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Abstract—As the requirement of spectrum is increasing with by CORAL platform, we have developed an opportunistic
the advent of new technologies, cognitive radio networks have channel access procedure on ISM. Till the date, people have
got tremendous attraction in recent days. Since the concept of given the solution of cognitive channel access on slotted
cognitive radio is new, there are a few number of cognitive radio . .
platforms have been introduced in the literature. CORAL is primary user networ!" and Somelon unslotted ones. Sloution
WiFi like cognitive radio platform developed by communication ©On slotted network is much easier than the unslooted one.
research centre (CRC) operated in license exempt band 2.4 GHZ Cognitive radio operation over unslotted network is evememo
and 5.8 GHZ. This platform is aimed to coexist with I_EEE 802.11 challenging. IEEE 802.11 based WiFi network is unslotted
network through TDD/TDMA access protocol. In this work, we  anq DCF protocol is used by the users in order to access
have done some data analysis (collected by CRC) in order to . .
determine interference statistics at the payload level. We have channel. Having observed ovgrheadg in DCF protocol, we
proposed a secondary users strategy in order to access thePropose an overlay network which achieves better perfocman
WiFi channels intelligently and afterward we have applied neural than following DCF protocol while affecting regular WiFi
network in order to extrapolate traffic statistics during the future  ysers slightly. We define users of overlay network as seagnda
time interval. users and users who follow DCF protocol are primary users.
Secondary users have dynamic spectrum sensing ability. In
this paper, we have developed a novel opportunistic channel

CORAL is WiFi like cognitive radio platform developedaccess scheme for a single secondary user on the existence of
by communication research centre (CRC) operated in licerseveral primary users.
exempt band 2.4 GHZ and 5.8 GHZ. This platform is aimed Moreover, we have applied artificial neural network (ANN)
to coexist with IEEE 802.11 network through TDD/TDMAframework for traffic prediction on a channel because ANNs
access protocol. Station or AP in the CORAL platform isan model the complex relationship between multiple inputs
called CORAL node. Each CORAL node has two interfacesnd the output in a way similar to biological neural networks
- one for data transmission, reception and another for tA@ important aspect of ANN-based traffic prediction frame-
purpose of sensing spectrum in order to encounter differlent work is the time scales of prediction. That is, the duratién o
stacles existent in the spectrum. Through the ethernefacte input (past traffic history) to the projected duration. Insth
one laptop is connected to a CORAL node where CR-NMBork, we design traffic prediction frameworks that involve
software is running. The database where all sensed inf@matpredicting future traffic at minute level. Later on, because
is located is called REAM. Having collected all informatiorof the limitation of collected data, we have shown predittio
from REAM database, CR-NMS is the management softwaresults of next 250ms based on the data received on previous
which controls all APs resided in the spectrum. CORAR50ms. In addition, our prediction criterias are trafficstal
node has the ability to sense environment through both onmrate and payload mean inter-arrival time.
and unidirectional antenna. Message interchange betwBen C Rest of the paper has been divided as follows: section Il
NMS software and coral node (WiFi-CR) is called SSURBelongs to the thorough literature survey for the oppostimi
message. In the literature, very few cognitive radio pla® channel access scheme, section Ill represents the expeaime
have been developed except the prototype established in [&kults, IV is the analytical model for our novel strategy of
People only have proposed the idea of cognitive radio nétwahe secondary user, performance evaluation of the proposed
from the architectural point of view. model has been in section V and finally the neural network

As the DCF protocol mechanism is complex, people haygediction results in VI.
not solved the problem of opportunistic channel access con-
sidering the exact protocol specification. We have propa@sed
novel opportunistic channel access scheme for the segpndarOpportunistic spectrum access is a problem which spans
network with sensing and cognitive abilities on the top oFWi over a very diverse area of wireless networks ranging from
network. Opportunistic channel access scheme is basidifdly the cellular network, vehicular network towards the cagait
ferent on the transmission statistics of primary users.rtfeio radio netwroks. Jhang et al [2] solves a problem in vehicular
to extract the spectrum hole from ISM band, CRC collects datetworks which is relevant to the communication between
at the granular packet level and store all information rat¢v vehicle and RSU (road side unit). The solution is proxy
to packet capture e.g. capture time, payload size etc. Givesised and the protocol is designed to exploit cooperatide an
that we have traffic information in the form of data collectedpportunistic forwarding between any two distant RSUs and t

I. INTRODUCTION

II. RELATED WORK



emulate back-to-back transmissions within the coveraganof network for cognitive in a number of works. In one work [14],
RSU. Yang et.al [3] solves the opportunistic channel accetbey determine idle/busy time distribution of primary user
problem with new paradigm. The problem is the channatcess on the channel. It fits the distribution to some pre-
access scheme by a set of users through game theoretic maspecified distribution. Given the end time of previous cycle
instead of random mechanism. The solution is an iterati®m the idle time distribution SU determines remainingeidl
algorithm which converges to nash equilibrium even thoughme for accessing the channel without any interventioreréh
user is unaware of channel state information and other 'usess another similar kind of work is [15]. Liu et. al. [16]
policies. have also one work which assumes channel idle/busy time

Distributed opportunistic channel access in the relayetistribution can be general instead of only pre-specified di
network has been investigated by Zhang et. al [4]. Multipleibution. In one measurement based paper [17], the authors
source, destination along with multiple relay nodes are- coalso proposed an opportunistic channel access scheme for an
sidered and sources access the channel in random manneruAsiotted network. Min et.al [18] have given the solution of
optimal stopping rule has been derived for the winner noagportunistic spectrum access for the mobile secondany use
in order to free the channel when its condition is worse. Thigrst they model channel availability experienced by a r@obi
leads to better multi source, multi relay in addition to bett SU as a two-state continuous time markov chain. To faadlitat
time diversity. Opportunistic spectrum access of two sdaoyn efficient spectrum sharing, they formulate the problem of
users on two channels while the primary user’s access or thasaximizing secondary network throughput within a convex
channels is markov chain have been deduced in [5]. Their paptimization framework, and derive an optimal, distrilulite
posed schemes cooperative and learning based approach bb#nnel selection strategy. Through extensive simulatioey
show better performance than static partitioning approadiave justified their schemes and proved that energy effigzienc
Through simulation they have justified their schemes. Dyinanwhile sensing can be reduced by a large percentage.
spectrum access of a number of secondary networks on th&ven for the unslotted network, all of the above solutions
presence of primary activity has been proposed in [6]. Theyay consider WiFi network. They have one assumption which
have proposed a novel graph maximum algorithm MASPEGS idle/busy time follows some distribution. However, féwet
which uses the information from first and second hop antfiFi network, idle time can be backoff period or really idle
proved to show much better performance than traditionpériod which are not distinguishable to secondary user. And
approach in terms of throughput and call blocking probabiittempting to access backoff period causes reduced thpotigh
ity. Santivanez et. al. [7] have discussed some challengts,primary users. None of them proved analytically what
policies, architecture and protocol in terms of opporttinis exactly happen to a WiFi primary user when secondary user
spectrum access. They have shown that even a simple prot@maesses the channel. We are the first one have derived an
can increase much better performance in terms of systeraisalytical model for the secondary user in order to find
throughput. Liu [8] has also discussed opportunistic spett expected idle time and at which point or policy, the secopdar
approach once an optimal channel has been found to accasser should accesses that idle time period.

Since last few years, opportunistic spectrum access for
the cognitive radio have been proposed a lot. There were a
few situations arise for this problem. Cognitive radio can b CRC has conducted a measurement at University of Ottawa
synchronized or unsynchronized with the licensed usersén tplacing 16 terminals at different locations. From the poesi
network. Licensed user’s channel access scheme can ledslodikperimental results, we have found channel 1, 6 and 11 are
or unslotted. Tackling the problem for the unsynchronizetighly congested than the others. Therefore as the represen
and unslotted cases is harder than the former. From tiagive of preliminary results, we conducted some analysis 0
beginning of cognitive radio research, people have beangjiv the data obtained from channel. In this report, we only have
solution for the former case. Filippi et. al. [9] have dediseconsidered the data collected by sensor 1. In order to access
opportunistic channels access scheme of a slotted primarghannel opportunistically at a particular time, we need to
user’s network. Solution is based on a model-based learning<now the traffic pattern arrival pattern of that duration. Whi
a specific class partially observable markov decision m®cecollecting the interference data, CRC records the interfer
In [10], [11], the authors consider a slotted system for identity (Source MAC address), time instant (in microsaton
single SU with limited sensing, and identify the conditiongranularity) when the payload captured, utilization (hand
under which a simple myopic policy is optimal for sensinghe payload occupies the channel). We can exploit these
and access, when the PUs channel occupancy can be modeimation in order to find out all flows throughout the
as i.i.d. Markov chains. The result is extended to the casensing interval. In this 16-terminals data, we noticedheac
of sensing multiple channels in [12]. In [13], the authorshannel has been sensed 500 ms in a round robin fashion.
adopt the quickest change detection technique and establitierefore, in order to sense 11 channels sensor takes around
a Bayesian formulation to decide which channel to acce@00*11) 5.5s and in every 5 second inter sensor 1 senses
assuming geometrically distributed busy/idle times. channel 1. Because of these sensing limitation, we miss the

Recently, people are considering unslotted network for tishannel statistics of channel in every 5s. And in our data
cognitive radio. Such as, Sharma et.al. have studied thesdy analysis, we have assumed maximum flow duration is 500ms.

Ill. EXPERIMENTAL RESULTS
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Fig. 1. Duration Interval vs. No. of Flows

In reality, flow duration can be longer, but in our case, since
we miss the data after 500 ms, we consider the flow should
be in between 0 and 500ms.

We have found total 20,941 data entries have been recorded
for channel 1 by the sensor node 1. Data analysis of other
channels follow the same mechanism as presented in this
section. In the next subsection, we will show each flow
statistics (not in very granular level).

A. Data Flow Analysis

We have derived the flow statistics based on the criterias,
duration, average inter-arrival time, average utilizatiand
number of payload entries.

Figure 1 represents the bar chart for flows of different
duration. We have found total flows are 13294. Among them,
9856 is about zero duration. It means, these flows have only
one payload. This is, we guess, for the missing data during 5s
Maybe, at the end of 500ms, on flow has started, but we could
record those data after 500ms. This thing can happen in other
way, for example, one flow has stated during the unrecorded
5s, and finished just when CRC has started recording data at
the beginning of 500ms. These all flows are counted as of
zero duration. Moreover, figures 2, 3 and 4 represent other
flow statistics.

While dealing with flows, we have also found, during each
flow duration how many simultaneous flows remain with the
tagged flow. In order to determine, we have applied one policy
First, we have determined all flows with the statics: stankti
end time and duration. Once we have the list of flows, the
follow method is applied the number of concurrent flows.

o Step 1: Sort all the flows in terms their end time in
ascending order.

o Step 2: Take one non-tagged flow from the sorted list.
We call it as tagged flow.

« Step 3: Filter all the flows whose start time is less than
the tagged flows start time.

o Step 4. Filter the flows obtained from step 3 in terms of
not tagged yet,

No. of Flows

No. of Flows

No. of Flows

Average Inter-arrival Time vs. No. of Flows

0 50 100 150 200 250

Average Inter-arrival Time(ms)

300

Fig. 2. Average Inter-arrival Time vs. No. of Flows

14000

12000 -

10000 -

8000 -

6000

4000

2000

0

12000

10000 (-

8000 -

6000 -

4000

2000

Average Utilization vs. No. of Flows
T T T T T T

. . . .
0 10 20 30 40 50 60 70
Average Utilization(ms)

L
80

90

Fig. 3. Average Utilization vs. No. of Flows

Average Data Entries vs. No. of Flows

-] |

4 6 8 10 12 14 16
Average Data Entries

18

Fig. 4. Average Data Entries vs. No. of Flows



TABLE |
FLOw STATISTICS OF CHANNEL 1 FROM SENSORNODE 1

Flow Duration (ms)/No. of Flows 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500
1 83 | 107 | 95 | 100 | 129 | 154 | 212 | 244 | 251 | 192
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 404 | 282 | 274 | 257 | 219 | 154 | 133 | 69 | 32 6
7 16 | 12 3 2 0 0 0 0 0 0
1 4 2 1 0 0 0 0 0 0 0

Duration Interval vs. No. of Flows (l)
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description of DCF protocol mechanism. In addition, we
A assume, one single secondary user uses the extracteduspectr
- -> 4 Cognitive‘ hole. We have discussed a bit on_the subsection how the
/ AP opportunistic channel access mechnism works when there are
! a number of secondary users in the network.

~ / =
‘ . g Cogniive
- TEN N Client A. |EEE 802.11 DCF-Based MAC
y /,’ A N Primar The IEEE 802.11 DCF-based MAC protocol uses the
< : User CSMA/CA mechanism. A station monitors the medium before
<- . attempting transmission. If the medium is sensed busy, the
station defers transmission until the medium is sensed idle
Fig. 6. System Model for a period of time equal to a DCF interframe space (DIFS).

After the DIFS medium idle time, it enters the backoff phase i
which it sets a random backoff counter randomly chosen from
o Step 5: Filter the flows obtained from step 4 whose er{g’cw)’ where CWis the contention er_ldow Siz€. The back_off
SR i . counter decreases by one for every time slot if the medium
time is bigger than the tagged flow's end time. o .
. . . is idle; otherwise, the counter freezes, and the decrement
o Step 6: Number of Flows obtained from step 5 is thé . ) ; :
resumes after the medium is sensed idle again for a DIFS.
number of concurrent flows of the tagged flow. . :
i . : s When the backoff counter reaches zero, the station transmits
o Step 7: Continue step 2 until the list is empty. : . :
. . _the frame. If another station transmits a frame at the sames, ti
Figure 5 and table | represent the detailed flow statistigsco|lision occurs, and both transmissions fail. CW is dedbl

obtained from the previous policy. We see, the number singiger a collision until it reaches the maximum value (CWmax),
flows without any concurrent flow is the highest. We also segng the sender reschedules the transmission by randomly
there are some flows which have other 4 concurrent ﬂOWS-choosing a backoff counter in [0,CW). The frame is dropped
when the retransmission limit is reached. After a succéssfu
transmission, CW is reset to its minimum value (CWmin).
As mentioned, our cognitive radio network is built on WiFUpon receiving a frame successfully, the receiver trarsanit

network where regular users access the channel followingknowledgment (ACK) following a short interframe space
IEEE 802.11 DCF protocol. Following subsection is the shofBIFS).

IV. OPPORTUNISTICCHANNEL ACCESS



B. Optimal Strategy probability of useri given that queue is empty and not empty

In our work, we assume there are N number of primary usdfeSPectively. A user never transmits if its queue is empty an
accessing the channel following DCF protocol and there 1USpi[T|QE] = 0. Moreover, we redefing;[7'|QN £] by ;.
only one secondary user which would like to opportunistical SIMPlifying all, transmission probability of uséris given by
access the channel with little harm to primary users. we
assume the single secondary user is the base station and it pilT] =0 (1= p;) + 7 % p; = piT;

is sending traffic to its attached users whenever it gets SOM& onditioning the transmission of useérin a given slot

free slot to access. The way the primary users access chailsion happens if at least one of rest— 1 users transmit.
in WiFi network is complex. It is hard for the cognitive user t ¢ the collision probability of use is p;, we have
d (2]

know whether the primary users are in idle state or in backoff
state. If the primary user is in backoff state or in idle state N1 N1
secondary user finds the channel idle and therefore attempts =~ _ | H (1— p;[T]) = H (1- M>
a transmission depicted in figure 7. However, for these two / I
transmissions, primary users will be affected only in thstfir
case, its backoff procedure will be interrupted and the gack wherei=0,1,--- N —1.
transmission will be delayed 8. Eventually throughput af th Given that the queue is not empty, the transmission proba-
primary user will be reduced for this type of transmissiorRility of useri can be approximated as
Same situation happens if the secondary user accesses the E

. ) . [M;]
channel following the same mechanism as primary user. In tha T = — (1)
case, secondary user also has some protocol specific oderhea Wi
and therefore idle time does not get properly utilized. Heeve ~ Wherew; is the average number of backoff slots for user
if we somehow get to know in which period, primary user i to have a successful packet transmission, &d;] is the
really idle, secondary user can exploit that time duratign kverage number of transmission attempts useed during
directly transmitting its stored packets without any kintl owi- p; and 1 — p; are the collision and success probability
backoff procedure. Challenge with this strategy is to kno@f a transmitted packet and the backoff counter is chosen
the actual traffic arrival rate of primary user. Actuallyrieal uniformly from [0, CW], where CW is the backoff window
rate is also possible to learn if we observe the transmissidige. Exponential increment of backoff window on a collisio
probability of primary users. From the observed transraissi €vent can be modeled as a geometrically distributed random
probability of primary users, it is possible to derive theneal variable and thus the average number of backoff slots can be
rate and then from that we can easily derive the expectégrived as,
amount of time primary users being idle. Once secondary

J=0,j7#i J=0,57#i

user know expected idle time, it can accesses that duration o W , Zm’ 2y
time by sending packets just after any primary user finishes; = (1 _pi)7 4+ Pt (1= py) ==Y +--
successful transmission of each packet. Following suimsect roi Nom!
is the analytical model foiV users when they access channel +pl" iz MAW + (m —m)2" W )
with different packet arrival rateg, Ay, -+, An_1. 2

wherem’ is the maximum backoff stage, m is the retrans-
C. Primary User Model mission limit, and W is the minimum backoff window size.

In this section, we present the analytical model for stugyirSimilarly, transmission attempts of usecan also be modeled
the performance of a set of primary users with asymmet&s geometrically distributed random variable, and theamer
traffic using the DCF mode for MAC. Time is slotted with thenumber of transmission attempts of ugeran be derived as
minimal slot duration of DCF protocol. Let the traffic arriva
rate and frame service rate of a particular usare \; and y; EM;] = 1—-p)l+---+p".(m+1) 3)
packets per slot. Queue utilization ratio of usas p = 2i, . -

o . . Hi Following the same procedure, average number of collision

Digging the sensing data over a period of long duration, we - L2 .

. . slots 7., before a successful transmission of usetan be
can obtain the number of usef$ acting on the channel and :

- i . . Obtained. IfT,, is the duration of a single collision for user
transmission probability of each user. Denote the trargons ., . i . - .

o ) : . i, T,, is also geometrically distributed random variable as the
probability of useri on a particular slot is given by;[T] i

A user is considered as idle when it does not have packetﬂljnnCtlon of p;. Therefore,

the queue or no packet in service. If the probability of user
1 not being idle isp;, transmission probability of user can be T., = pi(1 —p).T., + -+ (1 —p;).mT., (4)

represented as a functign. Therefore, we have o
From the observed value ¢f;[T] = p;7;, collision prob-

_ bility of each userp; can be obtained. Consequentty;,
AT = piTIQE|(1 — p;) + pi[T|QNEl p; a - _ i
pilT] PITIQE]( = pi) + pilTIQNE]p E[M;] andT,, can be derived as well. Average service time
pi[T|QE] andp;[T|QN E] are the conditional transmissionl/;; of each packet for usei can also be approximated



from the sensed data. Definition of service time is the time Therefore, probability that at least one user is not idle is
interval between the time instant that the frame is sucabgsf 1 — p;. Average number of idle slots before at least one user
transmitted. Service time of user i's packet can be further finot being idle is geometrically distributed random vargahhd
grained by the average number of slots of first backoff stagenoted byl;. So we have,
and its collision probability. In order to calculate packetival
rate \; of useri, we want to fully derive the service time. T =
During 1/p;, in addition to a successful transmission by the L=p
tagged station, the following events may occur: As per our proposed strategy, after each primary user’s suc-
1) successful transmissions by the remaining N-1 station§ESSful transmission, secondary AP can use a certain number
2) collisions: slots for its own traffic transmission. However, due to s_taIaI
3) channel idleness when statiofis in the backoff stage(s) unpredictability of DCF protopol, we cannot determiniatig
use average number of all idle slots for the secondary AP
while affecting the primary user negligibly. For any duoatiof
transmission after each primary user’s successful tresssom

S5 . : ; X
. No1 . . atfects service time of frames transmitted by all primary
fully trananl'g(l/”i) ijoa#i A; packets, which c_ontrlbute to users. If the transmission duration of secondary AR,ist
(1/pi) 32 j=0 ;i As Ts; time slots. Before the stations successsontributes(1/4;) > o Ajx time slots to usei’s service
fully transmit the packets, the total amount of collisiomé time, 1/,,. Upon the existence of secondary AP with our
that each station experiences(is/1i) >_;— j; AiTe, +Te,- strategy, service time usérturns to

Because a collision is assumed to occur due to simulta-

neous transmission by two stations, the duration for the

pr

T, is the successful transmission time of usér each
packet. In the steady state, during the tagged tiseservice
time 1/u;, on the average, the remaining stations succe

channel to be busy due to collision equals half of the total 7 n 1 sz T
amount of collision time experienced by all stations, which i * i I
is (1/2) ((1/mui)zj:07#i M, +Tci>. Finally, stationi .
spendsw; in the backoff stage before it successfully transmits 111 Z AT |+
the current packet. Therefore, we have 2\ i 57 ’
1 1 N—-1 1 N—-2
o= Tatos DT o2 X )
j=0,j#i J=0,j#i
1 (1 N-1 _ wherei =0,1,--- ,N —1
o\ S ONT, | +ws (5)  As a result, throughput of all primary users are affected
J=0,j#1 as well. In order to compute secondary AP’s throughput, we
wherei = 0,1,--- ,N — 1 tag one particular user which is During the duration of
T,, andT,, can be obtained given the packet transmissida99€edith user's service time including, total number of
duration of useri. In our results, we assum@,, = T... secor)dary AP’s transmissioné with the duration ofy. If the
For N number of users, from known/s;, there will be ;v durationx corresponds td.;, 11, length of data, throughput
number of equations which are functions)ef Ay, --- , A\y_,. ©Of Secondary AP can be written as
Soving theseN equations,N number of unknown variables ,
Ao, A1, -+, An_1 can easily be obtained. Eventually we ob- Cs = Lparami 8)
tainepo, p1,- -+, pn—1 for N users. Detailed derivation of all  pyration of secondary AP’s transmission is variable and
equations can be obtained i [ exact duration depends on each primary useerformance

If the throughput of useris denoted by;, it can be written constraint. And, its an optimization problem. Secondary AP
by in terms of service time/ ;. If the data length of primary wants to achieve maximum throughput while affecting the
user isL7, 474 units, throughput of usercan be obtained by, primary users’s performance at a certain level. If the afféc

throughput of usel’s is C;f after introducing the secondary

G = Lharat (6) AP in the network, optimization problem can be written as
D. Secondary user Model
Once we knowpg, p1,- - ,py—1 for N primary users, we arg max (s
can compute the probability that no primary user has packet _ X _
in a particular slot. If this probability is denoted by, we 560y =G <= mi 1€0,---, N —1 9)
have Performance metric can be each primary user's packet drop
N—1 probability. In our analysis, we do not consider packet loss
= H (1—pi) event due to buffer overflow. Packet loss only happens if and

=0 only if each transmitted packet gets collided, retransdiind



TABLE Il

IEEE 802.15 PROTOCOL PARAMETERS pretty much unsaturated case for each primary user. Expecte
number of idle slots is high and shown in figure19(b). Even
Channel Rate[ 54Mbps SIFS 16 us with this unsaturated case, when secondary AP follows DCF
SC""}VT'WG 91%5 CBII/FS 3,’1‘:) L protocol to access channel, throughput achieved by each
Retry Limit - PLCP Preambia 2 i primary source is very low compared to our policy. With
MAC Header | 5 us payload (payload*8/54):s only 10% throughput loss constraint, by our policy throughp
ACK PLCP | 192us ACK Frame 2.1pus achieved by the secondary AP is higher than by traditional

DCF protocol. Traditional DCF protocol has protocol ovextie
which occupies more than 30% of air time and also because of
reegular interaction with primary sources, collision prbitisy

is much higher than the case of our policy.

Figure 9(c) depicts decreasing throughput with increasing
number of primary users. Increasing number of users mean
more packets occupy air time and thus secondary AP gets
decreasing number idle slots for its own transmission and
thus throughput is reduced as well. When number of user

finally dropped because of exceeding the retry limit in th
MAC layer. If the packet collision probability of useris p;,
packet drop probability can be written p§*. Therefore, con-
sidering the packet drop probability as a metric, optimdrat
problem turns to

arg max (g is 1, there is no collision (and throughput loss as well) for

X _ this user if the secondary AP follows our policy. Therefore,

stpi <= m €0, N—1 (10) secondary AP uses all idle slots left by the primary user afte

V. PERFORMANCEEVALUATION OF OPPORTUNISTIC each its transmission. By this time, if any packet comes for
SPECTRUMACCESS this user, it just waits for initiating its backoff proce@uuntil

In order to justify our proposed policy for the secondargIe hsecpndary AP, f;E'SheSh |tst rransmlsstlon. tWh"e nn;;:etmg
user with the traditional scheme, we consider, WLAN ha ach primary users throughput loss constraint, seco y

employed IEEE 802.11a operating mode. We compare t hieves higher throughput far <= 3 than when it follows
performance of secoﬁdary AP with the caée when it fO||0\/\B F protocol. With DCF protocol, primary user's performanc
regular DCF protocol for channel access. Next subsecti%mt protected at all, whe_zreas our policy for sec_ondary_ AP
demonstrates the parameters and scenario we follow and qﬁﬁ so. All these observation have been reflected in theefigur

following subsection is for the numerical results to conepar arger A means primary source is accessing the _channel
performance. more often. Therefore, the number of slots in which the

secondary source can transmit while meeting the constraint
A. System Parameters on throughput loss of the primary sources decreases. Becaus

The parameters of IEEE 802.11a protocol mode have be@inspace limit, we have not shown expected idle period when
described in table I. we assume secondary AP has alw&@sondary AP is not in action however throughput for this
traffic to transmit and it can fragments its traffic depending Scenario has been demonstrated in figure 9(d). Decreased
the available time slots it obtain for transmission. Allrpary idle slots lead to less number transmission slots used by

users have same traffic arrival statistics. secondary AP and thus throughput is gradually decreased
] with increasing . We also see decreasing throughput for
B. Numerical Results secondary AP/primary user when they all are in DCF mode.

First, we want to show results relevant to the constraiat, iHowever, the decrementing behavior is not that acute. This
maximum fraction of throughput loss by each primary user. is because of the unsaturated traffic of primary users. Even
figures 9(a) and 9(b), the throughput and secondary sourcdie highestambda is unsaturated for each primary user and
transmission duration are depicted as a function of thrpugh number of primary users acting in the network is also less.
loss constraint). In the figure 9(b), we also show expected idl&herefore, even thouglh gets increased with increasing
duration when secondary AP is silent. When the secondary AB8llision probability remain almost same as the seconddy A
is silent, throughput achieved by primary source is 16.9481bhas always traffic to send and thus service time of each packet
(maximum). For the sake of clearness, we have skipped this primary users/secondary AP does not vary that much and
curve. A larger throughput loss constraint allows the sdaon so does the throughput. However, when secondary APfollows
AP transmits longer duration of time after each primary seur our policy, with<= 0.000608 ), it achieves higher throughput
has finished its successful transmission. Therefore, weéhgeethan the former. And each primary user’s throughput is much
increasing transmission duration (policy) with the ingieg better than the other one because of having less collision
throughput loss constraint. Increasing transmission taura throughout each packet’s service time.
of secondary AP causes longer service time for each packeAll the scenarios, we have described above is mostly unsatu-
and thus it increases the collision probability among primarated network for primary users. Now we would like to discuss
sources. Through this chain of inter-dependency, serifice t a bit about more congested primary user network having
is increased again and throughput of each primary sources@ne packet loss constraint. Figure 9(e) depicts throughpu
gradually decreased. Scenario we have used in these figureachieved by both kind of users with the increasing packet
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Fig. 9. Comparison Between Our Policy and DCF Protocol use8dgondary AP

packet exceeds its retry limit and its very harmful for QoS
aware multimedia traffic. Expected number of idle slots is
close to zero when secondary AP keeps silent. Meeting the
packet loss constraint, with our policy, secondary AP can us

larger number of time slots, has slightly incresing trenthwi

. . . L . TABLE Il
loss constraint. Policy for this scenario is in the figure).9(f FLow StarisTics oF ONESINGLE FLOWS HAVING NO CONCURRENT

Packet loss happens on the ISM band when the retransmitted

FLow

Start Time 1314977101 sec, 5929265
End Time 1314977101 sec, 99378&
Duration 400868 ms
Avg Inter-arrival Time 20063 s
Avg Utilization 2888

incresing packet loss constraint. Thus throughput acHieye
secondary AP following our policy is much higher in all cases
than DCF protocol being followed. However, because of large, .. . . - .
number of slots being used for its transmission, service tin of t:med]t'rStna:;?r ithﬁ |gtiﬁrferei:] f'mfhres Iltts S:Jhccilssvt/mlh?]aih
each primary user’s packet is much larger and primary usep@yload transmission. ce, our resufts, the Tow leng

throughput is degraded much more badly than the other c ot that_ big, statistics obtained from one s_mgle flow .'$ no
(DCF). at meaningful and may not be actual statistics. Howelies, t

is the way, a single CORAL terminal can opportunistically
C. Comparison with Experimental Results accesses one channel.

In order to fit the experimental results with our analytical Figure 10 is E)robability distribution comparison between
model, we have taken one particular flow statistic is belo@n€ actual flow's (e) exact payload inter-arrival time and
in table Il. This flow does not have any concurrent flownodel extracted inter-arrival time. Model is developedeuas
Actually the average inter-arrival time is the represéwgaof ON average inter-arrival which is the meg#- of all inter-

L and average utiization i, = T., in our analytical arrival times for that particular flow. Due t ldatq insuffigne
model. Given these value, from the set of equations derivi§ Se€ a huge difference between these two distribution.

in above subsection, we can easily derive payload arritel ra .

);, probability that one payload is in queue or in servige D Model Extension

etc. Once we knowp;, we can easily get average idle time ~ As mentioned, we have shown results for the secondary
and cognitive radio can access the chanﬁ-}leﬂous duration network on ISM band when there is only one secondary user.
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On having a number of secondary users, there are two options
to divide the extracted spectrum hole among them. One is ® :
TDMA which needs a control channel for coordinating all T
secondary users to access the channel. Another one is, after .
obtaining the spectrum hole, all secondary users use that ti
duration through low overhead DCF protocol. This does not L
need any control channel. Simulation model for this design i Y
almost ready and we will show results in the next version of e
report.

VI. PREDICTION USING NEURAL NETWORK

We employ Multi-layer Feedforward Neural Networks
(MFNNSs) for designing traffic prediction models as multiple
layers of neurons with non-linear transfer functions allosv
to learn the linear and non-linear relationships betweentis
and outputs. Specifically, we used 2/5-layers feedforward Fig. 12. Output vs. Target
back-propagation networks with multiple hidden layer and o
output layer. In order to make the predictions accuratelige
we should take more inputs in order to find out traffic statssti
in one particular interval. Input should be:

& = infaren. ] @ near | 0301L. | mevaln. | M ol | & WAL RN L]

traffic prediction. The training is done by using Levenberg-
) Marquardt algorithm and the maximum number of epochs is
1) DayofWeek: ranging from 1 (Monday) to 7 (Sunday). set at 11. Predictions have been discussed in the following t

2) HourOfDay: ranging from 1 to 24. subsections.

3) MinuteofHour: ranging from 0 to 59 1) Data Rate prediction: In the first experiment, we have

4) Traffic statistics of previous minute (Data rate or paglloa,seq 2-layers feed-forward neural network consideringitinp
inter-arrival time) as minute and previous minute’s data rate. Figure 11 shows

Input could be more granular (second of minute, previoymeformance plot (mean square error) with the increasing
second’s statistics), however neural network may not gepoch. We see training, test and validation error all golyeal
any patter from the data, if the input becomes so granuldown at 2nd epoch. we have used 70% data for training, 15%
Variations in channel availability continue at finer timeles, for validation and 15% for test. We also have plot regression
meaning cognitive radio cannot simply improve performangdot 12 for training, validation and test data. Regressien i
by working at finer time scales. Our data is not complete eiththe correlation between fitted output and target data. ljean
because of the reasons discussed above. Also, we have deiween 0 and 1. The higher the regression value, the better
one day data of duration around 5 hours. Therefore we cannutdel is more fitted.
first use two inputs in our neural network model. We have only With the same experimentaion setup, figure 13 compares
used last two inputs for the prediction model. We use inpufitted model output with the actual data. we see a big gap.
to predict mean value of future traffic load (Data rate anthis might be the lack of data or missing data.
payload inter-arrival time) over next one minute intervale As described, we do not obtain actual flow statistics from
made use of MATLAB neural network toolbox to implementhe 16-terminal data and collected data is very limitedyonl
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for around 5 hours. In order to make the neural network work
for proper prediction, we need constant traffic statistms
few weeks. Also, we have only meaningful consecutive data
for 500ms, after that there is a silent period for around 4rbs
each channel. Considering this, our second experimenistio
input is previous 250ms data statistics, whereas the oigput
just next 250ms statistics. Figures 14 and 15 are the predict
results in terms of bitrate when there are 5 and 2 layers
respectively. These results are even more worse than the
minute level prediction.
2) Payload Inter-arrival Time Prediction: In order to pre-
dict payload average inter-arrival time of the next the rtenu
from the previous minute’s average inter-arrival time, viet p
figure 17. Prediction is not that accurate again for missing
data. Figure 16 is the regression plot for this prediction.
Similar to bitrate prediction, we also have prediction tsu
in terms of payload inter-arrival time for next 250ms intdrv
based on previous 250ms interval. Figures 18 and 19 are
reflections of these results when there are 5 and 2 layers in
the network. In this case, inter-arrival time predictionrisch
more improved than bitrate prediction.
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