
Processing in Storage Class Memory

Joel Nider
University of British Columbia

Craig Mustard
University of British Columbia

Andrada Zoltan
University of British Columbia

Alexandra Fedorova
University of British Columbia

Abstract
Storage and memory technologies are experiencing unprece-
dented transformation. Storage-class memory (SCM) deliv-
ers near-DRAM performance in non-volatile storage me-
dia and became commercially available in 2019. Unfortu-
nately, software is not yet able to fully benefit from such high-
performance storage. Processing-in-memory (PIM) aims to
overcome the notorious memory wall; at the time of writing,
hardware is close to being commercially available. This paper
takes a position that PIM will become an integral part of future
storage-class memories, so data processing can be performed
in-storage, saving memory bandwidth and CPU cycles. Un-
der that assumption, we identify typical data-processing tasks
poised for in-storage processing, such as compression, encryp-
tion and format conversion. We present evidence supporting
our assumption and present some feasibility experiments on
new PIM hardware to show the potential.

1 Introduction

Problem Storage-class memory (SCM), also known as non-
volatile memory (NVRAM) is starting to be adopted as a
long-term storage media, as a complement, or even as an alter-
native to SSD and HDD. It is a class of memory technologies
(including STT-MRAM [20], PCM [22], ReRAM [30] and
FeRAM [4]) whose defining feature is that data persists across
power cycles. It also features a high level of parallelism that
is inherent in the design, due to its physical properties. Often,
memories in this class are also byte addressable, although not
always used in the manner.

Over the past two decades, performance of storage hard-
ware has increased two orders of magnitude. First, with the
introduction of SSDs (solid state drives) then with the transi-
tion from SATA to PCIe and most recently with the innovation
in non-volatile memory technology. Last year, Intel released
Optane DC Persistent Memory [8], which is built on PCM
with 3D-XPoint technology and sits directly on the memory
bus and further reduces I/O latency.

Figure 1: Latency breakdown of a 4KB block random read on
various storage hardware technologies

At the same time, computation capabilities have not in-
creased at the same rate due to the end of Moore’s Law and
Dennard scaling. This means that CPU cycles are too precious
to waste on I/O processing, especially since I/O processing
overhead is increasing at a faster rate than CPUs can cope
with. Figure 1 illustrates that while device access time used to
dominate I/O latency, the cost of navigating the software stack
is becoming more crucial as device access time shrinks. As
storage performance increases, the time spent on processing
the data read from the storage media is becoming a more
significant percentage of the overall access time. Similarly
as storage density increases, the amount of CPU resources
required to process data at this higher rate also increases,
eventually becoming the bottleneck in an otherwise scalable
system. To overcome the problem of scalability in the stor-
age subsystem, compute resources must scale with storage
capacity. We believe this will lead to PIM technologies being
integrated with SCM.

Solution Accelerators have been proposed at all levels of
the storage hierarchy; from smart caches to processing in
storage. Processing-in-memory (PIM) architectures [27] have



been proposed to either overcome the limitations of memory
bandwidth (i.e. "memory wall" problem) [11,19,33], or reduce
energy consumption in data movement [2]. PIM processors
are tightly coupled with the RAM, often being implemented
on the same die, which has the unique property of scaling the
processing capability with the amount of available memory.

We make the supposition that hardware will emerge that
uses PIM processors to improve SCM scalability. These em-
bedded PIM processors are not a drop-in replacement for
the host CPU, because they exist in a severely limited envi-
ronment. Highly constrained die area and a limited power
envelope dictate the capabilities of the PIM processors, which
in turn affect the scope of the software which they can exe-
cute. PIM on SCM shares many of these constraints with PIM
on DRAM, but since SCM is essentially storage, the kind of
operations performed by PIM on SCM will be different than
that performed by PIM on DRAM.

We see use cases as the main source of difference between
PIM on SCM and PIM on DRAM. How the hardware is
used should drive the design of both hardware and software.
The simplest use case of PIM on SCM will be to perform
data transformation between the format of stored data and
its in-memory form. We propose to offload simple data pro-
cessing and manipulation operations (e.g., compression) from
the CPU to processors embedded within the SCM. This may
encompass several scenarios such as a compressed cache for a
block device, preparing data for long-term storage by adding
checksums, filtering, or collecting statistics on the data. By
offloading these tasks, the CPU will be freed to handle more
latency-sensitive or computationally intensive operations. Per-
forming these same tasks using PIM on DRAM would involve
using the CPU or a DMA engine to transfer data to DRAM
and then operate on it. PIM on SCM eliminates this data
movement.

Benefits PIM on SCM makes sense because it offers many
benefits. The following is a list of the most important ones.

• Free the Bus Since the SCM and in-storage processors
are tightly coupled, the data does not have to move across
a shared bus. Thus, we can avoid the von-Neumann bot-
tleneck [18] on the memory bus between storage (SCM
or disk) and RAM that current PIM on DRAM imple-
mentations suffer from. This is especially important with
SCM, as many functions process more data than they
return, transferring large amounts of data can be com-
pletely avoided.

• Scalable Processing As the size of the storage increases,
processing capabilities should also increase in order to
evenly scale the throughput of service requests in the
system. PIM on SCM couples processors with storage,
so as to guarantee linear scaling.

• Post-processing of Stored Data Many applications

need to guarantee data durability by ensuring that the
data has been written to persistent media. PIM on SCM
can continue to transform the data in storage after it has
become durable, possibly increasing the throughput of
the application.

Contributions Our contribution is recognizing the oppor-
tunity to use PIM to solve scalability issues for low-latency
persistent storage. We provide motivating experiments with
two applications and present microbenchmarks on new PIM
hardware to assess the feasibility of this idea. We believe that
this approach warrants further investigation.

2 Background

PIM has been described in several hardware architecture pa-
pers [2, 3, 12, 14, 18, 19, 28, 32] which have explored various
parameters in the design space. Our proposed hardware sits at
the junction between processing-in-memory which generally
refers to processors embedded in volatile memory, and pro-
cessing in storage referring to processors embedded in block
storage devices. We refer the reader to Siegl [27] for a more
comprehensive survey and taxonomy of NDP (near data pro-
cessing) including PIM and NMP (near memory processing).
We view PIM as a collection of small processors embedded
in the memory, which we refer to as Data Processing Units
(DPU). Here we discuss some of the pertinent features of vari-
ous related designs, and the associated trade-offs. We base our
evaluations on the hardware built by UPMEM [10], which
is likely to reflect their commercial offering. Even though
the UPMEM hardware is implemented on DRAM, we would
expect to see hardware very much like what UPMEM is pro-
ducing in future persistent memory systems, perhaps with the
additional features discussed below.

Inter-PIM Communication Several proposed designs fea-
ture a secondary bus (i.e. that does not connect to the host
or main memory system) that is used to communicate data
and control between the various DPUs, effectively making a
distributed system. This has the advantage of being able to
coordinate effort for dynamic load balancing at runtime, and
sharing partial results to improve locality. The major draw-
back is the cost of integrating such a bus in silicon. Beyond the
obvious costs of larger silicon area and energy consumption,
such a bus also requires a more complicated front-end to han-
dle loads and stores from multiple sources. This would also
impact scalability because of the amount of communication
required between processors.

Address Translation One of the requisite features for sup-
porting virtual memory is an address translation function for
converting virtual addresses to physical addresses. DPU sup-
port for virtual memory is very convenient because it means



pointers can be shared verbatim between the host CPU and
the DPU. Memory translation can be expensive because it re-
quires maintenance of the translation tables. Each process on
the host CPU has its own set of tables, and it would become
necessary to either share or duplicate these mappings for each
DPU in order to support virtual memory. In addition, most
DPU designs can only access a limited range of the physical
address space. For these reasons, many PIM designs do not
support address translation.

Core Density We refer to the ratio of DPUs to memory as
the core density of the system. Higher core density means
each DPU is responsible for less memory (i.e. more cores per
given memory capacity). It is a tradeoff between silicon area
and power consumption vs. parallelism. Not enough cores
means limiting parallelism, while too many means needlessly
consuming power and die area that could have been used
for other purposes. One question that we hope to be able to
answer is how to determine the "correct" core density for a
given application.

Instruction Set DPUs must decode and execute instruc-
tions, just like any other processor. Some designs have reused
an existing ISA from some embedded processor, while others
have opted to design their own custom ISAs. The main advan-
tage to an existing ISA is a mature ecosystem, meaning the
software development toolchain (compiler, linker, debugger,
etc) already exists and is familiar to developers. It is plausible
that there may be binary compatibility between two proces-
sors that share an ISA. On the other hand, designing a new
ISA means only the necessary instructions must be imple-
mented, which can lead to a leaner design. This comes at a
cost of having to develop new tools and provide training for
developers.

3 Architecture and Limitations

The first step in evaluating feasibility and potential of our idea
is to experiment with existing PIM hardware. Even though
the UPMEM hardware is implemented on DRAM, SCM and
DRAM have enough similarities so we may experiment freely
without depending on simulation or emulation, which both
have drawbacks. UPMEM DRAM is DDR4-compatible: it
can be used as a drop-in replacement for DDR4 DIMMs. Their
DPUs are general-purpose processors, which we believe to
be a crucial feature for our problem. In the rest of this section
we describe the architecture of the UPMEM PIM hardware
and discuss its advantages and limitations. We conclude with
the discussion of features that we believe would be beneficial
to future PIM on SCM.

UPMEM augments DRAM chips by including a special-
ized implementation of a general-purpose processor (DPU)

inside each chip, which has direct access to the DRAM mem-
ory. This architecture was designed so that it can be readily in-
tegrated into existing DRAM designs. The memory is divided
into ranks, and each rank has a set of dedicated, multithreaded
DPUs. That way, the number of DPUs is proportional to the
size of the memory of the machine.

Before a DPU can compute on the data, the data must be
copied by a DMA engine from DRAM to a 64KB private
SRAM buffer. Each DPU has a large number of hardware
threads that can be scheduled for execution, but because it
is an interleaved multithreading (IMT) design [31] , only
one thread can advance at each cycle. The large number of
threads helps hide latency while moving data, since several
DMA operations can progress concurrently. Since all of the
memory chips are decoupled, all of the DPUs can process
data in parallel, completely independent of one another. How-
ever, since there is no direct communication channel between
DPUs, the host must carefully control the dataset and plan
execution before processing begins because of the high cost
of synchronization, which must be performed by the host.

Because the capabilities of the PIM processors are well be-
low that of a common host CPU, it is necessary to ensure that
the offloaded functions are simple enough to be implemented
and executed efficiently on these embedded processors. De-
spite the simple design of the PIM processors, they are general
purpose, and are applicable to a wide range of problems. They
are easy to program since standard development tools (com-
piler, linker, debugger) are used. In many cases, code snippets
can be ported directly from existing code. This is an impor-
tant feature to encouraging adoption of the new technology
in future memory designs. The fact that these processors use
a C compiler means that engineers can feel comfortable with
the programming environment, and get up to speed quickly.

3.1 Virtual Memory

DRAM [17] is organized into banks. In UPMEM memory the
core density is one DPU for each bank of 64MB. The DPU
can only access data in its bank. This creates a challenge,
because when a host CPU writes a cache line to DRAM, that
data is striped across multiple banks at the granularity of one
byte – this is a common design in DRAM DIMMs to reduce
latency. This striping is transparent to the host – as long as
the data written is identical to the data read back. But when
the host writes data that is meant for the DPU to read, the
striping causes each DPU to see only every 8th byte of the
data. In order to present the DPU with a contiguous dataset,
the API functions must reorder the bytes before copying them
into the memory attached to the DPUs. To be able to share
the memory efficiently between the host and the DPUs, we
need to be able to map virtual memory pages directly into
the address space of the application, and access them as such.
Currently this is not possible, due to the limitations incurred
by striping. Mixing SCM and DRAM together in a single rank



would further exacerbate the situation, due to the differences
in physical layout. Since the DPUs are permanently tied to a
specific memory range, we are unable to use the usual method
of migrating sectors used to implement wear levelling on
SCM [25], and would be forced to use in-place methods [5].

3.2 Wishlist for PIM architectures
Based on our understanding of PIM on DRAM, we believe
PIM on SCM would benefit from some additional features
that would make the data flow easier to manage, and software
easier to write.

Data Triggered Functions Similar to the concept of Data
Triggered Threads [29] and EDGE [16], we propose the idea
of data triggered functions. The idea is that the host CPU
can trigger a function execution on the DPU by reading from
a memory address owned by that DPU. The address is first
registered on the DPU as a function target. When the CPU
issues a memory load, it will trigger the DPU to execute a
function, and stall until the function completes, at which time
the memory will return the result. This will keep the program
flow simple, as no expensive API calls would be needed in
order to execute a function on the DPU, and no additional
mechanism (polling, interrupt, etc.) would be required to know
when the results are available. This would require a memory
controller that can support the longer latency of executing
a function. The NVDIMM-P specification [13] is expected
to add support for non-deterministic access times to handle
longer latencies associated with persistent memory, which
may be able to also handle such an extreme case as function
execution.

Concurrent Memory Access The PIM architecture must
arbitrate between concurrent accesses to the same memory
rank from the host CPU and the DPU. Currently, this is con-
trolled by a register written by the host, to select the permitted
bus master. This is a very coarse granularity, which means
PIM cannot arbitrate between individual accesses from mul-
tiple sources. Effectively, it means that the DPU and CPU
cannot operate on the same memory rank concurrently. In
order to pipeline requests from software, it would be neces-
sary to support a producer-consumer model while the DPU
is processing buffer N the CPU could read the results of N-1
and write the buffer N+1. This is used for double-buffering,
or the more general case of a queue of buffers. This would
require support from the memory bus, which is not possi-
ble with the commonly used DDR4. Memory fabrics such
as OpenCAPI [7], GenZ [21] or CCIX [6] may provide the
necessary support.

Mix of Memory Types Each DPU can access a single re-
gion of physical memory (64MB on UPMEM hardware). It

would be advantageous to allow the DPU to access a mix of
DRAM and SCM. The SCM is used for persistent storage of
application data, while the DRAM is used for holding tem-
porary results, such as uncompressed or decrypted blocks of
data that is stored in the SCM portion. Ultimately, we would
like to dynamically select the ratio of SCM to DRAM in each
region. Even if that were not possible, there is still an advan-
tage to having a static partitioning of memory types at a fixed
ratio.

Tuning For Performance A system is only as good as
its weakest point. Therefore, it is important to balance the
throughput of the components to get maximum performance
while minimizing cost. While we believe current PIM designs
used with DRAM would be essentially the same on SCM, the
system characteristics will likely be different. For example,
SCM has higher access latency than DRAM for both reads
and writes. Therefore, a PIM design may require modifica-
tions such as increasing the number of threads to have more
memory accesses in-flight in order to compensate for higher
latency. Alternatively, increasing the core density may also
provide the same result. These details are dependent on many
factors, including the cost of additional silicon area, power
consumption, bus frequency and memory latency. Further
study is required to draw any meaningful conclusions.

4 Feasibility Experiments

In this section, we identify some promising applications that
PIM on SCM can accelerate. We show that these use cases
can have high software overhead on SCM, and that software
becomes the main performance bottleneck.

Format Parsing Decoding stored data formats (JSON,
XML, ORC, etc.) into in-memory representations is an ex-
pensive task. The best known CPU implementation of SIMD-
JSON today can only operate at 2GB/s per-core [23]. With
the restricted core counts of modern processors, we envision
using the numerous PIM cores to perform some or all of the
parsing. SIMDJSON identifies all structural bytes of a record
in parallel before traversing it. Performing the identification
on PIM hardware would alleviate CPUs of this bandwidth-
intensive task. Another complimentary approach could be to
use PIM to filter records before using a CPU to parse them,
as proposed by Sparser [26].

To motivate this use case, we performed an experiment to
compare the overhead of format conversion when the data
is stored on Intel Optane NVRAM and on HDD. We parse
14GB of JSON store_sales from the TPC-DS benchmark suite
using SIMDJSON’s multi-line parsing benchmark running
on a single CPU core. To ensure the data is taken from disk,
we flush the block cache before the test. On NVRAM, the
test takes 26s with 11s (42%) of parse time. On HDD it takes



-40% -20% 0% 20% 40% 60% 80% 100% 

small-btree		
update-checkpoint-btree.update
update-checkpoint-btree.read
update-lsm.read
evict-lsm		
update-lsm.update
evict-btree-stress		
update-delta-mix3		
evict-lsm-1		
medium-lsm-compact		
evict-btree-1		
medium-lsm		
medium-btree		
evict-btree		
update-btree.insert
evict-btree-stress-multi.read
evict-btree-stress-multi.update
medium-multi-lsm-noprefix.update	
medium-multi-lsm.update
medium-multi-lsm-noprefix.read
insert-rmw.read
medium-multi-lsm.read
long-txn-lsm.update
small-lsm		
long-txn-lsm.read
medium-multi-btree-log		
update-btree.update
checkpoint-schema-race.read
update-btree.read
insert-rmw.insert
update-only-btree		
checkpoint-schema-race.update
checkpoint-schema-race.insert
update-grow-stress.update
medium-multi-btree-log-partial.update

SLOWDOWN	WHEN	COMPRESSION	IS	ENABLED	RELATIVE	 TO	WHEN	IT	IS	DISABLED

HDD NVRAM	 slows	down	more	than	HDD

Slowdownon	NVRAM	
is	higher	 than	on	HDD	
17	out	of	35	workloads

NVRAM	 slows	down	same	as	HDD
NVRAM	 slows	down	less	than	HDD

Slowdownon	NVRAM	is	
smaller	than	on	HDD	 for	
only	4 workloads.

Figure 2: The X-axis shows the names of benchmarks and
their respective operations in the format benchmark.operation,
where the operation type can be read, insert, modify or update;
the operation type is omitted when the benchmark performs
only reads.

80s with 11s (13%) of parse time. SIMDJSON operates at
1.3 GB/s in these tests, so it can easily keep up with the HDD
throughput at 200MB/s, whereas NVRAM at 1.6GB/s1 it is
able to sustain a higher throughput than the CPU can manage.
By using multiple DPUs, we expect to parallelize the parsing,
and see an increase in throughput.

Storage Compression Compression is used to improve
storage density, but requires that data be decompressed before
it can be used [24]. When this happens, CPU time that could
be spent servicing other requests is spent on decompression.

MongoDB is the most popular NoSQL database [1] and
its storage engine, WiredTiger, is responsible for managing
the data storage on each database node. Like many other key-
values stores, WiredTiger converts the data between on-disk
format (for persistent data) and in-memory format (when the
data is live), optionally including encryption or compression.
These operations must be performed each time a block is
transferred between persistent storage and main memory.

1Optane NVRAM here was used as a block device with a file system on
top (no dax option) and data was read via system calls. If accessed via a dax
file system and using mmap, the throughput would be even higher.

Figure 3: Snappy decompression benchmark results

Our hypothesis is that the relative overhead of compression
is higher on NVRAM device than on HDD. In general terms,
the compression overhead becomes higher (relative to the total
execution time) as the speed of the storage device increases.
To test the hypothesis, we used the WiredTiger performance
suite wtperf. We ran each workload with compression on
and with compression off, and compared the throughput. We
repeated this experiment on the NVRAM block device2 and
on a conventional HDD. Our test system consists of an Intel
Xeon 5218 CPU @ 2.3GHz, 256GB Intel Optane NVRAM
(non-interleaved in app mode @2666 MHz), with a Toshiba
300 GB SAS HDD (@10K RPM).

Figure 2 shows the results. Compression overhead is higher
on NVRAM than on HDD (by at least 3%) for 17 of the 35
benchmark/operations3. Only 4 benchmark/operations suffer
higher compression overhead on HDD than on the NVRAM.
Higher relative overhead is an indication that either the CPU
cycles spent on compression or the increased cache miss rate
due to increased cache pollution becomes a more significant
factor in performance when I/O is fast. In both cases, offload-
ing these tasks from the host CPU could reduce the overhead.

Snappy Decompression To test whether or not PIM hard-
ware would be able to keep up with decompression offloaded
from the CPU, we implemented a decompressor for the
Snappy [15] algorithm. By using a set of test files that vary
in size and compression ratio, we compiled a benchmark
to measure the performance compared to a CPU (shown in
Table 1). Figure 3 shows the speedup (slowdown) of our im-
plementation over the same algorithm on the host CPU. For
this experiment, we used a host with an AMD Ryzen CPU
running at 2.2GHz, an Intel 660p 3D NAND SSD and 640
UPMEM DPUs. With the largest file size, we see a speedup

2Optane NVRAM was configured as a block device with the file system
on top, so we could use WiredTiger without modifications.

3We did not run all of the workloads due to limited space on our NVRAM
device and other configuration issues. We omitted from the Figure those
where the differences between compressed and uncompressed configurations
were not statistically significant



File Size # DPUs # Tasklets DPU cycles
terror2 100KB 1 4 7,274,144

plrabn12 500KB 2 8 8,822,944
world192 1MB 4 12 7,569,344

xml 5MB 15 12 7,391,632
sao 7MB 21 12 7,855,696

dickens 10MB 35 12 9,230,576
nci 30MB 64 18 7,235,184

mozilla 50MB 105 16 9,148,832
spamfile 84MB 172 16 9,800,320

Table 1: Snappy decompression benchmark parameters

of nearly 4.5x using only 172 DPUs. With the smallest file,
we see a slowdown of 100% (i.e. 2x longer than the CPU). In
both cases, the amount of available parallelism is the cause.
The measurement does not take I/O time into account (i.e.
reading the file from disk) in order to simulate the case in
which the compressed data is stored in SCM, readily available
to the PIM processors. While these are only initial results
and our implementation has not yet been fully optimized,
they are promising and indicate the need to extract sufficient
parallelism.

4.1 Throughput

To expose the potential, we measured the maximum through-
put between the DRAM and SRAM buffer of UPMEM PIM.
Our test system is composed of nine single-rank DDR4-2400
UPMEM DIMMs, running at 267 MHz. That yields a total of
36GB of DRAM and 576 DPU cores. The host is one Intel
Xeon Skylake SP (4110) socket.

The experiment copies the entire DRAM bank that is ac-
cessible by the DPU (64MB) in 2KB blocks from DRAM
to the SRAM buffer using the DMA engine. We maximized
parallelism by starting all DPUs simultaneously, and by using
16 threads concurrently in each DPU. The threads only copied
data, and did not perform any additional processing.

We copied 36 GB in 0.14 seconds, for a total throughput of
approximately 252 GB/sec. Compared to the maximum theo-
retical bandwidth of a single DDR4-2400 channel between
the DRAM and CPU of 19 GB/sec [9], this is more than a 13x
larger throughput. With the expected maximum frequency
of the UPMEM DPU set to be 500 MHz in the future, the
bandwidth advantage would increase up to 20×. This gives
us the motivation to leverage this enormous bandwidth to
accelerate our applications.

4.2 Other Use Cases

There are a few other use cases that we have conceived and
investigated, but are not yet at the point that we can report
results.

Encryption Databases often store their data in an en-
crypted form for security. When the data is to be read by
the database, it must first be decrypted. Multiple client re-
quests may require decrypting different blocks at the same
time. Also, prefetching operations by the database may trigger
decryption. Several data blocks can be decrypted in parallel,
without intefering with the throughput of the main CPU which
can continue to handle client requests.

Index Checks Checking if data is present in an index is a
common task for databases, key/value stores, and analytics
engines. Each index check is an independent operation, which
means it can easily be parallelized. When a number of indexes
need to be checked simultaneously, PIM can assist with the
check, freeing up the CPU to deliver data to the client.

5 Conclusions

Implementing PIM on SCM is a promising direction in order
to offload simple tasks and free up precious CPU cycles and
memory bus cycles. Our motivating experiments have given
some evidence supporting our belief. We plan to investigate
how to best use this new architecture for software applications
that are likely to gain the most benefit.

6 Discussion Topics

In keeping with the spirit of the workshop, we have composed
the following list of items on which we hope to discuss with
the other participants.

1. Applicability We would like to get feedback on the ap-
plicability of this architecture. We have come up with
several use cases, but believe there are many more than
we have not yet considered.

2. Hardware Parameters There are several hardware param-
eters that can be tweaked in a particular implementation
that would affect the outcome of any software experi-
ments we could run. How should we determine the cor-
rect mix of SCM and DRAM in each DPU rank? How
to find the correct core density, given a particular PIM
and memory technologies? This includes the items in
our wishlist (section 3.2). Since many of these features
are being discussed and defined in standards, we may
have an opportunity to influence the community early
enough to have a positive impact on technology we will
be using for years to come.

3. Benchmarking One question that is not clear, is the most
convincing way to benchmark this kind of architecture.
Clearly, adding more CPU resources will increase overall
system performance. However, we want to make a fair
comparison to a system without these PIM processors,
in order to show the cost vs. benefit.



References

[1] Db-engines ranking. DB-Engines, 2020. https://
db-engines.com/en/ranking.

[2] Sandeep R Agrawal, Sam Idicula, Arun Ragha-
van, Evangelos Vlachos, Venkatraman Govindaraju,
Venkatanathan Varadarajan, Cagri Balkesen, Georgios
Giannikis, Charlie Roth, Nipun Agarwal, and et al. A
many-core architecture for in-memory data processing.
In Proceedings of the 50th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-50 ’17,
page 245–258, New York, NY, USA, 2017. Association
for Computing Machinery.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A
scalable processing-in-memory accelerator for paral-
lel graph processing. In 2015 ACM/IEEE 42nd An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 105–117, June 2015.

[4] Dudley Allen Buck. Ferroelectrics for digital informa-
tion storage and switching. In Digital Computer Library,
06 1952.

[5] Sangyeun Cho and Hyunjin Lee. Flip-n-write: A sim-
ple deterministic technique to improve pram write per-
formance, energy and endurance. In Proceedings of
the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 42, page 347–357, New
York, NY, USA, 2009. Association for Computing Ma-
chinery.

[6] CCIX Consortium. Ccix cache coherency interface.
2019. https://www.ccixconsortium.com/.

[7] OpenCAPI consortium. Opencapi consortium. 2019.
https://opencapi.org/.

[8] Intel Corporation. Intel R© optaneTM memory. 2019.
https://www.intel.ca/content/www/ca/en/
architecture-and-technology/optane-memory.
html.

[9] Frank Denneman. Memory deep dive: Ddr4 mem-
ory. 2015. https://frankdenneman.nl/2015/02/
25/memory-deep-dive-ddr4/.

[10] F. Devaux. The true processing in memory accelerator.
In 2019 IEEE Hot Chips 31 Symposium (HCS), pages
1–24, Aug 2019.

[11] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff.
Computedram: In-memory compute using off-the-shelf
drams. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO
’52, page 100–113, New York, NY, USA, 2019. Associ-
ation for Computing Machinery.

[12] M. Gao and C. Kozyrakis. Hrl: Efficient and flexible
reconfigurable logic for near-data processing. In 2016
IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 126–137, March
2016.

[13] Bill Gervasi and Jonathan Hinkle. Overcoming sys-
tem memory challenges with persistent memory and
nvdimm-p. In JEDEC Server Forum. JEDEC, June
2017.

[14] M. Gokhale, B. Holmes, and K. Iobst. Processing in
memory: the terasys massively parallel pim array. Com-
puter, 28(4):23–31, April 1995.

[15] Google. Snappy - a fast compressor/decompressor. 2020.
http://google.github.io/snappy/.

[16] T. H. Hetherington, M. Lubeznov, D. Shah, and T. M.
Aamodt. Edge: Event-driven gpu execution. In 2019
28th International Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 337–353,
2019.

[17] Bruce Jacob, David Wang, and Spencer Ng. Memory
systems: cache, DRAM, disk. Morgan Kaufmann, 2010.

[18] R. Kaplan, L. Yavits, and R. Ginosar. Prins: Processing-
in-storage acceleration of machine learning. IEEE Trans-
actions on Nanotechnology, 17(5):889–896, 2018.

[19] Roman Kaplan, Leonid Yavits, and Ran Ginosar. From
processing-in-memory to processing-in-storage. Super-
comput. Front. Innov. : Int. J. 4, 2017.

[20] Alexey Khvalkovskiy, Dmytro Apalkov, S Watts, Roman
Chepulskii, R Beach, Adrian Ong, X Tang, A Driskill-
Smith, W Butler, P. Visscher, Daniel Lottis, E Chen,
Vladimir Nikitin, and M Krounbi. Basic principles of
stt-mram cell operation in memory arrays. Journal of
Physics D: Applied Physics, 46:074001, 01 2013.

[21] Michael Krause and Mike Witkowski. Gen-z dram and
persistent memory theory of operation. 2019. https:
//genzconsortium.org/.

[22] S. Lai. Current status of the phase change memory
and its future. In IEEE International Electron Devices
Meeting 2003, pages 10.1.1–10.1.4, Dec 2003.

[23] Geoff Langdale and Daniel Lemire. Parsing gigabytes
of json per second. The VLDB Journal, 28(6):941–960,
2019.

[24] T. Makatos, Y. Klonatos, M. Marazakis, M. D. Flouris,
and A. Bilas. Zbd: Using transparent compression at the
block level to increase storage space efficiency. In 2010
International Workshop on Storage Network Architec-
ture and Parallel I/Os, pages 61–70, May 2010.

https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://www.ccixconsortium.com/
https://opencapi.org/
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-memory.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-memory.html
https://www.intel.ca/content/www/ca/en/architecture-and-technology/optane-memory.html
https://frankdenneman.nl/2015/02/25/memory-deep-dive-ddr4/
https://frankdenneman.nl/2015/02/25/memory-deep-dive-ddr4/
http://google.github.io/snappy/
https://genzconsortium.org/
https://genzconsortium.org/


[25] M. Nakanishi, Y. Adachi, C. Matsui, Y. Sugiyama, and
K. Takeuchi. Application-oriented wear-leveling op-
timization of 3d tsv-integrated storage class memory-
based solid state drives. In 2018 International Con-
ference on Electronics Packaging and iMAPS All Asia
Conference (ICEP-IAAC), pages 27–32, 2018.

[26] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Filter before you parse: Faster analytics
on raw data with sparser. Proc. VLDB Endow.,
11(11):1576–1589, July 2018.

[27] Patrick Siegl, Rainer Buchty, and Mladen Berekovic.
Data-centric computing frontiers: A survey on
processing-in-memory. In Proceedings of the Second
International Symposium on Memory Systems, MEM-
SYS ’16, page 295–308, New York, NY, USA, 2016.
Association for Computing Machinery.

[28] H. S. Stone. A logic-in-memory computer. IEEE Trans-
actions on Computers, C-19(1):73–78, Jan 1970.

[29] Hung-Wei Tseng and Dean Michael Tullsen. Software
data-triggered threads. In Proceedings of the ACM Inter-
national Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’12,
page 703–716, New York, NY, USA, 2012. Association
for Computing Machinery.

[30] Rainer Waser and Masakazu Aono. Nanoionics-based
resistive switching memories. In Nature Materials, 11
2007.

[31] W. . Weber and A. Gupta. Exploring the benefits of mul-
tiple hardware contexts in a multiprocessor architecture:
Preliminary results. In The 16th Annual International
Symposium on Computer Architecture, pages 273–280,
May 1989.

[32] Dongping Zhang, Nuwan Jayasena, Alexander Lya-
shevsky, Joseph L. Greathouse, Lifan Xu, and Michael
Ignatowski. Top-pim: Throughput-oriented pro-
grammable processing in memory. In Proceedings of
the 23rd International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’14, page
85–98, New York, NY, USA, 2014. Association for Com-
puting Machinery.

[33] Vasileios Zois, Divya Gupta, Vassilis J. Tsotras, Walid A.
Najjar, and Jean-Francois Roy. Massively parallel sky-
line computation for processing-in-memory architec-
tures. In Proceedings of the 27th International Confer-
ence on Parallel Architectures and Compilation Tech-
niques, PACT ’18, New York, NY, USA, 2018. Associa-
tion for Computing Machinery.


	Introduction
	Background
	Architecture and Limitations
	Virtual Memory
	Wishlist for PIM architectures

	Feasibility Experiments
	Throughput
	Other Use Cases

	Conclusions
	Discussion Topics

