Understanding Behavioural Patterns in JavaScript

Saba Alimadadi
University of British Columbia
Vancouver, BC, Canada
saba@ece.ubc.ca

ABSTRACT

JavaScript is one of the most popular programming languages. How-
ever, understanding the dynamic behaviour of JavaScript apps is
challenging in practice. There are many factors that hinder JavaScri-
pt comprehension, such as its dynamic, asynchronous, and event-
driven nature, the dynamic interplay between JavaScript and the
Document Object Model, and the asynchronous communication
between client and server. In this research work, we have already
proposed methods for understanding event-based and asynchronous
JavaScript behaviour. To enhance the scalability of our methods,
we propose a new technique that adopts bio-informatics algorithms
to extract sequences of actions from execution traces that form
higher-level patterns.

CCS Concepts

*Software and its engineering — Software testing and debugging;
Integrated and visual development environments;

Keywords

JavaScript; comprehension; behavioural patterns

1. RESEARCH PROBLEM

Program comprehension is an essential first step for all software
engineering tasks. Developers spend a considerable amount of time
understanding code. They start with searching for cues in the code
and the environment. Then they go back and forth on the incoming
and outgoing dependencies to relate pieces of foraged information.
Throughout the process, they collect information they find relevant
for understanding the code [[12]. However, developers fail often
in searching and relating information, and lose track of relevant
information. They collect information in their memory or use ex-
ternal sources to help them remember. They form a mental model
of the entities, relations and the intent of the code, which they use
throughout development to help them make decisions. Develop-
ers put much effort into creating and maintaining mental models.
But exploring code is difficult and these models are almost always

inaccurate [19]. It is shown that developers perform better using
systematic strategies compared to “as-needed” strategies [24]].

JavaScript has become the lingua franca of web development. It
is voted as the most popular language [26] and is the most used
language on GitHub [13]]. Comprehending JavaScript applications
entails a set of challenges for developers. JavaScript is single-
threaded and thus callbacks are often exercised to simulate con-
currency. Nested and asynchronous callbacks are used regularly
to provide capabilities such as non-blocking I/O and concurrent re-
quest handling. This use of callbacks, however, can gravely compli-
cate program comprehension — a problem coined as callback hell.
The Document Object Model (DOM) and custom events, timers
and XMLHttpRequest (XHR) objects interact with JavaScript code
on the client and server to provide real-time interaction, all of which
complicate understanding. Further, dynamic features of the JavaSc-
ript language pose a challenge to analysis techniques. For instance,
almost everything in JavaScript, from fields and methods of objects
to their parents, can be created or modified at runtime. Finally,
client and server code communicate through XHR messages, and
multiple messages (and their responses) can be in transit at a given
time. As in any distributed system, there is no guarantee on the or-
der or time of the arrival of requests at the server, and responses at
the client. The uncertainty involved in the asynchronous commu-
nication makes the execution more intricate and thus more difficult
to understand.

Our hypothesis is that we can improve developers’ performance
by inferring and creating higher-level models of the application’s
dynamic behaviour. Such models provide systematic means for as-
sisting developers in the process of searching, relating and collect-
ing the information necessary for understanding an application.

In this proposal, we introduce our approach for understanding
the dynamic behaviour and execution patterns in JavaScript. We
discuss our techniques for understanding event-based, dynamic,
and asynchronous interactions in JavaScript. We then propose a
technique for finding behavioural patterns in the execution traces
of applications. Our goal is to provide a higher-level abstraction of
execution that matches the mental model of the developers, instead
of overwhelming them with the details of code-level execution.

2. RELATED WORK

There are numerous static analysis techniques proposed for Java-
Script analysis in different domains [8} |10, |11} 20]. We did not
choose a static approach, since many event-driven, dynamic and
asynchronous features of JavaScript are not well supported stati-
cally. Dynamic and hybrid JavaScript analysis techniques have at-
tempted to solve the shortcomings of static analysis [[15} 21} 27].
However, existing techniques focus on the client-side of web appli-
cations alone, and do not consider the server. Also, non of these

techniques provide higher-level patterns and semantic models of
execution. Many papers have focused on locating the implemen-
tation of UI- and interaction-based features [14} 16l 28] in web
applications. Record and replay techniques aid the understanding
and debugging tasks of web applications [0} (7, |17} [18]. The goal
of these techniques, however, is to provide a deterministic replay
of UI events without capturing their consequences. Tracing tech-
niques [} 9} 22]] collect traces of JavaScript execution selectively.
Similar to our work, these tools provide a model and visualization
of the trace. However, these methods do not extract behavioural
patterns of execution and are not scalable to larger and more com-
plex applications. There are many tools that use visualization to
improve the process of understanding the behaviour of software ap-
plications [5} 22} 28]]. However, their approaches are not concerned
with creating a model of the web application, while ours is.

3. APPROACH

In this section, we explain our approach for assisting developers
with comprehension of JavaScript applications.

3.1 Accomplished Work

First, we proposed a generic, non-intrusive technique, called Cle-
matis, for supporting comprehension of event-based interactions in
web applications [3]. Through a combination of automated JavaScr-
ipt code instrumentation and transformation, we capture a detailed
trace of a web application’s behaviour during a particular user ses-
sion. Our technique transforms the trace into an abstract behavioural
model. The model is then presented to the developers as an inter-
active visualization that depicts the creation and flow of triggered
events, the corresponding executed JavaScript functions, and the
mutated DOM nodes, within each episode. To evaluate this ap-
proach, we conducted a controlled experiment with 20 professional
web developers. The results showed that using Clematis signif-
icantly improved developers’ performance in completing compre-
hension tasks, by improving task completion duration and accuracy
by 61% and 89% on average, respectively.

Next, we proposed an approach to assist understanding the im-
pact of change in the presence of dynamic, DOM-related and asyn-
chronous features of JavaScript [1]. We introduced a hybrid change
impact analysis technique for client-side JavaScript, called Tochal.
Tochal augments static analysis with dynamic analysis to enable
a DOM-sensitive and event-aware change impact analysis method.
The results of conducting a controlled experiment with 12 profes-
sional web developers showed that Tochal was effective in improv-
ing developers’ performance significantly. The participants that
used Tochal had an average of 105% more accuracy, while spend-
ing 56% less time.

Developers use JavaScript not only for the client-side but also for
server-side programming, leading to full-stack applications written
entirely in JavaScript. The two previous techniques were agnos-
tic of the server, where most of the program logic is located in
full-stack applications. We proposed Sahand [2], a technique for
capturing a behavioural model of full-stack JavaScript. Our ap-
proach captures the context-sensitive executions of events and func-
tions during their lifespan. We designed a model to accommodate
the temporal nature of function executions and the asynchronous
scheduling mechanisms of full-stack JavaScript. The model is fi-
nally visualized for the developers. We designed another controlled
experiment with 12 graduate students to evaluate Sahand. The re-
sults showed that using Sahand helped developers complete com-
prehension tasks 3 times more accurately, in about the same time.

To assist the process of searching, relating and collecting infor-
mation, the aforementioned techniques collect execution traces, an-

alyze them, and visualize the results for the developers. However,
the collected information can become very large and complex, very
fast. As a result, the visualized data itself can become incompre-
hensible for developers. To mitigate this problem, we propose a
technique discussed in the next section.

3.2 Going Forward

As the next step, we propose to investigate the means of helping
the comprehension process even further by providing a semantic
model of the execution patterns. The goal is to find a higher-level
model that better represents the mental model of developers. The
model provides an overview of the application behaviour, and re-
veals the code-dependent details systematically based on user de-
mand. Our proposed approach consists of the following steps.

First, we instrument JavaScript on the fly. Next, we intercept
JavaScript and collect a trace of execution. Then, we start the pro-
cess of extracting execution patterns from the trace. For building
our pattern finding algorithm, we are inspired by genomics, where
comparing a sequence to other sequences is an important goal. This
is typically done by comparing a query sequence with sequences
already stored in a database. We use local sequence alignment to
align subsets of trace sequences. BLAST (Basic Local Alignment
Search Tool) is the most common local algorithm [4].

The algorithm starts by finding exact matches of length k be-
tween the query sequence and the database sequences. These match-
es are then used as seeds to extend the alignment in both direc-
tions. At this point, we want to find similar patterns (not just the
exact matches) to provide a degree of flexibility in our algorithm.
Hence, we use the Smith-Waterman algorithm [25]], which is a dy-
namic programming technique. This algorithm quantifies the align-
ment process by assigning scores for matches and mismatches, and
penalties for gaps (scoring matrices). Aligned sequences are then
found by searching for the highest scores in the scoring matrices.

We design a scoring matrix based on our specific domain. For in-
stance, two functions in two sequences match if their names match.
The match is strong if the arguments match as well. If the functions
are not matched, a gap penalty is included in the score, which will
increase by the number of gaps. The base scores for matches and
penalties are determined using empirical data.

At the final step, we visualize the extracted patterns. We will
also take advantage of information visualization techniques to fa-
cilitate developers’ understanding. Enabling visual pattern recog-
nition and clustering methods in an interactive visual interface can
greatly benefit the viewers. Interaction mechanisms such as query-
ing, filtering, semantic zooming, bookmarking, and adding notes
can be utilized to help developers locate and understand their re-
quired information easier, faster, and more accurately.

4. EVALUATION

To evaluate our proposed approach, we should investigate its us-
ability for developers. We will conduct a controlled experiment to
assess the effectiveness of our technique for developers in practice.
We divide the participants into control and experimental groups.
The experimental group use our approach, while the control group
use the tool of their choice. The developers will accomplish a set
of comprehension tasks, and their performance will be measured.
The tasks are designed based on common software comprehension
activities [23]]. Similar to our previous studies [1} |2} [3], we define
the performance of a developer by the combination of time and ac-
curacy of completing the tasks. Our hypothesis is that using our
approach will enhance developers’ performance in understanding
the overall behaviour, main usecases, and recurring patterns of a
web application.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

S. Alimadadi, A. Mesbah, and K. Pattabiraman. Hybrid
DOM-sensitive change impact analysis for JavaScript. In
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 321-345. LIPIcs, 2015.

S. Alimadadi, A. Mesbah, and K. Pattabiraman.
Understanding asynchronous interactions in full-stack
JavaScript. In Proceedings of the ACM/IEEE International
Conference on Software Engineering (ICSE), pages
1169-1180. ACM, 2016.

S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman.
Understanding JavaScript event-based interactions. In
Proceedings of the ACM/IEEE International Conference on
Software Engineering (ICSE), pages 367-377. ACM, 2014.
S. E. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403 — 410, 1990.

D. Amalfitano, A. Fasolino, A. Polcaro, and P. Tramontana.
The DynaRIA tool for the comprehension of Ajax web
applications by dynamic analysis. Innovations in Systems
and Software Engineering, 10(1):41-57, 2014.

S. Andrica and G. Candea. WaRR: A tool for high-fidelity
web application record and replay. In Proceedings of the
International Conference on Dependable Systems &
Networks (DSN), pages 403—410. IEEE Computer Society,
2011.

B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive
record/replay for web application debugging. In Proceedings
of the Symposium on User Interface Software and
Technology (UIST), pages 473—484. ACM, 2013.

A. Feldthaus, M. Schifer, M. Sridharan, J. Dolby, and F. Tip.
Efficient construction of approximate call graphs for
JavaScript IDE services. In Proceedings of International
Conference on Software Engineering (ICSE), pages
752-761. IEEE, 2013.

J. Hibschman and H. Zhang. Unravel: Rapid web application
reverse engineering via interaction recording, source tracing,
and library detection. In Proceedings of ACM User Interface
Software and Technology Symposium (UIST), pages
270-279. ACM, 2015.

S. H. Jensen, M. Madsen, and A. Mgller. Modeling the
HTML DOM and browser API in static analysis of
JavaScript web applications. In Proceedings of the
Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 59-69. ACM, 2011.

V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner,

K. Gibbons, J. Sarracino, B. Wiedermann, and B. Hardekopf.
Jsai: A static analysis platform for JavaScript. In
Proceedings of the ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE), pages
121-132. ACM, 2014.

A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An
exploratory study of how developers seek, relate, and collect
relevant information during software maintenance tasks.
IEEE Transactions on Software Engineering,
32(12):971-987, Dec 2006.

A. La. Language trends on GitHub.
https://github.com/blog/2047-1anguage-trends-on- github)
2015.

J. Lo, E. Wohlstadter, and A. Mesbah. Imagen: Runtime
migration of browser sessions for JavaScript web
applications. In Proceedings of the International World Wide

[15]

(16]

(17]

(18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Web Conference (WWW), pages 815-825. ACM, 2013.

M. Madsen, F. Tip, and O. Lhotdk. Static analysis of
event-driven node.js JavaScript applications. In Proceedings
of ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 505-519. ACM, 2015.

J. Maras, M. Stula, and J. Carlson. Generating feature usage
scenarios in client-side web applications. In Proceeding of
the International Conference on Web Engineering (ICWE),
pages 186-200. Springer, 2013.

J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic
capture and replay for Javascript applications. In
Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, pages
159-174. USENIX Association, 2010.

P. Montoto, A. Pan, J. Raposo, F. Bellas, and J. Lopez.
Automating navigation sequences in Ajax websites. In
Proceedings of the International Conference on Web
Engineering (ICWE), pages 166-180. Springer, 2009.

G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. In Proceedings of the 3rd ACM SIGSOFT
Symposium on Foundations of Software Engineering,
SIGSOFT ’95, pages 18-28, New York, NY, USA, 1995.
ACM.

H. V. Nguyen, C. Kistner, and T. N. Nguyen. Building call
graphs for embedded client-side code in dynamic web
applications. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pages 518-529. ACM, 2014.

H. V. Nguyen, H. A. Nguyen, A. T. Nguyen, and T. N.
Nguyen. Mining interprocedural, data-oriented usage
patterns in JavaScript web applications. In Proceedings of
the ACM/IEEE International Conference on Software
Engineering, pages 791-802. ACM, 2014.

S. Oney and B. Myers. FireCrystal: Understanding
interactive behaviors in dynamic web pages. In Proceedings
of the Symposium on Visual Languages and Human-Centric
Computing, pages 105-108. IEEE Computer Society, 2009.
M. J. Pacione, M. Roper, and M. Wood. A novel software
visualisation model to support software comprehension. In
Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 70-79. IEEE Computer Society,
IEEE, 2004.

M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: an exploratory
study. IEEE Transactions on Software Engineering,
30(12):889-903, Dec 2004.

T. Smith and M. Waterman. Identification of common
molecular subsequences. Journal of Molecular Biology,
147(1):195 - 197, 1981.

Stack Overflow. Developer survey.
http://stackoverflow.com/research/developer-survey-2015,
2015.

S. Wei and B. G. Ryder. State-sensitive points-to analysis for
the dynamic behavior of JavaScript objects. In Proceedings
of European Conference on Object-Oriented Programming
(ECOOP), pages 1-26. Springer, 2014.

A. Zaidman, N. Matthijssen, M.-A. Storey, and A. van
Deursen. Understanding Ajax applications by connecting
client and server-side execution traces. Empirical Software

Engineering, 18(2):181-218, 2013.

https://github.com/blog/2047-language-trends-on-github
http://stackoverflow.com/research/developer-survey-2015

	Research Problem
	Related Work
	Approach
	Accomplished Work
	Going Forward

	Evaluation
	References

