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a b s t r a c t

Recent research has highlighted the potential benefits of single-ISA heterogeneous multicore processors
over cost-equivalent homogeneous ones, and it is likely that future processors will integrate cores that
have the same instruction set architecture (ISA) but offer different performance and power characteristics.
To fully tap into the potential of these processors, the operating system must be aware of the hardware
asymmetry when making scheduling decisions and map applications to cores in consideration of
their performance characteristics. We propose a Heterogeneity-Aware Signature-Supported (HASS)
scheduling algorithm that performs this mapping using per-thread architectural signatures, which are
compact summaries of threads’ architectural properties. We implemented HASS in OpenSolaris, and
demonstrated that it always outperforms a heterogeneity-agnostic scheduler (by as much as 12.5%) for
workloads exhibiting sufficient diversity. Our evaluation also includes an extensive comparison with
other heterogeneity-aware schedulers to provide amore clear understanding of the pros and cons behind
HASS.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Single-ISA heterogeneous multicore processors [19], also kno-
wn as asymmetric, have been proposed as a more power efficient
alternative to homogeneous multicore architectures. A heteroge-
neous processor would consist of cores exposing the same ISA, but
delivering different performance. The cores may differ in clock fre-
quency, power consumption, and possibly in cache size and other
microarchitectural features. Given a diverse workload, a heteroge-
neousmulticore system can deliver a higher performance per watt
than a homogeneous one, because threads can bematched to cores
according to the relative benefit that they derive from running on
different core types. For example, in a heterogeneous system with
several fast and powerful cores (high clock speed, multiple-issue
out-of-order pipeline) and several simple and slowcores (lowclock
speed, single-issue in-order pipeline) threads running memory-
bound codes should typically be mapped to slow cores, because
the speedup they experience on fast cores relative to slow cores
is disproportionately smaller than the additional power that the
fast cores consume. Power and area efficiency of heterogeneous
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systems have been demonstrated in numerous studies [4,19,18,20,
22].

Efficiency of heterogeneous systems is maximized when appli-
cations are matched to cores according to the architectural prop-
erties of both. This matching can be conveniently performed by
an operating system thread scheduler. In this paper we describe
a new heterogeneity-aware scheduling algorithm (het-aware from
now on for brevity) that employs an original methodology com-
pared to the ones proposed in the past. Our algorithm, called Het-
Aware Signature-Supported (HASS) scheduler, is based on the idea
of architectural signatures. An architectural signature is a compact
summary of architectural properties of an application. It may con-
tain information about the application’s memory access patterns,
instruction-level parallelism (ILP), sensitivity to variations in the
clock speed and other data. The key property of this information is
that it can be efficiently interpreted by the scheduler to determine
how well a given application ‘‘matches’’ a given core.

The architectural signature framework evaluated in this work
is designed for heterogeneous systems where cores differ in the
clock speed since such a system can be emulated very efficiently
using existing multicore processors. To capture the properties
of the application that determine its sensitivity to variations
in these architectural features, the architectural signatures are
based on an application’s memory intensity. Memory intensity is
captured by the thread’s cache miss rate, which as we found can
be used to model the performance of the application on cores

0743-7315/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2010.08.020



Author's personal copy

J.C. Saez et al. / J. Parallel Distrib. Comput. 71 (2011) 114–131 115

with different clock speeds. We implement two versions of HASS,
static (HASS-S) and dynamic (HASS-D). With the static version
the architectural signature is constructed offline. In this case we
obtain the application’s reuse-distance profile [5] (a summary of
the memory reuse patterns) and use it to estimate the miss rate
for caches of various sizes and associativities to cater to possible
systemswhere the applicationmay run.With the dynamic version,
the miss rate is measured online, using hardware performance
counters. Performance estimates generated using cache miss rates
can be used to compute the relative benefit that an application (or
thread) derives from running on different cores. By comparing the
relative benefits for different threads, the scheduler decides which
thread is the best candidate for a particular core type.

Our architectural signature framework can be generalized to
systems where cores differ in other microarchitectural features,
but exploring such architectures was outside the scope of this
work. Instead, we chose to address the systems that could be
effectively emulated on existing hardware (as opposed to on
simulators), because this enabled us to perform a more extensive
and thorough evaluation than what would have been possible on a
simulator.1

Architectural signatures allow estimating relative performance
of threads on the cores of different types. Another alternative is
to measure this performance directly, by running each thread on
each possible core type. One goal of our work was to compare
HASS to an algorithm based on that approach, and we were
aware of two previously proposed het-aware algorithms that
relied on it. They determined the best matching of threads to
cores via an online performance monitoring mechanism that
required running each thread on each core type [4,19]. When we
implemented one of these algorithms (IPC-Driven [4] proposed
by Becchi et al.), we found that this performance monitoring
methodology often leads to an incorrect estimate of the relative
benefit that a thread derives from running on a particular core due
to the dynamic nature of program phases. Further, the necessity
to periodically re-measure threads’ performance on different cores
creates imbalanced demand for cores of different types if there are
more cores of one type than of another. This causes load imbalance
and degrades the performance.

We conclude that a monitoring methodology requiring perfor-
mance estimates on all core types is difficult to use in practice.
Although het-aware scheduling algorithms show a strong poten-
tial tomaximize performance of heterogeneousmulticore systems,
how the algorithm is designed makes a big difference, since exces-
sively heavy online monitoring can cause prohibitive overheads.
Bringing to light the problemswith seemingly simple and effective
monitoringmethodologies and proposing heterogeneity-aware al-
gorithms that are not susceptible to similar deficiencies are the key
contributions of our work.

In evaluating HASS, wewere also interested in comparing it to a
relatively simple het-aware algorithm that shares fast cores among
the threads in a round-robin fashion. To that end,we have designed
and implemented a Het-Aware Fair Share (HAFS) algorithm that
ensures that the total time spent by each thread on a given core
type is proportional to the number of cores of that type in the
system. Our study reveals important overheads associated with a
real implementation.

1 Evaluating a real OS implementation on a heterogeneous processor where
cores differ in pipeline microarchitecture would require us to use a full-system
simulator (i.e., a simulator that boots a real operating system) that can also simulate
heterogeneous hardware. Despite availability of such simulators (e.g., COTSon [2]),
they still run in the kilohertz range when accurate simulation is required, so
performing extensive evaluation with a large number of long-running workloads
would be challenging.

We have implemented the algorithms (HASS-S, HASS-D, IPC-
Driven and HAFS) in the OpenSolaris operating system and eval-
uated them on two real multicore platforms made heterogeneous
via CPU frequency scaling. We found that HASS-static improves
performance by asmuch as 12.5% for diverseworkloads (i.e., work-
loads where applications significantly differ from each other in
their architectural properties) relative to a heterogeneity-unaware
scheduler. The IPC-Driven algorithm, in contrast, improved perfor-
mance by at most 7% and often even caused performance degrada-
tion. HASS-dynamic delivers performance gains of up to 12%.

We also observed that HASS did not do as well on systems
with shared caches. HASS’s model for estimating performance on
different core types did not account for shared caches, and so the
mapping of threads to cores that it performed was not always
optimal. Nevertheless, HASS improved performance even in these
difficult conditions, outperforming both IPC-Driven and HAFS, and
never performing worse than the default scheduler.

The rest of the paper is organized as follows. Section 2 discusses
relatedwork. Section 3 describes themethodology for constructing
architectural signatures. Section 4 describes the design and imple-
mentation of the evaluated algorithms. Section 5 analyzes the per-
formance results. Section 6 summarizes our findings.

2. Background and related work

A large body of work has advocated the potential benefits
of asymmetric single-ISA processors over symmetric counter-
parts [19,18,1,11,22]. These benefits are concisely summarized in
an article by Matt Gillespie [10] of Intel, where he lays out some
of the background for why this shift towards asymmetric systems
is likely to happen, describes the potential variations on the hard-
ware architectures, and the distinct challenges and opportunities.
OS scheduling is one of the main challenges, and this is the focus
of our paper.

Single-ISA heterogeneous systems addressed in this work de-
rive efficiency from core specialization. Specialization refers to
matching each core type to the thread that is able to use this core’s
features most effectively. Most research efforts that sought to im-
prove the efficiency of AMP systems have exploited primarily two
kinds of core specializations: the first caters to microarchitectural
diversity of the workload; the second caters to diversity in thread-
level parallelism (TLP).

Efficiency specialization exploits the fact that complex and
powerful cores are good for running CPU-intensive applications
that effectively use those processors’ advanced microarchitectural
features, such as out-of-order super-scalar pipelines, advanced
branch prediction facilities, and replicated functional units. At
the same time, simple and slow cores deliver a better trade-off
between energy consumption and performance for memory-
intensive applications that spend amajority of their execution time
fetching data from off-chip memory and stalling the processor.

In a similar vein, TLP specialization leverages knowledge of
the fact that complex and powerful cores are good for running
single-threaded sequential applications because these applications
cannot accelerate their performance by spreading the computation
across multiple simple cores. Similarly, sequential parts of parallel
applications can be also effectively accelerated if they are mapped
to fast cores opportunistically. Abundant simple cores, on the other
hand, are good for running highly scalable parallel applications.
Because of performance/power trade-offs between complex and
simple cores, it turns out to bemuchmore efficient to run a parallel
application on a large number of simple cores than on a smaller
number of complex cores that consume the same power or fit into
the same area.

Specializationmust be aided by a thread scheduler that decides
which threads to run on fast cores and which on slow cores.
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Two kinds of operating system schedulers emerged to address
this challenge. The first type of schedulers, among which HASS
is included, targeted efficiency specialization, by assigning the
most CPU-intensive threads to fast cores [19,4]. The second type
targeted TLP specialization, by assigning sequential applications
and sequential phases of parallel applications to run on fast
cores [25].

Two of the most well-known scheduling algorithms that
employed efficiency specialization have been proposed by Becchi
et al. [4] and Kumar et al. [19]. Both of them assume a system
with two core types (‘‘fast’’ and ‘‘slow’’) and rely on continuous
performance monitoring to determine optimal thread-to-core
assignment. Becchi’s IPC-Driven algorithm periodically samples
threads’ instructions per cycle (IPC) on cores of both types to
determine the relative benefit for each thread from running on the
faster core. Threads that have a higher fast-to-slow IPC ratio have a
priority in running on the fast core, because they are able to achieve
a relatively greater speedup there. Kumar’s method uses a similar
technique, except that the sampling method is made more robust
by using more than one sample per thread. In addition, Kumar
proposed an algorithm that tries to determine a globally optimal
assignment by sampling the performance of thread groups rather
than making decisions based on the IPCs of individual threads.

Both of these approaches promise significantly better perfor-
mance than heterogeneity-agnostic policies according to simula-
tion-based evaluations, but they are both difficult to use in practice.
Their reliance on sampling on all core typesmeans that demand for
different core types will be unequal. In particular, the smaller the
ratio of fast cores to slow cores, the more demand there will be
to run on any given fast core for sampling purposes. This creates
a workload imbalance and interferes with threads that are ‘‘legit-
imately’’ running on faster cores. We found this to be a challeng-
ing problem in implementing the IPC-Driven algorithm. Since our
algorithm relies on per-thread performance profiles, it avoids per-
formance problems related to sampling on different core types and
has a much simpler implementation.

Teodorescu and Torrellas [31] developed an algorithm for
optimal assignment in the context of mildly heterogeneous
platforms where core differences are caused by within-die process
variation. Although performance profiling is still required, a lot of
overhead is avoided by assuming that a thread’s IPC is the same on
all core types. The approachworkswellwhen cores are very similar
to each other, but unlike our approach, it is generally inapplicable
to highly heterogeneous systems.

TLP specialization was employed in our earlier algorithm called
Parallelism-Aware (PA) [25] — this is the only such operating sys-
tem algorithm of which we are aware. PA used the number of
runnable threads as the approximation for the amount of paral-
lelism in the application. Prior to our work on the PA algorithm,
Annavaram et al. proposed a application-level AMP algorithm that
caters to the application’s TLP [1], but this algorithm required
modifying an application. Neither of these algorithms catered to
efficiency specialization, so unlike HASS they are unable to maxi-
mize the system throughput in cases where single-threaded appli-
cations are present in the workload.

In [26] we presented CAMP, the first scheduler of which we
are aware that combines both TLP and efficiency specialization.
The foundation of the CAMP scheduler is the utility factor, a
compact metric agglutinating information on TLP and efficiency
of applications. Catering to TLP and efficiency enables CAMP to
improve the overall system performance for a wider variety of
workloads. Both HASS-D and CAMP rely on similar techniques for
discovering which threads utilize complex cores most efficiently,
without requiring cross-core migrations. We found that HASS-D
is able to outperform CAMP for workloads consisting of single-
threaded applications only because it always guarantees that

threads with the high performance ratios run on fast cores,
whereas CAMP fair-shares fast cores among threads in a broader
high utility class.

Beyond employing one of these two types of specialization,
several other researchers have further advocated the benefits of
asymmetricmulticore platforms by exploiting another type of core
specialization (not previously discussed in this paper). For ex-
ample, Mogul et al. [22] described a scheduler that temporarily
switches a thread to run on a slow core when the thread is exe-
cuting a system call. By using system calls as a heuristic for thread
assignment, this scheduler completely avoids any monitoring
overhead (or the need to generate architectural signatures), but it
only applies to workloads dominated by system calls.

Balakrishnan et al. [3] implemented a simple het-aware sched-
uler in Linux that ensures that fast cores never go idle before slow
cores. Li et al. [20] proposed AMPS, a het-aware algorithm for Linux
that makes sure that the load on each core is proportional to its
power and that fast cores are never underutilized. While these
schedulers mitigate the effects of performance asymmetry, they
are not meant to improve the efficiency.

In this work, we use relative speedups to maximize system-
wide performance. However, in the event that some processes have
a higher priority than others or in scenarios where the system
needs to deliver QoS guarantees, the relative speedup could be
used as a complementary metric to provide better service for
prioritized applications with a minimal effect on performance. For
example, the scheduler might decide to run low-priority CPU-
intensive threads on fast cores rather than high-priority memory-
intensive ones, simply because ‘‘wasting’’ fast cores on running
memory-intensive instruction streams may lead to significant
overall degradation of system performance. Therefore, the relative
speedup could be also used to make a trade-off between QoS and
system-wide performance.

Due to practical reasons, our evaluation has been limited to
asymmetric systems in which cores just differ in performance
due to different clock speeds. In this scenario, algorithms for
DVFS-based systems and for those specific single-ISA asymmetric
systems address a very similar problem from different angles.
While the former asks the question: ‘‘How to find the best
frequency for a given application?’’, the latter asks: ‘‘Given a fixed
set of frequencies, where to map existing applications?’’ There
is a key difference, however, between existing DVFS algorithms
(such as [8], which is the closest one to ours) in that they rely
on being able to adjust frequency of individual cores and observe
performance of an applicationunder different frequency settings in
order to achieve their goals. In our setting, thiswould be equivalent
to running each thread on each core type (and this is what an
earlier proposed IPC-Driven algorithm does), but we found that
this causes very large performance degradation and as a result
simply does not work in our setting. For this reason, existing DVFS
algorithms do not address the problem that we are solving. Other
DVFS-based algorithms, such as [15], which do not require running
applications at differentDVFS settings, assume that performance of
the application scales with CPU frequency (which we showed not
to be the case) and so they do not tackle the same problem that we
do either.

Finally, we want to highlight that the design space of hetero-
geneous multicore systems also includes other popular architec-
tures that exhibit both performance and functional asymmetry,
such as the IBM’s CELL BE or systems that combine homogeneous
processors with an accelerator (a GPUs or even an FPGAs). Despite
the continuous progress made by compiler technology over the
last few years, mapping application onto these architectures is still
extremely labor intensive. In most applications, developers must
explicitly partition programs into different kernels,which are com-
piled to run on a particular core type. Then, either the application
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developer or the underlying runtime system assign and schedules
these kernels on the underlying system [24]. On single-ISA het-
erogeneous systems, the same binary can run on all cores types
making software development much simpler. In fact, the work-
loads studied in this paper consist of single-threaded applications
whose respective programs have been coded without any knowl-
edge about the underlying architecture. Nevertheless, even if we
abstract away from the fact that on heterogeneous-ISA multicores
scheduling is done for the most part by the application runtime,
the scheduling algorithms themselves are usually quite different.
For instance, thread migrations, which are essential in our investi-
gated algorithms, can be performed easily on single-ISA systems.
However, these kinds of operations are not straightforward on
heterogeneous-ISA systems, even if binaries themselves have dif-
ferent implementations of the same kernel for different core types.
On the other hand, some recent studies demonstrate that their ef-
fectiveness can for themost part be leveraged by data-parallel reg-
ular codes [32] widely prevalent in the HPC domain, but is much
more difficult to harness by other codes (such as servers). So while
there is certainly a huge market for architectures like Cell and
CPU–GPU systems, single-ISA asymmetric architectures just tar-
get a different domain, which may not necessarily be addressed
by those other systems.

3. Architectural signatures

An architectural signature is a summary of the architectural
properties of an application. HASS relies on the ability to estimate
the relative performance of threads on different core types. To that
end, the signaturemust enable it to predict a thread’s performance
based on the features of the core. As explained earlier, in this work
we focus on systems where cores differ in clock frequency (as on
the evaluation platforms used in this paper), a parameter expected
to play a prominent role in the future heterogeneous systems.

To predict performance variations due to clock frequency, we
must consider the application’s degree of memory intensity [9]. An
application with a high rate of memory accesses is likely to stall
the core often, so the clock frequency will not have a significant
effect on performance. Memory intensity can be approximated by
a thread’s miss rate [33]. The static version of HASS estimates the
miss rate from an application’s reuse-distance profile, which is ob-
tained offline prior to executing the application. The dynamic ver-
sion of HASS measures the miss rate online. Relative performance
of threads on coreswith different frequencies is then estimated on-
line by the scheduler using a simple performance model.

The static version is more appropriate for environments like
embedded systems, where application inputs are typically known
a priori, and so the architectural signatures can be obtained for all
typical executions of the workload. The dynamic version is more
appropriate for dynamic and highly phased workloads, whose
runtime properties are too variable for capturing offline.

The remainder of this section is structured as follows. In Sec-
tions 3.1 and 3.2, we explain how the signatures are constructed
for the static and dynamic version of HASS, respectively. Then, in
Section 3.3, we explain how the scheduler estimates the relative
performance of applications on different core types. Section 3.4 is
devoted to describing how architectural signatures could be ex-
tended for multithreaded applications. In Section 3.5, we analyze
the implications of the presence of shared caches in our signature-
based framework and suggest how it can be improved for these
scenarios.

3.1. Static signatures

Static signatures rely on a reuse-distance profile. A reuse dis-
tance is defined as the number of intervening memory accesses

between two consecutive accesses to the samememory location. A
reuse-distance profile is the distribution of reuse distances. From
this profile we can accurately estimate the application’s last-level
cache miss rates for any cache configuration [5,12,27,29] that can
be encountered at runtime. These estimated miss rates make up the
contents of the static signature.

Since reuse-distance profiles are mostly microarchitecture
independent, our statically generated architectural signatures are
microarchitecture independent as well.2 Thanks to this property,
out of all hardware platformswhere it is possible to run the binary,
we should be able to select any single one to construct a signature
usable by all.

The signature should be available to the OS at scheduling time,
so the ideal place to hold it is in the application binary itself. For
evaluation covered in this paper we have not implemented the
binary embedding scheme, and have instead hard-coded a limited
set of signatures into the kernel.

To construct the signature,weneed to obtain the reuse-distance
profile, which is collected via offline profiling. Such a profiling can
be done, for example, as part of the feedback-directed optimization
phase of the application development, which can be set up with
little or no involvement from the programmer. All that needs
to be done is to execute a program once with the profiler (see
below) that will generate the signature and embed it into the
binary. The responsibility of the developer, then, is to make sure
that the thread exhibits ‘‘typical’’ behavior during this signature
run. If it is impossible to do so in one run, the developer can
do several runs (for example with different inputs) and combine
the results into one signature. In this work, we construct profiles
using Pin, a binary instrumentation framework from Intel [21],
along with a custom extension to Pin, MICA [13]. A more detailed
account can be found in our previous work [27]. Once the profile
is collected, we estimate (also offline) cache misses for a limited
set of realistic last-level cache configurations (we do not account
for different first- and mid-level cache configurations, because we
found that accounting for these details did not significantly affect
the signatures’ accuracy). These estimations, collected in a matrix,
comprise the architectural signature. We support 11 different last-
level cache sizes (powers of two from 16K to 16M) and four set
associativities (4, 8, 16 and 32), so the matrix has 44 values.

Shown in Table 1 is an example signature for the benchmark
art from the SPEC CPU2000 suite. (Columns for sizes 16K to 128K
are omitted, because these values were in this case exactly the
same as that for 256K (427 misses).) Each integer in the matrix
cell represents the expected number of misses per 4096 instruc-
tions (the number 4096 was selected to speed up calculations at
scheduling time).

When signatures are generated offline, capturing the differ-
ences between various phases is not impossible [14], but certainly
more difficult.3 Using multiple signatures for an application, rep-
resenting its different program phases, may lead to improving the
dynamic thread-to-core assignments further, but at the expense of
extra complexity, due to phase detection, and potentially higher
runtime overheads, due to additional threadmigrations. We found
that, in practice, the average behavior captured by a single signa-
ture is good enough to effectively guide scheduling decisions with
low runtime overhead.

2 LLC miss rates eventually depend on both reuse-distance profiles and specific
microarchitectural features such as pre-fetching mechanisms, cache replacement
policies an so forth. Nevertheless, for our purpose, i.e. guiding scheduling decisions
on asymmetric systems, these statically generated signatures are enough to model
the memory behavior of the applications.
3 Capturing the phased behavior of applications offline would require partition-

ing the program into phases that behave differently enough to have a different sig-
nature.
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Table 1
The architectural signature for art.

Set. assoc. Cache size
256K 512K 1M 2M 4M 8M 16M

4 427 412 325 157 42 6 1
8 427 418 332 131 21 1 0

16 427 424 337 107 11 0 0
32 427 426 336 86 5 0 0

3.2. Dynamic signatures

Dynamic signatures are constructed quite simply by measuring
the application’s last-level cache miss rate online. The advantage
of dynamic signatures relative to static ones is that they adapt
to the variations in the program input and to program phase
changes. Phase-change adaptability of the HASS-D algorithm is
described in detail in Section 4.3. The disadvantage of the dynamic
signature scheme is that it is not as easily adaptable to systems
where different cores have different-sized last-level caches; on
these systems a scheduler would need to run each thread on each
core type, which, aswill be shown later, degrades the performance.
Therefore, another alternative for constructing dynamic signatures
is to use dynamically estimated reuse-distance profiles (as in the
system RapidMRC [30]), and as in the static case use these reuse-
distance profiles to estimate themiss rates. Since our experimental
systems had uniform cache sizes across cores, we relied on the first
method, where the miss rates are measured directly online, rather
than obtained via dynamically estimated reuse-distance profiles.

3.3. Using signatures for scheduling

At runtime the architectural signature is used to estimate a
thread’s performance on each type of core present in the system.
To accomplish this,we calculate a hypothetical completion time for
some constant number of instructions. Two separate components
of completion time are considered: execution time and stall time.
Execution time is the amount of time it takes to execute the
instructions assuming a constant number of cycles per instruction.
To compute the execution time we assume a cost of 1.5 cycles per
instruction and factor in the clock speed. These two parameters are
machine dependent so their values must be appropriately chosen
for the hardware platform in question.

We approximate the stall time by the number of cycles used
for servicing the last-level cache misses. Although this is a coarse
approximation, it gives reasonable accuracy, because memory
access time dominates other stalls [17]. To estimate this, we need
memory access latency (discoverable by the OS) and the miss rate
thatwe obtain from the signature. Note that sincewe are assuming
a constant memory latency, the presence of non-uniform memory
access (NUMA) can reduce the accuracy of estimates. Although we
did not have a chance to investigate this effect comprehensively,
we observed that in our case the presence of NUMA on one of
the experimental platforms did not prevent the algorithm from
performing successfully.

The resultant sum of both time components gives us an abstract
‘‘completion time’’ metric. For actual scheduling, we focus on the
ratio of completion times calculated for different types of cores, to
which we refer to as the Speedup Factor. More precisely, if P(t, C)
denotes the performance for a given thread t on core C , and C1, C2
are two different core types such that C1 is faster than C2, then by
conventionwe define the Speedup Factor as SF(t, C1, C2) =

P(t,C2)
P(t,C1)

.
To summarize, we predict the performance of different threads

on different cores based on threads’ caching behavior and cores’
frequency. This allows the OS to distinguish cores by their relative
desirability for different threads. We have tested the accuracy of

Fig. 1. Signature-estimated performance ratios vs. observed ratios. Some outliers
are labeled. Perfectly accurate estimations would have all points on the diagonal
line.

this method on cores that differ in frequency by using Dynamic
Voltage and Frequency Scaling (DVFS) facilities available on most
modern processors. DVFS allows the operating system to control
the clock speed of the cores. Fig. 1 shows how well real speedup
factors match predicted speedup factors for some of our test
configurations (described in Section 5). As evident, the estimation
method is successful in separating memory-intensive threads
(which are less sensitive to changes in frequency and therefore
concentrated toward lower left) from CPU-bound threads (upper
right), but is less precise in characterizing memory intensity.

3.4. Multithreaded applications

Although the signature-based framework evaluated in this
work was designed for single-threaded applications, there are no
inherent barriers to extending it for multithreaded applications. In
that case, the signature would be generated per thread—threads
would be identified by the function that a thread executes. In
scenarios where threads perform a different type of work (and
thus have different architectural properties) despite executing
the same function, an online method for signature generation
would be preferred. The important point is that almost no
changes would have to be done in the scheduler itself, because
it already uses threads as schedulable entities associated with an
architectural signature. This study, where for simplicity we use
single-threaded applications in our experiments, evaluates the
effectiveness on a het-aware scheduling algorithm assuming that
per-thread signatures are known. Performing this evaluation was
our key objective.

3.5. A reflection on shared caches

Wrapping up the discussion of architectural signatures, we
would like to reflect on shared caches. On shared-cache archi-
tectures (including SMT), performance is affected not only by the
frequency of the core and the properties of the application, but
by cache access patterns of co-scheduled threads. Our existing
method for estimating performance does not account for effects
of shared caches. In our evaluation, this caused performance bene-
fits to diminishwhen shared cacheswere present.Modeling shared
cache effects is an orthogonal and well-studied problem. Exist-
ing models of miss rates in shared caches are based on input data
very similar to reuse-distance profiles (used to construct our sig-
natures) [7], and this presents a good opportunity to extend our
signature-based model to account for cache sharing. We have de-
vised a method that performs optimal co-scheduling of threads on
shared-cache architectures based on the threads’ reuse-distance
profiles [33]. This algorithm is able to find the optimal thread
schedule most of the time, performing within 1% of the oracular
algorithm that always picks the optimal assignment. Integrating
this cache-aware scheduling algorithmwith het-aware algorithms
is an interesting avenue for future work.
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4. The algorithms

In this sectionwe provide the description of the design of all the
evaluated algorithms, and we also highlight the main challenges
we had to facewhen creating real-world implementations of these.

Section 4.1 is devoted to introducing a few key abstractions
that the implementations of all the investigated algorithms rely
on. Sections 4.2–4.5 describe the HASS-S, HASS-D, IPC-Driven, and
HAFS algorithms, respectively.

4.1. Core types and partitions

The first key abstraction used by all the algorithms is the core
type. Each core type has a unique combination of features such as
clock frequency or cache hierarchy.We assume that the configura-
tion of the system is static and so the features of the cores do not
change dynamically. A systemmust have at least two core types to
be heterogeneous. Our implementations, however, assumed two
core types only: ‘‘fast’’ and ‘‘slow’’. Apart from simplifying sys-
tem design, earlier work demonstrated that having just two core
types is sufficient to extract optimal benefits from heterogeneous
systems [18]. Nevertheless, our performance models are general
enough for HASS-S and HASS-D to be adapted to systems with a
larger number of core types.

Since future many-core systems may contain a very large num-
ber of cores, load balancing and accounting may become costly. To
manage a large number of cores in a scalable way, all the imple-
mented algorithms rely on core partitions: sets of cores of the same
type. Each core must belong to exactly one partition. Note, how-
ever, that there may be more than one partition including cores of
an specific type (e.g. several partitions containing slow coresmight
be present in the system). Henceforth,wewill use the term fast par-
tition to refer to any partition that consists of fast cores. Conversely,
the term slow partitionwill refer to a partition including slow cores.

4.2. The HASS-S algorithm

A key goal in the design of HASS was scalability, because future
multicore processors may be built with hundreds or thousands of
cores. Scalability mainly manifests in two aspects of the algorithm
design: the lack of global locks, and the scheduling decision logic
that relies only on local information. As we describe the algorithm,
we will point out the particular features that ensure scalability.

As stated previously, HASS-S relies on core partitions. The
scheduler maintains a counter of runnable threads for each par-
tition (threads either currently running or ready to be run). This
counter is the primary partition-wide contention point, as it has
to be fully synchronized. In HASS-S, a partition is the widest lock-
ing scope during normal operation of the scheduler. This partition-
based design enables us to manage a large number of cores in a
scalable way.

When threads enter the system, the operating system estimates
their performance on fast and slow cores according to the
attributes of both core types (themethod described in Section 3.3).
The ratio between these estimates is the aforementioned speedup
factor, which approximates the fast-to-slow speedup that a thread
would experience when running on a fast core without ever being
pre-empted in favor of other threads.

To assign a thread to a specific partition, the scheduler goes
through the list of all partitions and estimates that thread’s
performance in each partition using the speedup factor and the
current number of runnable threads per core in the partition. The
scheduler assumes that the CPU timewill be shared equally among
all threads within the partition. After that, the scheduler selects
the partition with the highest expected performance and assigns
the thread there. This process is called regular assignment. Note

Algorithm 1 An algorithm for regular assignment and optimistic
rebinding in HASS-S
Definitions: F is the set of threads assigned to fast cores, S is the
set of threads assigned to slow cores. FP and SP are the sets of
fast and slow partitions, respectively. t is a runnable thread.

Require: (t ∈ F


S)
Ensure: t is assigned to a partition that improves its performance.
success← false
{First of all, try a regular assignment}
pcur ← partition where t is currently assigned to
if ((t ∈ F) and (nthreads(pcur) ≤ ncores(pcur)) then

{The expected performance of t is already optimal}
success← true

else {Find a better target partition to improve performance}
ptarget ← find partition ps ∈ (FP


SP) with maximum

expected performance for t
if expected_performance(t, ptarget) > expected_performance
(t, pcur) then

move t to ptarget
success← true

end if
end if
{Try optimistic rebinding if no better partition was found so far}
if not success then

tpartner ← find thread tpartner such that the swap of t with
tpartner improves system performance
if tpartner was found then

swap t and tpartner
end if

end if

that regular assignment has linear complexity with respect to the
number of partitions, so there should be a balance between the
number of partitions and the number of cores in each partition. An
assignment of threads to partitions is not only done initially, but is
repeated every time a thread accumulates a certain amount of CPU
time on its current partition, in case the current partition becomes
non-optimal, i.e., when the number of threads in a partition
changes. This repeated assignment is called a refresh. By having
the refresh period tied to CPU time rather than wall clock time,
we avoid increasing the absolute number of refreshes as the load
factor grows. If there is no change in the system load, the refresh
assignment can be skipped.

Algorithm 1 shows the pseudo-code for the regular assignment
and refresh. Optimistic rebinding, also shown in this listing is
discussed in the following paragraphs. For reasons of conciseness
we do not provide the pseudo-code for expected_performance. The
procedure for estimating the performance on different core types
is described in Section 3.3.

Load balancing and core assignment within partitions can be
done according to regular OS policies, which can also be tailored
to emphasize scalability (we do not discuss these techniques).
Between partitions, however, there is no direct load balancing.
Instead threads will converge to a balanced load distribution, with
more powerful partitions potentially receiving higher loads. This
also allows a situation where a thread is waiting in a queue while
there is an idle core somewhere in the system. To prevent such
occurrences, it is forbidden to move a thread to fully loaded or
overloaded partitions when some partitions are less than fully
loaded (underloaded).

The greedy thread assignment approach described so far has
a potential problem where threads may become locked in a sub-
optimal assignment and further optimization can only be accom-
plished by cooperative action between two threads (swapping)
rather than by a greedy decision w.r.t. one thread. There is a mech-
anism to perform such a swapping, and it is called optimistic rebind-
ing. A scheduler may decide to use optimistic rebinding instead of
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Algorithm 2 Event-driven migrations in HASS-D
Definitions: F is the set of threads assigned to fast cores, S is
the set of threads assigned to slow cores, t is a runnable thread
whose SF has changed.

Require: (F ≠ ∅) ∧ (S ≠ ∅) ∧ (t ∈ F


S)
∧ (t ∈ F ⇒ (∀u ∈ F − {t} ,∀v ∈ S : SF(u) ≥ SF(v)))
∧ (t ∈ S ⇒ (∀u ∈ F ,∀v ∈ S − {t} : SF(u) ≥ SF(v)))

Ensure: (∀u ∈ F ,∀v ∈ S : SF(u) ≥ SF(v))
if t ∈ F then

tsc ← find thread tsc in S with max SF
if SF(t) < SF(tsc) then

{swap threads t and tsc}
⟨F , S⟩← ⟨F − {t} + {tsc} , S − {tsc} + {t} ⟩

end if
else {t ∈ S}

tfc ← find thread tfc in F with min SF
if SF(t) > SF(tfc) then

{swap threads t and tfc}
⟨F , S⟩← ⟨F −


tfc


+ {t} , S − {t} +


tfc


⟩

end if
end if

the regular assignment during a refresh, if it fails to find a good
target partition for a thread. The scheduler then has to find a part-
ner for the thread in some partition with ‘‘good’’ potential perfor-
mance and swap the target thread with the partner. The scheduler
only triggers the swap if it confirms that the swap will actually in-
crease the performance of the target thread as well as the overall
system performance. This is done by comparing the speedup fac-
tors of the target thread and of the potential partner. The search for
a partner can be slow when the target partition has many threads
or when there are a lot of partitions. Therefore, our algorithm for-
goes exhaustive search and instead uses randomized search with a
limited amount of probing.

The partitioning scheme allows the scheduler to avoid global
synchronization during scheduling. Instead, threads can lock
one partition at a time when doing a refresh (for reading the
runnable threads counter), migrating between partitions or enter-
ing/leaving runnable states (for updating the runnable counter).
Using read/write locks can further decrease the pressure on this
contention point.

4.3. The HASS-D algorithm

HASS-D, the dynamic version of HASS-S, estimates the speedup
factor online, by periodically sampling threads’ last-level-cache
(LLC) miss rates and using them as the input to the performance
algorithm described in Section 3.3. The fact that the speedup
factor in HASS-D is not known when the thread first arrives, and
that it can change dynamically throughout the thread’s lifetime,
dictates different algorithms for assignment of threads to cores
than those used in HASS-S. For example, HASS-D cannot perform
the same regular assignment as HASS-S, because when the thread
arrives its speedup factor is not yet known. Likewise, subsequent
reassignment of threads in HASS-D is driven by dynamic changes
in the speedup factor rather than the changes in the load. Themain
focus of this section, therefore, is to describe the algorithm used in
HASS-D to assign threads to cores.

When a new thread enters the system, HASS-D assigns it a
default speedup factor,4 since no information about its actual

4 For this default value, we opted to choose the lowest speedup factor attainable
in an attempt to avoid that threads with a relatively low estimated speedup factor
and legitimately assigned to fast cores are evicted from fast partitions when new
threads enter the system.

speedup factor is available. The initial mapping of newly created
threads is performed such that fast partitions are populated before
slow partitions and the load balance across the cores is preserved.
As soon as the thread begins to run, HASS-D begins to monitor
its last-level cache miss rate (on whatever core it was assigned to
run), and then uses that miss rate to estimate its speedup factor as
described in Section 3.3.

As threads run, two things happen: speedup factors for newly
arrived threads become known, or speedup factors of old threads
(as they enter into different phases of execution) change. The
scheduler must map threads to cores according to their speedup
factors, and to that end it follows the so-called event-driven
migration procedure shown in Algorithm 2 and described below.

Event-driven migrations ensure that the system adheres to the
two rules: (1) All threads in fast partitions have a higher SF than
the thread with maximum SF running in a slow partition (2) load
balance must be preserved.

In order to enforce Rule 1, the scheduler must check that the
thread with minimum SF on fast cores (tfc) has a higher SF than
the thread with highest SF on slow cores (tsc). This rule may be
broken either when a change in the SF of a thread takes place or
in the event that a thread transitions between a runnable and a
non-runnable state. In the former scenario, the scheduler enforces
the rule by swapping tfc and tsc when needed. In the latter case,
the migration of one the aforementioned threads when necessary
is enough to guarantee that the two rules of HASS-D hold true.

The scheduler maintains per-partition lists of runnable threads
sorted by SF to simplify the selection of the optimal thread(s) to
migrate (or swap): tfc and tsc . For efficiency reasons, fast partitions’
lists are kept sorted in an ascending order by SF, while a descending
order by SF is preferred for thread lists in slow partitions. As
a result, finding the optimal candidate in either case has linear
complexity with respect to the number of partitions.

HASS-D measures LLC miss rates for each thread continuously
using performance counters, and the values are sampled every 20
timer ticks (roughly 200ms on our experimental system).We keep
a running average of the values observed at different periods and
we discard the first values collected immediately after the thread
starts or after it is migrated to another core in order to correct for
cold-start effects causing themiss rate to spike intermittently after
migration.

We also use a phase-detectionmechanism that seeks to capture
coarse-grained phases rather than fine-grained ones, in an attempt
to reduce the number of unnecessary migrations. Updating SF
estimations during abrupt phase changes may cause frequent
expensive migrations, which may end up being unnecessary if the
phase change is not lasting. Instead, SF estimations are updated
exclusively once a thread enters a phase exhibiting stable behavior.

To detect stable phases,weuse a light-weightmechanismbased
on a phase transition threshold parameter (12% in our experimental
platform). When the moving average is recorded, it is compared
with the previous average measured over the previous interval.
If the two differ by more than the transition threshold, a phase
transition is indicated. Two or more sampling intervals containing
no indicated phase transition signal a stable phase.

4.4. The IPC-Driven algorithm

To compare HASS to an existing het-aware algorithm, we
chose to implement the IPC-Driven algorithm proposed previously
by Becchi and Crowley [4], an algorithm that combined good
results, applicability to general purpose systems and specification
completeness. In the original work [4] the IPC-Driven scheduler
was simulated.We created the first real implementation of the IPC-
Driven algorithm.

The IPC-Driven algorithm assumes two types of cores: (‘‘fast’’)
and (‘‘slow’’). The assignment is done based on IPC ratios, which
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Algorithm 3 IPC-Driven’s thread swapping mechanism
Definitions: F and S are the sets of threads assigned to fast and
slow cores, respectively. Fp and Sp are the sets of pinned threads
on fast and slow cores, respectively. t is a runnable threadwhose
IPC-ratio has changed or a thread that has just entered the pinned
state.

Require: (Fp ⊆ F)∧(Sp ⊆ S)∧(Fp ≠ ∅)∧(Sp ≠ ∅)∧(t ∈ Fp


Sp)
∧(t ∈ Fp ⇒ (∀u ∈ Fp − {t} ,∀v ∈ Sp : IPC-ratio(u)
≥ IPC-ratio(v)))
∧(t ∈ Sp ⇒ (∀u ∈ Fp,∀v ∈ Sp − {t} : IPC-ratio(u)
≥ IPC-ratio(v)))

Ensure: (∀u ∈ Fp,∀v ∈ Sp : IPC-ratio(u) ≥ IPC-ratio(v))
if t ∈ Fp then

tsc ← find thread tsc in Sp with max IPC-ratio
if IPC-ratio(t) < IPC-ratio(tsc) then

{swap threads t and tsc}
⟨F , S, Fp, Sp⟩← ⟨F −{t} + {tsc} , S−{tsc} + {t} , Fp−{t} +
{tsc} , Sp − {tsc} + {t} ⟩

end if
else {t ∈ Sp}

tfc ← find thread tfc in Fp with min IPC-ratio
if IPC-ratio(t) > IPC-ratio(tfc) then

{swap threads t and tfc}
⟨F , S, Fp, Sp⟩← ⟨F−


tfc


+{t} , S−{t} +


tfc


, Fp−


tfc


+

{t} , Sp − {t} +

tfc


⟩

end if
end if

determine the relative benefit of running a thread on a particular
core type. IPC ratios in the IPC-drive algorithm are synonymous
with the Speedup Factor in the HASS algorithms, but in this section
wewill use the term IPC ratio to follow the original definition of the
authors.

The key idea behind the IPC-Driven algorithm is very similar
to HASS-D: IPC-Driven like HASS-D also relies on event-driven
migrations, and the procedures for event-driven migrations in
the two algorithms are very similar. The key difference is that
IPC-Driven requires running each thread on both core types to
estimate its IPC ratio, while HASS-D only needs to run a thread
on one (any) core type to estimate its speedup factor. As we will
see later, the need to run a thread on both core types creates
load imbalance, which causes performance degradation, and often
results in inaccurate estimates of the IPC ratios. We will provide
more discussion and explanation of this phenomenon in the
experimental section. In the rest of this section, we complete the
description of the IPC-Driven algorithm.

A thread with a high ratio between the IPC on the fast core and
the IPC on the slow core is expected to benefit from the fast core.
The scheduler periodically samples threads’ IPC on both core types
and examines the IPC ratios of threads running on fast and slow
cores. If the smallest IPC ratio among the threads running on the
fast core is smaller than the highest IPC ratio among the threads
running on the slow cores, the threads with the corresponding
ratios are swapped. This part of the IPC-Driven algorithm is very
similar to the event-driven migration algorithm in HASS-D. It is
shown in Algorithm 3.

As inHASS, cores are organized into partitions according to their
types. The original algorithm assumed only two types of cores, but
our implementation is a generalization for n different types.

Just like HASS-D, IPC-Driven periodically re-estimates the IPC
ratio when a thread is deemed to have entered a new phase. New
program phases are detected by the changes in the program’s
IPC that exceed a certain ipc_threshold. Whenever a program
enters a new IPC phase, the IPC ratios relative to the thread’s
most recent ‘‘home’’ core type are re-measured. However unlike

Algorithm 4 HAFS’s thread swapping mechanism
Definitions: F and S are the sets of threads assigned to fast and
slow cores, respectively. Fx and Sx are the sets of expired threads
on fast and slow cores, respectively. t is a runnable thread that
has just entered the expired state. BC stands for balance counter.

Require: (Fx ⊆ F) ∧ (Sx ⊆ S) ∧ (Fx ≠ ∅) ∧ (Sx ≠ ∅) ∧ (t ∈
Fx


Sx) ∧ (((t ∈ Fx ⇒ (Fx = {t} )) ∧ (t ∈ Sx ⇒ (Sx = {t} )))

Ensure: ((Fx = ∅) ∨ (Sx = ∅))
∧ t has been swapped with tx, the oldest expired thread in the
opposite core type
if t ∈ Fx then

tx ← find thread tx in Sx with max BC
{swap threads t and tx}
⟨F , S, Fx, Sx⟩← ⟨F−{t} +{tx} , S−{tx} +{t} , Fx−{t} , Sx−{tx} ⟩

else {t ∈ Sx}
tx ← find thread tx in Fx with min BC
{swap threads t and tx}
⟨F , S, Fx, Sx⟩← ⟨F−{tx} +{t} , S−{t} +{tx} , Fx−{tx} , Sx−{t} ⟩

end if

HASS-D, re-estimating the IPC ratio requires migrating a thread to
another core (and as we show in the experimental section, this
is the main cause for performance differences between HASS-D
and IPC-Driven). This is done via forced migrations where a thread
is switched to run in a partition of the opposite core type to its
most recent one for a period of time called refresh_period.
Additionally, a forced migration is triggered for threads that have
just entered the system (after a warm-up period) in order to
initialize the IPC ratio. Note also that those newly created threads
are assigned in the first place to the partition with the lowest
number of runnable threads per core.

In order to limit the number of forced migrations and to allow
the system to stabilize between two consecutive thread swaps,
a thread must run on a new core for a period of time equal to
a swap_inactivity period before another forced migration is
allowed. A thread that has been assigned to a particular core and is
eligible for swapping is said to be in a pinned state. A thread whose
IPC ratio is in the process of being updated is said to be refreshing.
The performance of the IPC-Driven algorithm is sensitive to the
settings of the aforementioned parameters (refresh_period,
swap_inactivity period, etc.), and so we have carried out an
exhaustive evaluation of the parameter space and picked the ones
that yielded the best overall performance. Refresh_period was
set to 30ms, ipc_threshold to 10%, swap_inactivity period
to 1.5 s and warm_up period to 200 ms.

4.5. The HAFS algorithm

HAFS is an implementation of a heterogeneity-aware round-
robin scheduling policy. The goal of this algorithm is to ensure
that fast cores are shared equally among threads. The current
implementation supports systemswith two types of cores: fast and
slow.

On the high level, the HAFS algorithm works as follows. It
assigns threads to slow and fast partitions so as to preserve
load balance across the cores, and then periodically migrates
the threads among fast and slow partitions to ensure that fast
cores are shared equally among the threads. HAFS relies on two
mechanisms: Inter-partition swaps and balance counters. Inter-
partition swaps is a mechanism for cross-partition migrations
that ensures that migrations do not disturb load balance. Balance
counters is a mechanism that ensures that fast cores are shared
equally among the threads. We first explain how inter-partition
swaps work, and then describe the balance counters.

Suppose that a thread must be migrated from one partition to
another. Simply enqueueing this thread in a runqueue of a core in
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the target partition could cause load imbalance if there is a large
number of migrations going one way. To prevent load imbalance,
the scheduler never migrates a thread from one partition to
another unless there is a candidate thread that needs to bemigrated
in the opposite direction. Swapping threads among partitions,
rather than performing one-way migrations, is guaranteed to
preserve load balance.

A thread may be migrated without a swap if there are idle
cores in a fast partition, since one goal of HAFS is to keep the fast
cores busy. Furthermore, if a fast partition is overloaded and there
are idle cores in a slow partition, the algorithm will also migrate
a thread into that slow partition without requiring a swap. This
preserves load balance.

Balance counters are used to achieve fair sharing. The scheduler
associates with each thread a ‘‘balance’’ counter to track the
deviation between the number of cycles a thread has been running
in slow partitions compared to fast partitions. When that counter
reaches a certain threshold,5 the scheduler sets the thread as
‘‘expired’’ and marks it as a candidate for migration onto the
opposite core type. When a matching candidate thread wishing
to migrate in the other direction appears, the two threads are
swapped. Candidates are swapped in the FIFO order, so no thread
gets ‘‘stuck’’ in a slow partition longer than any other thread. The
swapping mechanism, which ensures that fast cores are shared
equally, is illustrated in Algorithm 4.

If there are no matching candidates for swapping, an ‘‘expired’’
thread will keep running in the old partition. For example, if the
number of threads is smaller than or equal to the number of fast
cores, all the threads will keep running on fast cores without ever
being migrated to slow cores.

Inter-partition swaps and balance counters ensure that fast
cores are shared equally among threads and that the load balance is
preserved at the same time. Another important property of HAFS
is that it does not require global communication across all cores
when making scheduling decisions. This property of the algorithm
suggests that it has good scalability properties, which will be
especially relevant on future many-core systems with potentially
hundreds of cores.

5. Results and discussion

This section is divided into four parts. In Section 5.1 we de-
scribe our experimental platform in detail and introduce the
heterogeneous configurations used for the evaluation. Then, in
Section 5.2, we introduce the benchmarks and workloads em-
ployed. Section 5.3 is devoted to describing our experimental
methodology. Finally, in Section 5.4, we analyze the performance
results of all the investigated schedulers and report our main find-
ings.

5.1. Experimental platform

We chose OpenSolaris as the platform to implement the
scheduling algorithms due to its powerful profiling framework
DTrace [6].Weused twomachines for our experiments. Onewas an
Intel Xeon X5365 server with four dual-core chips. A pair of cores
on a chip shared a 4 MB L2 cache. Another was an AMD Opteron
8356 with four quad-core chips. Cores on the same chip shared a 2
MB L3 victim cache; per-core 512 KB L2 caches were private.

We configured our test systems to be heterogeneous by setting
the cores to run at different frequencies using DVFS. Since we

5 There is actually a positive and a negative threshold. The former controls the
number of cycles a thread should spent in slow partitions without being migrated,
whereas the latter performs the same control in fast partitions.

wanted to get themost heterogeneous setting out of our platforms,
the frequency of fast and slow cores was set to the minimum and
maximum frequency levels, respectively. More specifically, on our
heterogeneous Intel-based platform, fast cores operate at 3.0 GHz,
while slow cores run at 2.0 GHz. Conversely, on the AMD platform,
fast and slow cores were set to run at 2.3 GHz and 1.15 GHz,
respectively.

In our experiments we used three heterogeneous configura-
tions: (1) AMD-2,2, — two fast cores, two slow cores, each on its
own chip and exclusive L3$ per core; (2) Intel-2,2 — two fast cores,
two slow cores, each on its own chip and exclusive L2$ per core;
and (3) AMD-12,4 — four fast cores and twelve slow cores. In some
configurationswe used fewer cores than available (AMD-2,2, Intel-
2,2) in order to avoid any performance effects due to cache sharing
(to that end, we had to use at most one core per chip). Conversely,
the AMD-12,4 configuration, where all of the cores are used, is sub-
ject to cache interference effects.

5.2. Benchmarks

Our workloads consist of several single-threaded applications
drawn from the SPEC CPU2000 suite that expose a wide range
of behaviors concerning the efficiency of pipeline utilization.
Although reuse-distance profiles for HASS-S had to be collected
on Linux (Pin does not run on OpenSolaris), we ensured that
the benchmark binaries compiled for Linux-x86 were sufficiently
similar to the binaries compiled for Solaris-x86 by using the same
compiler version and flags.

We opted not to include multithreaded applications in our
workloads because our investigated algorithmsonly seek to deliver
efficiency specialization rather than TLP (thread-level parallelism)
specialization. Other algorithms whose main goal is to deliver TLP
specialization only, such as ‘‘PA’’ [25], have proved beneficial for
workloads containing both parallel and sequential applications but
are unable to deliver performance gains for workloads consisting
of single-threaded applications only [26].

In our experimental evaluation we used two workload sets: #1
and #2. Benchmarks included in each set are shown in Table 2(a)
and (b). Workload set #1 includes eight workloads with four
applications each. Workload set #2 consists of eight application
sets, each including up to sixteen different benchmark programs.

Set #1 includes three categories ofworkloads. The first category
is highly heterogeneous (HH), and consists of a pair of highly
CPU-bound benchmarks and a pair ofmemory-bound benchmarks.
Workloads in this category (HH1, HH2 and HH3) show the most
diversity in terms of applications’ architectural properties, and so
they will have the most performance improvements from het-
aware algorithms. In each HH workload, the first two benchmarks
are CPU intensive with virtually any cache size, and the second
pair is memory intensive. These workloads, especially when
running on the AMD-2,2 and Intel-2,2 configurations, enable
us to assess the effectiveness of each investigated scheduler
under the most favorable (most heterogeneous) conditions, since
in those configurations an effective scheduling will result in
mapping the two CPU-intensive instruction streams on the two
available fast cores. The second category of workloads included
in set #1 is moderately heterogeneous (MH). These workloads
include benchmarks representing the whole spectrum of memory
intensity, with less extreme differences between the benchmarks.
In general, however, the first two benchmarks in each workload
are less memory intensive than the last two on the majority of
our configurations. These MH workloads are expected to benefit
less from het-aware scheduling than HH workloads. Finally, in
the lightly heterogeneous category (LH) we have the workload
consisting of the four copies of the same application (wupwise).
We report the data on only one workload in this category,
because we did not observe particularly interesting effects for
homogeneous workloads.
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Table 2
Multi-application workloads (a) Set #1. (b) Set #2.

(a) Workload set #1
Categories Benchmarks

HH1 sixtrack, crafty, mcf, equake
HH2 gzip, sixtrack, mcf, swim
HH3 mesa, perlbmk, equake, swim
LH1 wupwise, wupwise, wupwise, wupwise
MH1 vortex, twolf, fma3d, art
MH2 gap, parser, applu, vpr
MH3 apsi, ammp, lucas, mgrid
MH4 bzip2, gcc, wupwise, art

(b) Workload set #2
Categories Benchmarks

W1 sixtrack, crafty, eon, gzip, twolf, mesa, parser, bzip2, gap, vortex, ammp, mgrid, gcc, apsi, vpr, wupwise
W2 sixtrack, crafty, twolf, perlbmk, mesa, parser, bzip2, gap, vortex, ammp, mgrid, apsi, vpr, wupwise, fma3d, art
W3 gzip, bzip2, parser, gap, vortex, ammp, mgrid, gcc, apsi, vpr, wupwise, fma3d, art, applu, swim, lucas
W4 eon, gzip, perlbmk, gap, mgrid, gcc, apsi, vpr, wupwise, fma3d, art, applu, swim, lucas, mcf, equake
W5 gzip, sixtrack, crafty, perlbmk, gap, mgrid, apsi, vpr, wupwise, fma3d, art, applu, swim, lucas, mcf, equake
W6 parser, gap, vortex, ammp, mgrid, gcc, apsi, vpr, wupwise, fma3d, art, applu, swim, lucas, mcf, equake
W7 sixtrack, crafty, twolf, mesa, gap, mgrid, apsi, vpr, wupwise, fma3d, art, applu, swim, lucas, mcf, equake
W8 sixtrack(x2), crafty(x2), art(x2), applu(x2), swim(x2), lucas(x2), mcf(x2), equake(x2)

In all experiments, the total number of applications was set to
match the number of cores in the heterogeneous platform, since
this is how runtime systems typically configure the number of
threads when only CPU-bound applications are used [23]. Four
copies of each benchmark from set #1’s ‘‘base’’ workloads were
used on the AMD-12,4 configuration to make use of the sixteen
cores available, while only one copy is needed on the Intel-2,2 and
AMD-2,2 configurations to keep all cores busy.

For the AMD-12,4 configuration, we also report the perfor-
mance of workloads in set #2, which are larger and more di-
verse than those in set #1. These application sets, which include
benchmark programs with a wide range of speedup factors, are
shown in Table 2(b) and appear sorted in ascending order bymem-
ory intensity. This way, the workloads range from W1 (the least
memory intensive) which is made up of both CPU-intensive and
mildly memory-intensive applications, to W8 (the most memory-
intensive workload), which contains up to twelve highly memory-
intensive programs.

5.3. Experimental methodology and metrics

For a given test we launch a predetermined number of bench-
marks, and as individual copies terminate, they are immediately
restarted. Thus we keep the workload constant and measure the
average completion time of every benchmark. Our goal is to min-
imize the mean of normalized completion times across all bench-
marks. Each benchmark runs at least three times, so there are at
least three completion time values.

Our original goal was to compare the completion times
achievedwith HASS to the completion times achievedwith the na-
tive OpenSolaris scheduler, but we found that completion times
under the native scheduler were highly variable (standard devi-
ation was as high as 23%) and thus not suitable for comparison.
This is due to the fact that the native scheduler is not heterogene-
ity aware and thus migrates threads between different core types
at infrequent and arbitrary intervals. Therefore, the fraction of time
that a thread spends on a particular core type varies significantly
from one run to another. Achieving a low standard deviation is not
possible in these conditions.

Instead we compare completion times of the algorithms to a
composite metric, to which we refer to as the default metric. To
compute a completion time for a benchmark using the default
metric we run the benchmark bound to a specific type of core
(e.g., the ‘‘fast’’ type) while the rest of the benchmarks in the
workload are running on other cores. Then we repeat the same

measurement while the benchmark is bound to the core of the
other type (e.g., ‘‘slow’’). We then average the completion times on
fast and slow cores, and the resulting value is used to approximate
the default completion time. This metric gives us the expected
completion time of a benchmark over a large number of trials if
the benchmark were randomly bound to a core at the start of its
execution and kept running on that core until completion. This
is a good approximation of how the default scheduler operates,
because it tries to minimize migration of threads from one core to
another in order to maintain cache affinity.

The default metric could be too pessimistic on systems with
sustained loads, where new threads are constantly arriving as old
threads finish. As threads running on faster cores retiremore often,
faster cores will be available for assignment more often. To com-
pensate, we also compare our algorithms to HAFS, which keeps
the fast cores busy. It is important to understand though, that
the performance achieved with HAFS will be better than with a
heterogeneity-agnostic default scheduler, because HAFS is specif-
ically designed to keep the fast cores busy. In summary, while we
do not use real completion times for the native scheduler, we un-
derstand that they are no worse than the default metric, and are
somewhat worse than those obtained with HAFS.

For performance comparison we report completion times nor-
malized to the default metric for each benchmark in workload set
#1 as well as the geometric mean for all its benchmarks. Due to
space constraints, however, we only show the geometric mean of
normalized completion times for all benchmarks in workload set
#2. Apart from performing experiments withworkloadswhere the
number of running benchmarks matches the number of cores, we
have also studied scenarios where more than one thread per core
was used, and the results (omitted from this paper but reported in
our previous work [28]) were qualitatively similar.

In addition to the results obtained with the various algorithms
we also show the results obtained with the best static assignment.
A static assignment is decided at the beginning of execution and
never changed thereafter. The best static assignment is obtained
by testing all possible static assignments and picking the one with
the best performance. The best static assignment is the theoretical
upper bound for the performance that can be achieved with our
implementation of HASS-S.

5.4. Performance analysis

This section is organized as follows: In Section 5.4.1 we
evaluate the performance of HASS-S. In Section 5.4.2 we explain
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Fig. 2. Completion times relative to the default metric for workload set #1 on the AMD-2,2 configuration. Bars above 100% represent slow down, and below 100% represent
speedup. (a) HH and LH workloads, (b) MH workloads.

the performance results of HASS-D. Sections 5.4.3 and 5.4.4 are
devoted to analyzing IPC-Driven and HAFS. In Section 5.4.5, we
briefly discuss overall performance numbers for the different
schedulers across different heterogeneous configurations. Finally,
in Section 5.4.6 we summarize our main findings.

5.4.1. Evaluation of HASS-S
First we analyze the behavior of HASS-S on the AMD-2,2 config-

uration. This is the configuration where we expect to see the best
results, because (1) this configuration is more ‘‘heterogeneous’’
than the Intel-2,2 configuration, since the difference in the speeds
of fast and slow cores is greater than on Intel-2,2, and (2) this con-
figuration is not subject to cache sharing (unlike the AMD-12,4 sys-
tem), which our algorithms do not handle. Fig. 2a and b show the
completion times for the different workloads relative to the de-
fault metric (lower numbers are better). The types of workloads
are shown on the bottom of the chart. The completion times are
shown for each application individually as well as for the entire
workload as the geometric mean.

As can be expected, HASS-S performed especially well with the
HH workloads, where the mean speedup was as much as 12.5%
for the {sixtrack, crafty, mcf, equake} workload and reached
10% and 11% for the other HH workloads. In all these cases HASS-S
achieved its theoretical upper bound. We traced the execution of
the benchmarks with DTrace and confirmed that HASS-S actually
chooses the mapping of threads to cores that corresponds to the
best static assignment.

As expected, the performance improvements were more mod-
est for the MH workloads: 10%, 8%, 6% and 8% for each of the
four workloads and 8% on average on the AMD-2,2 system. The

reason is that there are smaller differences in the CPU speed
sensitivities among different applications, so the optimization op-
portunities are smaller. Despite the similarity in the applications’
signatures in the MH workload, HASS-S was still able to pick the
right candidates for running on the fast cores, matching again the
best static assignment.

To understand the source of performance improvements from
het-aware scheduling, we examine the relative completion times
for individual benchmarks within the workload. For HH and
MH workloads we see that the first two applications in the
workload (recall that these are CPU-bound applications) usually
speed up under het-aware scheduling (i.e., they experience
lower completion times), while the second two applications (the
memory-bound type) slow down. Since the speedup experienced
by the CPU-bound applications is greater than the slow down
experienced by the memory-bound applications, the workload as
a whole experiences an improvement in performance. This points
to the inherently ‘‘discriminative’’ nature of heterogeneity-aware
scheduling, which may make it inappropriate to situations where
the goal is to optimize the performance of individual applications.
But when the goal is to optimize the workload as a whole, the het-
aware policy does its job.

Examining completion times for individual applications offers
another way to check whether HASS-S was able to pick the right
candidates to run on the fast cores. Ideally, we want to see the
same applications experiencing the speedup with HASS-S as with
the best static assignment. For HH and MH workloads we see that
this is always the case. HASS-S is able to determine which two
applications are CPU intensive and assign them to run on fast cores,
matching the best static assignment.
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Fig. 3. Completion times relative to the default metric for workload set #1 on the Intel-2,2 configuration (a) HH and LH workloads, (b) MH workloads.

The speedup that HASS-S achieves relative to HAFS is more
modest: on average 6% forHHworkloads and 2% forMHworkloads.
This implies that for MH workloads, a simple het-aware round-
robin scheduler can perform almost as well as more complex
algorithms, but for HHworkloads amore sophisticated assignment
policy is necessary to optimize performance.

We also note that HASS-S always outperforms the IPC-Driven
algorithm. This was a surprising finding, because the IPC-Driven
algorithm, in contrast to HASS-S, is phase aware and so it could
fine tune the thread assignment as the workload goes through
different phases of execution. We provide the explanation for this
unexpected result in Section 5.4.3.

The other investigated phase-aware scheduler, HASS-D, is not
subjected to the same limitations that IPC-Driven suffers from,
since performance monitoring in this scheduler does not require
cross-core migrations. As a result, HASS-D performs within 1%
range of HASS-S on the AMD-2,2 configuration.

Turning to the Intel-2,2 configuration (Fig. 3a and b), we note
that the range of performance improvements from het-aware
scheduling is smaller on this system. This is expected, because
this hardware platform is less ‘‘heterogeneous’’ than the AMD-
2,2 configuration. This indicates that sophisticated het-aware
algorithms are more appropriate for systems with a high degree
of heterogeneity among the cores as opposed to systems where
performance differences across the cores are small.6

On the Intel-2,2 configuration, most benchmarks exhibited
a more CPU-bound nature than on the AMD system (probably
because the Intel system had larger L2 caches), and so there

6 For example, systems that exhibit small variations in the frequencies among
the cores due to fabrication process variation would probably benefit less from
sophisticated het-aware scheduling algorithms than explicitly heterogeneous
systems.

was less distinction in the CPU speed sensitivities among the
benchmarks, especially those in theMHcategory. As a result, HASS-
S often picked a different set of applications to run on fast cores
than those picked by the best static assignment. Nevertheless,
the differences in the sensitivities were so small that picking the
‘‘wrong’’ applications did not have a large impact on performance—
in many cases it did not matter which applications would be
chosen to run on fast cores. As a result, HASS-S performed only
0.5% worse (on average) than the best static assignment. This
demonstrates that the HASS-S algorithm is robust even in these
conditions difficult for optimization.

Finally, we examine the performance of workload set #1 and
#2 on the AMD-12,4 configuration (Figs. 4 and 5). We expected to
see the smallest performance improvements here, because there
are proportionally fewer fast cores than on the other systems (only
a quarter of the cores is fast as opposed to one half on the other
configurations), and also because there is cache sharing.

Examining the results for the HH workloads (Fig. 4a) we note
that HASS-S did not always pick the same application to run on the
fast cores as that which was picked by the best static assignment.
For example, in the workload {sixtrack, crafty, mcf, equake}
HASS-S assigned the four copies of sixtrack to run on the four
fast cores, while the best static assignment picked crafty. The
differences in sensitivities of crafty and sixtrack are so small
that it is difficult for HASS-S to make this distinction. At the
same time, failure to make this distinction does not have a large
effect on performance, so HASS-S underperformed the best static
assignment only by 2%.

A similar phenomenon (not picking the same applications to
run on the fast cores as those picked by the best static assignment)
can be observed for the MH workloads (Fig. 4b). It is important to
note, however, that HASS-S has never made an incorrect choice
of running memory-bound applications on the fast cores: it has
always correctly picked the CPU-bound applications. The reason
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Fig. 4. Completion times relative to the default metric for workload set #1 on the AMD-12,4 configuration, base workload multiplied by 4 (16 benchmarks in total). (a) HH
and LH workloads, (b) MH workloads.

Fig. 5. Geometric mean of completion times relative to the default metric for
workloads in set #2 on the AMD-12,4 configuration.

for not picking the sames ones as the best static assignment is
that the signatures for CPU-bound applications were difficult to
distinguish from one another in this moderately heterogeneous
workload.

The results for the MH workloads on the AMD-12,4 configu-
ration offer an opportunity to observe the effects of cache shar-
ing, indicating the importance of accounting for this phenomenon
in scheduling algorithms. Consider, for instance, the workload
{vortex, twolf, fma3d, art}. HASS-S chose to run the four
copies of vortex on fast cores, while according to the best static
assignment the four copies of twolf should not have been picked.
In theory, this ‘‘mistake’’ should not have had much impact on
performance, because the sensitivities of vortex and twolf are
very similar. In reality, this ‘‘mistake’’ caused HASS-S to underper-
form the best static assignment by 7% (although still doing bet-
ter than default). The reason is cache sharing. Twolf is a very
cache-sensitive application. That is, its performance suffers when
it shares a cache with an aggressive co-runner that generates a lot

of cache misses. In this workload, such aggressive applications are
fma3d and art. By running twolf on fast cores, as was done un-
der the best static assignment, twolf is isolated to run on a sep-
arate chip from other benchmarks (recall that the four fast cores
in AMD-12,4 are placed on a separate chip), and so it avoids shar-
ing the per-chip last-level cache with the aggressive co-runners.
But when twolf runs in a slow partition, where the 12 cores are
spread across the three chips, it risks sharing a cache with the ag-
gressive art or fma3d. These results indicate the importance of
incorporating the awareness of shared caches into scheduling al-
gorithms for multicore systems.

We now focus our attention on the performance numbers
of workload set #2 on the AMD-12,4 configuration (shown in
Fig. 5). Since each workload in this set includes up to sixteen
different applications and exhibits a wide diversity in speedup
factors (as on the HH workloads), a significant improvement
over the default metric can be potentially achieved by het-aware
schedulers. Performance gains delivered by HASS-S are very close
to the best static’s counterparts for workloads W1, W5, W7 and
W8. In fact, execution traces obtained with Dtrace revealed that
those gains stemmed from the fact that HASS-S actually chooses
the mapping of threads to cores that corresponds to the best static
assignment. In the remainingworkloads, HASS-S picked a different
set of applications to run on fast cores to best static’s counterparts
but because the divergences between the speedup factors of the
benchmarks mapped to fast cores in both cases are small, HASS-
S’s ‘‘wrong’’ application mappings do not have a large impact on
performance (at most 2.5% for the W3 workload).

We must also highlight that, on the AMD-12,4 configuration,
the estimation model used by HASS-S is affected by the presence
of shared caches. Essentially, the LLC miss rate of the applications
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may vary due to the sharing of the cache with other threads
and, as a result, offline-estimated ratios used by HASS-S may
not approximate so accurately the observed ratios during the
execution. In other words, the fact that the miss rate may decrease
because of cooperative data sharing or increase due to cache
contention may lead to overestimation or underestimation of the
ratios, respectively. However, previous researchers [33] observed
(and so did we) that the quality of the miss rate does not change
significantly no matter whether the thread shares a cache or runs
solo: i.e., if the thread’s miss rate is low relative to other threads
when it runs solo, its value relative to other threads will stay
low when it shares the cache even though it may increase by
tens or hundreds of percent relative to its solo value. Similarly,
if the thread’s miss rate is high it will stay high relative to other
threads, regardless of sharing. For that reason, HASS-S is still able
to effectively distinguish between memory-intensive and CPU-
intensive applications so it correctly classifies the threads even
when core and thread counts increase.

To conclude this section, we must highlight that we also
performed scalability and overhead analysis of HASS-S. These
results, which are omitted from this paper, were reported in our
prior work [28]. Overall, our evaluation indicates that HASS-S has
overheads comparable to those of the native scheduler and that it
scales well on our experimental systems.

5.4.2. Evaluation of HASS-D
Comparing HASS-D to HASS-S, we see that the former performs

within 1%, 2.5% and 3.5% range of the latter on the AMD-2,2,
Intel-2,2 and AMD-12,4 configurations, respectively. Traces of the
execution of the workloads, collected by means of Dtrace, lead us
to conclude that both algorithms perform the same thread-to-core
mappings for the vastmajority of the execution. The reason behind
this behavior is two-fold. First, while most applications involved in
the evaluation exhibit several program phases, we have not found
any application from the SPEC suite alternating between large CPU-
intensive phases and large memory-intensive phases. Since the
program-phase-detection engine of HASS-D has been deliberately
designed to filter out short-term program phases in an attempt to
reduce the number of thread migrations, this algorithm captures
primarily long-term phases. For most applications, this leads
HASS-D to detect one large phase that encompasses nearly the
entire execution interspersed with a few shorter phases. Second,
both algorithms rely on threads’ last-level-cache miss rates to
estimate the relative benefit from running a given thread on fast
cores rather than on slow cores, so they obtain similar estimates
and perform thread assignments accordingly. In summary, the fact
that applications do not exhibit many long-term distinct program
phases in conjunction with a common model for performance
estimates used by both schedulers makes them perform similarly.
Furthermore, it is worth highlighting that both algorithms are
exposed to similar mispredictions and, when present, they fail to
figure out the optimal assignments (see MH1 and MH3 workloads
in Fig. 3b). However, those minor mispredictions do not affect the
overall performance significantly.

As opposed to HASS-S, HASS-D is phase aware. Supposedly, be-
ing aware of program phases would enable HASS-D to enforce bet-
ter thread-to-core mappings throughout the execution. Although
adjusting thread-to-core assignments dynamically may improve
the system-wide efficiency on AMP systems, it may also introduce
performance degradation due to additional thread migrations. The
negative impact on performance due to these additional migra-
tions may be especially pronounced for highly memory-intensive
applications (such as mcf, equake and swim), whose performance
suffers significantly when their cache state needs rebuilding after
migrations (at least in the private levels of the cache hierarchy).
In particular, HASS-S usually outperforms HASS-D when highly

memory-intensive programs are included in the workload, such
as for workloads W4–W8 in set #2 (Fig. 5). Note, however, that
not only does migration overhead affect HASS-D but it has also a
negative impact in the performance of any scheduler triggering a
non-negligible number migrations, such as IPC-Driven and HAFS.
For those schedulers, overhead of as much as 7% over the default
metric is introduced for the aforementioned workloads.

5.4.3. Evaluation of the IPC-Driven algorithm
We now turn our attention to the IPC-Driven algorithm. The

results for the three hardware configurations and the different
workloads are shown in Figs. 2a–4b. The overall (unexpected)
conclusion is that the IPC-Driven algorithm performs worse than
HASS and the best static assignment. We expected the IPC-Driven
algorithm to work better, since unlike the other approaches it
relies on a real measured speedup factor rather than estimating
it. Despite the careful tuning of configurable parameters in the
algorithm (the results are shown for the best combination of
parameter values), we could not make the IPC-Driven algorithm
match the performance of HASS and of the best static assignment.
We discovered that the unexpectedly low performance of the IPC-
Driven algorithm is due to two problems: (1) inaccurate estimation
of the relative benefit that threads derive from running on different
core types, and (2) overhead due to migrations performed as part
of dynamic performance monitoring.

We illustrate the first problem by analyzing the performance
of the HH workload {sixtrack, crafty, mcf, equake} on
the AMD-2,2 configuration. For that workload, the IPC-Driven
algorithm achieves the performance improvement of only 6%
over default—recall that HASS-S has achieved a 12% performance
improvement for this workload! To understand the root cause of
the problemwe analyzed how the IPC-Driven algorithmperformed
thread assignments relative to HASS-S.

Both HASS-S and the best static assignment mapped the two
frequency-sensitive applications sixtrack and crafty to the
fast cores, and the two memory-bound applications mcf and
equake to the slow cores. The IPC-Driven algorithm, on the other
hand,mappedmcf to the fast core roughly 51% of the time, pushing
crafty to run on the slow core in the meantime (these data were
obtained with Dtrace). Although mcf does have some high-IPC
phases when it makes sense to map it to the fast core (see Fig. 7a),
those phases last only 25% of mcf’s execution time, not 51%. So
26% of the time mcf is not being mapped to the right core, which
degrades the performance.

The reason for this suboptimal mapping has to do with the
unstable nature of phase changes. When mcf runs on a fast core
during a high-IPC phase and a phase change is detected, it is
migrated to a slow core to refresh its IPC ratio. However, as it runs
on the slow core, the phase change (and the decrease in the IPC)
continues, and so the IPC degradation reflects not only the lower
clock frequency of the slow core but the fact that the program
has entered an even more memory-bound phase. Ideally, we want
the IPC ratio to be computed from the IPCs measured during the
same program phase. But since each IPC measurement takes a
while to perform (the program must run on each core at least
several milliseconds in order to amortize for cold cache effects),
it is impossible to guarantee that the program will not change a
phase during themeasurement. As a result, the estimated IPC ratio
is inaccurate.

In this particular example we observed that the IPC-Driven
algorithm estimated much higher IPC ratios than what could be
obtained on this hardware. Specifically, mcf’s IPC ratio between
the fast and slow cores was computed to be as high as 2.2 and
2.5 on some occasions. On this configuration, however, the highest
possible IPC ratio can be 2.0, because the difference between the
frequencies of fast and slow cores is a factor of two. Since the
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(incorrectly estimated) ratio is too high, the algorithm erroneously
decides that mcf derives a far more significant benefit from
running on the fast core than in reality. As a result, mcf is assigned
to a fast partition, when in fact it would be more optimal to assign
it to a slow partition.

It is very difficult to ensure that the IPCs used to compute
the ratio belong to the same phase. Phase changes are difficult to
predict at runtime. The problem gets worse if the number of core
types, and hence the number of IPC measurements that must be
done, is large (recall that the ratio has to be computed for each
class of processors). Increasing the ipc_threshold did not help,
because no single value worked well for all applications.

The reason why this problem did not occur in the original
(simulated) evaluation of the IPC-Driven algorithm [4] is that IPC
refreshing was not simulated in the same way as it would happen
on a real system. IPCs used to compute ratios were obtained from
offline IPC traces, and so in contrast with real systems IPCs always
corresponded to the same program phase. In other words, in the
earlier simulation-based evaluation it was assumed that the IPCs
on different core types can be obtained instantaneously, while in
reality this could not be accomplished.

Another reasonwhy the IPC-Driven algorithmperformedworse
than expected is the overhead associated with forced thread
migrations, which were performed as part of online monitoring.
Recall that the IPC-Driven algorithm must periodically refresh the
IPC of all threads on all core types. In order to do so, the scheduler
forcefully migrates each thread to the cores of different types for
IPC measurement. Unfortunately, this creates load imbalance in
the system, because as a result of these migrations some cores
may have more threads wanting to run on them than others. As a
result of a load imbalance, threads running on ‘‘overloaded’’ cores
experience longer CPU wait times that threads on ‘‘underloaded’’
cores. That is, they spend more time waiting in the CPU runqueue
until the core to which they are assigned becomes available. This
causes their performance to degrade.

To illustrate this phenomenon we have measured to what
extent longer CPUwait times affect the performance under the IPC-
Driven algorithm. The CPU wait time is the difference between the
wall clock completion time and the total CPU time (computed as
the sum of user and system CPU times). So if the CPU wait times
were negligible (as it should be on our configuration where the
number of threads never exceeds the number of cores), the wall
clock time would be roughly equal to the CPU time. Fig. 7b shows
the amount (in percent) by which the wall clock time exceeds
the CPU time for the AMD-2,2 configuration (results for other
configurations are omitted, but they are qualitatively similar). The
difference in the wall clock time relative to the CPU time is the
overhead due to load imbalance. It can be seen that the IPC-Driven
algorithm sacrifices a few percentage points of performance due to
load imbalance for almost every workload.

Migration overhead was not detected in the original paper
on the IPC-Driven algorithm [4], perhaps because runqueue con-
tentionwasmodeled differently than in a real scheduler. The paper
did not provide sufficient detail about this part of the simulation.
Increasing the ipc_threshold and swap_inactivity period
alleviates migration overhead, but at the expense of making the
algorithm less phase aware.

In summary, the particularmonitoringmethodology used in the
IPC-Driven algorithm (and in another het-aware algorithm [19])
suffered from several significant problems. The problems stemmed
from the fact that the measurements had to be performed on
every type of core in the system. Addressing these problems
would require a fundamental redesign of the IPC-Driven algorithm.
Essentially, we have done this in some way by implementing
HASS-D. This algorithm is not subjected to these problems since
it estimates performance ratios from measurements obtained on
a single core, as opposed to multiple cores. As a result, HASS-D
outperforms IPC-Driven across the board.

5.4.4. Evaluation of the HAFS algorithm
In evaluating HAFS we are first of all interested in investigating

whether HAFS accomplishes fair sharing of fast cores among
applications. To demonstrate HAFS’s fairness property we ran an
experiment consisting of several instances of the same applications
(we chose mgrid from the SPEC CPU2000 suite) and measured
the fraction of time that each instance spends running on fast
cores. (Running four identical applications that have identical
completion times simplified data analysis.) We varied the number
of concurrent instances from three to ten. The experiments were
run on the AMD-2,2 configuration. Fig. 8a shows the results. It can
be observed that the fast-core CPU clock cycles are shared equally
among the concurrently running instances. When the number of
concurrent instances (or threads) equals or exceeds the number of
cores, each thread spends 50% of its time running on a fast core.
When the number of concurrent instances is three, each thread
spends roughly 66% of its time on a fast core, because there are
fewer threads competing for fast cores and each one is entitled to
its own share.

These results demonstrate two nice properties of the algorithm:
first, it ensures fairness in sharing heterogeneous CPU resources.
Second, it ensures stable and predictable completion times. Recall
that with the native scheduler, completion times were highly
variable.

The second question we were interested in investigating has
to do with performance overhead due to thread migrations
performed by HAFS. Threadmigrations are an integral part of HAFS
or any implementation of the het-aware round-robin algorithm.
Threads must be migrated between cores of different types to
accomplish fair sharing of fast cores at fine-granular intervals.
Although the migration mechanism in HAFS does not cause load
imbalance, migrations may still degrade the performance due to
disturbing threads’ cache affinity [16]. When a thread is moved
from one core to another it loses the cache state accumulated in
the old core’s private caches, and in the old shared cache if the new
core does not share a cachewith the old one. These overheads have
not been investigated in the earlier work andwe use HAFS as a tool
to study them.

To that end,we compare the performance ofHAFSwith an ideal-
round-robin (ideal-RR) metric. The ideal-RR metric is computed
by combining the previously measured completion times on all
core types such that the total time spent on each core type is
proportional to howmany of those cores are present in the system.
Essentially, the ideal-RR metric estimates the completion time for
a benchmark in conditions where the cores of different types are
shared equally, butwhen there are no overheads due tomigrations.
Comparing completion times estimatedwith the ideal-RRmetric to
completion times obtained under HAFS enables us to evaluate the
migration overheads in HAFS.

Fig. 8b shows HAFS completion normalized to the ideal-RR
completion times for the AMD-2,2 configuration (the results for
the other configurations are omitted, but we describe them in the
text). The increase in HAFS completion times relative to ideal-RR
is the migration overhead. We see that the migration overhead
is significant, but not prohibitively large. On this configuration
the overhead reached at most 6% for some memory-bound
applications. On the AMD-12,4 configuration, where competition
for cache was more severe, the overhead reached 25% for one
memory-bound application (twolf), but hovered around 5%–10%
for the rest of the applications.

All in all, the migrations required to deliver fair sharing of
fast and slow cores do cause overhead. But despite this overhead,
HAFS outperforms default on AMD-2,2 and Intel-2,2 (by 5% and
2% on average, respectively) and breaks even with default on
the AMD-12,4 configuration (on average for workload set #1, see
Fig. 4a–b). We found that workloads including highly memory-
intensive applications, such as W4–W8 from workload set #2, are
the most extreme cases, where migration overhead translates into
performance degradation with respect to the default metric.
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Fig. 6. Overall reduction in completion time relative to the default metric across
configurations and workload sets.

5.4.5. Overall results
Fig. 6 shows the overall reduction in completion time over the

default metric delivered by all the evaluated schedulers across
the different heterogeneous configurations and workloads. These
numbers reveal that the performance of HASS-S and HASS-D is
very close to the best static’s in all cases except one: workload set
#1 on AMD-12,4. In the latter case, the fact that four instances of
each applications are usedwhen runningworkload set #1 onAMD-
12,4 (sixteen cores) makes the estimated speedup factors of the
applications closer, and, as result, the entire workload set is less
heterogeneous than the others. This fact further underscores that
both versions of HASS deliver greater performance gains when the
workload exhibits enough heterogeneity, and more importantly,
that these gains can be still obtained when the number of threads
and cores increases.

5.4.6. Summary
In summary, the results presented in this section lead us to

make the following conclusions:

• HASS-S is an effective and robust het-aware scheduling al-
gorithm that is able to differentiate among benchmarks with
different architectural properties and assign CPU-intensive ap-
plications to fast cores and memory-intensive applications to
slow cores.
• It is more difficult for HASS-S to distinguish among the sensitiv-

ities of applications whose signatures are very similar, as would

be the case with two CPU-intensive applications. While in this
case HASS-S often does not match the best static assignment,
the performance impact is small, because thewrongly classified
applications have very similar architectural features.
• Cache sharing has an important impact on performance and so

it is crucial to incorporate shared cache awareness in HASS-S or
any other scheduling algorithm for multicore systems.
• Cross-core migrations required for performance ratio measure-

ments in IPC-Driven often lead to inaccurate IPC ratios and dis-
rupt the load balance of the system. We have also showed that
HASS-D, the other phase-aware algorithm, is not subjected to
these problems since it estimates performance ratios frommea-
surements obtained on a single core, as opposed to multiple
cores. As a result, HASS-D outperforms IPC-Driven across the
board, and so does HASS-S.
• Inmost cases, HASS-S delivers slightly better performance gains

that its dynamic version, HASS-D. This was an unexpected find-
ing, because HASS-D, as opposed to HASS-S, is phase aware and
so it can adjust thread-to-core mappings dynamically as appli-
cations in the workload go through different program phases.
Unfortunately, the additional number of migrations triggered
by HASS-D introduce overheads that may significantly reduce
the benefits coming from phase-aware thread assignments.
Furthermore, we have observed that migration overhead also
has a negative impact on the performance of other schedulers
like IPC-Driven and HAFS, which trigger a non-negligible num-
ber of migrations as well, and the presence of highly memory-
intensive applications further aggravates this issue.
• The performance improvements fromhet-aware scheduling are

especially pronounced on systems where the difference in CPU
speeds among the cores of different types is large.
• Fair sharing of fast cores with HAFS comes at a cost, but in most

cases the benefits justify it.

Although the performance improvements achieved on our ex-
perimental system were quite significant, we believe that on a
‘‘real’’ heterogeneous system theywould be even greater. Real het-
erogeneous systems are likely to have more drastic differences
among the cores of different types (e.g., differences in the pipeline

a

b

Fig. 7. (a) IPC over time for mcf on the Intel system. (b) The amount by which the wall clock completion time with the IPC-Driven algorithm exceeds the CPU time
(user+ system) for the AMD-2,2 configuration.

a b

Fig. 8. (a) Fair sharing of fast-core cycles with HAFS. (b) Completion times under HAFS normalized to ideal-RR on the AMD-2,2 configuration.
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microarchitecture [18]), and we have shown that more heteroge-
neous hardware renders greater performance improvements from
het-aware scheduling.

Furthermore, in future heterogeneous multicore systems,
memory access will likely remain as the major performance-
limiting factor (as recently found in [17]). Therefore, we believe
that the architectural signature scheme can still rely on LLCmisses,
at least as a first approximation to estimate the efficiency on differ-
ent cores with different cache hierarchies and microarchitectures,
and so speedup factors could also be predicted in a similar way.
Exploring this avenue of research is an interesting direction for fu-
ture work.

6. Conclusions

We presented HASS, a new scheduling algorithm for single-ISA
heterogeneousmulticore systems. The novelty of HASS is in relying
on architectural signatures for estimating relative benefits that
threads derive from running on different core types. We presented
two versions of HASS, HASS-S and HASS-D, which rely on statically
and dynamically generated architectural signatures, respectively.

HASS consistently improves the performance over a heteroge-
neity-agnostic scheduler when the workload lends itself to
heterogeneity-related optimizations. It is robust even in the con-
ditions where performance improvements are difficult to obtain.
Benefits from het-aware scheduling algorithms are especially pro-
nounced for workloads where there is a large disparity between
applications’ architectural properties and on systems with large
differences in the speed among different types of cores. When no
performance improvements can be expected due to the nature
of the workload, HASS never does worse than the heterogeneity-
agnostic scheduler.

Contrary to our expectations, our implementation of HASS,
both the static and the dynamic version, performed better than
the IPC-Driven algorithm that relied on actual measured speedup
factors as opposed to the estimated ones. We discovered that the
IPC-Driven algorithm suffered from inaccuracies and overheads
stemming from the need to measure performance on multiple
core types. As a result, HASS-S and HASS-D outperformed the IPC-
Driven algorithm for every workload we have measured. For the
sake of providing a more comprehensive experimental evaluation
we compared all algorithms to a round-robin heterogeneity-
aware algorithm HAFS. We found that HAFS outperforms the
heterogeneity-agnostic default scheduler, but fails to match the
performance of more sophisticated het-aware algorithms for
highly heterogeneous workloads.

When comparing both versions of HASS, we found that the
usage of offline collected architectural signatures rather than
online ones incurs a lot less overhead at runtime, and this leads the
static version to deliver greater performance gains. However, in the
event signatures are not either available – i.e. not embedded in the
application binary – or are not highly representative throughout
the execution – e.g. when the application shows large and fairly
distinct program phases – online estimated signatures can be
effectively used to fill this gap. For that reason, a hybrid version
of HASS, which relies on static signatures and resorts to using
dynamic ones when they are not either present or representative
enough, would deliver performance gains to a wider range of
applications.

Overall, we conclude that using architectural signatures rather
than direct measurement of performance of each thread on each
core time results in less overhead and delivers greater performance
gains.
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