
Towards Better Performance Per Watt in Virtual
Environments on Asymmetric Single-ISA Multi-core

Systems

Viren Kumar
Simon Fraser University

8888 University Dr
Vancouver, Canada

vka4@sfu.ca

Alexandra Fedorova
Simon Fraser University

8888 University Dr
Vancouver, Canada
fedorova@sfu.ca

ABSTRACT
Single-ISA heterogeneous multicore architectures promise to
deliver plenty of cores with varying complexity, speed and
performance in the near future. Virtualization enables mul-
tiple operating systems to run concurrently as distinct, in-
dependent guest domains, thereby reducing core idle time
and maximizing throughput. This paper seeks to identify a
heuristic that can aid in intelligently scheduling these vir-
tualized workloads to maximize performance while reducing
power consumption.

We propose that the controlling domain in a Virtual Ma-
chine Monitor or hypervisor is relatively insensitive to changes
in core frequency, and thus scheduling it on a slower core
saves power while only slightly affecting guest domain per-
formance. We test and validate our hypothesis and further
propose a metric, the Combined Usage of a domain, to assist
in future energy-efficient scheduling. Our preliminary find-
ings show that the Combined Usage metric can be used as
a starting point to gauge the sensitivity of a guest domain
to variations in the controlling domain’s frequency.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—mul-
tiprocessing, scheduling

General Terms
Measurement, Performance, Experimentation

Keywords
virtualization, performance-asymmetric multicore architec-
tures, performance per watt

1. INTRODUCTION
Asymmetric single-ISA (ASISA) multicore processors [21][12]
(also known as heterogeneous) can potentially deliver a greater

performance per watt than homogeneous multicore proces-
sors. As power consumption in data centers becomes a grow-
ing concern [3], deploying ASISA multicore systems is an
increasingly attractive opportunity. These systems perform
at their best if application workloads are assigned to het-
erogeneous cores in consideration of their runtime proper-
ties [4][13][12][18][24][21]. Therefore, understanding how to
schedule data-center workloads on ASISA systems is an im-
portant problem. This paper takes the first step towards
understanding the properties of data center workloads that
determine how they should be scheduled on ASISA multi-
core processors. Since virtual machine technology is a de
facto standard for data centers, we study virtual machine
(VM) workloads.

ASISA multicore systems will consist of several cores expos-
ing the same ISA but differing in features, complexity, power
consumption, and performance. Most likely, they will fea-
ture a handful of complex cores running at high frequency
and consuming a relatively high amount of power and a
larger number of simple cores running at low frequency and
consuming relatively little power [1][13]. The motivation
behind ASISA processors is to deliver a higher performance
per watt ratio. While some workloads experience an in-
crease in performance proportional to the increase in the
power consumption when they run on a high-frequency core
as opposed to a low-frequency core, other workloads experi-
ence only a marginal gain in performance while consuming a
lot more power. To maximize performance per watt, work-
loads must be assigned to heterogeneous cores in ASISA sys-
tems in consideration of their runtime properties. Workloads
whose performance is the most sensitive to frequency of the
core (i.e., those that experience the largest relative perfor-
mance gain on a high-frequency core vs. a low-frequency
core) should be assigned to run on high-frequency cores,
while workloads that are less sensitive should run on low-
frequency cores. Several recent studies have demonstrated
that this scheduling strategy improves performance per watt
[4][13][12][18][24][21].

In this paper, we study properties of virtualized workloads
that shed insight into how these workloads should be sched-
uled on ASISA systems. We hope to use our findings to
design new scheduling algorithms in virtual machine hyper-
visors.

As our experimental virtual platform we use the Xen hyper-

Table 1: Experimental System
Processors 4 quad-core AMD Barcelona
L1 Cache 64 KB per core
L2 Cache 512 KB per core
L3 Cache 2 MB (Shared)
domU clock speeds 2.3 GHz, 2.0 GHz, 1.7 GHz,

1.4 GHz, 1.15 GHz
dom0 clock speed 2.3 GHz
Physical Memory 64 GB
domU Memory 1.0 GB
OS Gentoo Linux 2.6.21
Xen version 3.2.1

visor [2], a popular system used in data centers. Xen has
a single controlling domain, henceforth also referred to as
dom0, and many guest domains, also referred to as domUs.
The controlling domain in Xen executes code on behalf of
the guest domains, usually when the guest domains need ac-
cess to devices, such as the network interface (NIC) or disk.
Frequent device access in dom0 implies several properties
about workloads dependent on dom0: (1) in many cases the
device, and not the CPU, is the bottleneck, so running this
workload on a slower CPU may not hurt overall performance
as much as for other workloads; (2) device access involves
frequent execution of system code and handling of interrupts
– according to previous work this workload is less sensitive
to changes in CPU performance than other workloads [18].
To this end, we hypothesize that the workloads executed by
dom0 are less sensitive to changes in CPU frequency than
domU (CPU-bound) workloads. The main contribution of
our work is the test of this hypothesis.

We measured the performance of a large number of virtual
workloads running on Xen on cores running at various fre-
quencies and computed sensitivity to frequency changes. To
vary the frequency of the cores, we used dynamic voltage and
frequency scaling (DVFS) available on our AMD Barcelona
system. We found that our hypothesis holds: in general, the
performance of workloads that depend on dom0 is less sensi-
tive to variations in CPU performance than workloads that
do not depend on dom0. However, the degree of sensitiv-
ity depends on the nature of the guest workload that drives
dom0. By accurately identifying dom0-dependent workloads
that exhibit the lowest sensitivity, we can schedule them on
low-frequency cores and maximize the performance per watt
ratio. Therefore, another contribution of this work is the dis-
covery of heuristics that help us identify the least sensitive
dom0-dependent workloads.

The rest of the paper is structured as follows. Section 2 de-
tails our methodology and experimental environment. Sec-
tion 3 presents the experimental results. Section 4 discusses
related work. Section 5 summarizes our contributions and
discusses future work.

2. METHODOLOGY AND EXPERIMENTS
To test our hypothesis we selected a range of benchmarks
that exercised dom0 and benchmarks that did not depend
on dom0 (CPU-bound benchmarks). We measured perfor-
mance of these benchmarks at various core frequencies and
computed sensitivity to changes in frequency. To measure

performance of CPU-bound workloads, we measured their
runtime in the guest domain. We measured performance
of the guest domain that exercised dom0: the frequency of
the guest domain remained fixed, so any performance vari-
ation was due to performance variation in the dom0. Since
the dom0-intensive workloads executed almost exclusively in
dom0, this measurement technique was a good way to ap-
proximate the measurement in dom0 – the reason for not
measuring performance in dom0 directly was the lack of ac-
cess to application-level performance metrics in dom0.

For CPU-bound benchmarks that do not depend on dom0 we
chose the industry standard benchmarks: SPEC CPU2000,
SPEC CPU2006, and SPEC JBB2005 [22]. The process of
selecting dom0-intensive benchmarks was more involved.

While there are a large number of dom0-intensive bench-
marks, not all of them provide good potential for power
savings on ASISA processors. For example, those dom0-
intensive workloads that have low CPU utilization in dom0,
due to being highly I/O bound, cannot be used to deliver
substantial savings in CPU power consumption simply be-
cause they leave the CPU idle most of the time. There-
fore, we focused on those workloads that produce high CPU
utilization in dom0. This could be accomplished either by
choosing benchmarks that naturally produced high CPU uti-
lization in dom0 or by running multiple guest domains that
individually produce low CPU utilization but collectively
produce moderate to high CPU utilization.

To select the suitable dom0-intensive workloads, we ran a
wide range of I/O intensive workloads in the guest domain
and measured the resulting CPU utilization in the dom0.
We ran the following workloads that utilize disk and net-
work: dbench [25], httperf [19], sysbench (file) [11], lmbench
(pagefault) [23], stress [26], bonnie [5], bonnie++ [6], iozone
[20], piozone [7], hdparm [15], tiobench [16], volanomark [14],
ab (Apache benchmark) [8], and netperf [10]. We ran them
using anywhere from one to four guest domains. For many
of these benchmarks, CPU utilization in dom0 was low (be-
low 10%) even when multiple guest domains were used. In
particular, all disk-bound benchmarks had low dom0 CPU
utilization. We suspect that if we had a powerful storage
system (as opposed to a single disk), we would see higher
CPU utilization for these workloads: in our present test-
ing conditions, where we had only one spindle, the disk was
overloaded and so CPU utilization was low. The benchmarks
that exhibited moderate to high CPU utilization were the
following:

• ab with four guest domains (91% CPU utilization in
dom0)

• netperf TCP with one guest domain (79% CPU uti-
lization in dom0)

• netperf UDP with one guest domain (65% CPU uti-
lization in dom0)

In the rest of the paper we focus on these benchmarks.
Apache Benchmark (ab) sends a fixed number of requests to
a running instance of the Apache web server and then calcu-
lates the number of requests per second the web server is ca-

[16], stress [23], bonnie [7], bonnie++ [8], iozone

[20], piozone [21], hdparm [12], tiobench [25],

volanomark [26], ab (Apache benchmark) [1], and

netperf [13]. We ran them using anywhere from one

to four guest domains. For many of these

benchmarks, CPU utilization in dom0 was low

(below 10%) even when multiple guest domains were

used. In particular, all disk-bound benchmarks had

low dom0 CPU utilization. We suspect that if we had

a powerful storage system (as opposed to a single

disk), we would see higher CPU utilization for these

workloads: in our present testing conditions, where

we had only one spindle, the disk was overloaded and

so CPU utilization was low. The benchmarks that

exhibited moderate to high CPU utilization were the

following:

 ab with four guest domains (91% CPU

utilization in dom0)

 netperf TCP with one guest domain (79% CPU

utilization in dom0)

 netperf UDP with one guest domain (65% CPU

utilization in dom0)

In the rest of the paper we focus on these

benchmarks. Apache Benchmark (ab) sends a fixed

number of requests to a running instance of the

Apache web server and then calculates the number of

requests per second the web server is capable of

handling. Netperf is a networking benchmark that

consists of many tests, the most commonly used ones

being TCP_STREAM to measure TCP bandwidth

and UDP_STREAM to measure UDP bandwidth.

The bandwidth is measured in megabits/second.

We ran our experiments on a Dell PowerEdge

R905 server powered by four quad-core AMD

Barcelona processors capable or running at five

different frequencies. We used Xen 3.2.1 running

Gentoo Linux 2.6.21 as guest domains and in the

dom0. The details of our experimental system are

shown in Table 1.

To measure performance in the controlling

domain, we used sysstat [11], a system-wide

performance monitoring tool available for Linux.

Sysstat gave us the metrics we sought, such as the

number of packets processed per second for ab and

netperf.

Xenoprof [17], the oprofile-based Xen profiling

tool, was used to measure the controlling domain’s

CPU usage during the workload execution phase.

4. Experimental Results

4.1 Sensitivity

Figure 1 shows the relative sensitivity of dom0

performance compared to the CPU-bound

benchmarks. Measuring the performance of diverse

workloads requires different metrics, and we chose

the standard Instructions Per Cycle (IPC) metric for

the CPU-bound SPEC workloads. The networking

workloads’ performance is measured with a

throughput metric, i.e. the number of packets that are

processed by the dom0 per second. Workloads that

are CPU-bound and spend all their time in the guest

domain are penalized the most by frequency changes.

At the lowest dynamic frequency and voltage setting,

SPEC CPU2006's IPC is 58% of the IPC at the

Processors 4 quad-core AMD Barcelona

L1 Cache 64 KB per core

L2 Cache 512 KB per core

L3 Cache 2 MB (shared)

domU clock speeds 2.3 GHz, 2.0 GHz, 1.7 GHz,

1.4 GHz, 1.15 GHz

dom0 clock Speed 2.3 GHz

Physical memory 64 GB

domU Memory 1.0 GB

OS Gentoo Linux 2.6.21

Xen version 3.2.1

Table 1. Experimental system

Figure 1: Sensitivity of Workloads

0

1000

2000

3000

4000

5000

6000

7000

8000

2.3 2 1.7 1.4 1.15

T
h

ro
u
g

h
p

u
t

/
IP

C

Frequencies (GHz)

ab – dom0 packets/sec

netperf-tcp – dom0 packets/sec

netperf-udp – dom0 packets/sec

SPEC CPU 2000 IPC

SPEC CPU 2006 IPC

SPEC jbb throughput

Figure 1: Sensitivity of Workloads

pable of handling. Netperf is a networking benchmark that
consists of many tests, the most commonly used ones being
TCP STREAM to measure TCP bandwidth and
UDP STREAM to measure UDP bandwidth. The band-
width is measured in megabits/second.

We ran our experiments on a Dell PowerEdge R905 server
powered by four quad-core AMD Barcelona processors ca-
pable or running at five different frequencies. We used Xen
3.2.1 running Gentoo Linux 2.6.21 as guest domains and in
the dom0. The details of our experimental system are shown
in Table 1.

To measure performance in the controlling domain, we used
sysstat [9], a system-wide performance monitoring tool avail-
able for Linux. Sysstat gave us the metrics we sought, such
as the number of packets processed per second for ab and
netperf.

Xenoprof [17], the oprofile-based Xen profiling tool, was used
to measure the controlling domainŠs CPU usage during the
workload execution phase.

3. EXPERIMENTAL RESULTS
3.1 Sensitivity
Figure 1 shows the relative sensitivity of dom0 performance
compared to the CPU-bound benchmarks. Measuring the

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(a)

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(b)

Figure 2: ab Workload

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(a)

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(b)

Figure 3: netperf-TCP Workload

performance of diverse workloads requires different metrics,
and we chose the standard Instructions Per Cycle (IPC)
metric for the CPU-bound SPEC workloads. The network-
ing workloads’ performance is measured with a through-
put metric, i.e. the number of packets that are processed
by the dom0 per second. Workloads that are CPU-bound
and spend all their time in the guest domain are penalized
the most by frequency changes. At the lowest dynamic fre-
quency and voltage setting, SPEC CPU2006’s IPC is 58%
of the IPC at the highest setting. On the other hand, work-
loads dependent on dom0 do not suffer as much when the
dom0’s CPU frequency is adjusted. However, ab is not af-
fected as strongly. With ab, the rate of processing packets
at the lowest frequency is 86% that of the rate at the highest
frequency. Netperf-tcp and netperf-udp also suffer less sig-
nificantly than CPU-bound workloads: netperf-TCP ’s per-
formance loss is only 15% and netperf-UDP ’s loss is 25%
compared to the highest-frequency scenario.

3.2 Analysis of Sensitivities
In this section we analyze the sensitivity results. While net-
work saturation in the domUs is not very common in prac-
tice, we assume full network utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in dom0 and
the corresponding performance of the benchmarks at the
different frequencies, for ab, netperf-TCP, and netperf-UDP
respectively. While ab and netperf-TCP lose 19% and 20%
of performance compared to the highest frequency setting,
netperf-UDP experiences a slightly more significant loss of

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(a)

highest setting. On the other hand, workloads

dependent on dom0 do not suffer as much when the

dom0’s CPU frequency is adjusted. However, ab is

not affected as strongly. With ab, the rate of

processing packets at the lowest frequency is 86%

that of the rate at the highest frequency. netperf-tcp

and netperf-udp also suffer less significantly than

CPU-bound workloads: netperf-TCP’s performance

loss is only 15% and netperf-UDP's loss is 25%

compared to the highest-frequency scenario.

4.2 Analysis of sensitivities

In this section we analyze the sensitivity results.

While network saturation in the domUs is not very

common in practice, we assume full network

utilization in our domUs.

Figures 2, 3, and 4 show the CPU utilization in

dom0 and the corresponding performance of the

benchmarks at the different frequencies, for ab,

netperf-TCP, and netperf-UDP respectively. While

ab and netperf-TCP lose 19% and 20% of

performance compared to the highest frequency

setting, netperf-UDP experiences a slightly more

significant loss of 25%. We attempt to understand

this difference in sensitivities in order to develop

heuristics for scheduling that distinguish more

sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are

less sensitive to variations in frequency than netperf-

UDP, because they better overlap network I/O with

CPU computation, and thus slowing down the CPU

has a smaller effect on the overall performance than

for the UDP workload. To test whether this explains

the difference in sensitivities, we compute the degree

of overlap between the I/O and computation in dom0

as follows: we add CPU utilization and network

utilization (computed as the ratio of the benchmark’s

actual bandwidth divided by the maximum theoretical

bandwidth of 10 Gbits/second). If there is an overlap

between I/O and computation, this overlap, i.e., the

sum of utilizations, will be greater than 100% (recall

that dom0 runs on a single CPU).

Figures 5, 6, and 7 show the results. Combined

usage for ab and netperf-TCP are above 100% for all

frequencies. Combined usage for netperf-UDP, on

the other hand, is below 100%, showing that I/O and

computation do not overlap. (The reason why these

numbers do not add up to 100% is because some of

the computation is done in the guest domain and in

the hypervisor, whose CPU utilization we do not

measure.) We suspect that low combined usage

correlates with higher sensitivity for the following

reason. When the combined usage is low, dom0 is not

keeping the device busy. As a result, when CPU

frequency is decreased, the rate at which packets are

generated decreases even further, slowing down the

device even more and decreasing the overall

performance. This effect is less noticeable in the

workloads where the combined usage and thus the

overlap between I/O and computation are high.

 (a) (b)

Figure 3: netperf-TCP Workload

 (a) (b)

Figure 2: ab Workload

 (a) (b)

Figure 4: netperf-UDP Workload

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

20

40

60

2.3 2 1.7 1.4 1.15M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

0

20

40

60

80

100

2.3 2 1.7 1.4 1.15

U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

R
e

q
u

e
st

s
p

e
r

S
e

co
n

d
…

Frequency

DomU Performance

0

50

100

2.3 2 1.7 1.4 1.15U
ti

li
za

ti
o

n
 P

e
rc

e
n

ta
g

e

Frequency

Dom0 CPU Usage

0

5

10

15

20

2.3 2 1.7 1.4 1.15

M
b

it
 /

 S
e

co
n

d
 (

H
u

n
d

re
d

s)

Frequency

DomU Performance

(b)

Figure 4: netperf-UDP Workload

While combined usage seems like a plausible

explanation for the differences in sensitivities, the

results that support this theory are still preliminary. In

order to thoroughly test the validity of this

explanation, we need to run more tests with a wider

range of workloads. If this theory is confirmed by

additional experiments, combined usage may be used

as a heuristic for scheduling of dom0-dependent

workloads on ASISA systems.

5. Related Work

Our work is similar to that of Mogul et al., who

posit that an ASISA system should have slower cores

dedicated to OS tasks [17]. Our work differs from

theirs in that we take into account virtualization and

run the entire controlling domain, i.e. dom0, on a

slower core, as opposed to a few select system calls

and interrupts.

Matching a workload to a certain core, based on

the workload’s characteristics, builds on the work of

Kumar et al [13]. Our work is also similar to other

work by Kumar et al. [14], which trades performance

for power savings. Unlike them, we do not switch the

entire workload to a different frequency but only

switch a subset of the workload, the portion that runs

in the controlling domain.

6. Conclusions and Future Work

The goal of our work was to analyze

performance sensitivity of virtual machine workloads

to variations in CPU frequency. We tested the

hypothesis that workloads are less sensitive to

changes in frequency when they stress dom0. While

our hypothesis was validated we found that dom0-

dependent workloads vary in the degree of their

sensitivity. In an attempt to explain this sensitivity,

we proposed combined usage, a combined utilization

of the CPU and devices, as the heuristic. While

combined usage appears to be a plausible factor

explaining the differences in sensitivities, more tests

are needed to understand whether it has wide

applicability. If wide applicability is confirmed,

combined usage can be used as a heuristic for

scheduling workloads. The hypervisor scheduler can

measure the combined usage of virtual CPUs mapped

to dom0, and, in case if it is found to be high, assign

those virtual CPUs to low-power physical cores,

improving overall performance per watt.

In the future, we plan to evaluate whether

combined usage is a good heuristic for scheduling

and, if so, implement and evaluate a scheduling

algorithm that uses it.

7. References

[1] ab. Apache Webserver Benchmarking Tool.

http://httpd.apache.org/docs/2.0/programs/ab.ht

ml

[2] K. Asanovic and et al. The Landscape of Parallel

Computing Research: A View From Berkeley.

Figure 5: Combined Usage for netperf-TCP

Figure 7: Combined Usage for netperf-UDP

Figure 6: Combined Usage for ab

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

CPU Usage NIC Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

Figure 5: Combined Usage for netperf-TCP

25%. We attempt to understand this difference in sensitivi-
ties in order to develop heuristics for scheduling that distin-
guish more sensitive workloads from less sensitive ones.

Our hypothesis was that ab and netperf-TCP are less sensi-
tive to variations in frequency than netperf- UDP, because
they better overlap network I/O with CPU computation,
and thus slowing down the CPU has a smaller effect on the
overall performance than for the UDP workload. To test
whether this explains the difference in sensitivities, we com-
pute the degree of overlap between the I/O and computation
in dom0 as follows: we add CPU utilization and network uti-
lization (computed as the ratio of the benchmark’s actual
bandwidth divided by the maximum theoretical bandwidth
of 10 Gbits/second). If there is an overlap between I/O and
computation, this overlap, i.e., the sum of utilizations, will
be greater than 100% (recall that dom0 runs on a single
CPU).

Figures 5, 6, and 7 show the results. Combined usage for ab
and netperf-TCP are above 100% for all frequencies. Com-
bined usage for netperf-UDP, on the other hand, is below
100%, showing that I/O and computation do not overlap.
(The reason why these numbers do not add up to 100% is
because some of the computation is done in the guest do-
main and in the hypervisor, whose CPU utilization we do
not measure.) We suspect that low combined usage corre-
lates with higher sensitivity for the following reason. When

While combined usage seems like a plausible

explanation for the differences in sensitivities, the

results that support this theory are still preliminary. In

order to thoroughly test the validity of this

explanation, we need to run more tests with a wider

range of workloads. If this theory is confirmed by

additional experiments, combined usage may be used

as a heuristic for scheduling of dom0-dependent

workloads on ASISA systems.

5. Related Work

Our work is similar to that of Mogul et al., who

posit that an ASISA system should have slower cores

dedicated to OS tasks [17]. Our work differs from

theirs in that we take into account virtualization and

run the entire controlling domain, i.e. dom0, on a

slower core, as opposed to a few select system calls

and interrupts.

Matching a workload to a certain core, based on

the workload’s characteristics, builds on the work of

Kumar et al [13]. Our work is also similar to other

work by Kumar et al. [14], which trades performance

for power savings. Unlike them, we do not switch the

entire workload to a different frequency but only

switch a subset of the workload, the portion that runs

in the controlling domain.

6. Conclusions and Future Work

The goal of our work was to analyze

performance sensitivity of virtual machine workloads

to variations in CPU frequency. We tested the

hypothesis that workloads are less sensitive to

changes in frequency when they stress dom0. While

our hypothesis was validated we found that dom0-

dependent workloads vary in the degree of their

sensitivity. In an attempt to explain this sensitivity,

we proposed combined usage, a combined utilization

of the CPU and devices, as the heuristic. While

combined usage appears to be a plausible factor

explaining the differences in sensitivities, more tests

are needed to understand whether it has wide

applicability. If wide applicability is confirmed,

combined usage can be used as a heuristic for

scheduling workloads. The hypervisor scheduler can

measure the combined usage of virtual CPUs mapped

to dom0, and, in case if it is found to be high, assign

those virtual CPUs to low-power physical cores,

improving overall performance per watt.

In the future, we plan to evaluate whether

combined usage is a good heuristic for scheduling

and, if so, implement and evaluate a scheduling

algorithm that uses it.

7. References

[1] ab. Apache Webserver Benchmarking Tool.

http://httpd.apache.org/docs/2.0/programs/ab.ht

ml

[2] K. Asanovic and et al. The Landscape of Parallel

Computing Research: A View From Berkeley.

Figure 5: Combined Usage for netperf-TCP

Figure 7: Combined Usage for netperf-UDP

Figure 6: Combined Usage for ab

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

CPU Usage NIC Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

Figure 6: Combined Usage for ab

While combined usage seems like a plausible

explanation for the differences in sensitivities, the

results that support this theory are still preliminary. In

order to thoroughly test the validity of this

explanation, we need to run more tests with a wider

range of workloads. If this theory is confirmed by

additional experiments, combined usage may be used

as a heuristic for scheduling of dom0-dependent

workloads on ASISA systems.

5. Related Work

Our work is similar to that of Mogul et al., who

posit that an ASISA system should have slower cores

dedicated to OS tasks [17]. Our work differs from

theirs in that we take into account virtualization and

run the entire controlling domain, i.e. dom0, on a

slower core, as opposed to a few select system calls

and interrupts.

Matching a workload to a certain core, based on

the workload’s characteristics, builds on the work of

Kumar et al [13]. Our work is also similar to other

work by Kumar et al. [14], which trades performance

for power savings. Unlike them, we do not switch the

entire workload to a different frequency but only

switch a subset of the workload, the portion that runs

in the controlling domain.

6. Conclusions and Future Work

The goal of our work was to analyze

performance sensitivity of virtual machine workloads

to variations in CPU frequency. We tested the

hypothesis that workloads are less sensitive to

changes in frequency when they stress dom0. While

our hypothesis was validated we found that dom0-

dependent workloads vary in the degree of their

sensitivity. In an attempt to explain this sensitivity,

we proposed combined usage, a combined utilization

of the CPU and devices, as the heuristic. While

combined usage appears to be a plausible factor

explaining the differences in sensitivities, more tests

are needed to understand whether it has wide

applicability. If wide applicability is confirmed,

combined usage can be used as a heuristic for

scheduling workloads. The hypervisor scheduler can

measure the combined usage of virtual CPUs mapped

to dom0, and, in case if it is found to be high, assign

those virtual CPUs to low-power physical cores,

improving overall performance per watt.

In the future, we plan to evaluate whether

combined usage is a good heuristic for scheduling

and, if so, implement and evaluate a scheduling

algorithm that uses it.

7. References

[1] ab. Apache Webserver Benchmarking Tool.

http://httpd.apache.org/docs/2.0/programs/ab.ht

ml

[2] K. Asanovic and et al. The Landscape of Parallel

Computing Research: A View From Berkeley.

Figure 5: Combined Usage for netperf-TCP

Figure 7: Combined Usage for netperf-UDP

Figure 6: Combined Usage for ab

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

CPU Usage NIC Usage

0

50

100

150

2.3 2 1.7 1.4 1.15

C
o

m
b

in
e

d
 U

sa
g

e

Frequency (GHz)

NIC Usage CPU Usage

Figure 7: Combined Usage for netperf-UDP

the combined usage is low, dom0 is not keeping the device
busy. As a result, when CPU frequency is decreased, the rate
at which packets are generated decreases even further, slow-
ing down the device even more and decreasing the overall
performance. This effect is less noticeable in the workloads
where the combined usage and thus the overlap between I/O
and computation are high.

While combined usage seems like a plausible explanation
for the differences in sensitivities, the results that support
this theory are still preliminary. In order to thoroughly test
the validity of this explanation, we need to run more tests
with a wider range of workloads. If this theory is confirmed
by additional experiments, combined usage may be used as
a heuristic for scheduling of dom0-dependent workloads on
ASISA systems.

4. RELATED WORK
Our work is similar to that of Mogul et al., who posit that
an ASISA system should have slower cores dedicated to OS
tasks [18]. Our work differs from theirs in that we take into
account virtualization and run the entire controlling domain,
i.e. dom0, on a slower core, as opposed to a few select system
calls and interrupts. While the authors did briefly theorize
that dom0 could run on a slower, “OS-friendly” core, our
work provides the first concrete validation of their hypothe-
sis.

Matching a workload to a certain core, based on the work-
load’s characteristics, builds on the work of Kumar et al [13].
Our work is also similar to other work by Kumar et al. [12],
which trades performance for power savings. Unlike them,
we do not switch the entire workload to a different frequency
but only switch a subset of the workload, the portion that
runs in the controlling domain.

5. CONCLUSIONS AND FUTURE WORK
The goal of our work was to analyze performance sensitiv-
ity of virtual machine workloads to variations in CPU fre-
quency. We tested the hypothesis that workloads are less
sensitive to changes in frequency when they stress dom0.
While our hypothesis was validated we found that dom0-
dependent workloads vary in the degree of their sensitiv-
ity. In an attempt to explain this sensitivity, we proposed
combined usage, a combined utilization of the CPU and de-

vices, as the heuristic. While combined usage appears to be
a plausible factor explaining the differences in sensitivities,
more tests are needed to understand whether it has wide
applicability. If wide applicability is confirmed, combined
usage can be used as a heuristic for scheduling workloads.
The hypervisor scheduler can measure the combined usage
of virtual CPUs mapped to dom0, and, in case if it is found
to be high, assign those virtual CPUs to low-power physical
cores, improving overall performance per watt.

In the future, we plan to evaluate whether combined usage
is a good heuristic for scheduling and, if so, implement and
evaluate a scheduling algorithm that uses it.

6. REFERENCES
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. Technical Report
UCB/EECS-2006-183, EECS Department, University
of California, Berkeley, Dec 2006.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
SOSP ’03: Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[3] L. A. Barroso. The Price of Performance. Queue,
3(7):48–53, 2005.

[4] M. Becchi and P. Crowley. Dynamic Thread
Assignment on Heterogeneous Multiprocessor
Architectures. In CF ’06: Proceedings of the 3rd
conference on Computing frontiers, pages 29–40, New
York, NY, USA, 2006. ACM.

[5] T. Bray. Bonnie Disk Benchmark.
http://www.textuality.com/bonnie/.

[6] R. Coker. Bonnie++ Disk Benchmark.
http://www.coker.com.au/bonnie++/.

[7] P. Eriksson. A Hard Disk Benchmarking Tool.
http://www2.lysator.liu.se/ pen/piozone/.

[8] A. S. Foundation. ab - Apache HTTP Server
Benchmarking Tool.
http://httpd.apache.org/docs/2.0/programs/ab.html.

[9] S. Godard. Performance Monitoring Tools for Linux.
http://pagesperso-orange.fr/sebastien.godard/.

[10] R. Jones. A Network Performance Benchmark.
http://www.netperf.org.

[11] A. Kopytov. Sysbench Benchmarking Tool.
http://sysbench.sourceforge.net/.

[12] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and
D. Tullsen. Single-ISA Heterogeneous Multi-core
Architectures: The Potential for Processor Power
Reduction. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on
Microarchitecture, 2003.

[13] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P.
Jouppi, and K. I. Farkas. Single-ISA Heterogeneous
Multi-Core Architectures for Multithreaded Workload
Performance. In ISCA ’04: Proceedings of the 31st
Annual International Symposium on Computer
Architecture, page 64, Washington, DC, USA, 2004.

IEEE Computer Society.

[14] V. LLC. VolanoMark benchmark.
http://www.volano.com/benchmarks.html.

[15] M. Lord. A Hard Drive Performance and
Benchmarking Utility.
http://sourceforge.net/projects/hdparm/.

[16] J. Manning and M. Kuoppala. Threaded I/O
Benchmark for Linux.
http://tiobench.sourceforge.net.

[17] A. Menon, J. R. Santos, Y. Turner, G. J.
Janakiraman, and W. Zwaenepoel. Diagnosing
Performance Overheads in the Xen Virtual Machine
Environment. In VEE ’05: Proceedings of the 1st
ACM/USENIX international conference on Virtual
execution environments, pages 13–23, New York, NY,
USA, 2005. ACM.

[18] J. C. Mogul, J. Mudigonda, N. Binkert,
P. Ranganathan, and V. Talwar. Using Asymmetric
Single-ISA CMPs to Save Energy on Operating
Systems. IEEE Micro, 28(3):26–41, 2008.

[19] D. Mosberger and T. Jin. httperf — A Tool for
Measuring Web Server Performance. SIGMETRICS
Perform. Eval. Rev., 26(3):31–37, 1998.

[20] W. Norcutt. The Iozone Filesystem Benchmark.
http://www.iozone.org/.

[21] D. Shelepov, J. C. Saez, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar.
HASS: A Scheduler for Heterogeneous Multicore
Systems. SIGOPS Operating Systems Review,
43(2):55–75, April 2009.

[22] SPEC. SPEC CPU 2000. http://www.spec.org.

[23] C. Staelin and H.-P. Laboratories. lmbench: Portable
Tools for Performance Analysis. In In USENIX
Annual Technical Conference, pages 279–294, 1996.

[24] R. Strong, J. Mudigonda, J. C. Mogul, N. Binkert,
and D. Tullsen. Fast switching of threads between
cores. SIGOPS Oper. Syst. Rev., 43(2):35–45, 2009.

[25] A. Tridgell. Dbench Benchmarking Tool.
http://freshmeat.net/projects/dbench/.

[26] A. Waterland. Stress Workload Generator.
http://weather.ou.edu/∼apw/projects/stress/.

