor enables the CAMP scheduler to
perform effective thread-to-core assignments for multiapplication workloads including
both single- and multithreaded applications.

Threads’ speedup factors (SFs) can be obtained via measurement or modeling. Mea-
surement requires running each thread on each core type. Modeling relies on measur-
ing a thread’s characteristics on any core type and deriving an estimate of the speedup
based on a model. The measurement method can severely degrade performance, espe-
cially on large multicore systems [Shelepov et al. 2009], and so our CAMP algorithm
like several others [Koufaty et al. 2010; Saez et al. 2010a, 2011] uses modeling.

Modeling the speedup factor, however, poses significant challenges since estima-
tion models are inherently architecture specific and asymmetric systems may come
in different forms. Performance asymmetry may be based simply on clock frequency
(different cores run at different clock speeds but are identical otherwise) or on more
substantial differences in microarchitecture, where cores are actually built with dif-
ferent features. While the first type of asymmetry may be used on existing systems
in order, for instance, to comply with a target power budget, the second type asymme-
try will be seen in future asymmetric systems, such as the recently announced ARM
big.LITTLE processor combining Cortex A7 and A15 cores [ARM 2011]. Both types of
asymmetry are, therefore, important to address, but previous schedulers were predom-
inantly designed for the first time of asymmetry. In this work we present a model for
estimating the speedup factor on a system where cores differ in frequencies as well as
on a system where cores have different microarchitectural features (using a prototype
asymmetric system from Intel [Koufaty et al. 2010]). To the best of our knowledge,
this work is the first to develop a robust SF estimation model for an AMP where cores
differ in microarchitectural features.

We implemented CAMP in the OpenSolaris operating system and evaluated it on
real multicore hardware. To assess its effectiveness, we used two asymmetric multi-
core platforms. In the first platform, cores differ in their frequency; in the second one,
cores differ in microarchitecture. We demonstrate that CAMP improves performance
on both platforms.

We compare CAMP with several other asymmetry-aware schedulers including the
Parallelism-Aware (PA) scheduler [Saez et al. 2010b], which performs only TLP spe-
cialization; the Speedup-Factor Driven (SFD) scheduler, which only caters to efficiency
specialization; and a baseline round-robin (RR) scheduler that simply shares fast
cores equally among all threads [Balakrishnan et al. 2005]. For workloads consist-
ing exclusively of single-threaded applications, SFD is sufficient, but this algorithm is
ineffective for workloads containing parallel applications. Conversely, PA is effective

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:4 J. C. Saez et al.

for workloads containing parallel applications, but not for those where only single-
threaded applications are present. CAMP, on the other hand, effectively addresses
both types of workloads. We also found that there is extra benefit in using information
on efficiency in addition to TLP for realistic workloads containing parallel applications.
The greatest benefit of CAMP, therefore, is that it improves performance scheduling
on AMPs for a variety of workloads, smoothly adjusting its strategy depending on the
type of applications running on the system.

The rest of the article is organized as follows. Section 2 explores different estima-
tion models to approximate threads’ speedup factors and analyzes their effectiveness.
Section 3 describes the utility factor’s derivation process. Section 4 presents the design
of CAMP and briefly describes other algorithms that we use for comparison. Section 5
shows our experimental results. Section 6 discusses related work. Finally, Section 7
outlines our main findings.

2. ESTIMATING SPEEDUP FACTORS

Most asymmetry-aware schedulers proposed by the research community were eval-
uated using workloads consisting of single-threaded applications only [Becchi and
Crowley 2006; Koufaty et al. 2010; Kumar et al. 2004; Shelepov et al. 2009]. The
biggest challenge in designing a scheduler for this kind of workloads is to determine
to what extent the performance of individual threads will improve when running on
a fast core relative to a slow core. Single-threaded performance is usually measured
in terms of instructions per second (IPS), and the relative improvement is referred to
as the speedup factor. More formally, we define the speedup factor (SF) for a thread as
IPSfast

IPSslow
, where IPSfast and IPSslow are the thread’s instructions per second (IPS) ratios

achieved on fast and slow cores respectively.
Relying on the speedup factor is sufficient to effectively guide scheduling decisions

when only single-threaded applications are running on the system because the SF of an
individual thread exclusively determines the speedup that it derives from running on a
fast core relative to a slow one. However, the speedup that a multithreaded application
experiences when it uses all fast cores in the AMP (relative to using slow cores only)
depends not only on the SF of all of its threads, but also on additional factors such as
its amount of thread-level parallelism (TLP). As we will see in Section 3, the utility
factor (UF) enables us to approximate this speedup for multithreaded applications.

Several online techniques have been proposed to determine speedup factors (SFs).
Overall, these can be grouped into two broad categories: those employing direct mea-
surement [Becchi and Crowley 2006; Kumar et al. 2004] and those relying on estima-
tion models [Koufaty et al. 2010; Saez et al. 2011].

The former approach entails running each thread on fast and slow cores to monitor
its IPS on both core types and the SF is then computed as the ratio of IPS counts.In
previous work, we showed that running each thread on both core types to measure
SFs causes serious performance issues, making it inappropriate in practice [Shelepov
et al. 2009]; we will elaborate on these issues in Section 6. Since this approach relies
on direct measurement of the SF, we refer to it as the direct measurement approach.

The latter approach, referred to as the modeling approach, relies on estimating a
thread’s SF using its runtime properties collected on any core type, by using, for exam-
ple, performance monitoring counters during the execution. In this work we opted to
follow this approach since it does not require running each thread on both core types
and thus overcomes the main shortcomings of direct measurement [Saez et al. 2011].

In the remainder of this section, we explore the design of SF estimation models
under two different forms of performance asymmetry: one is due to the processor
frequency and another due to differences in cores’ microarchitectural features. In the

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:5

first scenario, analyzed in Section 2.1, the degree of memory intensity of an applica-
tion enables to approximate reasonably well how much the application will slow down
when running on a slow core with respect to a fast core. In the second scenario, cov-
ered in Section 2.2, multiple performance limiting factors must be taken into account
when estimating the SF, and as a result, designing effective estimation models in this
scenario involves additional complexity.

2.1. SF Estimation Model for Cores Differing in Processor Frequency

To predict performance variations due to clock frequency, we must consider the ap-
plication’s degree of memory intensity [Freeh et al. 2007]. An application with a high
rate of memory accesses is likely to stall the core often, so the clock frequency will not
have a significant effect on performance. Memory intensity can be approximated by a
thread’s LLC (last-level-cache) miss rate [Blagodurov et al. 2010].

Our method for computing the speedup factor SF relies on threads’ LLC miss rates
measured online using hardware performance counters. At a high level, the method
works as follows. We compute the hypothetical completion time for some constant
number of instructions on both core types. We compose the completion time of two
components: execution time and stall time. To compute the execution time we assume
a constant number of instructions per cycle (machine dependent) and factor in the
clock speed. To compute the stall time, we estimate the number of cycles used to ser-
vice the LLC misses occurring during that instruction window: for that we must keep
track of the number of LLC misses per 1K instructions retired on the current core type
and the memory latency, which can be discovered by the operating system. Because
the LLC miss rate does not vary significantly between cores that differ in frequency
only, the obtained SF estimates are very similar on both core types. Therefore, we can
safely use the same estimation model on both core types.

This method for estimating the stall time abstracts many details of the microarchi-
tecture: the fact that not all cache misses stall the processor because of out-of-order
execution, the fact that some cache misses can be serviced in parallel, and the fact
that the memory latency may be different depending on memory bus and controller
contention as well as nonuniform memory access (NUMA) latencies on some archi-
tectures. Accounting for all these factors is difficult, because their complex interre-
lationship is not well understood. Using instead a simple model that relies solely on
the LLC and assumes a stable latency did not prevent our scheduler from performing
successfully (see performance results in Section 5.1).

We assessed the effectiveness of our estimation model on two systems made asym-
metric by slowing down the frequency of some of the cores. On the first system,
which includes AMD quad-core “Barcelona” processors, slow cores operate at the low-
est DVFS (dynamic voltage and frequency scaling) level supported by the platform
(1.15GHz), while fast cores operate at the maximum DVFS level (2.3Ghz). The second
system integrates quad-core Intel Xeon “Clovertown” processors. Its fast cores operate
at 3.0 GHz, while slow cores run at 2.0 GHz. We provide further information on our
experimental platforms in Section 5.

Figures 1(a) and 1(b) illustrate the inverse correlation between the LLC miss rate
and the SF for benchmarks in the SPEC CPU2006 suite. We observe that applications
with a high miss rate experience low SFs. On the contrary, applications deriving the
highest attainable SF on the platform have negligible LLC miss rates. The data also
reveal that the inverse correlation between the miss rate and the SF is stronger on
the Intel platform than on the AMD platform. We hypothesized that this has to do
with the way the LLC miss rate is measured on both platforms. On the Intel plat-
form, LLC misses incurred by the pre-fetching hardware were excluded from the total

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:6 J. C. Saez et al.

Fig. 1. Correlation between LLC miss rate and actual speedup factor for all benchmarks in the SPEC
CPU2006 suite running on two AMPs where cores differ in processor frequency.

Fig. 2. Observed and predicted speedup factors for all benchmarks in the SPEC CPU2006 suite running
on two AMP systems where cores differ in processor frequency. Some outliers have been labeled. Perfectly
accurate estimations have all points on the diagonal line. The correlation coefficients for the prediction are
0.86 (AMD) and 0.94 (Intel).

miss count. These cache misses do not usually translate into pipeline stalls, so it is
better not to account for them in this context. Unfortunately, the monitoring unit on
the AMD system does not filter out prefetching-related misses from the total count,
so the obtained value may overcount the miss rate, especially for floating-point bench-
marks (such as leslie3d, lbm or bwaves), which lend themselves to prefetching-related
optimizations.

Figures 2(a) and 2(b) report how well estimated SFs match actual SFs for all SPEC
CPU2006 benchmarks on the Intel and AMD platforms, respectively. The actual SF
is measured by running the application on the slow core, then on the fast core, and
computing the relative speedup. The estimated SF is obtained from the average LLC
measured throughout the entire run of the application. As evident, the estimation
method is successful in separating highly memory-intensive threads (which are less
sensitive to changes in frequency and therefore concentrated towards lower left) from

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:7

Fig. 3. Speedup of a X5560 core over different slower cores. Each data point represents a different micro-
benchmark [Koufaty et al. 2010].

CPU-intensive threads (upper right), but is less precise in classifying mildly memory-
intensive benchmarks.

Despite the inaccuracies due to the simplifying assumptions made in our model,
we observed that these inaccuracies can be effectively mitigated when it is used in the
scheduler. To make this possible, the scheduler classifies applications into three coarse
Speedup Factor categories rather than relying on raw SF estimates. The boundaries
between SF categories are displayed in Figure 2 as horizontal solid lines.

2.2. SF Estimation Model for Cores Differing in Microarchitecture

The emulation of AMPs by downscaling the frequency of some of the cores in sym-
metric multicore systems has been widely used in both the academic community and
the industry to assess the effectiveness of diverse asymmetry-aware scheduling pro-
posals [Annavaram et al. 2005; Li et al. 2007; Saez et al. 2010b; Shelepov et al. 2009].
Nevertheless, Koufaty et al. [2010] demonstrated recently that asymmetric systems
where cores differ in frequency only do not exhibit similar performance profiles to
those of more realistic systems that integrate cores with different microarchitectures.
To illustrate this fact they designed a set of 40 CPU-intensive micro-benchmarks with
varying amounts of ILP and measured the wall clock time of each benchmark on an
out-of-order core that operates at 2.8Ghz and capable of retiring up to four micro-ops
per cycle. They reported the speedup experimented by the benchmarks on this “fast”
core with respect to three other slower cores: (1) an in-order core operating at the same
frequency as the fast core, (2) a fast core running at the same frequency but retiring up
to one micro-op per cycle (single micro-op retirement mode) and (3) a fast core running
at 1.6 GHz (frequency scaled). Figure 3 shows the relative performance of these mi-
crobenchmarks, displayed in ascending order by ILP. The relative speedup with respect
to both an in-order core and a core in single micro-op retirement mode varies with the
benchmarks’ ILP. In contrast, the speedup relative to frequency scaling remains the
same across the board. As discussed previously, only the memory and cache behavior
may affect the relative speedup between cores running at different clock speeds but all
of these microbenchmarks are CPU intensive. This result underscores that systems
consisting of cores with different frequencies do not model accurately the performance
profile of more realistic AMP systems, where cores with different microarchitectural
features may be present.

Results in Figure 3 also suggest that using cores with reduced retirement width
makes it possible to model the behavior of slower in-order cores more accurately than
frequency-scaled cores. This led us [Koufaty et al. 2010] to experimenting with a re-
search AMP prototype consisting of cores that differ in retirement width. In this paper
we used a prototype system similar to the one used in Koufaty et al. [2010], which con-
sists of two Intel Xeon E5645 “Westmere” hex-core processors. By using proprietary

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:8 J. C. Saez et al.

Fig. 4. Correlation between different performance metrics and the observed speedup factor for all bench-
marks in the SPEC CPU2006 suite experienced on an AMP system where cores differ in microarchitecture.

tools we changed the retirement width in several cores of the system. In particular,
slow cores were set to retire up to one micro-op per cycle, whereas fast cores can retire
up to four micro-ops per cycle (default setting).

Prior to describing our approach to estimating the speedup factor on the prototype
system, we illustrate the main challenges associated with estimating speedup factors
under this specific form of performance asymmetry. Figure 4 shows the correlation
between different performance metrics and the speedup factor experienced on this
system by applications in the SPEC CPU2006 suite. LLC miss rates could be used
as a first approximation to determine SFs, but this metric alone is not sufficient to
approximate SFs with enough accuracy. As shown in Figure 4(a), benchmarks such as
gobmk, sjeng and gromacs exhibit very low LLC miss rates, but experience relatively
low SFs. Further factors, in addition to the degree of memory intensity, must be con-
sidered when estimating SFs on this platform. In particular, a high number of internal
pipeline stalls (as opposed to stalls due to external sources such as memory requests)
usually translates into a low SF on this system,1 which explains why such low SF
is experienced by gobmk and sjeng (as shown in Figure 4(b)). Unfortunately, relying
solely on both LLC misses and internal stalls would still incur severe mispredictions.
For example, all applications with a low LLC miss rate and a low number of internal
stalls would be expected to derive a high SF; that assumption, however, would lead to
a major misprediction for gromacs (actual SF = 1.3).

The previous discussion highlights that devising an accurate SF estimation model
for this form of performance asymmetry can be a rather challenging task for several
reasons. First, the metrics capturing the most relevant performance-limiting fac-
tors have to be identified by (manually) analyzing correlations between various per-
formance metrics and SFs. Second, the estimation model must combine information
about multiple performance metrics.

In the quest of more general and systematic methods to derive SF estimation mod-
els, we explored several statistical and machine learning techniques. To that end, we
turned to the open source WEKA machine learning package [Hall et al. 2009]. This

1Koufaty et al. [2010] found that very frequent internal stalls (such as those associated with branch mis-
predictions) may lead to substantially reducing the speedup factor on this system even for CPU-intensive
applications. These stalls could be approximated by means of instruction starvation, a metric accounting for
processor internal stalls occurring at the pipeline front-end (Figure 4(b)).

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:9

Table I. Selected Metrics

Metric Description
IPC Number of instructions retired per cycle
LLC miss rate Number of L3 (last-level) cache misses per 1K retired instructions
L2 miss rate Number of L2 cache misses per 1K retired instructions
Execution stalls Number of cycles no micro-ops are issued per 1K processor cycles
Retirement stalls Number of cycles no micro-ops are retired per 1K processor cycles

powerful tool is equipped with numerous methods enabling to infer relationships be-
tween a set of observations (input attributes) and a target variable. In our setting,
the observations correspond to several performance monitoring metrics (collected by
means of performance counters) and the target variable is the speedup factor (SF). We
found that constructing two separate models (one for predicting the SF from fast-core
metrics, and the other from slow-core metrics) provides better accuracy than a unified
model. Furthermore, having two separate models makes it easier to cope with core-
specific metrics such as the number of instructions retired per cycle, whose values on
fast and slow cores may differ for the same application.

Among the numerous methods provided by WEKA for numeric prediction, we found
that additive regression [Friedman 1999] achieved reasonably good accuracy. At a
high level, the method takes an initial value for the SF (by convention, the average SF
observed by all applications in the training set) and approximates the SF by summing
up positive and negative factors to this initial value. Each additive-regression factor is
associated with an input metric the factor depends on; input metrics can be associated
with zero or more factors. Additive-regression factors are computed sequentially, such
that the squared error of the predictions obtained up to that point is minimized.

In order to improve the robustness of the estimation model, we trained2 the
machine-learning method with performance data from all benchmarks in the SPEC
CPU2000 and SPEC CPU2006 suites. For those applications, we collected a compre-
hensive set of performance metrics ranging from general metrics, such as the IPC or
LLC miss rate, to more specific metrics approximating stall decomposition on the Intel
Westmere processor, such as those related with execution stalls or retirement stalls.
Since all the analyzed performance metrics cannot be monitored simultaneously (they
exceed the maximum number of performance counters available on the platform), we
selected those metrics that contributed more significantly to the resulting SF estimate
on each core type (i.e., metrics with the highest additive-regression factors). Selected
metrics are shown in Table I. The final SF model for each core type was generated
using those metrics as input to the additive-regression engine.

Figures 5(a) and 5(b) show the comparison between estimated and actual SFs for
benchmarks in the SPEC CPU2006 and CPU2000 suites on fast and slow cores, re-
spectively. At a first glance, we observe that the accuracy achieved on the fast core
is significantly better than on the slow one. Achieving a better accuracy on the fast
core than on the slow core, however, is not an unexpected result: intuitively, it is
much easier to tell which applications would suffer the most from diminishing certain
microarchitectural capabilities in the core (fast-to-slow prediction), than identifying
which ones would likely experience the highest benefit from adding extra hardware
resources (slow-to-fast prediction).

2Given that the amount of data for training and testing is limited (data from 54 applications), we employed
cross-validation to derive the SF models on both core types. As such, each model was repeatedly generated
using part of the data for training and the other part for testing.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:10 J. C. Saez et al.

Fig. 5. Observed and predicted speedup factors for all benchmarks in SPEC CPU2000 and SPEC CPU2006
running on an AMP system where cores differ in microarchitecture. Some outliers have been labeled. The
correlation coefficients for the SF prediction on fast and slow cores are 0.94 and 0.91 respectively.

Fig. 6. Observed and predicted speedup factors for additional applications running on an AMP system
where cores differ in microarchitecture. The correlation coefficients for the SF prediction on fast and slow
cores are 0.94 and 0.86 respectively.

In order to complement our assessment of the estimation model designed for this
form of performance asymmetry, we experimented with additional applications from
different benchmarks suites to those used to generate the model. Figure 6 shows the
results for applications in the SPEC OMP2001, NAS Parallel, PARSEC and Minebench
benchmark suites, plus a few others. Most applications in these suites are parallel, so,
for the sake of simplicity, we collected performance metrics and SFs running all these
applications with a single thread. As evident, the model successfully approximates the
SF of these applications.

Finally, we must highlight that the scheduler classifies applications into several
Speedup Factor categories to mitigate inaccuracies in the estimation, in the same way
it does on systems where cores differ in processor frequency. More specifically, the
scheduler uses four SF categories to cope with the observed range of SFs (from 1.0
to 2.17).

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:11

3. UTILITY FACTOR

The main goal of the CAMP scheduler is to maximize system-wide performance. In
other words, CAMP aims to maximize the average IPC (instructions per cycle) of a set
of applications running simultaneously on an AMP system. Previous work has high-
lighted that assigning preferentially to fast cores those applications that experience
the highest speedups on these cores (relative to slow ones) contributes to increasing
the average IPC of the workload [Becchi and Crowley 2006; Kumar et al. 2004]. To
make this possible, the thread scheduler must be equipped with performance mod-
els or other heuristics enabling it to estimate applications’ relative speedups. In this
section, we introduce the Utility Factor (UF), a new metric enabling to approximate
relative speedups for both single-threaded and multithreaded applications on AMP
systems.

Given a system with NFC fast cores, the Utility Factor (UF) is a metric approx-
imating the application speedup if NFC of its threads are placed on fast cores and
any remaining threads are placed on slow cores, relative to placing all its threads on
slow cores. For single-threaded applications, this speedup is simply the speedup fac-
tor (UF = SF). In the remainder of this section, we show how to obtain the UF for
multithreaded applications. More specifically, in Section 3.1, we derive a formula for
the UF using an analytical approach. We observed that using this formula directly in
the scheduler implementation gives rise to several problems, so we opted to derive a
simpler formula experimentally. Section 3.2 presents this simpler formula that closely
approximates the analytically derived version.

3.1. Analytical Derivation for the UF

Asymmetric systems have only a few fast cores. So in multithreaded applications, only
a few of the threads will run on the fast cores while the rest are running on slow cores.
This makes it challenging to estimate the UF for multithreaded applications.

Our goal is to derive a formula enabling the scheduler to estimate how much a
multithreaded application would speed up if all fast cores in the AMP were devoted to
running threads from this application and assuming that the application runs alone
in the system. The speedup is computed with respect to the performance that would
result from running all the application threads on slow cores. If the estimated speedup
is higher than those of other applications, the application’s threads will be assigned
preferentially to fast cores; otherwise, threads will be mapped to slow cores. Notably,
the same speedup estimate for the application will be used to make these decisions
until a change in the active thread count of the application or in the SF of any of its
threads takes place. Since the speedup depends on these factors [Saez et al. 2010b],
the scheduler will reevaluate the formula to obtain an up-to-date estimate based on
the application’s current properties.

To make the derivation of the formula tractable, we assume that the application
is perfectly balanced (i.e., the work is evenly distributed among the threads). This is
an assumption that would fit many regular applications. Nevertheless, this assump-
tion is only used to facilitate the derivation of the closed-form analytical model for the
UF and does not prevent our CAMP scheduler from supporting applications of any
kind, including unbalanced applications. These applications usually exhibit phases
with limited parallelism where some of their threads do useful work while the re-
maining ones wait, which results in execution phases with different number of active
threads [Saez et al. 2010b]. However, as stated previously, any change in the number
of active threads triggers an update operation in the scheduler, so in practice differ-
ent speedup estimates are used for the various application phases, thus resulting in
different scheduling decisions for each phase.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:12 J. C. Saez et al.

Fig. 7. Execution of a parallel phase under the BusyFCs scheduler on an AMP system.

We further assume that the scheduler always keeps the fast cores busy; we refer
to it as BusyFCs. Whenever a thread waits on a barrier or exits while running on
a fast core, BusyFCs immediately picks another thread running on a slow core and
migrates it onto the fast core, thus maximizing its utilization. Note that, in deriving
the UF formula, we did not consider the theoretical speedup delivered by a scheduler
that fair-shares fast cores among all the application threads. Although such a sched-
uler may give better performance than using a BusyFCs-like approach in some cases,
fair-sharing fast cores entails migrating threads periodically [Saez et al. 2011], which
results in a higher number of migrations than those of BusyFCs. These extra migra-
tions may degrade performance significantly, especially for memory-intensive appli-
cations, and so we opted to derive the UF formula assuming a BusyFC-like scheduler.
Moreover, the behavior of the CAMP scheduler when a highly parallel application runs
alone in the system is similar to that of BusyFCs.

In constructing the model, we also assume that the application consists of several
parallel phases separated by synchronization barriers. At the beginning of each paral-
lel phase, BusyFCs maps some threads to the NFC fast cores and others to slow cores.
Threads running on fast cores will come to the barrier sooner than threads running on
a slow core. Once at the barrier, the threads block or spin, effectively making the fast
cores idle: the cores will literally go idle in case of blocking or will do useless work in
case of spinning. The BusyFCs scheduler will use these freed-up fast cores for some
of the threads running on slow cores. Figure 7(a) illustrates this process. Our goal is
to model the application performance in this complex scenario relative to the scenario
where all threads run on slow cores.

A balanced application consisting of several parallel phases and barriers is one of
the most difficult to model and serves as a good base to address other modes of ex-
ecution. For instance, an application where threads work independently and never
synchronize can be approximated as a single parallel phase in our model. An appli-
cation where synchronization occurs between groups of threads can be modeled as
multiple applications with the parallel-phase-then-barrier behavior. We assume this
base model in our work only to approximate the UF, our scheduler supports any kind
of applications.

We also make three additional simplifying assumptions in constructing the model.

— The number of threads in the application does not exceed the number of cores in
the system. This assumption is reasonable because the applications targeted by our
scheduler (high-performance CPU-bound parallel applications) are not likely to be
run with more threads than cores [van der Pas 2005].

— In many parallel applications, all their threads exhibit very similar speedup fac-
tors since they execute the same code with different data. As a result, we opted to

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:13

use the average speedup factor of all the threads application (denoted by SFavg) to
approximate the SF of any thread in it.

— The theoretical speedup derived in this section does not account for migration over-
heads. As a result, the formula approximates an upper bound of the achievable
speedup. Nevertheless, the CAMP scheduler takes into account migration over-
heads when making scheduling decisions, as we will show in Section 4.1.3.

Since we have focused on studying high-performance parallel applications, we use
the wall clock (or completion) time to assess performance. Under BusyFCs, determin-
ing the completion time of the application boils down to estimating the execution time
of the slowest thread for each parallel phase. We determine this execution time by
approximating the fraction of instructions executed by the slowest thread on fast and
slow cores. To understand how these fractions can be obtained, we analyze the be-
havior of the BusyFCs scheduler during the execution of a parallel phase, where each
thread has to complete a given number of instructions to reach the synchronization
barrier at the end of the phase. The sequence of actions performed by the BusyFCs
scheduler during the execution of a parallel phase is outlined in Algorithm 1. In each
iteration of the algorithm, BusyFCs places up to NFC threads on fast cores and waits
till these threads block (i.e., they complete all their remaining instructions until reach-
ing the barrier). When threads block on fast cores, these become idle; then, BusyFCs
migrates as many threads as possible from slow to fast cores. Because the scheduler
may perform up to NFC slow-to-fast-core migrations in each iteration, all threads will
reach the synchronization point in

⌊
Nthreads−1

NFC

⌋
+ 1 iterations. Note that the function �x�

denotes the largest integer not greater than x.
The slowest thread in a given parallel phase is the one mapped to a fast core in the

last iteration of Algorithm 1. An estimate of the fraction of instructions executed by
this thread on fast and slow cores makes it possible to approximate the completion
time of the application under BusyFCs. The detailed derivation process that leads to
that estimate as well as to the analytical formula for the UF (speedup under BusyFCs
relative to running on slow cores only) can be found in the Appendix. The resulting
formula is as follows:

AnalyticalUF =
SFavg(

1 − 1
SFavg

)⌊
Nthreads−1

NFC

⌋
· (1 − SFavg) + SFavg

. (1)

3.2. A Simpler Approximation for the UF

Evaluating AnalyticalUF is a costly operation at kernel level. This has to do with the
fact that floating-point operations must be avoided in the kernel (due to the cost asso-
ciated with saving and restoring the FP registers), so computing the exponentiation in
the denominator entails executing a for-loop consisting of integer operations and with
a number of iterations equal to the exponent. Note also that the exponent in the de-
nominator is nonconstant and depends on the number of running threads, which can
be large on many-core systems. One way to overcome this implementation problem is
to precompute the UF values for several commonly occurring SF and Nthreads values
and store them in a lookup table. Another option is to derive a simpler formula. A
good approximation is as follows:

UF =
SFavg − 1(⌊

Nthreads−1
NFC

⌋
+ 1

)k + 1. (2)

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:14 J. C. Saez et al.

Fig. 8. Comparison between the AnalyticalUF and the UF formulas for different values of k, SFavg and
Nthreads.

The variables in the formula are Nthreads (the number of runnable threads in the
application) and SFavg (the average speedup factor of the application’s threads). Note
that the denominator of this simple formula is also an exponentiation, but the expo-
nent is now a constant k (k ∈ N). In practice, using k = 2 makes it possible to approxi-
mate the AnalyticalUF reasonably well in our experimental platforms, while ensuring
less computation cost; evaluating the denominator in the fraction of the UF formula
when k = 2 entails computing just one integer multiplication regardless of the number
of threads in the application. Later on, we will describe how we arrived at this value
for k.

Let us describe the intuition behind the UF’s formula. The easiest way to under-
stand it is to first consider the case where the application has only a single thread. In
this case, UF = SFavg; in other words, the utility factor is equal to the speedup that this
application would experience from running on a fast core relative to a slow core. Next,
let us focus on the case when the application is multithreaded. If all threads were run-
ning on fast cores, then the entire application would achieve the speedup of SFavg. In
that case, the denominator is equal to one and UF = SFavg. However, if the number of
threads is greater than the number of fast cores, then, some of threads will be mapped
to fast cores for longer periods than others (as explained in Section 3.1) and, as a result,
the overall utility factor (speedup) will be less than SFavg. To account for this, we ana-
lyzed how the speedup provided by the AnalyticalUF formula varies with Nthreads when
Nthreads > NFC. We observed that AnalyticalUF decreases as

⌊
Nthreads−1

NFC

⌋
+ 1 (the number

of iterations of the loop in Algorithm 1) increases. Figure 8(a) depicts this trend for
a hypothetical balanced application with SFavg = 1.8 running with different number
of threads on an AMP system consisting of two fast cores and eight slow cores. This
observation led us to using the number of iterations of the loop in Algorithm 1 raised

to k in the UF formula, hence
(⌊

Nthreads−1
NFC

⌋
+ 1

)k
; the k parameter has been introduced

as the exponent to closely track AnalyticalUF. Since the lowest attainable speedup is 1

(no speedup), only SFavg − 1 is divided by
(⌊

Nthreads−1
NFC

⌋
+ 1

)k
in the UF formula.

Figure 8(a) shows a comparison between AnalyticalUF and UF for different values
of k when SFavg = 1.8. In this case, choosing k = 2 provides the best approximation
to the AnalyticalUF. Since this result alone is not enough to guarantee that k = 2 will
provide good approximations in most cases, we opted to analyze how the absolute er-
ror |AnalyticalUF − UF| varies for different values of k, SFavg and Nthreads. Figure 8(b)
shows the results. Error numbers for different values of k are plotted in separate
curves. There is one point for each pair

(
k, SFavg

)
, and each point represents the

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:15

Fig. 9. Comparison between the UF and the observed speedup under the BusyFCs scheduler for highly
parallel applications running on 2FC-8SC. Both the explicit comparison (left) and the absolute errors (right)
are shown. The correlation coefficient is 0.98.

average absolute error obtained for Nthreads ranging from 1 to 8. Note that we have
explored an SFavg range between 1.0 and 2.0 since this is a typical range in our ex-
perimental platforms, where fast cores are twice as fast as slow cores at the most (see
Section 5). The results reveal that choosing k = 2 leads to low absolute errors across
the board (the lower the error, the better the estimation), and so this is the actual
value we used for our experiments.

Next, we demonstrate experimentally that the UF formula with k = 2 closely ap-
proximates the actual speedup delivered by the BusyFCs scheduler. Figure 9 shows
the comparison between the UF and the actual BusyFCs speedup for several highly
parallel applications with different synchronization patterns and memory-intensity
levels. These applications belong to the SPEC OMP2001, NAS Parallel and Minebench
benchmark suites. Both the observed speedup and the UF have been obtained for
Nthreads ranging from 1 to 8, and so the figures show eight points for each application.
To compute the actual performance under BusyFCs, we use our own implementation
of this algorithm. The actual speedup was measured on an asymmetric configuration
with two fast cores and eight slow cores (2FC-8SC) where cores operate at twice the
clock frequency of slow cores. Applications’ SFavgs were approximated offline by run-
ning the applications with a single thread first on slow cores, then on fast cores and
computing the wall clock speedup. As evident, the estimated UF closely tracks the
quantity it attempts to approximate. We performed validation for other highly paral-
lel applications from the aforementioned benchmark suites, and found that the results
were quantitatively similar (so they are not reported).

Although we only assessed the accuracy of the UF for balanced parallel applications,
we must underscore that the UF formula can be also used to estimate the speedup
for other types of parallel applications. For example, both unbalanced applications
and those including fully sequential phases exhibit execution phases with different
speedup [Annavaram et al. 2005; Saez et al. 2010b]. Intuitively, devoting one fast
core to accelerate a parallel application when it runs a sequential phase (with a single
runnable thread) delivers higher performance benefits that using the fast core to run
just one thread of the application when it executes a parallel phase (multiple runnable
threads). As stated earlier, the scheduler uses a different speedup estimate (UF value)
for application phases with different number of runnable threads (or SFs), thus effec-
tively approximating the speedup for each phase.

At this point, we must highlight that maintaining application-wide UF values,
which are shared by all threads of the same application, may limit the scalability of the
scheduler. Since the UF formula depends on both SFavg and Nthreads, the application

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:16 J. C. Saez et al.

Fig. 10. Components of the CAMP scheduler.

UF must be updated as soon as a change in the runnable thread count or in the SF of
any of its threads takes place. In order to avoid contention for accessing the shared UF
value from multiple cores, we opted to use per-thread UFs rather than per-application
UFs. In order to compute a thread’s UF, the CAMP scheduler uses the thread’s SF in
Equation (2) instead of SFavg. Notably, using per thread UFs leads to similar schedul-
ing decisions than those that would be made when using per-application UFs in most
cases. For example, in applications with many active threads the speedup derived from
using the scarce fast cores on the AMP becomes negligible regardless of the value of
the SF, and so the UF will be similar across threads of the same application (UF ≈ 1).
Furthermore, in most applications we examined (see more about our selected bench-
marks in Section 5) all threads do the same type of work, so their SF values would
be largely the same, which also leads to similar UF values. For applications with a
handful of threads and exhibiting different SF values, those threads with the highest
SFs would have more chances of being assigned to fast cores by the scheduler.

4. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation of the CAMP scheduler as
well as the other schedulers used for comparison.

4.1. The CAMP Scheduler

The CAMP scheduler has a modular design, which is based on two major components:
the scheduling module and the monitoring modules. The scheduling module is the
code that assigns runnable threads to the different core types and ensures load bal-
ance. This component is platform independent; namely, it has been built to work on
top of any target AMP system, not assuming any specific form of performance asym-
metry. The monitoring modules, on the other hand, implement platform-specific SF
estimation models, such as those described in Section 2, aimed to provide the schedul-
ing module with up-to-date per-thread SFs as threads go through different program
phases.

Figure 10 illustrates the interaction between CAMP’s components. The schedul-
ing module makes use of a generic API to periodically obtain per-thread SF estimates
provided by the monitoring modules. Several monitoring modules might be available
in the system, but only one of them will be enabled at a time: the one implementing
the SF estimation model for the asymmetric platform in question (e.g., cores with dif-
ferent frequencies). Because SF estimation models rely on monitoring applications’
performance during the execution, the monitoring module is in charge of gathering

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:17

Table II. Correspondence between UF Values and Utility Classes

Utility Class UF range
HIGH UF ≥ upper threshold

MEDIUM medium threshold ≤ UF < upper threshold

LOW lower threshold ≤ UF < medium threshold

VERY LOW UF < lower threshold

data from the hardware performance counters. In order to improve portability across
different microarchitectures, performance-counter processor-specific operations are
not performed directly by the monitoring module, but instead are encapsulated into
a hardware-counter access layer.

This modular design makes the CAMP scheduler easily extensible to new forms
of performance asymmetry; adding support for a new form of performance asymme-
try entails creating the associated platform-specific monitoring module. In our im-
plementation, monitoring modules have been implemented as dynamically loadable
kernel modules. CAMP’s scheduling module has been implemented as a new Solaris
scheduling class that attempts to maximize the average performance of multiappli-
cation workloads running on AMPs. It targets primarily single-threaded and high-
performance parallel applications rather than other applications such as web servers,
for which achieving high throughput and acceptable response times is more important
than improving the overall system performance.

The remainder of this section is organized as follows. Section 4.1.1 describes the
CAMP scheduling algorithm. Section 4.1.2 provides further details on the inner work-
ings of CAMP’s monitoring modules. Finally, Section 4.1.3 gives an overview of our
approach to mitigating the overhead associated with thread migrations in the sched-
uler implementation.

4.1.1. The Scheduling Module: The CAMP Algorithm. As stated in Section 3, CAMP aims
to maximize the performance of a set of applications that run simultaneously on an
AMP system. To make this possible, CAMP’s scheduling module classifies threads
into utility classes (based on their UFs) and preferentially assigns to fast cores those
threads with the highest UFs. Using classes instead of raw UF values makes it pos-
sible to mitigate some inaccuracies in the estimation of a thread’s SF (used in the UF
formula), as well as to provide comparable treatment for threads whose UFs are very
close.

According to their utility factors, threads are categorized into four utility classes:
VERY LOW, LOW, MEDIUM and HIGH. Table II shows the utility class that will be
assigned to each thread based on its UF value. Utility classes are displayed in the ta-
ble in descending order by priority to run on fast cores. Hence, threads falling into the
HIGH utility class would be preferentially assigned to fast cores, followed by threads
in the MEDIUM, LOW and VERY LOW classes, respectively. This classification relies
on three utility thresholds (lower, medium and upper) which determine the bound-
aries between utility classes. In our experimental evaluation, we have used different
threshold values for each platform. Thresholds have been chosen such that the num-
ber of utility-class mispredictions for the diverse application sets shown in Sections 2.1
and 2.2 is minimized.

The VERY LOW utility class is used primarily for threads from applications that
run phases with a high amount of TLP. As pointed out in Section 3, highly paral-
lel applications derive speedups as low as 0% from using all fast cores available in
the system, and, as a result, threads from those applications exhibit low UF values
(UF ≈ 1). Most sequential applications, on the other hand, experience nonnegligible

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:18 J. C. Saez et al.

speedups on our target asymmetric systems, so, in practice, the HIGH, MEDIUM and
LOW utility classes are primarily used to categorize serial code. Finally, mildly paral-
lel applications (i.e., applications running with a handful of threads only) typically fall
into the LOW and VERY LOW utility classes.

At a high level, the assignments of threads to core types are performed as fol-
lows. Threads falling in the HIGH utility class will run on fast cores. If after all
high-utility threads were placed on fast cores there are idle fast cores remaining, they
will be used for running medium-utility threads or, if no such threads are available,
low-utility threads and very-low-utility threads, respectively (we do not optimize for
power consumption in this work, so our scheduler tries to keep fast cores as busy as
possible).

If there are more high-utility threads than fast cores, fast cores will be fair-shared
among these threads using a round-robin mechanism that was presented in our earlier
work [Saez et al. 2011]. This mechanism relies on periodic thread migrations, that, in
our setting, take place every 2 seconds on average. As we will show in Section 5, fair-
sharing fast cores among high-utility threads gives better average performance that
running only some of these threads on fast cores. In practice, fair-sharing is only trig-
gered for single-threaded applications with a high utility factor. As explained below,
multithreaded applications will most often fall into the LOW utility class. Therefore,
for multithreaded applications, CAMP’s behavior is most similar to that of BusyFCs,
hence the assumption used in the derivation of the UF.

In contrast with threads in the HIGH utility class, fast cores will not be shared
equally for threads in the remaining classes. Sharing the cores equally implies cross-
core migrations as threads are moved between fast and slow cores. As shown in our
previous work [Saez et al. 2010b], these migrations degrade performance, especially
for memory-intensive threads, because threads may lose their last-level cache state as
a result of migration.

Threads of parallel applications executing a sequential phase will be designated to
a special class: SEQUENTIAL BOOSTED. These “serial” threads will get the high-
est priority for running on fast cores: this provides more opportunities to accelerate
sequential phases. Only serial threads with UF ≥ upper threshold, however, will be
assigned to the SEQUENTIAL BOOSTED class. Threads in other classes will remain
in their regular class despite running sequential phases. We opted not to give these
threads an elevated status because, first they do not use fast cores efficiently; and sec-
ond, that may result in relegating high-utility threads to slow cores. Note that when
a thread in the SEQUENTIAL BOOSTED class runs on a fast core, CAMP only fair
shares the remaining fast cores among high-utility threads. To prevent the monopo-
lization of fast cores, threads in the SEQUENTIAL BOOSTED class will be granted
this elevated status for amp boost ticks clock ticks (a configurable parameter) at the
most. After that period, they will be downgraded to their regular class, as determined
by the utility factor. After exploring the effect of varying the amp_boost_ticks param-
eter, we opted to set it to fifty time slices (0.5 seconds), which ensures the acceleration
of sequential phases without monopolizing fast cores.

4.1.2. The Monitoring Module: Determining Speedup Factors. In Section 2, we analyzed dif-
ferent estimation models enabling us to approximate threads’ speedup factors on our
target platforms. Such estimation models are implemented as platform-specific mon-
itoring modules that feed the scheduling module with up-to-date per-thread speedup
factors as these go through different program phases.

The monitoring module uses hardware performance counters to keep track of the
necessary performance metrics used as input to the SF estimation model in ques-
tion. Performance counters are sampled every 20 timer ticks (roughly 200ms on our

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:19

experimental system). We observed that the overhead associated with sampling per-
formance counters and estimating speedup factors becomes negligible at this sampling
rate.

We keep a running average of the estimated SFs observed at different sampling
periods and we discard the first values collected immediately after the thread starts or
after it is migrated to another core in order to correct for cold-start effects causing the
SF to spike intermittently after migration.

CAMP’s monitoring modules implement a carefully crafted mechanism to filter
out transitions between different program phases. Updating SF estimations during
abrupt phase changes may trigger premature changes in the UF and, as a result, un-
necessary migrations, which may cause substantial performance overheads. Instead,
SF estimations are updated exclusively once a thread enters a phase of stable be-
havior. To detect those stable phases, we used a light-weight mechanism based on
a phase transition threshold parameter (12% in our experimental platform). When
the running average is recorded, it is compared with the previous average measured
over the previous interval. If the two differ by more than the transition threshold, a
phase transition is indicated. Two or more sampling intervals containing no indicated
phase transition signal a stable phase.

4.1.3. Topology-Aware Design. An important challenge in implementing any
asymmetry-aware scheduler is to reduce the overhead associated with migrating
threads across cores. Any asymmetry-aware scheduler relies on cross-core migrations
to deliver the benefits of its policy. For example, CAMP must migrate a high utility
thread from a slow core to a fast core if it detects that the thread is executing a
sequential phase. Unfortunately, migrations can be quite expensive, especially if the
source and target cores do not share the last-level cache (LLC).

On NUMA architectures, remote memory accesses further aggravate this issue and
migration cost can be even higher. However, any attempt to reduce the number of mi-
grations may backfire by decreasing the overall benefits of asymmetric policies. Apart
from making the scheduler aware of applications’ sensitivities to cross-core migrations,
it is also worth considering ways to make migrations less expensive. In particular, if
AMP systems are designed such that there is at least a fast core in each memory-
hierarchy domain (i.e., sharing a LLC with some slow cores), migration overhead can
be mitigated. In 2010b we demonstrated that the overhead of migrations becomes
negligible with such migration-friendly designs, as long as the schedulers minimize
cross-domain migrations. Based on these insights, our implementations of all the in-
vestigated schedulers have been carefully crafted to avoid cross-domain migrations
when possible, so they are topology aware.

4.2. The Other Schedulers

There are three other schedulers with which we compare the CAMP algorithm:
Parallelism-Aware (PA), which delivers TLP specialization only; SF-Driven (SFD),
which delivers efficiency specialization only; and round-robin (RR), which equally
shares fast cores among all threads. We implemented all these algorithms in OpenSo-
laris. We do not compare with the default scheduler present in our experimental op-
erating system because the performance with this scheduler exhibited a high variance
making the comparison difficult. We observed that this variance is especially high
when running multiapplication workloads consisting of single-threaded applications
only. Nevertheless, as shown in Saez et al. [2011], RR’s performance is comparable to
or better than the default scheduler.

To the best of our knowledge, the PA scheduler is the first OS-level scheduler de-
livering TLP specialization [Saez et al. 2010b]. The PA scheduler has the same code

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:20 J. C. Saez et al.

base as CAMP, but since PA accounts only for TLP, the utility factor as such cannot be
used to classify threads. For that reason, the SF value in the UF formula is replaced
by a constant representing the upper bound of the achievable SF on a given system:
the ratio between the maximum IPS attainable on a fast and on a slow core. PA, like
CAMP, boosts the fast-core priority of threads executing sequential phases of parallel
applications by assigning them into SEQUENTIAL BOOSTED class. However, since
PA is not aware of threads’ SFs, it cannot distinguish between HIGH, MEDIUM, LOW
and VERY LOW utility threads. So unlike CAMP, which will place only high-utility
threads in the SEQUENTIAL BOOSTED class, PA will place all threads executing
sequential phases in that class.

SFD also uses the UF formula to drive scheduling decisions, but because it does not
account for the TLP of the application, the number of threads is always equal to one.
The SFD scheduler estimates the SF by means of the same estimation models used by
CAMP.

The RR algorithm shares fast cores among all threads using the same mechanism
that CAMP uses to share fast cores among high-utility threads.

5. EXPERIMENTS

We have assessed the effectiveness of the CAMP scheduler using real multicore hard-
ware made assymetric by reducing either the processor frequency or the retirement
width in some of the cores. We used the following multicore server systems.

— Intel-8 consists of two Intel Xeon X5365 “Clovertown” quad-core processors running
at 3.0GHz (8 cores). Each processor integrates two dies with two cores each sharing
a 4MB L2 cache. L1 instruction and data caches, with 32KB each, are private to
each core.

— Intel-12 consists of two Intel Xeon E5645 “Westmere” hex-core processors running
at 2.4GHz (12 cores). Each processor includes a shared 6MB L3 cache and two other
private cache levels: a 256KB L2 unified cache and 64KB L1 instruction and data
caches.

— AMD-16 integrates four AMD Opteron 8356 “Barcelona” quad-core processors run-
ning at 2.3GHz (16 cores). Each chip includes a 2MB shared L3 cache and two other
private cache levels: a 512KB L2 unified cache and 64KB L1 instruction and data
caches.

We experimented with applications from several benchmark suites (SPEC CPU
2006, SPEC OMP 2001, PARSEC, NAS Parallel Benchmarks and Minebench), as well
as with BLAST (a bioinformatics benchmark) and FFTW (a scientific benchmark perform-
ing the fast Fourier transform). Both OpenMP and POSIX-threaded applications use
adaptive synchronization modes, as such, large sequential phases are exposed to the
operating system [Saez et al. 2010b].

We analyzed the behavior of the investigated schedulers under two types of
multiapplication workloads: the former consist of single-threaded applications, typi-
cally targeted by algorithms like SFD, and the latter includes multithreaded applica-
tions, typically targeted by algorithms like PA. In all experiments, the total number of
threads (sum of the number of threads of all applications) was set to match the number
of cores in the experimental system, since this is how runtime systems typically con-
figure the number of threads for CPU-bound workloads that we considered [van der
Pas 2005].

In all workloads, we ensure that all applications are started simultaneously and
when an application terminates it is restarted repeatedly until the longest application

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:21

in the set completes three times. The observed standard deviation was negligible in
most cases (so it is not reported) and where it was large we restarted the experiments
for as many times as needed to guarantee that the deviation reached a low threshold.
The average completion time for all the executions of a benchmark under a particular
asymmetry-aware scheduler is compared to that under RR, and the wall clock speedup
is reported.

The evaluation section is divided into two parts. Section 5.1 focuses on the anal-
ysis of the CAMP scheduler on asymmetric systems where cores differ in processor
frequency. Section 5.2 reports our results obtained on asymmetric multicore configu-
rations consisting of cores that differ in microarchitecture.

5.1. Results for Asymmetric Systems where Cores Differ in Processor Frequency

In this section, we explore several asymmetric configurations including cores with
different frequency. These configurations are based on the Intel-8 and the AMD-16
platforms (described previously). The frequency of fast and slow cores was set to
the maximum and minimum frequency (DVFS) levels, respectively. In particular, on
Intel-8’s asymmetric configurations, fast cores operate at 3.0 GHz, while slow cores
run at 2.0 GHz. On the AMD platform, in contrast, higher performance differences
between core types are obtained since fast cores operate at twice the frequency of slow
cores (at 2.3 GHz and 1.15 GHz, respectively). Because the AMD-16 platform supports
core-level DVFS, we are able to vary the frequency for each core independently. On the
Intel-8 platform, however, cores in the same physical package (sharing an L2 cache)
are within the same power domain, so they must operate at the same voltage/frequency
level.

We used three AMP configurations: (1) 1FC-12SC, one fast core and 12 slow cores,
the fast core is on its own chip and the other cores on that chip are disabled; (2) 4FC-
12SC, four fast cores and 12 slow cores, and (3) 2FC-2SC, two fast cores, two slow cores,
none of them sharing a last-level cache with one another. The first two configurations
were emulated on AMD-16, while the third one was replicated on both Intel-8 and
AMD-16.

5.1.1. Workloads Consisting of Single-Threaded Applications. As stated in Section 2, an
application’s memory-intensity level determines its sensitivity to variations in the
processor frequency. For that reason, workloads evaluated in this section attempt to
cover a broad spectrum of memory-intensity levels. To this end, we selected eleven
applications from the SPEC CPU 2006 suite and constructed ten workloads containing
representative sets. Some benchmarks are primarily memory intensive (such as mcf or
milc); others are primarily CPU intensive (such as gromacs or sjeng). There is also a
hybrid application type that exhibits long-term memory-intensive phases interspersed
with long-term CPU-intensive phases across their execution. The astar benchmark
falls into this class.

The selected workloads are displayed in Table III. 4CI and 4MI are homoge-
neous workloads that combine applications of the same class (either CPU-intensive or
memory-intensive applications) and xCI-yMI are heterogeneous workloads that mix
memory-intensive and CPU-intensive applications. The categories in the left column
are listed in the same order as the corresponding benchmarks, so for example in the
1CI-3MI category gromacs is the CPU-intensive (CI) application and milc, soplex and
mcf are the memory-intensive (MI) applications. The last three workloads labeled as
“Phased” include applications that do not fall into a clean class since they exhibit dif-
ferent phases.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:22 J. C. Saez et al.

Table III. Multiapplication Workloads Consisting of
Single-Threaded Applications

Categories Benchmarks
4CI gamess, perlbench, povray, gromacs
3CI-1MI sjeng, gamess, gromacs, soplex,
2CI-2MI A perlbench, povray, soplex, mcf
2CI-2MI B gromacs, sjeng, milc, soplex
1CI-3MI A gamess, milc, soplex, mcf
1CI-3MI B gromacs, milc, soplex, GemsFDTD
4MI GemsFDTD, milc, soplex, mcf
Phased1 astar, astar, milc, leslie3d
Phased2 sjeng, astar, milc, leslie3d
Phased3 astar, astar, GemsFDTD, GEMSFDTD

Fig. 11. Speedup of PA, SFD, CAMP and Best Static schedulers when running single-threaded workloads
on the 2FC-2SC configuration.

Figure 11 shows the results for these workloads. To complement our assessment on
the effectiveness of SF predictions, we provide a comparison with a “Best Static” as-
signment, which ensures applications with the highest overall SFs to run on fast cores.
As expected, PA behaves like RR since it is unaware of the efficiency of individual
threads and, as a result, fair-shares fast cores among them. (Recall that PA assigns all
single-threaded applications to the HIGH utility class.) CAMP and SFD perform sim-
ilarly, since UF = SF for single-threaded applications. Overall, we observed that these
algorithms effectively distinguish between CPU-intensive and memory-intensive code
and perform thread-to-core mappings close to “Best Static” in the absence of phase
changes (on the Intel platform, SFD and CAMP behave better due to the higher ac-
curacy of the SF estimations, as shown in Section 2.1). Notably, “Best Static” does
not always guarantee optimal mappings. This is the case for application sets exhibit-
ing different SF phases and for workloads including a number of high-utility threads
greater than the number of fast cores. In the latter case, fair-sharing fast cores among
high-utility threads gives better performance on average than the one resulting from
assigning some of these threads to fast cores. For that reason, both CAMP and SF
deliver comparable or better performance than “Best Static” for the 4CI and 3CI-1MI
workloads.

5.1.2. Workloads Consisting of Single-Threaded and Multithreaded Applications. We catego-
rized applications into three groups with respect to their parallelism: highly parallel
applications (HP), partially sequential (PS) applications (parallel applications with

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:23

Table IV. Multiapplication Workloads with Both
Single-Threaded and Multithreaded Applications

Categories Benchmarks
STCI-PSMI gamess, FFTW (12,15)
STCI-PSCI gamess, BLAST (12,15)
STCI-HP gamess, wupwise m (12,15)
STMI-PSMI mcf, FFTW (12,15)
STMI-PSCI mcf, BLAST (12,15)
STMI-HP mcf, wupwise m (12,15)
PSMI-PSCI FFTW (6,8), BLAST (7,8)
PSMI-HP FFTW (6,8), wupwise m (7,8)
PSCI-HP BLAST (6,8), wupwise m (7,8)

a sequential phase of over 25% of execution time), and single-threaded applications
(ST). In order to cater to application memory intensity, we divided, in turn, the three
aforementioned groups into memory-intensive (MI) and CPU-intensive classes (CI),
resulting in six application classes: HPCI and HPMI classes for highly parallel appli-
cations, CPU intensive and memory intensive, respectively; PSCI and PSMI classes
for partially sequential applications, and STCI and STMI classes for single-threaded
applications.

We constructed nine workloads consisting of representative pairs of benchmarks
across the previous categories (as shown in Table IV). As in Table III, the categories in
the left column are listed in the same order as the corresponding benchmarks. For ex-
ample, in the STCI-PSMI category gamess is the single-threaded CPU-intensive (STCI)
application and FFTW is the partially sequential memory-intensive (PSMI) applica-
tion. The numbers in parentheses next to the application class indicate the number of
threads chosen for that application: the first number for the 1FC-12SC configuration
and the second number for the 4FC-12SC configuration.

At a first glance, it can be observed from this workload set that not all possible pairs
of classes are actually covered. For the sake of analyzing benchmark pairings that ex-
pose diversity in instruction-level and thread-level parallelism, we did not pick pairs
consisting of co-runners of the same class. Note also that highly parallel memory-
intensive benchmarks have been deliberately discarded from this workload set. In
preliminary experiments we observed that for benchmark pairings with a highly par-
allel application (either HPCI or HPMI), schedulers that rely on the number of threads
when making scheduling decisions (CAMP and PA) mapped all threads of the HP ap-
plication on slow cores. The actual reason behind this behavior is that a high number
of active threads (this happens most of the time for HP applications) dominates the
value of the utility factor and, as a result, CAMP and PA always assign a LOW utility
class for all threads, regardless of their memory intensity (SF). For that reason, we
only included wupwise m as a representative HP application (a CPU-intensive parallel
benchmark from SPEC OMP2001).

For the sake of completeness, we have also studied additional multiapplication
workloads that combine parallel- and single-threaded applications, but exhibit a wider
variety of memory intensity than those in Table IV. Workloads in this additional
set (shown in Table V) enable us to explore the combined impact of thread-level and
instruction-level parallelism further. Notably, as opposed to the benchmarks pairings
shown in Table IV, the additional workload set does include HP memory-intensive
(HPMI) applications, such as equake m.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:24 J. C. Saez et al.

Table V. Additional Multiapplication Workloads with Both Single-Threaded and
Multithreaded Applications

Categories Benchmarks
4STCI-1PSMI-1HPCI gobmk, h264ref, gamess, povray, FFTW (6),

wupwise m (6)
4STCI-4MI-1HPMI games, gobmk, h264ref, gromacs, milc, mcf,

soplex, libquantum, equake m (8)
4STCI-4STMI-1PSMI calculix, hmmer, gamess, sjeng, milc, mcf,

soplex, libquantum, FFTW (8)
3STCI-1STMI-1PSCI gamess, gobmk, hmmer, soplex, semphy (12)

Fig. 12. Speedup of asymmetry-aware schedulers on 1FC-12SC.

Before discussing in detail per-application results, it is worth analyzing the behavior
of the partially sequential applications included in the workloads: BLAST (PSCI) and
FFTW (PSMI). As opposed to other parallel applications that create all threads at the
beginning of the execution, both BLAST and FFTW exhibit several distinct parallel phases
where threads are dynamically created and destroyed. When scheduled by algorithms
relying on online SF monitoring (CAMP and SFD), new spawned threads will have to
go through the initial warm_up period until they are eligible to be scheduled on fast
cores. This means that frequent thread creation and destruction might imply that
threads will be running on slow cores more often. Moreover, it is worth noting that
both FFTW and BLAST have significant serial bottlenecks (over 40% of total execution
time) and CPU-intensive parallel phases.

Serial phases in FFTW (memory intensive) constitute a large fraction of the total
execution time, so we can globally categorize this application as memory intensive. By
analyzing per-thread behavior over time using performance monitoring counters, we
found that FFTW’s serial phases are, in turn, divided into a very short CPU-intensive
phase (at the beginning) and a long memory-intensive phase. According to the boosting
feature incorporated into CAMP, the thread executing a sequential phase is initially
assigned to the SEQUENTIAL BOOSTED class, since the thread starts exhibiting a
CPU-intensive behavior. Later on, when the serial thread enters the memory-intensive
phase, CAMP downgrades it into the MEDIUM class.

Figure 12 shows the results for the 1FC-12SC configurations. There is a speedup
bar for each application in the workload as well as the mean speedup for the workload
as a whole labeled with the name of the workload from Table IV. The first aspect
to highlight is that RR behaves well when there are just a few threads running in
the system since all of them get a significant “share” of fast-core cycles. Workloads
with few threads include those with two PS applications (recall that PS applications

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:25

have large phases where only a single thread is active) as well as with one ST and
one PS application. Now, we analyze each workload separately for the 1FC-12SC
configuration:

— (STCI-PSMI) PA boosts the large sequential phase of FFTW (memory intensive) at the
expense of scheduling the CPU-intensive sequential application (gamess) on slow
cores. RR, in contrast, shares the fast cores between the sequential phase of FFTW
and gamess, behaving better than PA as a result. CAMP only schedules FFTW on the
fast core during the initial CPU-intensive portion of its sequential phase, leaving
the fast core available for gamess most of the time. Since gamess is CPU intensive,
this is the right way to schedule, and so CAMP beats both RR and PA. SFD primarily
runs gamess on the fast core, failing to accelerate the sequential phase of FFTW.

— (STCI-PSCI) PA and CAMP behave similarly here, because BLAST’s sequential phase
is also CPU intensive, so both PA and CAMP schedule it on a fast core. In contrast,
RR still schedules BLAST threads on the fast core when it is executing a parallel
phase (many active threads), reducing gamess’s share of fast-core time. Surprisingly,
SFD schedules gamess on the fast cores more often than RR does. The reason behind
this behavior is that BLAST creates and destroys threads several times and as a
result new spawned threads are not eligible to be scheduled on fast cores until their
warm-up periods expire. During these periods, gamess is the only CPU-intensive
application eligible to run on fast cores.

— (STCI-HP) In this scenario, many CPU-intensive threads are active throughout the
execution. RR and SFD perform similarly as a result of fair-sharing the fast core
among all threads. On the other hand, PA and CAMP schedule the single-threaded
application in the HIGH utility class (gamess) on the fast core all the time, leaving
slow cores for wupwise m’s LOW utility threads. For this reason, CAMP and PA
perform significantly better than RR.

— (STMI-PSMI) CAMP does not have many opportunities to improve performance rel-
ative to RR here. Both mcf and FFTW are primarily memory intensive, and RR shares
the fast core among them. CAMP beats RR by a small amount, only because it
schedules FFTW on the fast core during the CPU-intensive portion of its sequential
phase. PA primarily schedules FFTW on the fast core due to its large sequential
phase, which PA is configured to maximally accelerate. As a result, mcf, an applica-
tion with a slightly greater SF than the memory-intensive part of FFTW, runs mostly
on the slow core.

— (STMI-PSCI) CAMP and PA, which perform similarly here, schedule the single-
threaded mcf on the fast core as long as BLAST is running a parallel phase. When
BLAST enters a sequential (CPU-intensive) phase, its active thread is executed on the
fast core, pushing mcf to the slow core. SFD, however, runs the memory-intensive
mcf on a slow core while running BLAST’s threads on both fast and slow cores, since
those threads have a CPU-intensive nature and thus a high speedup factor.

— (STMI-HP) This workload is similar to STCI-HP, since most threads are active for
the duration of the experiment. PA schedules the single-threaded application on
the fast core and so does CAMP; therefore, they perform similarly. In contrast, SFD
schedules mcf on the slow core, since this is the only memory-intensive thread in
the workload.

— (PSMI-PSCI) The performance differences between PA and CAMP in this scenario
are dominated by the fact that FFTW’s sequential phases are on average much longer
than BLAST’s. Under the PA scheduler, the first thread executing an application’s
sequential phase is placed on the fast core and will not be migrated from it until
amp boost ticks expire or the thread blocks. The long sequential phases of FFTW
leads to monopolizing the fast core and BLAST’s sequential phases have little chance

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:26 J. C. Saez et al.

Fig. 13. Speedup of the PA and CAMP schedulers for additional workloads on 4FC-12SC.

to run there, since PA does not share the fast cores equally among threads in the SE-
QUENTIAL BOOSTED class. As a result, PA does to cater to the greater efficiency
of BLAST in using fast cores, and resorts instead to running FFTW’s memory-intensive
sequential phases on fast cores. CAMP, however, is able to detect FFTW’s memory-
intensive sequential phases, successfully downgrading the thread executing it into
the MEDIUM class.

— (PSMI-HP) Sequential phases of the PS applications are effectively accelerated by
PA and CAMP on the fast core. SFD, on the other hand, is not able to deliver any
performance gains, because it schedules the memory-intensive sequential phases
of FFTW on slow cores, running on the fast core CPU-intensive threads of parallel
(wupwise m), which gains little speedup when only one of its threads is accelerated.

— (PSCI-HP) As in the PSMB-HP workload, the thread executing sequential phases
of the PS application is migrated to the fast core by PA and CAMP. SFD shares the
fast cores among all threads, since they are CPU intensive and then, it behaves
as RR.

Results in Figure 12 reveal that CAMP and PA, which consider TLP, performed
comparably in most cases. CAMP only outperforms PA on 1FC-12SC when a single-
threaded application and a memory-intensive serial thread compete for a fast core.
However, for workloads in Table IV running on the 4FC-12SC configuration (same
benchmarks, different number of threads), PA and CAMP always perform similarly
since both schedulers have enough fast cores to effectively accelerate single-threaded
applications as well as serial threads. We do not report these results here due to space
limitations.

Therefore, there still remains a question: in what cases does considering the
speedup factor in addition to TLP bring significant performance improvements over
an algorithm that relies on TLP only? Results in Figure 13 answer this final ques-
tion showing additional workloads with a wider diversity in memory intensity. In
these cases, CAMP does deliver greater performance gains over PA (up to 13%), which
demonstrates that considering the speedup factor in addition to TLP brings higher
performance improvements.

5.1.3. Aggregate Results. Figure 14 shows the geometric mean of the speedups
achieved by the three asymmetry-aware schedulers (SFD, PA and CAMP) normal-
ized to RR, when running on the AMD-16 platform. Only CAMP is able to deliver
performance gains across the wide variety of workloads analyzed, which is the major
contribution of this research.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:27

Fig. 14. Gmean speedup of SFD, PA and CAMP schedulers when running single threaded and
multithreaded workloads on the AMD-16 platform.

5.2. Results for Asymmetric Systems where Cores Differ in Microarchitecture

In this section we analyze the performance of CAMP, SFD and PA on several AMP
configurations based on Intel-12. As stated earlier, we used Intel proprietary tools to
introduce asymmetry in the system by reducing the retirement width of several cores
(slow) to one micro-op per cycle; the remaining cores (fast) use the default setting, thus
retiring up to four micro-ops per cycle. Both fast and slow cores operate at the same
frequency (2.4Ghz).

To carry out the evaluation, we used three AMP configurations: (1) 2FC-2SC-A, two
fast cores and two slow cores in the same chip, all sharing a last-level cache with one
another; (2) 2FC-2SC-B, two fast cores and two slow cores distributed into two chips
such that there is a fast and a slow core per chip sharing a last-level cache; and (3)
2FC-10SC, two fast cores and ten slow cores in two chips, each chip includes one fast
core and five slow cores. The 2FC-2SC-A and 2FC-2SC-B configurations consist of
fewer cores than those included in Intel-12, so unused cores were disabled.

5.2.1. Workloads Consisting of Single-Threaded Applications. An application’s degree of
memory intensity affects the efficiency that the application derives from running on a
core with a high retirement width relative to another capable of retiring fewer instruc-
tions. However, several other performance-limiting factors (such as branch mispredic-
tions) may also contribute to the resulting relative speedup (as shown in Section 2).

The workloads evaluated in this section cover a rich set of scenarios. In constructing
the workloads, we divided applications in the SPEC CPU2006 suite into three classes
based on their speedup factors: high (H), medium (M) and low (L). Table VI shows the
ten selected workloads. The central column of the table specifies the workload compo-
sition. For example, the 2H-2L A and 2H-2L B workloads consist of two high-SF (H)
benchmarks and two low-SF (L) benchmarks. Notably, we observed that applications
from SPEC CPU2006 exhibiting distinct long-term SF phases over time under cores
with different frequency (such as astar) present a more uniform SF profile on cores
differing in microarchitecture. As a result, this workload set does not include applica-
tions that alternate between long-term high-SF phases and long-term low-SF phases
(unlike workloads in Table IV).

Workloads in Table VI can be divided into several categories. The first four work-
loads are highly heterogeneous: they show a wide diversity of speedup factors, and so
they are likely to experience large performance improvements from asymmetry-aware
algorithms exploiting efficiency specialization [Saez et al. 2011]. The second category
of workloads is moderately heterogeneous, which encompasses the 3H-1L, 1H-3L and

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:28 J. C. Saez et al.

Table VI. Multiapplication Workloads Consisting of
Single-Threaded Applications

Categories Benchmarks
2H-2L A calculix, gamess, gobmk, milc
2H-2L B hmmer, calculix, soplex, astar

1H-1M-2L A hmmer, perlbench, soplex, mcf
1H-1M-2L B gamess, namd, astar, gobmk

3H-1L hmmer,calculix, gamess, gobmk
1H-3L gamess, sjeng, GemsFDTD, leslie3d
2M-2L povray, gromacs, milc, mcf
4H A hmmer, hmmer, calculix, gamess
4H B calculix, calculix, gamess, gamess

4L gobmk, gobmk, astar, astar

Fig. 15. Speedup of PA, SFD, CAMP and Best Static schedulers when running single-threaded workloads
on Intel-12.

2M-2L workloads. These workloads include benchmarks with less extreme differences
among SFs, and so they are expected to benefit less from asymmetry-aware schedul-
ing than highly heterogeneous workloads. Finally, we explored lightly heterogeneous
workloads, consisting of applications whose SFs are very close. The 4H A, 4H B and
4L workloads fall into this category.

The results for these workloads running under PA, CAMP, SFD and the “Best Static”
assignment are shown in Figure 15. As explained earlier, PA resorts to fair-sharing
fast cores among threads since it is unaware of SFs, and that leads it to matching the
performance of RR (negligible speedup). Recall that the SFD and CAMP schedulers be-
have similarly in this scenario because SF = UF for single-threaded applications and,
at the same time, both schedulers rely on the same SF estimates to drive scheduling
decisions.

The results in Figure 15 reveal that benefits from the CAMP and SFD schedulers,
which exploit efficiency specialization, are specially pronounced for highly heteroge-
neous workloads (the first four workloads in the figures). For most of these workloads,
CAMP and SFD perform similarly to the oracular Best Static. We also observe that
for lightly heterogeneous workloads consisting of three or more high-SF benchmarks
(3H-1L, 4H A and 4H B), CAMP and SFD outperform Best Static. The main takeaway
from this result is that fair-sharing fast cores among high-utility threads under these
circumstances does not only help mitigate inaccuracies in the model but it also results
in higher aggregated performance than Best Static’s, which may map some high-utility
threads to slow cores. For the remaining mildly and lightly heterogeneous workloads

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:29

Table VII. Multiapplication Workloads Consisting of Multithreaded and
Single-Threaded Applications

Categories Benchmarks
2STH-2STL-1HPH hmmer, calculix, gobmk, astar, wupwise m (8)
2STH-2STL-1HPL hmmer, gamess, soplex, bzip2, EP (8)
2STH-1PSL-1HPH calculix, gamess, BLAST (5), wupwise m (5)

1STH-1STL-1PSM-1HPM hmmer, gobmk, semphy (5), fma3d m (5)
1STH-1STL-1PSM-1PSL calculix, bzip2, semphy (5), BLAST (5)
1STH-1STL-1PSL-1HPH hmmer, astar, bodytrack (5), wupwise m (5)

2STH-1PSM-1PSL calculix, gamess, bodytrack (5), FFTW (5)
2STM-1PSL-1HPH wrf, namd, FFTW (5), wupwise m (5)
3STH-3STL-1PSL hmmer, hmmer, gamess, gobmk, astar, BLAST (6)

(1H-3L, 2M-2L and 4L), which include at least two low-SF applications, we observed
that CAMP and SFD performed different thread assignments to those of Best Static;
we found that this is due to inaccuracies in the SF estimation model. Even in those
difficult conditions, CAMP and SFD are able to outperform PA and RR.

5.2.2. Workloads Including Both Single- and Multithreaded Applications. For the evaluation
in this section, we constructed nine workloads consisting of both sequential and par-
allel applications covering a broad spectrum of speedup factors. The workloads are
shown in Table VII. The categories in the central column of the table provide infor-
mation on the parallelism class of each benchmark in the workload (ST, PS or HP)
along with their speedup factor class (L, M or H). The selected workloads include ap-
plications from all possible parallelism/SF classes, but one: partially sequential ap-
plications with high speedup factor (PSH class). Unfortunately, we did not find any
application falling into this class in the parallel benchmarks suites we explored. In
particular, it is worth highlighting that the BLAST benchmark, which derives a high
speedup factor on our asymmetric systems where cores differ in processor frequency
(as shown in Section 5.1.2), experiences a negligible SF on this system.3 Therefore,
BLAST is labeled as PSL.

Figure 16 shows the results obtained for workloads in Table VII on 2FC-10SC. At a
first glance, we can see that SFD scheduler matches the performance of CAMP for
some workloads. However, the results also reveal that SFD makes inefficient use
of the platform for workloads including HPH (highly parallel, high-SF) applications.
In these scenarios, SFD “wastes” fast-core cycles in running high-SF code of threads
in HPH applications, while CAMP effectively categorizes these threads as low-utility
(highly parallel code) and relegates them to slow cores. As pointed out earlier, the
PA scheduler is unable to match the performance of CAMP for workloads including a
significant amount of serial code, and at the same time, exhibiting a wide diversity of
speedup factors. Since many of these workloads have these characteristics, we observe
higher performance differences between both schedulers (CAMP outperforms PA by up
to 16%).

5.2.3. Aggregate Results. Figure 17 shows the geometric mean of the relative speedups
achieved by the SFD, PA and CAMP, when running on Intel-12–based asymmetric

3Basic Local Alignment Search Tool (BLAST) is a program extensively used in bioinformatics research to
determine the closest match of a new protein or amino acid sequence in an existing database of known
sequences. We observed that this program does not derive any extra benefit from the fast core (with higher
retirement width than the slow one) since it incurs a significant number of pipeline stalls due to frequent
branch mispredictions.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:30 J. C. Saez et al.

Fig. 16. Speedup of asymmetry-aware schedulers on 2FC-10SC.

Fig. 17. Gmean speedup of SFD, PA and CAMP schedulers when running single-threaded and multi-
threaded workloads on the Intel-12 platform.

configurations consisting of two chips (2FC-2SC-B and 2FC-10SC). As evident, CAMP
reaps greater benefits than the other investigated schedulers across the board.

6. RELATED WORK

A large body of work has advocated the potential benefits of asymmetric single-ISA
multicore processors over their symmetric counterparts [Annavaram et al. 2005; Hill
and Marty 2008; Kumar et al. 2003, 2004; Mogul et al. 2008]. These benefits are con-
cisely summarized in an article by Gillespie [2008] from Intel, where he lays out some
of the background for why this shift towards asymmetric systems is likely to hap-
pen, describes the potential variations on the hardware architectures, and the distinct

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:31

challenges. OS scheduling is one of the most critical challenges, and this is the focus
of this article.

Several asymmetry-aware schedulers were proposed in previous work. They de-
livered either efficiency or TLP specialization, but not both. In this section, we first
introduce the most relevant scheduling proposals exploiting efficiency specialization;
and then go on to describe the related work that demonstrated the effectiveness of TLP
specialization.

Kumar et al. [2004] and Becchi and Crowley [2006] independently proposed similar
schedulers that employed efficiency specialization, targeting workloads consisting of
single-threaded applications only. For deciding which applications would use fast cores
most efficiently, these schedulers relied solely on threads’ speedup factors. A thread’s
speedup factor was directly measured online by running the thread on cores of both
types and computing the observed performance ratio (IPS ratio). Algorithms proposed
by Becchi and Kumar and were evaluated in a simulated environment. When real
implementations of these algorithms were done as part of our earlier work [Shelepov
et al. 2009], we found that the proposed methods for computing the speedup factor
were inaccurate since applications may exhibit a nonuniform behavior during and
between program phases. Only if applications have a stable behavior, observations
over time provide satisfactory speedup factor estimations. Furthermore, observation
on both core types requires additional thread migrations that can cause significant
performance degradation and load imbalance.

Both static and dynamic approaches have been explored in the research community
to overcome the main problems associated to direct measurement of SFs. Along with
the Heterogeneity-Aware Signature Supported (HASS) scheduler, we proposed a static
approach that involved estimating SFs using offline-collected performance information
about applications [Shelepov et al. 2009]. This approach relied on architectural signa-
tures (i.e.: compact summaries of applications runtime properties). The information
contained in an application’s architectural signature (possibly embedded in its binary)
enabled the scheduler to estimate the application’s last-level cache miss rate and, with
reasonable accuracy, predict its speedup factor on cores of different types. Although
this method overcame the difficulties associated with direct measurement of the SF,
it had limitations of its own. For example, the method does not always allow to cap-
ture dynamic properties of the application since it relies on static information. At the
same time, this method required co-operation from the developer to perform the steps
needed for the generation of the architectural signature.

Koufaty et al. [2010], concurrently with and independently from us [2010a], devised
a similar approach to estimate speedup factors online. Although this approach also re-
lied on hardware performance counters to determine the relative speedup, the authors
sought to find performance metrics that had a high correlation with the SF rather
than modeling it accurately. A key contribution of the work by Koufaty et al. was the
performance characterization of an emulated asymmetric system where cores differ
in retirement width. They demonstrated that this form of asymmetry is more repre-
sentative for performance asymmetry than than cores differing in processor frequency.
In this paper, we explored several forms of performance asymmetry and demonstrated
that, equipped with accurate platform-specific estimation models, the CAMP scheduler
is able to reap significant benefits for a broad spectrum of multiapplication workloads.

We now switch the discussion to the related work that focused on exploiting AMPs
to accelerate serial phases of parallel applications (aka TLP specialization). Hill and
Marty [2008] and Morad et al. [2004] derived theoretical to predict the speedup for par-
allel applications with serial phases running on AMPs. The former group concluded
that AMPs can potentially deliver significantly better performance than symmetric
multicore processors for applications whose serial phases constituted at least 5% of

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:32 J. C. Saez et al.

the execution time. The speedup models proposed in the aforementioned theoretical
works cannot, however, replace the utility factor (UF) in our CAMP scheduler since the
models do not account for the fact that applications may exhibit different speedup fac-
tors (SFs) over time, and were not designed to predict the speedup for different phases
in the parallel application at runtime using exclusively runtime information accessible
at the OS level. Annavaram et al. [2005] designed an application-level scheduler that
mapped sequential phases of the applications to fast cores. This scheduler is effective
only when the application in which such a scheduler is implemented is the only one
running on the system, but not in more realistic scenarios where there are multiple
applications (like the ones explored in this article).

In a previous work, we proposed the Parallelism-Aware (PA) scheduler, the first
OS-level scheduler delivering TLP specialization [Saez et al. 2010b]. As shown in
Section 5, PA is able to match the performance of CAMP in some multiapplication
scenarios, but it fails to provide results comparable to CAMP’s when the workload
exhibits sufficient diversity of speedup factors. PA used the number of runnable
threads as an approximation for the amount of parallelism in the application. Since
using runnable thread count proved to be a good heuristic for approximating the
amount of parallelism in the application, we use it along with other metrics for
computing the utility factor in the CAMP scheduler. This approach is effective because
applications typically let the unused threads block, perhaps after a short period of
spinning (i.e., busy waiting). While blocking is coordinated with the OS, making it
possible to detect phase transitions, spinning is not. Along with the PA scheduler,
a spin-then-notify synchronization mode was also proposed in Saez et al. [2010b] to
make spinning visible to the OS scheduler. Making the scheduler aware of which
threads are actually spinning (thus not doing useful work) is also beneficial in the
context of efficiency specialization, where high-SF threads are assigned preferentially
to fast cores. Since spinning threads can achieve a very high speedup factor,4 explicit
notifications from the thread library or the runtime system on spinning threads would
prevent the OS scheduler from mapping these threads to fast cores.

Other researchers explored additional techniques to accelerate sequential code on
AMPs. For example, ACS is a system that was explicitly designed to accelerate lock-
protected critical sections [Suleman et al. 2009]. ACS uses a combination of compiler
and hardware techniques to ensure that the code inside the critical section is exe-
cuted on a fast core. Thread migrations are performed entirely in hardware, so as
opposed to our work, they did not address the design of an OS scheduler. Further-
more, like Annavaram’s work, the system supports only single-application workloads.
The authors indicate that operating system assistance would be required to support
multiapplication workloads. Our work provides support similar to that which would be
needed by ACS. Another work relevant to our research is on Feedback-Driven Thread-
ing (FDT) by Suleman et al. [2008]. In this work, the authors developed a runtime
system that performs an online discovery of the optimal threading level for parallel
applications. Of particular relevance to us is the discussion provided by the authors
about the sources of scalability bottlenecks in parallel applications. Our CAMP sched-
uler addresses those bottlenecks that are due to load imbalance or data serialization.
The authors also identify memory bandwidth as another possible bottleneck. With this
type of bottleneck, there is not a well-defined serial phase, but the wait times due to
memory bus contention are arbitrarily distributed among the threads. In this sce-
nario, AMP systems coupled with CAMP policy are less appropriate to mitigate serial

4Spin loops use the CPU pipeline very efficiently. Best practices in implementing spinlocks dictate using
algorithms where a thread spins on a local variable, which leads to a high instruction throughput.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:33

bottlenecks, because there is not a well-defined serial phase that can be accelerated on
a fast core. To address these types of bottlenecks, application-level solutions such as
the aforementioned FDT are more suitable and effective.

While most scheduling proposals were concerned with TLP or efficiency special-
ization, a few researchers looked at less conventional types of specialization. Mogul
et al. [2008] proposed using slow cores in asymmetric systems for executing system
calls, since system calls are dominated by code that uses fast and powerful cores in-
efficiently. They modified an operating system to automatically migrate threads to
low-power cores when they switch to kernel mode for the execution of certain system
calls. The performance improvements achieved by Mogul’s scheduler, however, were
not very large due to the overhead associated with thread migrations aimed to exe-
cute system calls on slow cores. Our implementation of CAMP partially exploits this
kind of core specialization since all Solaris’s kernel threads are forced to run on slow
cores.

Other asymmetry-aware schedulers of which we are aware did not target core spe-
cialization, but pursued other goals, such as ensuring that a fast core does not go idle
before slow cores [Balakrishnan et al. 2005], or keeping the load on fast cores higher
than the load on slow cores [Li et al. 2007].

While existing schedulers addressed parts of the problem they did not provide a
comprehensive solution: one that would address a wide range of workloads as opposed
to targeting a selected workload type. The CAMP scheduler makes it possible to close
this gap.

7. CONCLUSIONS AND FUTURE WORK

In this article we have presented a comprehensive scheduling algorithm for asym-
metric multicore processors. Although the advantages of exploiting the information
on applications’ ILP and TLP on AMPs were well understood before, no one had ad-
dressed the design of the corresponding unified scheduling support in the operating
system and evaluated its benefits and drawbacks. Previous asymmetry-aware sched-
ulers employed only one type of specialization (either efficiency of TLP), but not both.
As a result, they were effective only for limited workload scenarios.

Through our evaluation of a real OS implementation on real hardware, we de-
termined that the CAMP scheduler can be effective for a wide variety of applica-
tions without requiring their modification. SFD is unable to deliver performance
comparable to CAMP for workloads that include multithreaded applications, while
PA is unable to compete with CAMP when applications exhibit a wide variety of
speedup factors (i.e., relative speedup that a thread derives on a fast core relative to a
slow one).

Key elements for the success of CAMP are the Utility Factor (UF) and its reliance on
estimation models to approximate per-thread speedup factors (SFs). In this work, we
devised SF estimation models for different forms of performance asymmetry. These
models make it possible for CAMP to reap benefits in diverse asymmetric multicore
configurations.

An interesting direction for future work is to study the interaction between migra-
tions and caching behavior. Numerous studies have shown that some applications are
more sensitive to cross-memory-domain migrations than others due to the nature of
their memory-access patterns [Constantinou et al. 2005; Li et al. 2007], and if threads
share cached data the problem becomes even more challenging [Tam et al. 2007]. In-
corporating cache awareness into asymmetry-aware algorithms like CAMP would be a
first step toward designing an all-encompassing scheduling algorithm for asymmetric
multicore systems.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:34 J. C. Saez et al.

APPENDIX

In this section we provide a detailed derivation process for the AnalyticalUF formula,
which approximates the speedup that a parallel application obtains from the BusyFCs
scheduler, relative to an execution where only slow cores are used.

In constructing the model, we make several simplifying assumptions about the na-
ture of the parallel application. First, we assume that the application is perfectly
balanced, namely, all its threads perform the same amount of work in parallel un-
til completion. Second, the application consists of k balanced parallel phases, k � 1,
separated by global synchronization points (e.g., barriers). In a parallel phase P, all
threads complete the same number of instructions (NIP) in parallel (the number of
completed instructions may differ across parallel phases, though). The latter assump-
tion indirectly states that all threads will execute the same number of instructions till
completion. More precisely, if NI denotes the total number of instructions executed by

any thread then NI =
k∑

i=1

NIi.

We begin by introducing some auxiliary notation:

— CTBusyFCs : Completion time of the application under BusyFCs.
— CTslow : Completion time of the application when using slow cores only.
— NFC, NSC : Number of fast and slow cores of the AMP system, respectively.
— Nthreads : Total number of threads the parallel application runs with.
— NI fc,i, NIsc,i : The total number of instructions that the slowest thread completes on

fast and slow cores in the i-th parallel phase under BusyFCs, respectively.
— SPI fc, SPIsc : Average number of seconds per instruction5 on fast and slow cores.
— SFavg : Average speedup factor (SF) of all threads in the application, where SFavg =

SPIsc
SPI fc

.

As stated in Section 3.1, we can approximate CTslow with the time that any thread
in the application (with SF = SFavg) takes to execute all its instructions on a slow core:

CTslow = NI · SPIsc =
k∑

i=1

(NIi · SPIsc). (3)

Determining the completion time of the application under BusyFCs (CTBusyFCs) en-
tails approximating the number of instructions that the slowest thread executes on
fast and slow cores for each parallel phase. The formula for CTBusyFCs is as follows:

CTBusyFCs =
k∑

i=1

(NI fc,i · SPI fc + NIsc,i · SPIsc). (4)

Determining NI fc,i and NIsc,i requires analyzing the behavior of the BusyFCs sched-
uler during the execution of parallel phase of the application. Recall that the sequence
of actions performed by BusyFCs during the execution of a parallel phase is outlined
in Algorithm 1.

To facilitate the analysis we introduce additional notation. Let Ffc(j) be the fraction
of instructions that threads running on fast cores in the j-th iteration of Algorithm 1
complete during that iteration (on fast cores). Conversely, let Fsc(j) be the fraction of

5We opted to use the SPI instead of the number of cycles per instruction (CPI) or instructions per second
(IPS) since this makes it possible to simplify calculations considerably in the derivation process.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:35

Table VIII. Fraction of Instructions Executed by Threads Scheduled on Fast
and Slow Cores in Different Iterations of Algorithm 1

Iteration Fast cores −→ Ffc(j) Slow cores −→ Fsc(j)

#1 1 1
SFavg

#2 1 − 1
SFavg

1
SFavg

+
1− 1

SFavg
SFavg

#3 1 −
(

1
SFavg

+
1− 1

SFavg
SFavg

)
1

SFavg
+

1− 1
SFavg

SFavg
+

1− 1
SFavg

+
1− 1

SFavg
SFavg

SFavg

· · · · · · · · ·
j 1 − Fsc(j− 1) Fsc(j− 1) +

Ffc(j)
SFavg

instructions executed on slow cores from the beginning of the parallel phase by those
threads that still remain assigned to slow cores in the j-th iteration of the algorithm.

Table VIII displays the values of Ffc(j) and Fsc(j) for each iteration of Algorithm
1. Suppose that each thread has to complete NIP instructions to reach the synchro-
nization barrier. In the first iteration of Algorithm 1, threads running on fast cores
complete all their instructions NIP, while threads on slow cores can complete NIP

SFavg

instructions. Equivalently, these values can be expressed in terms of the fraction
over NIP, as 1 (100%) and 1/SFavg, respectively. Likewise, threads assigned to fast
cores in the second iteration have to complete their remaining fraction of instructions:
1 − (

1/SFavg
)
. This works out to that value because those threads already completed

a fraction of 1/SFavg on slow cores in the previous iteration. In a general case, Ffc(j)
and Fsc(j) can be defined mutually recursively as follows:

Ffc(j) =

⎧⎪⎨
⎪⎩

1 j = 1

1 − Fsc(j− 1) j > 1
Fsc(j) =

⎧⎪⎨
⎪⎩

1
SFavg

j = 1

Fsc(j− 1) + Ffc(j)
SFavg

j > 1
. (5)

We go on to obtain a nonmutually recursive formula for Ffc(j) as follows:

Fsc(j− 1) = 1 − Ffc(j)
Fsc(j) = 1 − Ffc(j + 1)
Fsc(j) = Fsc(j− 1) + Ffc(j)

SFavg

⎫⎪⎬
⎪⎭ =⇒ Ffc(j) = Ffc(j− 1) ·

(
1 − 1

SFavg

)
. (6)

We proceed to unroll Equation (6) and obtain a nonrecursive formula:

Ffc(j) = Ffc(j− 1) ·
(

1 − 1
SFavg

)
= Ffc(j− 2) ·

(
1 − 1

SFavg

)
·

(
1 − 1

SFavg

)

= Ffc(1) ·
(

1 − 1
SFavg

)
·

(
1 − 1

SFavg

)
· . . . ·

(
1 − 1

SFavg

)
︸ ︷︷ ︸

j−1

= 1 ·
(

1 − 1
SFavg

)
·

(
1 − 1

SFavg

)
· . . . ·

(
1 − 1

SFavg

)
︸ ︷︷ ︸

j−1

=
(

1 − 1
SFavg

) j−1

. (7)

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:36 J. C. Saez et al.

At this point, we go on to approximate the time that the slowest thread takes to exe-
cute all its instructions in a parallel phase, which, as stated in Section 3.1, determines
the critical path of the parallel phase and, in turn, the performance of the application.
Under BusyFCs, the slowest thread in a given parallel phase is the one mapped to a
fast core in the last iteration of Algorithm 1. (There may be several threads running
on fast cores in the last iteration, but any of them will complete roughly at the same
time.) Therefore, determining the completion time of a given parallel phase boils down
to computing the number of instructions executed on fast and slow cores by threads
mapped to fast cores in the last iteration. More precisely, let NI fc,i and NIsc,i be the
number instructions executed by the slowest thread in the i-th parallel phase on fast
and slow cores respectively, so we have that:

NI fc,i = NIi · Ffc(Niter). (8)
NIsc,i = NIi · (1 − Ffc(Niter)). (9)

where Niter =
⌊

Nthreads − 1
NFC

⌋
+ 1.

Finally, we approximate the theoretical speedup of the application under BusyFCs
with respect to an execution where only slow cores are used, as follows:

AnalyticalUF =
CTslow

CTBusyFCs
=

k∑
i=1

(NIi · SPIsc)

k∑
i=1

(NI fc,i · SPI fc + NIsc,i · SPIsc)

=

=

k∑
i=1

(NIi · SPI fc · SFavg)

k∑
i=1

(NI fc,i · SPI fc + NIsc,i · SPI fc · SFavg)

=

SPI fc ·
k∑

i=1

(NIi · SFavg)

SPI fc ·
k∑

i=1

(NI fc,i + NIsc,i · SFavg)

=

SPI fc ·
k∑

i=1

(NIi · SFavg)

SPI fc ·
k∑

i=1

(NIi · Ffc(Niter) + NIi · (1 − Ffc(Niter)) · SFavg)

=

SPI fc ·
k∑

i=1

(NIi) · SFavg

SPI fc ·
k∑

i=1

(NIi) · (Ffc(Niter) + (1 − Ffc(Niter)) · SFavg)

=
SFavg

Ffc(Niter) + (1 − Ffc(Niter)) · SFavg
=

SFavg

Ffc(Niter) · (1 − SFavg) + SFavg

=
SFavg(

1 − 1
SFavg

)Niter−1
· (

1 − SFavg
)

+ SFavg

=
SFavg(

1 − 1
SFavg

)⌊
Nthreads−1

NFC

⌋
· (

1 − SFavg
)

+ SFavg

.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

Leveraging Core Specialization via OS Scheduling to Improve Performance on AMSs 6:37

Hence, the resulting formula for the theoretical speedup under BusyFCs is as
follows:

AnalyticalUF =
SFavg(

1 − 1
SFavg

)⌊
Nthreads−1

NFC

⌋
· (

1 − SFavg
)

+ SFavg

. (10)

REFERENCES
ANNAVARAM, M., GROCHOWSKI, E., AND SHEN, J. 2005. Mitigating Amdahl’s law through EPI throttling.

In Proceedings of the International Symposium on Computer Architecture (ISCA’05). 298–309.
ARM. 2011. Big.LITTLE Processing with ARM CortexTM-A15 & Cortex-A7. White paper,

http://www.arm.com/files/downloads/big LITTLE Final Final.pdf.
BALAKRISHNAN, S., RAJWAR, R., UPTON, M., AND LAI, K. 2005. The impact of performance asymmetry in

emerging multicore architectures. SIGARCH Comput. Architect. News 33, 2, 506–517.
BECCHI, M. AND CROWLEY, P. 2006. Dynamic thread assignment on heterogeneous multiprocessor archi-

tectures. In Proceedings of the International Conference on Computing Frontiers (CF’06). 29–40.
BLAGODUROV, S., ZHURAVLEV, S., AND FEDOROVA, A. 2010. Contention-aware scheduling on multicore

systems. ACM Trans. Comput. Syst. 28, 8:1–8:45.
CONSTANTINOU, T., SAZEIDES, Y., MICHAUD, P., FETIS, D., AND SEZNEC, A. 2005. Performance implica-

tions of single thread migration on a chip multi-core. SIGARCH Comput. Architect. News 33, 80–91.
FREEH, V. W., LOWENTHAL, D. K., PAN, F., KAPPIAH, N., SPRINGER, R., AND ROUNTREE, B. L. 2007.

Analyzing the energy-time trade-off in high-performance computing applications. IEEE Trans. Parall.
Distrib. Syst. 18, 6, 835–848.

FRIEDMAN, J. H. 1999. Stochastic gradient boosting. www-stat.stanford.edu∼jhf/ftp/stobst/pdf.
GILLESPIE, M. 2008. Preparing for the second stage of multi-core hardware: Asymmetric (heterogeneous)

cores. Intel white paper.
HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., AND WITTEN, I. H. 2009. The

WEKA data mining software: An update. SIGKDD Explor. Newsl. 11, 10–18.
HILL, M. D. AND MARTY, M. R. 2008. Amdahl’s law in the multicore era. IEEE Comput. 41, 7, 33–38.
KOUFATY, D., REDDY, D., AND HAHN, S. 2010. Bias scheduling in heterogeneous multi-core architectures.

In Proceedings of Eurosys’10.
KUMAR, R., FARKAS, K. I., JOUPPI, N., ET AL. 2003. Single-ISA heterogeneous multi-core architectures:

The potential for processor power reduction. In Proceedings of the Annual ACM/IEEE International
Symposium on Microarchitecture (MICRO’03).

KUMAR, R., TULLSEN, D. M., RANGANATHAN, P., ET AL. 2004. Single-ISA heterogeneous multi-core archi-
tectures for multithreaded workload performance. In Proceedings of the International Symposium on
Computer Architecture (ISCA’04).

LI, T., BAUMBERGER, D., KOUFATY, D., ET AL. 2007. Efficient operating system scheduling for performance-
asymmetric multi-core architectures. In Proceedings of the Conference on Supercomputing (SC’07). 1–11.

LI, T., BRETT, P., KNAUERHASE, R., KOUFATY, D., REDDY, D., AND HAHN, S. 2010. Operating system sup-
port for overlapping-ISA heterogeneous multicore architectures. In Proceedings of the 16th International
Symposium on High Performance Computer Architecture (HPCA’10). 1–12.

MOGUL, J. C., MUDIGONDA, J., BINKERT, N., RANGANATHAN, P., AND TALWAR, V. 2008. Using asymmetric
single-ISA CMPs to save energy on operating systems. IEEE Micro 28, 3, 26–41.

MORAD, T., WEISER, U., AND KOLODY, A. 2004. ACCMP—Asymmetric cluster chip multi-processing. CCIT
Tech. rep #448.

SAEZ, J. C., FEDOROVA, A., PRIETO, M., ET AL. 2010a. A comprehensive scheduler for asymmetric multi-
core systems. In Proceedings of Eurosys’10. 139–152.

SAEZ, J. C., FEDOROVA, A., PRIETO, M., ET AL. 2010b. Operating system support for mitigating software
scalability bottlenecks on asymmetric multicore processors. In Proceedings of the International Confer-
ence on Computing Frontiers (CF’10). 31–40.

SAEZ, J. C., SHELEPOV, D., FEDOROVA, A., AND PRIETO, M. 2011. Leveraging workload diversity through
OS scheduling to maximize performance on single-ISA heterogeneous multicore systems. J. Parall. Dis-
trib. Comput. 71, 114–131.

SHELEPOV, D., SAEZ, J. C., JEFFERY, S., ET AL. 2009. HASS: A scheduler for heterogeneous multicore
systems. ACM SIGOPS Op. Syst. Rev. 43, 2, 66–75.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

6:38 J. C. Saez et al.

SULEMAN, M. A., MUTLU, O., QURESHI, M. K., AND PATT, Y. N. 2009. Accelerating critical section ex-
ecution with asymmetric multi-core architectures. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’09). 253–264.

SULEMAN, M. A., QURESHI, M. K., AND PATT, Y. N. 2008. Feedback-driven threading: Power-efficient and
high-performance execution of multi-threaded workloads on CMPs. SIGARCH Comput. Architect. News
36, 1, 277–286.

TAM, D., AZIMI, R., AND STUMM, M. 2007. Thread clustering: sharing-aware scheduling on SMP-CMP-SMT
multiprocessors. In Proceedings of EuroSys’07. 47–58.

VAN DER PAS, R. 2005. The OMPlab on Sun Systems. In Proceedings of the International Workshop on
OpenMP (IWOMP’05).

Received March 2011; revised December 2011; accepted January 2012

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 6, Publication date: April 2012.

