

Agilent 85190A
IC-CAP 2008
Reference
Agilent Technologies

Notices
© Agilent Technologies, Inc. 2000-2008

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Edition
March 2008

Printed in USA

Agilent Technologies, Inc.
5301 Stevens Creek Blvd.
Santa Clara, CA 95052 USA

Warranty
The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user cus-
tomers. Agilent provides this customary
commercial license in Software and techni-
cal data pursuant to FAR 12.211 (Technical
Data) and 12.212 (Computer Software) and,
for the Department of Defense, DFARS
252.227-7015 (Technical Data - Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or Com-
puter Software Documentation).

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.

Acknowledgments
UNIX ® is a registered trademark of the
Open Group.

Windows ®, MS Windows ® and Windows
NT ® are U.S. registered trademarks of
Microsoft Corporation.

Mentor Graphics is a trademark of Mentor
Graphics Corporation in the U.S. and other
countries.

Errata
The IC-CAP product may contain references
to “HP” or “HPEESOF” such as in file names
and directory names. The business entity
formerly known as “HP EEsof” is now part
of Agilent Technologies and is known as
“Agilent EEsof.” To avoid broken functional-
ity and to maintain backward compatibility
for our customers, we did not change all the
names and labels that contain “HP” or
“HPEESOF” references.
2 IC-CAP Reference

Contents

1 Supported Instruments
IC-CAP Reference

DC Analyzers 24

HP 4071A Semiconductor Parametric Tester 25
HP 4140 pA Meter/DC Voltage Source 35
HP 4141 DC Source/Monitor 37
HP/Agilent 4142 Modular DC Source/Monitor 38
HP 4145 Semiconductor Parameter Analyzer 43
HP/Agilent 4155 Semiconductor Parameter Analyzer 46
HP/Agilent 4156 Precision Semiconductor Parameter Analyzer

49
Agilent E5260 Series Parametric Measurement Solutions 50
Agilent E5270 Series Parametric Measurement Solutions 55
Agilent B1500A Semiconductor Device Analyzer 61

Capacitance-Voltage Meters 67

HP 4194 Impedance Analyzer 68
HP 4271 1 MHz Digital Capacitance Meter 70
HP 4275 Multi-Frequency LCR Meter 71
HP 4280 1 MHz Capacitance Meter 73
HP/Agilent 4284 Precision LCR Meter 75
HP/Agilent 4285 Precision LCR Meter 77
Agilent E4980A Precision LCR Meter 79
Agilent 4294A Precision Impedance Analyzer 82
Agilent E4991A RF Impedance/Material Analyzer 84

Network Analyzers 86

Agilent E5071C ENA Series Network Analyzer 90
Agilent PNA Series Vector Network Analyzer 95
HP 3577 Network Analyzer 102
3

4

HP/Agilent 8510 Network Analyzer 106
HP/Agilent 8702 Network Analyzer 110
HP/Agilent 8719 Network Analyzer 111
HP/Agilent 8720 Network Analyzer 111
HP/Agilent 8722 Network Analyzer 113
HP/Agilent 8753 Network Analyzer 114
Wiltron360 Network Analyzer 122

Oscilloscopes 126

HP 54120T Series Digitizing Oscilloscopes 126
HP 54510 Digitizing Oscilloscope 131
Agilent Infiniium Oscilloscope 135
HP 54750 Series Digitizing Oscilloscopes 140
Differential TDR/TDT Capability 144

Pulse Generators 149

HP 8130 Pulse Generator 149
HP 8131 Pulse Generator 150

Dynamic Signal Analyzer 153

HP/Agilent 35670A Dynamic Signal Analyzer 153
2 Drivers
Prober Drivers 156

External Prober User Functions 157
Internal Prober Functions 161
Prober Settings and Commands 162

Prober Driver Test Program 166

Matrix Drivers 168

External Matrix Driver User Functions 168

Internal Matrix Driver Functions 170

Using IC-CAP with B2200A/B2201 Low-Leakage Mainframe Driver
172

Utility Functions 172
IC-CAP Reference

IC-CAP Reference

Initialization and General Configuration 173
Transforms Governing the Bias Mode 174
Transforms Governing the Ground Mode 176
Transforms Governing the Couple Mode 178
Transforms Governing the Switching 179

Using IC-CAP with the HP 5250A Matrix Driver 180

Utility Functions 181
Initialization and General Configuration 183
Transforms Governing the Bias Mode 184
Transforms Governing the Couple Mode 185
Transforms Governing the Switching 186

Using IC-CAP with HP 4062UX and Prober/Matrix Drivers 187

Writing a Macro 187
Prober Control 189
Special Conditions 189

Adding Instrument Drivers to IC-CAP 191

Using the Open Measurement Interface 191
Driver Development Concepts 192
Adding a Driver 196
Debugging 205
Alternatives to Creating New Drivers 208
What Makes up an IC-CAP Driver 209
Programming with C++ 221

Class Hierarchy for User-Contributed Drivers 228

Order in Which User-Supplied Functions are Called 231

During Rebuild 231
During Calibrate 232
During Measure 233

Handling Signals and Exceptions 238
5

3 SPICE Simulators
6

SPICE Simulation Example 244

Piped and Non-Piped Simulations 246

Piped and Non-Piped SPICE Simulations 246
Non-Piped HSPICE Simulations 249
Non-Piped ELDO Simulations 250

Output Data Formats 252

SPICE Parameter Sweeps 254

Circuit Model Descriptions 256

Specifying Simulator Options 256
Describing the Device Model 257
Describing Subcircuits 259
Assigning Node Names 260
Test Circuits and Hierarchical Simulation 260

Circuit Description Syntax 263

SPICE Simulators 263
HSPICE Simulator 265
ELDO Simulator 265

SPICE Simulator Differences 267

Using the PRECISE Simulator with IC-CAP 269

Using the PSPICE Simulator with IC-CAP 272
4 SPECTRE Simulator
SPECTRE Interfaces 276

SPECTRE Interface 276
SPECTRE443 Interface 276
SPECTRE442 Interface 277
Open Simulator Interface (OSI) 277

Circuit Model Descriptions 278
IC-CAP Reference

IC-CAP Reference
Specifying Simulator Options 278
Valid SPECTRE Netlist Syntax for IC-CAP 279
Describing a Device 280
Describing the Model 281
Describing Subcircuits 281
Using a Device Statement and Model Card Configuration 283
Using a Single Subcircuit Block Configuration 283
Using a Device Statement Followed by a Subcircuit Block 284
Test Circuits and Hierarchical Simulation 285

Piped and Non-Piped SPECTRE Simulations 288

Using SPECTRE Simulator Templates with CANNOT_PIPE 288
Using SPECTRE Simulator Templates with CAN_PIPE 289
Using Template SPICE3 and the Open Simulator Interface

spectre3.c 290
5 Saber Simulator

Saber Simulation Example 295

Piped and Non-Piped Saber Simulations 297

Saber Parameter Sweeps 300

The Alter Command 302

Circuit Model Description 303

Selecting Simulator Options 303
Entering Circuit Descriptions 304
6 MNS Simulator
MNS Simulation Example 313

The Simulation Debugger 314

Piped MNS Simulations 316

Non-Piped MNS Simulations 317

MNS Parameter Sweeps 318
7

8

Example Circuit Simulation Parameter Sweep 321

Circuit Model Description 323

Selecting Simulator Options 323
Entering Circuit Descriptions 323
Device Model Descriptions 324
Subcircuit Model Descriptions 325

MNS Input Language 328

MNS Libraries 328
7 ADS Simulator
ADS Interfaces 332

Hardware and Operating System Requirements 333

Codewording and Security 333

Setting Environment Variables 334

ADS Simulation Example 335

The Simulation Debugger 336

Piped ADS Simulations 338

Non-Piped ADS Simulations 340

Circuit Model Description 340

Selecting Simulator Options 340
Entering Circuit Descriptions 340
Device Model Descriptions 342
Subcircuit Model Descriptions 343

ADS Parameter Sweeps 347

Example Circuit Simulation Parameter Sweep 349

Interpreting this Chapter 354

General Syntax 357

The ADS Simulator Syntax 358
IC-CAP Reference

IC-CAP Reference

Field Separators 358
Continuation Characters 358
Name Fields 358
Parameter Fields 359
Node Names 359
Lower/Upper Case 359
Units and Scale Factors 359
Booleans 362
Ground Nodes 363
Global Nodes 363
Comments 363
Statement Order 363
Naming Conventions 364
Currents 364

Instance Statements 366

Model Statements 367

Subcircuit Definitions 368

Expression Capability 370

Constants 370
Variables 371
Expressions 373
Functions 374
Conditional Expressions 389

VarEqn Data Types 392

Type conversion 392

“C-Preprocessor” 393

File Inclusion 393
Library Inclusion 393
Macro Definitions 394
Conditional Inclusion 394
9

10

Data Access Component 396

Reserved Words 398
8 IC-CAP Functions

9 Parameter Extraction Language
Fundamental Concepts 688

Keywords 688
Identifiers 688
Numeric Precision 689
Statements 693
Data Types 710
Built-in Functions 714
Built-In Constants 747

Expressions 748

Calls to the Function Library 752
10 File Structure and Format
File Structure 756

Example File 758
11 Variables

12 GPIB Analyzer
Menu Commands 788

Macro Files 788

Macro File Example 788
Macro Commands 789
Macro File Syntax Rules 791
IC-CAP Reference

A OMI and C++ Glossary

B Agilent EEBJT2 Model Equations
IC-CAP Reference
Constants 800

Base-Emitter and Base-Collector Current 800

Collector-Emitter Current 802

Base-Emitter and Base-Collector Capacitances 804

References 808
C Agilent EEFET3 Model Equations

Drain-Source Current 810

Dispersion Current (Idb) 816

Gate Charge Model 820

Output Charge and Delay 826

Gate Forward Conduction and Breakdown 827

Scaling Relations 828

References 831
D Agilent EEHEMT1 Model Equations
Drain-Source Current 834

Dispersion Current (Idb) 842

Gate Charge Model 846

Output Charge and Delay 852

Gate Forward Conduction and Breakdown 853

Scaling Relations 854

References 857
11

E Controlling IC-CAP from Another Application
12

To Compile Using the Library 860

Solaris Examples 861

Details of Function Calls 862

launch_iccap 862
initialize_session() 863
terminate_session() 864
send_PEL 864
get_PEL_response 865
send_map 866

Details of the LinkReturnS Structure 868
F ICCAP_FUNC Statement
Objects 872

IC-CAP 872
Variables 873
GUI Items 873
GUI Item 873
Simulation Debugger 874
Hardware 874
HPIB Analyzer 875
MODEL 876
Circuit 876
PlotOptimizer 877
PlotOptions 877
Parameter Set 879
MACRO 879
DUT 881

Test Circuit 882
Device Parameter Set 882
SETUP 883
Instrument Options 884
IC-CAP Reference

IC-CAP Reference

INPUT 884
OUTPUT 885
TRANSFORM 885
PLOT 886

Actions 889

Add Active Instr 899
Add Global Region 899
Add GUI 900
Add Interface File 900
Add Trace Region 901
Area Tools 901
Area Tools Off 901
Area Tools On 902
Autoconfigure or Autoconfigure And Enable 902
Autoscale 902
Auto Set Min Max 903
Auto Set Optimize or Auto Set And Optimize 903
Bus status 903
Calibrate 904
Change Address 904
Change Directory 905
Change Interface File 905
Check Active Address 906
Clear Active List 906
Clear Data/Simulated/Measured/Both 906
Clear Plot Optimizer 907
Clear Status Errors 907
Clear Status Output 907
Clear Table or Clear Parameter Table 907
Close 908
Close All 908
Close Branch 908
13

14

Close Error Log 909
Close GUI 909
Close Hardware 910
Close License Window 910
Close Output Log 910
Close Single GUI 910
Color 911
Copy 911
Copy to Clipboard 912
Copy to Variables 912
Create Variable Table Variable 912
Data Markers 913
Delete 913
Delete Active Instr 914
Delete Interface File 914
Delete Global Regions 915
Delete Trace Regions 915
Delete All User Regions 916
Delete User Region 916
Destroy GUI 916
Destroy Single GUI 917
Diagnostics 917
Diagnostics 918
Disable All 918
Disable All Traces 918
Disable Plot 919
Disable Supplies 919
Disable Trace 919
Display Found Instrs 920
Display Modal GUI 920
Display Modeless GUI 920
Display Plot 921
Display Plots 921
IC-CAP Reference

IC-CAP Reference

Display Single Modal GUI 921
Display Single Modeless GUI 922
Draw Diag Line 922
Dump To Plotter 923
Dump To Printer 923
Dump To Stdout 924
Dump Via Server 924
Dump Via Server UI 925
Edit 925
Enable All 926
Enable Plot 926
Exchange Black-White 927
Execute 927
Exit/Exit! 927
Export Data Measured 928
Export Dataset 928
Export Data Simulated 929
Extract 929
File Debug On 929
File/Screen Debug Off 930
Footer 930
Footer Off 931
Footer On 931
Full Page Plot 931
Header 932
Header Off 932
Header On 932
Hide Highlighted Curves 932
I-O_Lock 933
I-O_Reset 934
I-O_Screen Debug OFF 934
I-O_Screen Debug ON 934
I-O_Unlock 935
15

16

Import Create 935
Import Create Header Only 935
Import Create Measured 936
Import Create Measured or Simulated 936
Import Create Simulated 937
Import Create Simulated or Measured 937
Import Data 938
Import Delete 939
Import Measured Data 939
Import Measured or Simulated Data 940
Import Simulated Data 940
Import Simulated or Measured Data 941
Import Text 942
Legend 942
Legend Off 943
Legend On 943
License Status 943
Listen Active Address 944
Macro File Execute 944
Macro File Specify 946
Manual Rescale 947
Manual Simulation 947
Mark Curve Highlighted 947
Measure 948
Memory Recall 948
Memory Store 949
New DUT 949
New Input/Output/Transform/Plot 949
New Macro 950
New Model 950
New Setup 950
Open 951
Open Branch 951
IC-CAP Reference

IC-CAP Reference

Open DUT 951
Open Error Log 952
Open Hardware 952
Open Input/Output/Transform/Plot 952
Open Macro 953
Open Model 953
Open Output Log 953
Open Plot Optimizer 954
Open Setup 954
Optimize 954
Parse 955
Print Read Buffer 955
Print Via Server 956
Read from File 956
ReadOnlyValues 957
Read String 957
Read String for Experts 958
Rebuild Active List 958
Recall Parameters 958
Redisplay 959
Refresh Dataset 959
Release License 959
Rename 960
Replace Interface File 960
Replot 960
Rescale 961
Reset 961
Reset Global Region 961
Reset Min Max 962
Reset Option Table 962
Reset to Saved Options 962
Reset Trace Region 963
Run Self-Tests 963
17

18

Save All 964
Save All No Data 964
Save As 964
Save As No Data 965
Save Extracted Deck 965
Save Image 966
Save Input/Command/Output File 966
Scale Plot/Scale Plot Preview 967
Scale RI Plot/Scale RI Plot Preview 968
Screen Debug On 969
Search for Instruments 969
Select Error Region 970
Select Plot 970
Select Whole Plot 971
Send Command Byte 971
Send, Receive, and Print 972
Send String 973
Send To Printer 973
Serial Poll 974
Set Active Address 974
Set Algorithm 974
Set Error 975
Set GUI Callbacks 975
Set GUI Options 976
Set Instrument Option Value 977
Set Speed 977
Set Table Field Value 978
Set Target Vs Simulated 979
Set Timeout 979
Set Trace As Both 980
Set User Region 980
Set Variable Table Value 981
Show Absolute Error 981
IC-CAP Reference

IC-CAP Reference

Show Highlighted Curves 982
Show Relative Error 982
Simulate 983
Simulate All 983
Simulate Plot Inputs 983
Simulation Debugger 983
Status Window 984
Stop Simulator 984
Store Parameters 984
Talk Active Address 985
Text Annotation 985
Text Annotation Off 985
Text Annotation On 986
Toggle Zoom 986
Tune Fast 986
Tune Slow 987
Turn Off Marker 987
Undo Optim 988
Undo Zoom 988
Unmark All Highlighted Curves 988
Unmark Highlighted Curve 989
Unselect All 989
Update Annotation 990
View 990
Who Are You 990
Write to File 991
Zoom Plot 991
G 54120 Demo
TDR Example 994

Measurement/Instrument Setup 994
Simulation 994
Setup specifics 995
19

20

Standard Time-Domain Example 997

Measurement/Instrument Setup 997
Simulation 998
Setup specifics 998

Controlled Pulse Generator Example 1001

Measurement/Instrument Setup 1001
Simulation 1002
Setup specifics 1002

Calibration 1005

Tips 1006

Aligning Measured and Simulated Data 1007
H User C Functions
Example 1 1010

Example 2 1011

Function Descriptions 1012

USERC_open 1012
USERC_close 1013
USERC_write 1013
USERC_readnum 1014
USERC_readstr 1015
USERC_seek 1015
USERC_tell 1016
USERC_read_reals 1016

Hints 1018

Hints for Instruments 1018

Hints for Timeouts 1018
Hints for Reading/Writing Same File 1019
Hints for Carriage Returns, Line Feeds, etc. 1019
IC-CAP Reference

I icedil Functions
IC-CAP Reference
DIL-related Functions 1022

Other Functions 1023

Index
21

22

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

1
Supported Instruments

DC Analyzers 24

Capacitance-Voltage Meters 67

Network Analyzers 86

Oscilloscopes 126

Pulse Generators 149

Dynamic Signal Analyzer 153

This chapter discusses the instruments supported by IC-CAP
and describes the options for each instrument. The instruments
are divided into basic groups:

• DC analyzers

• Capacitance-Voltage meters

• Network analyzers

• Oscilloscopes

• Pulse generators

• Dynamic signal analyzers
23Agilent Technologies

1 Supported Instruments
DC Analyzers
24
DC analyzers source and monitor voltages and currents and
return data representing DC characteristics. IC-CAP supports
the following DC analyzers:

• HP 4071A Semiconductor Parametric Tester

• HP 4140 pA Meter/DC Voltage Source

• HP 4141 DC Source/Monitor

• HP/Agilent 4142 Modular DC Source/Monitor

• HP 4145 Semiconductor Parameter Analyzer

• HP/Agilent 4155 Semiconductor Parameter Analyzer

• HP/Agilent 4156 Precision Semiconductor Parameter
Analyzer

• Agilent E5260 Series Parametric Measurement Solutions

• Agilent E5270 Series Parametric Measurement Solutions

• Agilent B1500A Semiconductor Device Analyzer

CAUTION IC-CAP does not restrict bias magnitude. When using a DC analyzer as a
bias source for other instruments such as capacitance-voltage meters or
network analyzers, check the limit on external bias voltage or current for
each instrument. Excessive voltage or current may damage other
instruments.
IC-CAP Reference

Supported Instruments 1
HP 4071A Semiconductor Parametric Tester
IC-CAP Reference
The HP 4071A IC-CAP driver enables you to control the
HP 4071A Semiconductor Parametric Tester from within
IC-CAP.
NOTE IC-CAP requires the Agilent 4070 System Software (also referred to as
TIS), version B.02.00, or higher, to drive the Agilent 4071 Semiconductor
Parametric Tester.

The Agilent 4071 Semiconductor Parametric Tester is only supported on
the HP-UX 11i platform.

For assistance using the Agilent 4070 System Software (TIS), please
contact your local Agilent Instrument Support Team.

GPIB Interface

The HP 4071A does not have a GPIB interface available by
which you can control measurements. However, in keeping
within the IC-CAP framework, an interface is required by the
hardware manager in IC-CAP. The interface choices for the
HP 4071 are limited to tis_offline, and tis_online. tis_offline
runs the HP 4071 driver in a mode that does not require that
the HP 4071 system be connected. tis_online runs the HP4071
driver in a mode that communicates with the HP 4071 system
when one is available. You can add an interface in the Hardware
Setup window using Tools > Hardware Setup in the IC-CAP/Main
window, then click on Rebuild to set up the tester.

IC-CAP will invoke the hp4070 executable if it is not already
running or is shutdown during an IC-CAP function. Therefore,
in the window where you start IC-CAP, you must set the PATH
environment variable to the directory where the hp4070
executable is located. The typical installation directory for the
hp4070 executable is /opt/hp4070/bin.
25

26

1 Supported Instruments

Pin Connections

The HP 4071A switch matrix is controlled by the values entered
for each of the Pins options in the Instrument Options Table.
You can view the instrument options in the Model window after
setting up the HP 4071 hardware, and creating an input for a
setup. Highlight the setup name, then click on the Instrument
Options tab. The values for the Pins option describes which
PORT is connected to the available test head pins. Generally,
each SMU has the same options implemented in the driver. One
exception is that the Guard Pins option available for SMU1 and
SMU2 are not available for SMU3. See the available instrument
options in Table 1.

The following table shows examples of valid entries for Pins and
the resulting connections:

Notice that valid entries include a series of numbers separated
by commas, and a range of numbers using a dash. A 0 appearing
anywhere in a Pins field disconnects the PORT from the switch
matrix. This is an easy way to disconnect the PORT without
having to erase the pin numbers. The Pins field also can be left
blank.

If the Pins field is left blank, then ICCAP will search for a
pre-defined IC-CAP variable. The string value of the pre-defined
IC-CAP variable becomes the Pins entry for the corresponding
PORT. You can view the pre-defined IC-CAP variables by
clicking on the Model Variables tab in the Model window.

Valid Pins Field Entry Resulting Pin Connections

10 10

1,5,7,9 1, 5, 7, 9

2,4-7,9 2, 4, 5, 6, 7, 9

2,4-7,9,0 Not connected

35,5,2-4 35, 5, 2, 3, 4

12-16 12, 13, 14, 15,16
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

You may use these pre-defined IC-CAP variables in PEL
programs and Macros, which enables you to programmatically
change the pin assignments of each PORT. The following
program listing is a PEL macro snippet that manipulates pin
assignments. Though pin values for variables SMU1-4 are
pre-defined, you can see that the variables are being assigned
new values before an iccap_func statement is executed.
n = 1
while (n <= 17)
HP4070_SMU1 = n
HP4070_SMU2 = n + 1
HP4070_SMU3 = n + 2
HP4070_SMU4 = n + 3
print “SMU1=”, HP4070_SMU1
print “SMU2=”, HP4070_SMU2
print “SMU3=”, HP4070_SMU3
print “SMU4=”, HP4070_SMU4

iccap_func(“/Test1/SMU/sweepOrder1”, “measure”)
n = n + 4
end while

Prober Functions

The HP 4071A driver incorporates the TIS prober control
functions as IC-CAP PEL functions. The TIS prober functions
are described briefly in this section. The tis_prober_init()
function is described in detail because its arguments differ
slightly from the TIS function prober_init(). The remaining
functions have the same arguments as their TIS counterparts.
Consult the TIS Function Reference for complete descriptions
of all prober commands. All prober functions return 0 when
successful, and -1 when they fail.

tis_prober_init (selectCode, busAddress, ProberType,
InterfaceName)

selectCode - Integer value, range 0 and 7-31. This is the GPIB
select code. Setting selectCode and busAddress to 0 retrieves
the GPIB select code and bus address from PCONFIG file.

busAddress - Integer value, range 0-30. This is the GPIB bus
address. Setting selectCode and busAddress to 0 retrieves the
GPIB select code and bus address from PCONFIG file.

ProberType - String value, 30 characters max. String that
specifies the type of prober. See TIS Function Reference for
prober types.
27

28

1 Supported Instruments

InterfaceName - String value. This is the interface name,
either TIS_OFFLINE or TIS_ONLINE.

tis_p_home ()

Used for loading a wafer onto the chuck and moving it to the
home position.

tis_p_up ()

Moves the chuck of the wafer prober up.

tis_p_down ()

Lowers the chuck of the wafer prober.

tis_p_scale (xIndex, yIndex)

Defines the X & Y stepping dimensions that are used by the
tis_p_move and tis_p_imove functions.

tis_p_move (xCoordinate, yCoordinate)

Moves the chuck to an absolute position.

tis_p_imove (xDisplacement, yDisplacement)

Moves the chuck a relative increment from its current
position.

tis_p_orig (xCoordinate, yCoordinate)

Defines the current X & Y position of the chuck. Must be
called before calling the tis_p_move or tis_p_imove
functions.

tis_p_pos (xPosition, yPosition)

Returns the current X & Y position of the chuck.

tis_p_ink (inkCode)

Calls the inker function of the prober if it is supported.

tis_prober_reset ()

Sends a device clear command to the prober.

tis_prober_status (isRemote, onWafer, lastWafer)
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Sends a query to the prober to obtain the Remote/Local
control state and the edge sensor contact state. The prober
should be initialized with tis_prober_init before this
function.

tis_prober_get_name (proberModeName)

Sends query to prober to read name of current mode.

tis_prober_get_ba (proberBusAddress)

Sends query to prober to read its bus address.

tis_prober_read_sysconfig (proberType, scba)

Sends query to prober to read its complete interface address
including instrument type, select code, and bus address.

The following PEL macro example uses the prober functions.
For the prober used in this example, notice that the operator
must manually place the prober into AUTO PROBE mode while
the program is actively querying the prober and it is in remote
mode. Also notice that isRemote, isOnWafer, and isLastWafer
must be parameters that appear in a variable list such as Model
Variables.
status = -1
busAddress = 0
selectCode = 0
proberType = “EG4080X”
interfaceName = “TIS_ONLINE”
stepSizeX = 500
stepSizeY = 300
isRemote = 0
isOnWafer = 0
isLastWafer = 0
dum = 1

! Prober Commands return 0 for success, -1 for failure
dum = tis_prober_reset()
status=tis_prober_init(selectCode,busAddress,proberType,inte
rfaceName)
if (status == 0) then
status = tis_p_scale(stepSizeX, stepSizeY)
print “status =”, status
end if

if (status == 0) then
status = tis_prober_status(isRemote, isOnWafer, isLastWafer)
print “status =”, status
print “isRemote =”, isRemote
end if

if (status == 0) then
29

30

1 Supported Instruments

linput “Align the wafer. Press OK, then press [AUTO PROBE]”,
ans
! EG4080X MUST be actively querying bus when AUTO PROBE is
commenced
while (isRemote == 0)
dum2 = tis_prober_status (isRemote, isOnWafer, isLastWafer)
end while

print “isRemote =”, isRemote
if (isRemote ==1) then
status = 0
end if
end if

if (status == 0) then
dum = tis_p_orig(5.0,5.0)
n = 1
while (n < 5)
dum = tis_p_move(n,n)
n = n + 1
end while
end if

Instrument Options for the HP 4071A

The following table describes the HP 4071A options and their
default values.

Table 1 HP 4071A Options

Option Description

Use User Sweep Yes = use user mode sweep. No = use system mode, when
all required conditions are met. Default = No.

Hold Time Time to allow for DC settling before starting internal or user
sweep. Maximum 655 seconds. Default = 0.

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. Maximum 65
seconds. Default = 100 msec.

Fast ADC
Integration Mode

Sets the integration mode for fast A/D converter to 0 =
Manual, 1 = Short, 2 = Medium, 3 = Long. Default = 2.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Fast ADC
Integration Value

Sets the integration time in Power Line Cycles (PLC) or
number of samples to average for integration. Allowed
values depend on setting for Fast ADC Integration Mode:
If Integration Mode = 0 or 1, samples = 0, 1 to 4096. Default
= 1.
If Integration Mode = 2, values are ignored, time is fixed to 1
PLC.
If Integration Mode = 3, time = 0, 1 to 100 PLC. Default = 16.
If 0 is entered as the value, the default value is used.

Use Smart Fast
ADC Integ Mode

Yes/No, default = No. Specifying Yes will use Smart mode
integration for fast A/D converter for current
measurements. Fast ADC Integ Mode and Fast ADC Integ
Value will still be used for voltage measurements.

Smart Fast ADC
Integ Value

Sets the integration time in Power Line Cycles (PLC) for
integration on current measurements when Use Smart Fast
ADC Integ Mode is Yes. Values can be 0, or 1 to 100 PLC. If 0
is entered as the value, the default of 16 PLC will be used.

Slow ADC
Integration Mode

Sets the integration mode for high-resolution (slow) A/D
converter to
0 = Manual, 1 = Short, 2 = Medium, 3 = Long. Default = 2.

Slow ADC
Integration Value

Sets the integration time in Power Line Cycles (PLC) or
number of samples to average for integration. Allowed
values depend on setting for Slow ADC Integration Mode:
If Integration Mode = 0, time = 0, 80E-6 to 20E-3 seconds, or
1 to 100 PLC. Default = 240E-6
If Integration Mode = 1, time = 0, 80E-6 to 20E-3 seconds.
Default = 480E-6.
If Integration Mode = 2, values are ignored, time is fixed to 1
PLC.
If Integration Mode = 3, time = 0, 1 to 100 PLC. Default = 16.
If 0 is entered as the value, the default value is used.

Slow ADC
Auto Zero On

Sets SMU auto zero function to 0 = Off or 1= On. When
turned on, the offset error is canceled at each
measurement. Default = last valid value.

Table 1 HP 4071A Options (continued)

Option Description
31

32

1 Supported Instruments

Use Smart Slow
ADC Integ Mode

Yes/No, default = No. Specifying Yes will use Smart mode
integration for high-resolution (slow) A/D converter for
current measurements. Slow ADC Integ Mode and Slow
ADC Integ Value will still be used for voltage
measurements.

Smart Fast ADC
Integ Value

Sets the integration time in Power Line Cycles (PLC) for
integration on current measurements when Use Smart
Slow ADC Integ Mode is Yes. Values can be 0, or 1 to 100
PLC. If 0 is entered as the value, the default of 16 PLC will
be used.

Ground Open
Guard Terminals

Connects guard terminals of unused measurement pins to
circuit common. 0 = Disconnects terminals, any other value
connects them.
Default = 0.

Pins Sets the PORT that is connected to the test head pins.

Guard Pins Sets the pins to use for guard terminal. Available only for
SMU1 and 2.

Fast/Slow ADC Selects ADC. F = high speed (fast), S = high resolution
(slow).

Port Filter On Sets the SMU output filter mode, 0 = Off, 1 = On. Higher
speed measurement is used when filter is off. Overshoot
voltage or current is reduced when filter is on. Default = 0.

V Range
(0.0 = Auto)

Sets the SMU voltage range. For MPSMU, allowed range is
-100 to 100, with recommended range of 0, 2, 20, 40, 100.
For HPSMU, allowed range is -200 to 200, with
recommended range of 0, 2, 20, 40, 100, 200.
Default = 0 (auto range).

I Range
(0.0 = Auto)

Sets the SMU current range. For MPSMU, allowed range is
-0.1 to 0.1, with recommended range of 0, 1E-9, 1E-8, 1E-7,
1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1. For HPSMU, allowed
range is -1 to 1, with recommended range of 0, 1E-9, 1E-8,
1E-7, 1E-6, 1E-5, 1E-4, 1E-3, 1E-2, 1E-1, 1.
Default = 0 (auto range).

Table 1 HP 4071A Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Power
Compliance

Sets SMU power compliance in Watts. Allowed range for
MPSMU is 0, 0.001 to 2. Allowed range for HPSMU is 0,
0.001 to 14.

Pulse Mode On Sets pulse mode. NO = off, YES = on.

Pulse Base Sets level of waveform’s base for pulsed spot
measurements. For MPSMU, allowed range is -0.1 to 0.1.
For HPSMU, allowed range is -1 to 1. See Figure 1 for pulse
waveform characteristics.

Pulse Width Sets width of pulse for pulsed spot measurements. Allowed
range is 0.0005 to 2.0000 seconds. Default = 0.005. See
Figure 1 for pulse waveform characteristics.

Pulse Period Sets period of pulse for pulsed spot measurements.
Allowed range is 0, 0.0050 to 5.0000 seconds. Default = 0.2.
See Figure 1 for pulse waveform characteristics.

Perform Cal? TRUE = IC-CAP invokes calibration routine if a calibration is
needed.
FALSE = IC-CAP does not invoke calibration routine if a
calibration is needed.

Cal Type Sets the type of calibration routine to perform. Values are
OPEN, SHORT, BOTH. BOTH invokes the OPEN and SHORT
calibration routines.

High Pin High voltage pin connection.

Low Pin Low voltage pin connection.

Guard Pins Guard pin connection.

Integ Time Sets the CMU measurement’s integration time. Allowed
values are
1 = Short, 2 = Medium, 3 = Long.

Hold Time Sets the sweep hold time for C-G-V measurement by the
CMU. Allowed range is 0 to 650.000 seconds. Default = 0.

Delay Time Sets the sweep delay time for C-G-V measurement by the
CMU. Allowed range is 0 to 650.000 seconds. Default = 0.

Freq Sets the CMU measurement frequency. Allowed values are
1E+3, 1E+4, 1E+5, 1E+6 Hz.

Table 1 HP 4071A Options (continued)

Option Description
33

34

1 Supported Instruments

The following figure is a diagram of the pulse waveform used in
pulsed spot measurements showing Pulse Base, Pulse Width,
and Pulse Period.

Signal Level Sets the CMU measurement’s test signal level. Allowed
range is
0 to 2.0 volts (standard), and 0 to 20.0 volts (option 001).
Default = last valid setting, or 0.03.

High Pins High voltage pin connection.

Low Pins Low voltage pin connection.

Auto Zero On Sets auto zero mode for DVM. 0 = disable, 1 = enable.
Default = last valid setting.

Integ Time Sets integration time for DVM. Allowed range is 0, 0.5E-6 to
999999.9E-6 seconds; 1 to 10 PLC and 10 to 100 PLC. If set
to 0, integration time is set to default value. Default =
0.5E-6.

Figure 1 Pulse Base, Width, and Period in Pulsed Spot Measurements

Table 1 HP 4071A Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
HP 4140 pA Meter/DC Voltage Source
IC-CAP Reference

The HP 4140 is equipped with 2 DC voltage source units and 1
low current measurement unit. The units take measurements in
either the internal system or user sweep mode.

IC-CAP assigns the following names to the units:

The HP 4140 driver is an example of a driver created using the
Open Measurement Interface. The driver’s source code can be
found in the files user_meas2.h and user_meas2.C in the
directory $ICCAP_ROOT/src. For information, refer to
Chapter 2, “Drivers.”

To recognize which data delimiter (CR/LF or Comma) is used,
IC-CAP performs a spot I measurement only when an HP 4140
is first accessed (when the Measure command is issued). When
the data delimiter is changed, choose Rebuild in the Hardware
Setup window so that IC-CAP will note the change.

With a ramp sweep, measured current I can be translated into
quasi-static C by the following equation. Use a transform to
perform this calculation.

The following table describes the HP 4140 options and their
default values, where applicable.

VA DC Voltage Source Unit. VA supports internal linear sweeps using step
or ramp sweep mode. This unit can also be used in user sweep mode.

VB DC Voltage Source Unit. VB only sources a constant voltage. If VB is
assigned to the main sweep, user sweep mode is required.

LCU pA Current Monitor Unit.

Table 2 HP 4140 Options

Option Description

Use User Sweep Yes = use user sweep.
No = use the instrument’s internal sweep. Default = No

C
I

RampRate
--------------------------- Farads[]=
35

36

1 Supported Instruments

Hold Time Time the instrument waits before starting an internal or
user sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
The range is 0.1 to 1999 seconds in 100 msec steps.
Default = 0.1

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. The range is 0.01 to 100 seconds
in 10 msec steps. Default = 0.01 seconds

Integ Time Instrument integration time:
S (short), M (medium), or L (long). Default = L

Range Specifies the measurement range. 0 is auto range; 1 is
range hold;
2 to 12 denotes a current range of 1E-2 to1 E-12. For a faster
ramp rate, use a fixed range. Default = 0

Use Ramp Sweep Yes = use ramp sweep. No = use step sweep.
With a ramp sweep, both start and stop values are
expanded by 1 point to have the same number of
measurement points with a step sweep. Default = No

Ramp Rate The dV/dt value of a ramp sweep. Minimum is 0.001V/s;
maximum is 1V/s. Default = 0.5

Init Command This command field is used to set the instrument to a mode
not supported by the option table. This command is sent at
the end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 2 HP 4140 Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
HP 4141 DC Source/Monitor
IC-CAP Reference

The HP 4141 is equipped with 4 stimulus/measurement units
(SMU), 2 programmable voltage source units (VS), 2 voltage
monitor units (VM) and 1 non-programmable ground unit. Use a
16059A Adaptor when measuring a device with a 16058A Test
Fixture.

IC-CAP assigns the following names to the units:

The following table describes the HP 4141 options and their
default values, where applicable.

SMUn Stimulus/Measurement Unit n (1, 2, 3, 4)

VSn Voltage Source Unit n (1, 2)

VMn Voltage Monitor Unit n (1, 2)

Table 3 HP 4141 Options

Option Description

Use User Sweep Yes = use user sweep. No = use the instrument’s internal
sweep.
Default = No

Hold Time Time the instrument waits before starting internal or user
sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Range is 0 to 650 seconds in 10 msec steps. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. Range is 0 to 6.5 seconds in
1 msec steps. Default = 0

Integ Time Instrument integration time; set to S (short), M (medium),
or L (long). Default = S
37

38

1 Supported Instruments

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 3 HP 4141 Options (continued)

Option Description
HP/Agilent 4142 Modular DC Source/Monitor
The 4142 contains 8 configurable plug-in slots for:

• High-power stimulus/measurement units (HPSMU)

• Medium-power stimulus/measurement units (MPSMU)

• High current unit (HCU), high voltage unit (HVU)

• Voltage source units (VS)

• Voltage monitor units (VM)

• Analog Feedback units (AFU—not supported by IC-CAP)

The 4142 ground unit (GND) provides a means for connecting
device terminals to a ground reference and can sink current up
to 1.6A. This ground unit cannot be programmed or monitored.

Unit names are dependent on the slot they occupy. An SMU
(except MPSMU) uses 2 slots in the mainframe; the value of slot
number n is the higher of the 2 slots. IC-CAP assigns the
following names to the units:

MPSMUn Medium Powered Stimulus/Measurement Unit in slot n

HPSMUn High Powered Stimulus/Measurement Unit in slot n

HCUn High Current Stimulus/Measurement Unit in slot n

HVUn High Voltage Stimulus/Measurement Unit in slot n

VSmn Voltage Source Unit m (1 or 2) in slot n

VMmn Voltage Monitor Unit m (1 or 2) in slot n
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
The 4142 has a total maximum power consumption of 32W for
HPSMU, MPSMU, HCU, HVU and VS/VM. If a measurement is
performed and the 32W limit is exceeded, the measurement will
not be attempted and IC-CAP will issue an error message. Power
consumed by the VS/VM unit (HP/Agilent 41424A) is 2.2W at
the 20V range and 0.88W at the 40V range. When using SMUs to
source either voltage or current, refer to the Agilent 4142
Operation Manual for the actual SMU power calculations.
NOTE To save power, IC-CAP disconnects output switches of unused HCUs and
HVUs when they are not used with the current Setup.

In the user and the internal system mode, voltage and current
pulsed measurements are supported. Quasi-pulsed spot
measurement is not supported by IC-CAP. For information on
how to set up a pulsed measurement, refer to the Pulse entries
in Table 5.

HCU and 2-channel pulsed measurements are supported with
ROM version 3.0 and later; HVU is supported with version 4.0
and later; Module Selector requires version 4.1.

SMU

Current-forced SMUs of the same type can be connected in
parallel to increase the output current. Use SYNC sweep if you
want double current at each sweep point. System Sweep can be
used for 2 HPSMUs; however, User Sweep must be used for 2
HCUs. To avoid a warning message, set the system variable
PARALLEL_INPUT_UNITS_OK to True.

HCU

An HCU can force up to 10A with 10V in the pulse mode only.
Its pulse base is fixed to zero and it cannot force a constant
value. Both 1- and 2-channel measurements are supported with
an HCU.
39

40

1 Supported Instruments

1-Channel Pulse Because an HCU can force only a pulse, an
HCU can be used without placing its name in the pulse unit field
in the Instrument Options folder. This is called an implicit pulse
channel and its pulse width and period are taken from the
Instrument Options folder. The pulse base is always set to zero
for an implicit pulse channel (HCU). The pulse width and pulse
period of an HCU have a different specification from other
units. The pulse width must be 0.1 to 1 msec; the pulse period
must be 10 to 500 msec; the pulse duty must be 10 percent or
less when its output or compliance current is 1A or less, and
must be 1 percent or less when its current is more than 1A.

If an HCU is specified as the pulse unit explicitly in the
Instrument Options folder, this is called an explicit pulse
channel and the pulse base in the Instrument Options folder
must be set to zero.

2-Channel Pulse When 2 pulsed channels are used, the primary
channel must be an HCU; the secondary channel can be an HCU,
SMU, or VS—it cannot be an HVU. For information on the
2-channel configuration, refer to the following table.

HVU

An HVU can force up to 1000V with 10 mA in either the
constant or the pulsed mode. This unit has the same
specification about the pulse width, pulse period, and pulse
duty as other SMUs.

Table 4 2-Channel Options

Channel Primary Secondary

Pulse Unit HCU only HCU/SMU/VS

Pulse Width 0.1 to 0.8 msec;
from Instrument Options folder

approximately 1 msec

Pulse Period from Instrument Options folder from Instrument Options folder

Pulse Base 0 only from Instrument Options folder

Declared implicit from Instrument Options folder
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

An HVU is a unipolar source that requires the output polarity be
set before you set its output value. An internal sweep from the
minus-to-plus or from the plus-to-minus region is impossible;
set the Use User Sweep option to Yes, if such a sweep range is
necessary.

To perform the self test and calibration, the INTLK switch must
be closed for an HVU. At the start and end of each
measurement, IC-CAP instructs all used units to force zero for
safety reasons. The shock hazard lamp of the
HP/Agilent 16088B test fixture remains on after each
measurement because the output switch of the used HVU has
been closed to force zero.

VM

A differential voltage measurement of a VM unit is supported by
supplying a command string to the Init Command field in the
Instrument Options folder. If a VM unit is in slot 8, add the
command string “VM 8,2;” to the Init Command field. This sets
the VM unit at slot 8 to a differential mode where it measures
the differential voltage of VM18 versus VM28. Then add an
output for VM18 (not VM28) to the Setup. When simulating this
differential mode VM, VM18 should correspond to the + Node to
have the same polarity between measurement and simulation.

The following table describes the HP/Agilent 4142 options and
their default values, where applicable.
41

42

1 Supported Instruments

Table 5 HP/Agilent 4l42 Options

Option Description

Use User Sweep Yes = use user mode sweep. No = use system mode, when
all required conditions are met. Default = No

Hold Time Time to allow for DC settling before starting internal or user
sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Maximum 655 seconds. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. Maximum 65 seconds.
Default = 100 msec

Integ Time Instrument’s integration time; can be set to S (short), M
(medium), or L (long). Default = S

Range Specifies the measurement range. 0 specifies auto range.
Applies to all SMUs in this 4142. Refer to the Agilent 4142
Operation Manual for definitions of other ranges. Default =
0

SMU Filters ON Yes = filters ON. No = filters OFF.
Applies to all SMUs in this 4142. A pulsed unit is
automatically set to filter off. Default = Yes

Pulse Unit Enter name of a pulsed unit when taking pulsed
measurements.

Pulse Base Enter value of pulse base.

Pulse Width Enter value of pulse width.

Pulse Period Enter value of pulse period.

Module Control Enter SMU, HCU, or HVU for module selection with option
300. For user relays, enter an exact argument for the ERC
command (for example, 2,1,0). When blank, no unit is
connected by the module selector. Refer to the 4142 GPIB
Command Reference Manual for the ERC command.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

† Supported for internal sweep mode only (USE USER SWEEP = NO) and DC only
measurement setups.

This option applies to SMUs only. The allowable range of power compliance
depends on the sweep source (SMU type) and is not monitored by IC-CAP. Refer to
instrument's documentation for more details.

IC-CAP requires rectangular datasets, thus when a power compliance is
specified, the instrument concludes the measurement at the power compliance
limit, but IC-CAP fills the datasets with the last point measured below power
compliance.

Init Command Command field used to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Power
Compliance †

Specify power compliance in Watts with 1mW resolution.
Specifying 0 (zero) disables power compliance mode
(default).

Table 5 HP/Agilent 4l42 Options (continued)

Option Description
HP 4145 Semiconductor Parameter Analyzer
The HP 4145 is equipped with the following units:

• Four programmable stimulus/measurement units (SMU)

• Two programmable voltage source units (VS)

• Two voltage monitor units (VM)

Time-domain measurement is not supported by IC-CAP.
NOTE A user-defined function may cause an error E07 in the HP 4145 when the
function refers to non-existing source names. Clear any user-defined
functions in the HP 4145 before making a measurement with IC-CAP.
IC-CAP assigns the following names to the units:

SMUn Stimulus/Measurement Unit n (1, 2, 3, 4)
43

44

1 Supported Instruments

To recognize which data delimiter (CR/LF or Comma) is used,
IC-CAP performs a 2-point VM measurement only when an
HP 4145 is first accessed (when the Measure command is
issued). When the data delimiter is changed, choose Rebuild in
the Hardware Setup window so that IC-CAP will note the
change.

VSn Voltage Source Unit n (1, 2)

VMn Voltage Monitor Unit n (1, 2)
NOTE The HP 4145 performs an internal logarithmic sweep only if the number of
points per decade is 10, 25 or 50; otherwise IC-CAP will force the
measurement into User Sweep. If a Setup contains only a single Input with
a sweep order of 1, IC-CAP will force the measurement into User Sweep.
HP 4145 requires its test fixture lid be closed in User Sweep
mode for safety reasons, even though output is low. A Shorting
Connector (P/N 04145-61623) can be used to bypass this lid
closure check.
NOTE The HP 4145 offers the internal secondary sweep capability known as
VAR2. However, the internal SYNC sweep always depends on the primary
sweep source VAR1. When a secondary SYNC sweep is desired, use User
Sweep.

NOTE Always fill the Node Name field of each Input in a Setup because the
HP 4145 needs a channel name generated from a Node Name. The
channel names must be unique within a Setup for the HP 4145 internal
sweep mode.
The following table describes the HP 4145 options and their
default values, where applicable.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Table 6 HP 4145 Options

Option Description

Use User Sweep Yes = use user sweep. No = use the instrument’s internal
sweep.
Default = No

Hold Time Time the instrument waits before starting an internal or
user sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Range is 0 to 650 sec in 10 msec steps. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. The range is 0 to 6.5 sec in 1 msec
steps. Default = 0

Integ Time Instrument integration time; set to S (short), M (medium),
or L (long). Default = S

Init Command This command field is used to set the instrument to a mode
not supported by the option table. This command is sent at
the end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none
45

1 Supported Instruments
HP/Agilent 4155 Semiconductor Parameter Analyzer
46

The HP/Agilent 4155 is equipped with the following units:

• Four programmable medium power stimulus/measurement
units (MPSMU)

• Two programmable voltage source units (VS)

• Two voltage monitor units (VM)

IC-CAP assigns the following names to the units:

The HP 41501A is an optional SMU and pulse generator
expander box that can be attached to and controlled by the
4155. The HP 41501A can be equipped with a high power
stimulus/measurement unit (HPSMU), medium power
stimulus/measurement units (MPSMU), and pulse generator
units (PGU) (IC-CAP does not support PGUs). The availability
and combination of these units depends on the expander box
option.

MPSMUn Medium Power Stimulus/Measurement Unit n (1, 2, 3, 4)

VSUx Voltage Source Unit n (1, 2)

VMUx Voltage Monitor Unit n (1, 2)
NOTE When making pulsed mode measurements, if you specify an SMU as the
unit for an Output, and there is no corresponding SMU unit for an Input,
compliance errors will result. The same problem occurs if you specify
Voltage Monitor units. To prevent this from happening, you should define a
compliance value for Output-only SMUs and a measurement range for
Voltage Monitor units (VMs) through system variables, as follows, using
the unit name:

HRSMUx_COMP HPSMUx_COMP MPSMUx_COMP
where x = 1, 2, 3, 4, 5, 6

VMU1_RANGE_VALUE VMU2_RANGE_VALUE
IC-CAP assigns the following names to the units of the optional
HP 41501A:
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
• MPSMUn Medium Power Stimulus/Measurement Unit n (5,
6)

• HPSMU5 High Power Stimulus/Measurement Unit

A ground unit (GNDU) provides a means for connecting device
terminals to a ground reference and can sink up to 1.6A. The
ground unit is supported by IC-CAP but will not appear in the
Hardware Editor Configuration dialog box. For information on
how to use the ground unit, refer to the section “Adding a
Ground Unit" in the User’s Guide.

In both the user and internal sweep mode, voltage and current
pulsed measurements are supported. Only the SMUs can be
specified as pulse units because the PGUs are not currently
supported. For information on how to set up a pulsed
measurement, refer to the Pulse options in Table 7.

NOTE The HP/Agilent 4155 offers the internal secondary sweep capability
known as VAR2. However, the internal SYNC sweep always depends on
the primary sweep source VAR1. When a secondary SYNC sweep is
desired, use User Sweep.

NOTE To execute a user sweep measurement, IC-CAP sets the HP/Agilent 4155
to the Sampling mode with the number of samples equal to 1. The front
panel screen activity is turned off at the start of the measurement and is
turned back on after the measurement is completed.

Although the 4155 performs an internal logarithmic sweep if the number of
points per decade is 10, 25 or 50, IC-CAP will force the measurement into
the User Sweep for all specified logarithmic sweeps. If a Setup
specification contains a single Input with a sweep order of 1, IC-CAP will
force the measurement into User Sweep.
The following table describes the 4155 options and their default
values, where applicable.
47

48

1 Supported Instruments

Notes:
† Supported for internal sweep mode only (USE USER SWEEP = NO) and DC only
measurement setups.

Table 7 HP/Agilent 4155 (and HP/Agilent 4156) Option

Option Description

Use User Sweep Yes = use user mode sweep. No = use system mode, when
required conditions are met. Default = No

Hold Time Time delay before starting an internal or user sweep to
allow for DC settling. This option directly controls the
instrument firmware, and overrides similar delay/hold
options set in other instrument drivers running on the same
test system. Maximum is 655 seconds. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. This value is not used for pulsed
sweeps. Maximum is 65 seconds. Default = 0

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Integ Time Instrument integration time; set to S (short), M (medium), or
L (long). Default = S

Pulse Unit Enter the name of a pulsed unit when taking pulsed
measurements.

Pulse Base Enter the value of the pulse base.

Pulse Width Enter the value of the pulse width.

Pulse Period Enter the value of the pulse period.

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Power
Compliance †

Specify power compliance in Watts with 1mW resolution.
Specifying 0 (zero) disables power compliance mode
(default).
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
This option applies to SMUs only. The allowable range of power compliance
depends on the sweep source (SMU type) and is not monitored by IC-CAP. Refer to
instrument's documentation for more details.

IC-CAP requires rectangular datasets, thus when a power compliance is
specified, the instrument concludes the measurement at the power compliance
limit, but IC-CAP fills the datasets with the last point measured below power
compliance.
HP/Agilent 4156 Precision Semiconductor Parameter Analyzer

The HP/Agilent 4156 is equipped with the following units:

• Four programmable high-resolution stimulus/measurement
units (HRSMU)

• Two programmable voltage source units (VS)

• Two voltage monitor units (VM)

This instrument is designed for Kelvin connections and is
capable of low- resistance and low-current measurements.

IC-CAP assigns the following names to the units:

The HP 41501A is an optional SMU and pulse generator
expander box that can be attached to and controlled by the
4156. The HP 41501A can be equipped with the following units:

• High-power stimulus/measurement unit (HPSMU)

• Medium power stimulus/measurement units (MPSMU)

• Pulse generator units (PGU—not supported by IC-CAP)

IC-CAP assigns the following names to the units of the optional
HP 41501A:

HRSMUn High Resolution Stimulus/Measurement Unit n (1, 2, 3, 4)

VSUx Voltage Source Unit n (1, 2)

VMUx Voltage Monitor Unit n (1, 2)

MPSMUn Medium Power Stimulus/Measurement Unit n (5, 6)

HPSMU5 High Power Stimulus/Measurement Unit
49

50

1 Supported Instruments
A ground unit (GNDU) provides a means for connecting device
terminals to a ground reference and can sink up to 1.6A. The
ground unit is supported by IC-CAP but will not appear in the
Hardware Editor Configuration dialog box. For information on
how to use the ground unit, refer to the section “Adding a
Ground Unit" in the User’s Guide.

In both the user and internal sweep mode, voltage and current
pulsed measurements are supported. Only the SMUs can be
specified as pulse units because PGUs are not currently
supported. For information on how to set up a pulsed
measurement, refer to the Pulse options in Table 7.

NOTE The HP/Agilent 4156 offers the internal secondary sweep capability
known as VAR2. However, the internal SYNC sweep always depends on
the primary sweep source VAR1. When a secondary SYNC sweep is
desired, use User Sweep.

NOTE To execute a user sweep measurement, IC-CAP sets the HP/Agilent 4156
to the Sampling mode with the number of samples equal to 1. The front
panel screen activity is turned off at the start of the measurement and is
turned back on after the measurement is completed.

NOTE Although the HP/Agilent 4156 performs an internal logarithmic sweep if
the number of points per decade is 10, 25 or 50, IC-CAP will force the
measurement into the user sweep for all specified logarithmic sweeps. If a
Setup specification contains a single Input with a sweep order of 1, IC-CAP
forces the measurement into user sweep.
Options for the HP 4156 are the same as for the HP 4155; refer
to Table 7.
Agilent E5260 Series Parametric Measurement Solutions
Agilent E5260 Series High Speed Measurement Solutions are
built around the following:

• E5260A 8-slot parametric measurement mainframe
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• E5262A/3A 2-channel source/monitor units

Available Source/Monitor Units (SMUs):

• E5290A High Power source/monitor unit (HPSMU)

• E5291A Medium Power source/monitor unit (MPSMU)

The E5260A 8-slot parametric measurement mainframe holds
up to 8 single-slot modules, such as a medium power
source/monitor unit (MPSMU), or up to 4 dual-slot modules,
such as a high power source/monitor unit (HPSMU).

The E5262A 2-channel source/monitor unit contains 2 medium
power source/monitor units (SMUs).

The E5263A 2-channel source/monitor unit contains 1 high
power and 1 medium power SMU.

If you install 4 HPSMUs into the E5260A mainframe, you can
output 1 Amp of current from each of these units
simultaneously.

The E5260A/B mainframe's ground unit (GNDU) provides a
means for connecting device terminals to a ground reference.
The GNDU will sink 4 amps of current without having to worry
about any resistive ground rise issues. This ground unit cannot
be programmed or monitored.

Unit names are dependent on the slot they occupy. A high power
SMU occupies 2 slots in the mainframe, a medium or a high
resolution SMU occupies 1 slot; the value of slot number n is the
higher of the 2 slots. IC-CAP assigns the following names to the
units:

The E5260A 8-slot parametric measurement mainframe has a
total maximum power consumption of 80W for all plug-in
modules. The total maximum power consumption limits for the
E5262A and E5263A are 8W and 24W respectively. If a

MPSMUn Medium Powered Stimulus/Measurement Unit in slot n

HPSMUn High Powered Stimulus/Measurement Unit in slot n
51

52

1 Supported Instruments

measurement is performed and the power limitation is
exceeded, the measurement will not be attempted and IC-CAP
will issue an error message.

HPSMU

The high power source monitor units will provide up to 50
milliamps of current at ±200 volts and 1 amp of current at ±40
volts. Up to 4 HPSMUs can be used at one time in the E5260A
mainframe. See manual for complete measurement and force
ranges specifications such as resolution and measurement
accuracy.

MPSMU

The medium power source monitor units will provide up to 20
milliamps of current at ±200 volts and 200 milliamps of current
at ±20 volts. Up to 8 MPSMUs can be used at one time in the
E5260A. See manual for complete measurement and force
ranges specifications such as resolution and measurement
accuracy.

Instrument Options

The following table describes the Agilent E5260A options and
their default values, where applicable.

Table 8 Agilent E5260A Options

Option Description

Use User Sweep Yes = use user mode sweep. No = use internal sweep,
when all required conditions are met. Default = No

Hold Time Time to allow for DC settling before starting internal or user
sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Maximum 655 seconds. Default = 0
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. Maximum 65 seconds.
Default = 100 msec

Integ Time Instrument’s integration time; can be set to S (short), M
(medium), or L (long). Default = S

Power
Compliance †

Specify power compliance in Watts with 1mW resolution.
Specifying 0 (zero) disables power compliance mode
(default).

SMU Filters ON Yes = filters ON, No = filters OFF.
Applies to all SMUs in this E5260. Default = No

Range Manager
Mode

Specify Range Manager mode: 1, 2, or 3.
1 = deactivate Range Manager (default)
2 = set Range Manager to mode 2
3 = set Range Manager to mode 3
The Range Manager command is used to avoid potential
voltage spikes during current range switching when using
autorange. See Instrument Programming Guide††† under
RM command for details.

Range Manager
Setting

Set the rate of the Range Manager command.
Allowed values are between 11 and 100.
This option is only active when Range Manager Mode is set
to 2 or 3.

Enable <SMU
name> Range
Manager

Enables Range Manager at the setting values entered
above for the named SMU. Default = No.

Table 8 Agilent E5260A Options (continued)

Option Description
53

54

1 Supported Instruments

<SMU name>
In/Out Range

Specify force (Input Sweep) and Output measurement
ranges. Default is autorange (0 or 0/0) for both Input and
Output measurement ranges.
When an SMU is used in an IC-CAP input definition to force
voltage or current, a specific force range may be selected.
The force resolution†† will depend on the selected range.
When an SMU is used in an IC-CAP output definition to
monitor voltage or current, a specific measurement range
may be selected. The measurement resolution will depend
on the selected range. Both fixed (negative range number)
and limited auto (positive numbers) ranges are supported.
Allowed ranges are SMU dependent and are forced by
IC-CAP during initial measurement setup. See instrument
manual††† for allowed values for each SMU. When
instrument supports 2 values for setting the same range,
IC-CAP only supports the smaller of the 2. For example, to
select a 20 V range, the manual suggests using 12 or 200.
Use the value 12, to select that range.
Ranges must be in the format ForceRange/OutRange, e.g.,
13/15 for a voltage SMU monitoring current means Force
Voltage Range=13 (40 V, 2mV resolution), Output Current
Measurement Range=15 (10 uA limited autorange).

Pulse Unit Enter name of a pulsed unit when taking pulsed
measurements.

Pulse Base Enter value of pulse base.

Pulse Width Enter value of pulse width.

Pulse Period Enter value of pulse period.

Disable Self-Cal Controls the status of the E5260A self-calibration routine
during measurements. Yes = self-cal disabled. No= self-cal
enabled. Default = No.

Output I/O Port
(ERC Command)

Send the user string with the ERC command

Output I/O Port
(ERM Command)

Send the user string with the ERM command

Delay for timeouts Sets the delay before a measurement attempt times out.

Table 8 Agilent E5260A Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

† Supported for internal sweep mode only (USE USER SWEEP = NO) and DC only
measurement setups.

The allowable range of power compliance depends on the sweep source (SMU
type) and is not monitored by IC-CAP. Refer to instrument's documentation for
more details.

IC-CAP requires rectangular datasets, thus when a power compliance is
specified, the instrument concludes the measurement at the power compliance
limit, but IC-CAP fills the datasets with the last point measured below power
compliance.
†† Agilent E5260A, E5262A, E5263A Technical Overview—see Medium and High
Power SMUs technical specifications.
††† Agilent E5260A series Programming Guide—Chapter 4 “Command
Reference”—Section “Command Parameters”

Init Command Command field used to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Table 8 Agilent E5260A Options (continued)

Option Description
Agilent E5270 Series Parametric Measurement Solutions
Agilent E5270 Series Parametric Measurement Solutions are
built around the following:

• E5270A 8-slot parametric measurement mainframe
(obsolete)

• E5270B 8-slot parametric measurement mainframe

• E5272A/3A 2-channel source/monitor units (obsolete)

Available Source/Monitor Units (SMUs):

• E5280A High Power source/monitor unit (HPSMU) for
E5270A only

• E5280B High Power source/monitor unit (HPSMU) for
E5270B only

• E5281A Medium Power source/monitor unit (MPSMU) for
E5270A only

• E5281B Medium Power source/monitor unit (MPSMU) for
E5270B only
55

56

1 Supported Instruments

• E5287A High Resolution source/monitor unit (HRSMU) for
E5270B only

The E5270A 8-slot parametric measurement mainframe holds
up to 8 single-slot modules, such as a medium power
source/monitor unit (MPSMU), or up to 4 dual-slot modules,
such as a high power source/monitor unit (HPSMU).

The E5270B 8-slot parametric measurement mainframe holds
up to 8 single-slot modules, such as a medium power
source/monitor unit (MPSMU, HRSMU), or up to 4 dual-slot
modules, such as a high power source/monitor unit (HPSMU).

The E5272A 2-channel source/monitor unit contains 2 medium
power source/monitor units (SMUs).

The E5273A 2-channel source/monitor unit contains 1 high
power and 1 medium power SMU.

If you install 4 HPSMUs into E5270A/B mainframes, you can
output 1 Amp of current from each of these units
simultaneously.

The E5270A/B mainframe's ground unit (GNDU) provides a
means for connecting device terminals to a ground reference.
The GNDU will sink 4 amps of current without having to worry
about any resistive ground rise issues. This ground unit cannot
be programmed or monitored.

Unit names are dependent on the slot they occupy. A high power
SMU occupies 2 slots in the mainframe, a medium or a high
resolution occupies 1 slot; the value of slot number n is the
higher of the 2 slots. IC-CAP assigns the following names to the
units:

The E5270A and E5270B 8-slot parametric measurement
mainframes have a total maximum power consumption of 80W
for all plug-in modules. The total maximum power consumption

MPSMUn Medium Powered Stimulus/Measurement Unit in slot n

HPSMUn High Powered Stimulus/Measurement Unit in slot n

HRSMUn High Resolution Source/Monitor Unit in slot n (E5270B only)
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

limits for the E5272A and E5273A are 8W and 24W respectively.
If a measurement is performed and the power limitation is
exceeded, the measurement will not be attempted and IC-CAP
will issue an error message.

HPSMU

The high power source monitor units will provide up to 50
milliamps of current at ±200 volts and 1 amp of current at ±40
volts. Up to 4 HPSMUs can be used at one time in the E5270A
mainframe. Since SMUs characteristic may vary with version,
see manual for complete measurement and force ranges
specifications such as resolution and measurement accuracy.

MPSMU

The medium power source monitor units will provide up to 20
milliamps of current at ±100 volts and 100 milliamps of current
at ±20 volts (200 mA for the E5281A). Up to 8 MPSMUs can be
used at one time in the E5270A and E5270B mainframes. Since
SMUs characteristic may vary with version, see manual for
complete measurement and force ranges specifications such as
resolution and measurement accuracy.

HRSMU

The medium power/high resolution source monitor units
provide up to 20 milliamps of current at ±100 volts and 100
milliamps of current at ±20 volts. Up to 8 HRSMUs can be used
at one time in the E5270B mainframe. In the lowest current
range, 10 pA, HRSMU's current force resolution can be as low as
5 fA with a measurement resolution as low as 1 fA.

Instrument Options

The following table describes the Agilent E5270A/B options and
their default values, where applicable.
57

58

1 Supported Instruments

Table 9 Agilent E5270A/B Options

Option Description

Use User Sweep Yes = use user mode sweep. No = use internal sweep,
when all required conditions are met. Default = No

Hold Time Time to allow for DC settling before starting internal or user
sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Maximum 655 seconds. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. Maximum 65 seconds.
Default = 100 msec

Integ Time Instrument’s integration time; can be set to S (short), M
(medium), or L (long). Default = S

Power
Compliance †

Specify power compliance in Watts with 1mW resolution.
Specifying 0 (zero) disables power compliance mode
(default).

SMU Filters ON Yes = filters ON, No = filters OFF.
Applies to all SMUs in this E5270. Default = No

Range Manager
Mode

Specify Range Manager mode: 1, 2, or 3.
1 = deactivate Range Manager (default)
2 = set Range Manager to mode 2
3 = set Range Manager to mode 3
The Range Manager command is used to avoid potential
voltage spikes during current range switching when using
autorange. See Instrument Programming Guide††† under
RM command for details.

Range Manager
Setting

Set the rate of the Range Manager command.
Allowed values are between 11 and 100.
This option is only active when Range Manager Mode is set
to 2 or 3.

<SMU name>
A/D converter

Sets A/D converter for higher resolution or higher speed.
S = higher speed
R = higher resolution (Default)
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Enable <SMU
name> Range
Manager

Enables Range Manager at the setting values entered
above for the named SMU. Default = No.

<SMU name>
In/Out Range

Specify force (Input Sweep) and Output measurement
ranges. Default is autorange (0 or 0/0) for both Input and
Output measurement ranges.
When an SMU is used in an IC-CAP input definition to force
voltage or current, a specific force range may be selected.
The force resolution†† will depend on the selected range.
When an SMU is used in an IC-CAP output definition to
monitor voltage or current, a specific measurement range
may be selected. The measurement resolution will depend
on the selected range. Both fixed (negative range number)
and limited auto (positive numbers) ranges are supported.
Allowed ranges are SMU dependent and are forced by
IC-CAP during initial measurement setup. See instrument
manual††† for allowed values for each SMU. When
instrument supports 2 values for setting the same range,
IC-CAP only supports the smaller of the 2. For example, to
select a 20 V range, the manual suggests using 12 or 200.
Use the value 12, to select that range.
Ranges must be in the format ForceRange/OutRange, e.g.,
13/15 for a voltage SMU monitoring current means Force
Voltage Range=13 (40 V, 2mV resolution), Output Current
Measurement Range=15 (10 uA limited autorange).

Pulse Unit Enter name of a pulsed unit when taking pulsed
measurements.

Pulse Base Enter value of pulse base.

Pulse Width Enter value of pulse width.

Pulse Period Enter value of pulse period.

Disable Self-Cal Controls the status of the E5270A self-calibration routine
during measurements. Yes = self-cal disabled. No= self-cal
enabled. Default = No.

Output I/O Port
(ERC Command)

Send the user string with the ERC command

Table 9 Agilent E5270A/B Options (continued)

Option Description
59

60

1 Supported Instruments

† Supported for internal sweep mode only (USE USER SWEEP = NO) and DC only
measurement setups.

The allowable range of power compliance depends on the sweep source (SMU
type) and is not monitored by IC-CAP. Refer to instrument's documentation for
more details.

IC-CAP requires rectangular datasets, thus when a power compliance is
specified, the instrument concludes the measurement at the power compliance
limit, but IC-CAP fills the datasets with the last point measured below power
compliance.
†† Agilent E5270A, E5272A, E5273A Technical Overview—see Medium and High
Power SMUs technical specifications.
††† Agilent E5270A series Programming Guide—Chapter 4 “Command
Reference”—Section “Command Parameters”

Output I/O Port
(ERM Command)

Send the user string with the ERM command

Delay for timeouts Sets the delay before a measurement attempt times out.

Init Command Command field used to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Table 9 Agilent E5270A/B Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
Agilent B1500A Semiconductor Device Analyzer
IC-CAP Reference

The Agilent B1500A Semiconductor Device Analyzer is a
modular instrument with a ten-slot configuration that supports
both IV and CV measurements.

The B1500A driver supports the following plug-in modules:

• B1510A High Power Source Monitor Unit Module (HPSMU)
for B1500

• B1511A Medium Power Source Monitor Unit Module
(MPSMU) for B1500

• B1517A High Resolution Source Monitor Unit Module
(HRSMU) for B1500

The B1500A driver does NOT support the following plug-in
modules:

• B1520A Multi-Frequency Capacitance Measurement Unit
Module for B1500 (combined DC-CV measurements not
supported)

• E5288A Auto Sense and Switch Unit for B1500

HPSMU

The high power source monitor units will provide up to 1 amp of
current at ±200 volts. Up to 4 HPSMUs can be used at one time
in the B1500A. Since SMUs characteristic may vary with
version, see manual for complete measurement and force ranges
specifications such as resolution and measurement accuracy.

MPSMU

The medium power source monitor units will provide up to 100
milliamps of current at ±100 volts. Up to 10 MPSMUs can be
used at one time in the B1500A. Since SMUs characteristic may
vary with version, see manual for complete measurement and
force ranges specifications such as resolution and measurement
accuracy.
61

62

1 Supported Instruments

HRSMU

The medium power/high resolution source monitor units
provide up to 100 milliamps of current at ±100 volts. Up to 10
HRSMUs can be used at one time in the B1500A. Since SMUs
characteristic may vary with version, see manual for complete
measurement and force ranges specifications such as resolution
and measurement accuracy.

Instrument Options

The following table describes the Agilent B1500A options and
their default values, where applicable.

Table 10 Agilent B1500A Options

Option Description

Use User Sweep Yes = use user mode sweep. No = use internal sweep,
when all required conditions are met. Default = No

Hold Time Time to allow for DC settling before starting internal or user
sweep. This option directly controls the instrument
firmware, and overrides similar delay/hold options set in
other instrument drivers running on the same test system.
Maximum 655 seconds. Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. This option directly
controls the instrument firmware, and overrides similar
delay/hold options set in other instrument drivers running
on the same test system. Maximum 65 seconds.
Default = 100 msec

Integ Time Instrument’s integration time; can be set to S (short), M
(medium), or L (long). Default = S

Power
Compliance †

Specify power compliance in Watts with 1mW resolution.
Specifying 0 (zero) disables power compliance mode
(default).

SMU Filters ON Yes = filters ON, No = filters OFF.
Applies to all SMUs in this E5270. Default = No
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Range Manager
Mode

Specify Range Manager mode: 1, 2, or 3.
1 = deactivate Range Manager (default)
2 = set Range Manager to mode 2
3 = set Range Manager to mode 3
The Range Manager command is used to avoid potential
voltage spikes during current range switching when using
autorange. See Instrument Programming Guide††† under
RM command for details.

Range Manager
Setting

Set the rate of the Range Manager command.
Allowed values are between 11 and 100.
This option is only active when Range Manager Mode is set
to 2 or 3.

<SMU name>
A/D converter

Sets A/D converter for higher resolution or higher speed.
S = higher speed
R = higher resolution (Default)

Enable <SMU
name> Range
Manager

Enables Range Manager at the setting values entered
above for the named SMU. Default = No.

Table 10 Agilent B1500A Options (continued)

Option Description
63

64

1 Supported Instruments

<SMU name>
In/Out Range

Specify force (Input Sweep) and Output measurement
ranges. Default is autorange (0 or 0/0) for both Input and
Output measurement ranges.
When an SMU is used in an IC-CAP input definition to force
voltage or current, a specific force range may be selected.
The force resolution†† will depend on the selected range.
When an SMU is used in an IC-CAP output definition to
monitor voltage or current, a specific measurement range
may be selected. The measurement resolution will depend
on the selected range. Both fixed (negative range number)
and limited auto (positive numbers) ranges are supported.
Allowed ranges are SMU dependent and are forced by
IC-CAP during initial measurement setup. See instrument
manual††† for allowed values for each SMU. When
instrument supports 2 values for setting the same range,
IC-CAP only supports the smaller of the 2. For example, to
select a 20 V range, the manual suggests using 12 or 200.
Use the value 12, to select that range.
Ranges must be in the format ForceRange/OutRange, e.g.,
13/15 for a voltage SMU monitoring current means Force
Voltage Range=13 (40 V, 2mV resolution), Output Current
Measurement Range=15 (10 uA limited autorange).

Pulse Unit Enter name of a pulsed unit when taking pulsed
measurements.

Pulse Base Enter value of pulse base.

Pulse Width Enter value of pulse width.

Pulse Period Enter value of pulse period.

Disable Self-Cal Controls the status of the E5270A self-calibration routine
during measurements. Yes = self-cal disabled. No= self-cal
enabled. Default = No.

Output I/O Port
(ERC Command)

Send the user string with the ERC command

Output I/O Port
(ERM Command)

Send the user string with the ERM command

Delay for timeouts Sets the delay before a measurement attempt times out.

Table 10 Agilent B1500A Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

† Supported for internal sweep mode only (USE USER SWEEP = NO) and DC only
measurement setups.

The allowable range of power compliance depends on the sweep source (SMU
type) and is not monitored by IC-CAP. Refer to instrument's documentation for
more details.

IC-CAP requires rectangular datasets, thus when a power compliance is
specified, the instrument concludes the measurement at the power compliance
limit, but IC-CAP fills the datasets with the last point measured below power
compliance.
†† Agilent B1500A Technical Overview—see Medium and High Power SMUs
technical specifications.
††† Agilent B1500A series Programming Guide—Chapter 4 “Command
Reference”—Section “Command Parameters”

Configuring the B1500A for IC-CAP Remote Contol

1 Turn on the B1500.

2 Login into Windows but do not start the EasyExpert
software.

3 Start the Agilent_Connection_Expert:

Select Start > Programs > Agilent_IO_Library_Suites >
Agilent_Connection_Expert.

4 Select GPIB0 > Change_Properties, then uncheck the following
checkboxes:

• System_Controller

• Auto-Discover_Instruments_Connected_To_The_Interface

Select OK and exit the dialog.

5 Reboot the B1500A when prompted.

6 Start the EasyExpert software:

Select Start > Start_EasyExpert.

Init Command Command field used to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Table 10 Agilent B1500A Options (continued)

Option Description
65

66

1 Supported Instruments

Do not press the B1500A Start button, but leave the B1500A
Start button on the screen.
NOTE Fully starting the EasyExpert application would prevent IC-CAP from
controlling the B1500A.
7 Connect the B1500A instrument to the IC-CAP computer via
GPIB interface.

8 From IC-CAP, rebuild the active instrument list:

Select Tools > Hardware Setup > Rebuild.

9 After rebuild is completed, check that the B1500A is in the
Active Instrument List.

10 Select the instrument and configure its SMU names
according to the names used in your measurement setups.
IC-CAP Reference

Supported Instruments 1
Capacitance-Voltage Meters
IC-CAP Reference

Capacitance-voltage meters supported by IC-CAP are:

• HP 4194 Impedance Analyzer

• HP 4271 1 MHz Digital Capacitance Meter

• HP 4275 Multi-Frequency LCR Meter

• HP 4280 1 MHz Capacitance Meter

• HP/Agilent 4284 Precision LCR Meter

• HP/Agilent 4285 Precision LCR Meter

• Agilent E4980A Precision LCR Meter

• Agilent 4294A Precision Impedance Analyzer

• Agilent E4991A RF Impedance/Material Analyzer

For all capacitance-voltage meters, issue the Calibrate
command before starting a measurement, otherwise calibration
is carried out automatically at the start of the measurement.

This option directly controls the instrument firmware, and
overrides similar delay/hold options set in other instruments’
drivers running on the same test system.

Defining the Reset State

Using the prepare_CV_meter.mdl example model file, you can
easily define the reset state for the following instruments:

• HP/Agilent 4284

• HP/Agilent 4285

• Agilent E4980

The IC-CAP drivers reset instruments to known states prior to
configuring them for the current measurement. For the 4284,
4285 and E4980, it sends the *RST command, which resets the
instruments to a known factory state. However, this default
state (1V, 1KHz signal) may cause damage to certain devices
between the time the $RST is requested and the time the
requested signal level is set.
67

68

1 Supported Instruments

To avoid this problem, you can set the variable LCR_RST_MEM
or LCR_RST_MEM_<unit> (e.g., LCR_RST_MEM_CM). The 4284,
4285, and E4980A instruments will use the value of this
variable to set the instrument state. For example, if set to 1, the
driver will recall instrument state 1 instead of *RST.

Using the prepare_CV_meter.mdl example model file, you can
programatically set any state to be the *RST state with a zero
signal level. It will also set the variable for you such that when a
measurement is performed, this programatically set state is
recalled instead of sending *RST.

To prepare a memory location, open and Auto Execute
model_files/misc/prepare_CV_meter.mdl, then enter the 3
values below and click OK.

1 Name the unit associated with your instrument.

2 Identify the memory location (0-9 recommended, but you can
use any number from 0-19 that your instrument supports.)

3 Indicate if you want the unit number to apply to any 4284,
4284, or E4980A, or only to those with the specified unit
name. This selection essentially chooses between setting
LCR_RST_MEM or LCR_RST_MEM_<unit>.
HP 4194 Impedance Analyzer
The HP 4194 offers 2 measurement types: impedance analysis
and gain-phase measurement. These occupy different test
connectors on the test set. IC-CAP supports the impedance
analysis type, offering capacitance-voltage and
conductance-versus-voltage measurements.

The frequency range is 100 Hz to 40 MHz; to extend this to
100 MHz use the impedance probe kit. An internal DC bias unit
can deliver biases between −40V and +40V. An internal
oscillator can deliver between 10 mV and 1V rms.

The HP 4194 driver is an example of a driver created using the
Open Measurement Interface. The driver source code can be
found in the files user_meas.hxx and user_meas.cxx in the
directory $ICCAP_ROOT/src. For information, refer to
Chapter 2, “Drivers.”
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
IC-CAP assigns the following name to the unit:

CM Capacitance Meter Unit

NOTE The short calibration of the HP 4194 driver is disabled by default because
the CV measurement rarely needs this compensation. However, the
SHORT_CAL4194 system variable may be defined and set to Yes to enable
the short calibration.

NOTE After a CV measurement is finished, you may notice that a DC bias light on
the HP 4194 stays on. This indicates that a bias voltage is still being
applied to the test setup. However, the IC-CAP driver sets the DC sweep
mode’s bias voltage for the measurement so the DC bias is set to 0 V when
the sweep starts and stops.

There are 2 ways you can verify the bias voltage is set to zero. One way is
to measure the test setup with a DMM. Another way is to enable IC-CAP’s
Screen Debug (Tools > Options > Screen Debug) and see that the
following commands are being sent to the CV meter:

START=0.0;STOP=0.0;NOP=2;MANUAL=0.0;OSC=0.01
SWM3;TRGM2
TRIG
The following table describes the HP 4194 options and their
default values, where applicable.

Table 11 HP 4194 Options

Option Description

Use User Sweep Yes = use user sweep. No = use the instrument’s internal
sweep.
Default = No

Hold Time Time the instrument waits before starting an internal or
user sweep.
Default = 0
69

70

1 Supported Instruments

Delay Time Time delay, in seconds, the instrument waits before taking a
measurement at each step of an internal or user sweep.
When biasing the device with an external DC source
(e.g., an Agilent 4142B or 4156C), the DC source’s
delay/hold options override this option.
Default = 0

Meas Freq Oscillator frequency range 100 Hz to 40 MHz. The
41941A/B impedance probe kit extends this to 100 MHz. If
the CV_FREQ system variable is defined, it must be set
equal to this frequency, otherwise an error is reported.
Default = 1 MHz

Integ Time Instrument integration time: S (short), M (medium), or L
(long).
Default = S

Osc Level Test signal level. Allowable voltage levels and resolutions
are:
Minimum = 10 mV; Maximum = 1V. Default = 10mV

Averages Number of averages. Maximum = 256. Default = 1

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 11 HP 4194 Options (continued)

Option Description
HP 4271 1 MHz Digital Capacitance Meter
IC-CAP supports only external bias sources when performing
measurements using the HP 4271. Both hardware and software
calibrations are available. The instrument makes measurements
in user sweep only. If the CV_FREQ system variable is defined,
it must be set equal to 1 MHz before making a measurement
with the HP 4271, otherwise an error is reported.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

The following table describes the HP 4271 options and their
default values, where applicable.

Table 12 HP 4271 Options

Option Description

Hold Time Time the instrument waits before starting an internal or
user sweep.
Default = 0

Delay Time Time, in seconds, the instrument waits before taking a
measurement at each step of an internal or user sweep.
When biasing the device with an external DC source
(e.g., an Agilent 4142B or 4156C), the DC source’s
delay/hold options override this option.
Default = 0

Init Command This is a command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none
HP 4275 Multi-Frequency LCR Meter
The HP 4275 includes an optional internal DC bias source.
IC-CAP checks for this internal bias source when you issue the
Rebuild command in the Hardware Setup window. For the
internal DC bias to be recognized, the DC BIAS selector switch
must be set to Internal. Only hardware calibration is available
and the instrument makes measurements in user sweep only.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

The test signal level on the HP 4275 can only be set manually
with the OSC LEVEL dial and MULTIPLIER switches. This
signal level must be set by the user to a reasonable value such as
10 mV to obtain accurate results, since a high signal level can
71

72

1 Supported Instruments

modulate the DC operating point. The MULTIPLIER is set to 1
when the instrument is powered up; a different setting must be
selected manually.

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.

The following table describes the HP 4275 options and their
default values, where applicable.

Table 13 HP 4275 Options

Option Description

Hold Time Time the instrument waits before starting an internal or
user sweep. Range is 0 to 650 seconds in 10 msec steps.
Default = 0

Delay Time Time the instrument waits before taking a measurement at
each step of an internal or user sweep. Range is 3 msec to
650 sec. Resolution is in 1 msec steps for the 3 to 65 msec
range; 10 msec for the 65.01 to 99.99 msec range; and,
100 msec for the 100 msec to 650 sec range. When biasing
the device with an external DC source (e.g., an
Agilent 4142B or 4156C), the DC source’s delay/hold
options override this option.
Default = 3 msec

Meas Freq Measurement Frequencies. When the instrument is not
equipped with option 004, it accepts frequency
measurements at 10K, 20K, 40K, 100K, 200K, 400K, 1M, 2M,
4M, and 10M. When equipped with option 004, it accepts
measurements at 10K, 30K, 50K, 100K, 300K, 500K, 1M, 3M,
5M, and 10M. Enter valid frequencies only. If the CV_FREQ
system variable is defined, it must be set equal to this
frequency, otherwise an error is reported. Because the unit
of CV_FREQ is Hz, divide it by 1K for this field. Default =
1 MHz

High Res Enables or disables high resolution mode. Yes = enabled;
No = disabled. Default = No
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 13 HP 4275 Options (continued)

Option Description
HP 4280 1 MHz Capacitance Meter

The HP 4280 measures the capacitance-voltage characteristics
of semiconductor devices. The test signal of the instrument is a
1 MHz sine wave. The HP 4280 also contains a built-in DC bias
source with an output capability of 0 to ±100V and a maximum
setting resolution of 1 mV. Capacitance-voltage measurements
can be taken using this internal voltage source or an external
bias unit. The HP 4280 includes an internal calibration
capability. Measurements can be made in either internal or user
sweep. If the CV_FREQ system variable is defined, it must be set
to 1 MHz before making a measurement with the HP 4280,
otherwise an error is reported.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, this bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.

The following table describes the HP 4280 options and their
default values, where applicable.

Table 14 HP 4280 Options

Option Description

Use User Sweep Yes = use user sweep. No = use the instrument’s internal
sweep. Default = No
73

74

1 Supported Instruments

Hold Time Time the instrument waits before starting internal or user
sweep. Range is 0 to 650 seconds in 10 msec steps.
Default = 3 msec

Delay Time Time delay before each measurement is taken when using
internal sweep. Range is 3 msec to 650 seconds. Resolution
is in 1 msec steps for the 3 to 65 msec range, 10 msec for
the 65.01 to 99.99 msec range, and 100 msec for the
100 msec to 650 second range. When biasing the device
with an external DC source (e.g., an Agilent 4142B or
4156C), the DC source’s delay/hold options override
this option.
Default = 3 msec

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Meas Speed Measuring speed: S (slow), M (medium), or F (fast). Default
= S

Sig Level (10, 30) Signal level: 10 or 30 mV rms. Default = 10

High Res Enables or disables high resolution mode. Yes = enabled.
No = disabled. Default = No

Conn Mode Connection mode. When using the HP 4280 internal bias
source, set to 10. When using an external bias source,
connect the source to the EXT-SLOW connector on the
HP 4280 rear panel and set the connection mode to 12.
Default = 10

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 14 HP 4280 Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
HP/Agilent 4284 Precision LCR Meter
IC-CAP Reference
The HP/Agilent 4284 is a general purpose LCR meter with a
frequency range of 20 Hz to 1 MHz. The instrument includes an
internal calibration. Options 001 and 006 are supported by
IC-CAP. Option 001 includes a built-in internal bias source.
Standard cable lengths are 0 and 1 meter; option 006 supports 2
and 4 meter lengths as well. Measurements can be made in user
sweep mode only.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.

CAUTION Prior to configuring the HP/Agilent 4284 for the current
measurement, the IC-CAP driver resets the 4284 to a known
state by sending the *RST command. The default reset state (1V,
1KHz signal) may cause damage to certain devices between the
time the $RST is requested and the time the requested signal
level is set. To avoid this problem, you can define the reset state.
See “Defining the Reset State” on page 67.
The following table describes the HP/Agilent 4284 options and
their default values, where applicable.

Table 15 HP/Agilent 4284 Options

Option Description

Hold Time Time the instrument waits before starting an internal or
user sweep. Range is 0 to 650 seconds in 10 msec steps.
Default = 0
75

76

1 Supported Instruments

Delay Time Time the instrument waits before each sweep point is
measured. The range is 0 to 60 seconds. When biasing the
device with an external DC source (e.g., an Agilent
4142B or 4156C), the DC source’s delay/hold options
override this option.
Default = 0

Meas Freq Measuring frequency. Only a set of frequencies are
available. The range is 20 Hz to 1 MHz. If the CV_FREQ
system variable is defined, it must be set equal to this
frequency, otherwise an error is reported.
Default = 1 MHz

Integ Time Instrument integration time: S (short), M (medium), or L
(long).
Default = M

Osc Level Test signal level in volts or amps.
Allowable voltage levels and resolutions are:
Minimum = 5 mV
Maximum = 20V with opt 001, 2V otherwise
Between 5 mV and 200 mV: resolution = 1 mV
Between 200 mV and 2V: resolution = 10 mV
Between 2V and 20V: resolution = 100 mV (Opt. 001 only)
Allowable current levels and resolutions are:
Minimum level = 50 µA rms
Maximum level = 200 mA rms with opt 001, 20 mA
otherwise
Between 50 µA and 2 mA: resolution = 10 µA
Between 2 mA and 20 mA: resolution = 100 µA
Between 20 mA and 200 mA: resolution = 1 mA (Opt. 001
only)

The Instrument Options folder accepts test signal levels
outside these ranges. However, if a measurement is
attempted, an error message is issued and the
measurement is not performed.
Default = 10m

Osc Mode [V,I] Specify V (voltage) or I (current). Automatic Level Control
(ALC) is not supported. Default = V

Table 15 HP/Agilent 4284 Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
Averaging
[1-256]

The averaging rate of the instrument. Default = 1

Cable Length Cable length, in meters: 0, 1, 2, or 4. Default = 1M

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 15 HP/Agilent 4284 Options (continued)

Option Description
HP/Agilent 4285 Precision LCR Meter

The HP/Agilent 4285 is a general purpose LCR meter with a
frequency range of 75 kHz to 30 MHz. The instrument includes
an internal calibration. Option 001, which adds a built-in
internal bias source, is supported by IC-CAP. Measurements can
be made in user sweep only.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.
CAUTION Prior to configuring the HP/Agilent 4285 for the current
measurement, the IC-CAP driver resets the 4285 to a known
state by sending the *RST command. The default reset state (1V,
1KHz signal) may cause damage to certain devices between the
time the $RST is requested and the time the requested signal
level is set. To avoid this problem, you can define the reset state.
See “Defining the Reset State” on page 67.
77

78

1 Supported Instruments

The following table describes the HP/Agilent 4285 options and
their default values, where applicable.

Table 16 HP/Agilent 4285 Options

Option Description

Hold Time Time the instrument waits before starting an internal or
user sweep. Default = 0

Delay Time Time the instrument waits before each sweep point is
measured. Range is 0 to 60 seconds in 1 msec steps. When
biasing the device with an external DC source (e.g.,
an Agilent 4142B or 4156C), the DC source’s
delay/hold options override this option.
Default = 0

Meas Freq Measuring frequency. Range is 75 kHz to 30 MHz with
100 Hz resolution. If the CV_FREQ system variable is
defined, it must be set equal to this frequency, otherwise an
error is reported. Default = 1 MHz

Integ Time Instrument integration time: S (short), M (medium), or L
(long).
Default = M

Osc Level Test signal level in volts or amps.
The allowable voltage levels and resolutions are:
Minimum level = 5 mV rms
Maximum level = 2V rms
Between 5 mV and 200 mV: resolution = 1 mV
Between 200 mV and 2V: resolution = 10 mV

The allowable current levels and resolutions are:
Minimum level = 200 µA rms
Maximum level = 20 mA rms
Between 200 µA and 2 mA: resolution = 20 µA
Between 2 mA and 20 mA: resolution = 200 µA

The Instrument Options folder accepts test signal levels
outside these ranges. However, if a measurement is
attempted, an error message is issued and the
measurement is not performed.
Default = 10m
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
Osc Mode [V,I] Specify V (voltage) or I (current). Automatic Level Control
(ALC) is not supported. Default = V

Averaging
[1-256]

The averaging rate of the instrument. Default = 1

Cable Length Cable length, in meters: 0, 1, or 2. Default = 1

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 16 HP/Agilent 4285 Options (continued)

Option Description

Agilent E4980A Precision LCR Meter
The Agilent E4980A is a general-purpose LCR meter. The
Agilent E4980A is used for evaluating LCR components,
materials, and semiconductor devices over a wide range of
frequencies (20 Hz to 20 MHz) and test signal levels (0.1 mVrms
to 2 Vrms, 50 µA to 20 mArms). With Option 001, the E4980A’s
test signal level range spans 0.1 mV to 20 Vrms, and 50 µA to
200 mArms. Also, the E4980A with Option 001 enables up to
±40 Vrms DC bias measurements (without Option 001, up to ±2
Vrms), DCR measurements, and DC source measurements using
the internal voltage source.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.
79

1 Supported Instruments
CAUTION Prior to configuring the Agilent E4980A for the current
measurement, the IC-CAP driver resets the E4980 to a known
state by sending the *RST command. The default reset state (1V,
1KHz signal) may cause damage to certain devices between the
time the $RST is requested and the time the requested signal
level is set. To avoid this problem, you can define the reset state.
See “Defining the Reset State” on page 67.
80

The following table describes the Agilent E4980A options and
their default values, where applicable.

Table 17 Agilent E4980A Options

Option Description

Hold Time Time the instrument waits before starting an internal or
user sweep. Range is 0 to 650 seconds in 10 msec steps.
Default = 0

Delay Time Time the instrument waits before each sweep point is
measured. The range is 0 to 60 seconds. When biasing the
device with an external DC source (e.g., an Agilent
4142B or 4156C), the DC source’s delay/hold options
override this option.
Default = 0

Meas Freq Measuring frequency. Only a set of frequencies are
available. The range is 20 Hz to 1 MHz. If the CV_FREQ
system variable is defined, it must be set equal to this
frequency, otherwise an error is reported.
Default = 1 MHz

Integ Time Instrument integration time: S (short), M (medium), or L
(long).
Default = M
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Osc Level Test signal level in volts or amps.
Allowable voltage levels and resolutions are:
Minimum = 0 mVrms
Maximum = 20 Vrms with opt 001, 2Vrms otherwise
Between 0 mVrms and 200 mVrms: resolution = 100 µVrms
Between 200 mVrms and 500 mVrms:

resolution = 200 µVrms
Between 500mVrms and 1Vrms: resolution = 500 µVrms
Between 1 Vrms and 2 Vrms: resolution = 1 mVrms
Between 2 Vrms and 5 Vrms: resolution = 2 mVrms

(Opt. 001 only)
Between 5 Vrms and 10 Vrms: resolution = 5 mVrms

(Opt. 001 only)
Between 10 Vrms and 20 Vrms†: resolution = 10 mVrms

(Opt. 001 only)
† When the test frequency is more than 1 MHz, the

maximum oscillator voltage level that can be set is
15 Vrms.

Allowable current levels and resolutions are:
Minimum level = 0 Arms
Maximum level = 100 mArms with opt 001, 20 mA

otherwise
Between 0 µArms and 2 mArms: resolution = 1 µArms
Between 2 mArms and 5 mArms: resolution = 2 µArms
Between 5 mArms and 10 mArms: resolution = 5 µArms
Between 10 µArms and 20 mArms: resolution = 10 µArms
Between 20 mArms and 50 mArms: resolution = 20 µArms

(Opt. 001 only)
Between 50 mArms and 100 mArms:

resolution = 50 µArms (Opt. 001 only)

The Instrument Options folder accepts test signal levels
outside these ranges. However, if a measurement is
attempted, an error message is issued and the
measurement is not performed.
Default = 10m

Osc Mode [V,I] Specify V (voltage) or I (current). Automatic Level Control
(ALC) is not supported. Default = V

Table 17 Agilent E4980A Options (continued)

Option Description
81

82

1 Supported Instruments

Averaging
[1-256]

The averaging rate of the instrument. Default = 1

Cable Length Cable length, in meters: 0, 1, 2, or 4. Default = 1M

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 17 Agilent E4980A Options (continued)

Option Description
Agilent 4294A Precision Impedance Analyzer
The Agilent 4294A is a precision impedance analyzer designed
to measure impedance (inductance, capacitance, and
resistance) at frequencies between 40 Hz and 110 MHz. The
instrument includes an internal calibration.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.

Frequency cannot be swept using IC-CAP.

The following table describes the Agilent 4294A options and
their default values, where applicable.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Table 18 Agilent 4294A Options

Option Description

Use User Sweep Yes = use user sweep. No = use the instrument’s internal
sweep. Default = No.

Hold Time Time the instrument waits before starting an internal or
user sweep. Default = 0.

Delay Time Time the instrument waits before each sweep point is
measured. Range is 0 to 30 seconds. Resolution is 1 msec.
Default = 0.

Meas Freq Measuring frequency. Only a set of frequencies are
available. Range is 40 Hz to 110 MHz. Resolution is 1 mHz at
40 Hz and 1 kHz at 110 MHz. If the CV_FREQ system
variable is defined, it must be set equal to this frequency,
otherwise an error is reported. Default = 1 MHz.

Bandwidth Measurement bandwidth. 1 FAST (fastest measurement), 2,
3, 4, 5 PRECISE (highest accuracy measurement).
Default = 1.

Osc Level Test signal level. Allowable voltage levels and resolutions
are: minimum = 5 mV, maximum = 1 V. Default = 500 mV.
Resolution = 1 mV.

Averages [1-256] Point Averages, minimum 1, maximum = 256. Default = 1

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0.

Meas Range Selects DC bias range. Three ranges: 1 mA, 10 mA, and
100 mA. Default = 1 mA.

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = no entry.
83

1 Supported Instruments
Agilent E4991A RF Impedance/Material Analyzer
84

The Agilent E4991A is an RF impedance/material analyzer
designed to measure impedance (inductance, capacitance, and
resistance) at frequencies between 1 MHz and 3 GHz.
Measurements can be made in internal sweep mode only.

IC-CAP assigns the following name to this unit:

CM Capacitance Meter Unit

When using the internal DC bias, the bias unit is also included
in the CM unit. Therefore, the unit name of this CM unit should
also be entered in the Unit fields of both the voltage bias Input
and the capacitance Output specifications of the Setup.

Frequency cannot be swept using IC-CAP.

The following table describes the Agilent E4991A options and
their default values, where applicable.

Table 19 Agilent E4991A Options

Option Description

Use User Sweep Yes = use user sweep, No = use the instrument’s internal
sweep, default = No.

Hold Time Time the instrument waits before starting an internal or
user sweep, default = 0.

Delay Time Time the instrument waits before each sweep point is
measured. Range is 0 to 20 seconds, default = 0.

Meas Freq Measuring frequency. Only a set of frequencies are
available. Range is 1 MHz to 3 GHz with 1 kHz resolution. If
the CV_FREQ system variable is defined, it must be set
equal to this frequency, otherwise an error is reported,
default = 1 MHz.

Osc Level Test signal level in volts. Allowable voltage levels and
resolutions are: minimum = 5 mV; maximum = 502 mV,
default = 100 mV, resolution = 1 mV. The Instrument
Options dialog accepts test signal levels outside these
ranges. However, if a measurement is attempted, an error
message is issued and the measurement is not performed.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Averages [1-100] Point Averages, minimum = 1, maximum = 256, default = 1.

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example), use this option to avoid
measurement timeouts. Default=0.

Bias Current Limit Bias current limit, minimum 2 mA, maximum 50 mA,
resolution 10 µA, default 2 mA.

Cal Reference
Plane

Used to select the calibration reference plane, either
Coaxial (C) or Fixture (F).

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = no entry.

Table 19 Agilent E4991A Options (continued)

Option Description
85

1 Supported Instruments
Network Analyzers
86

A network analyzer is an integrated stimulus/response test
system that measures the magnitude and phase characteristics
of a 1-port or multi-port network by comparing the incident
signal with the signal transmitted through the device or
reflected from its inputs. A network analyzer provides a
waveform with a specified attenuation and frequency as inputs
to the network or device under test. It then measures the
magnitude and the phase information of both the reflected and
transmitted waves.

The network analyzers supported by IC-CAP are:

• Agilent E5071C ENA Series Network Analyzer

• Agilent PNA Series Vector Network Analyzer

• HP 3577 Network Analyzer

• HP/Agilent 8510 Network Analyzer

• HP/Agilent 8702 Network Analyzer

• HP/Agilent 8719 Network Analyzer

• HP/Agilent 8720 Network Analyzer

• HP/Agilent 8722 Network Analyzer

• HP/Agilent 8753 Network Analyzer

• Wiltron360 Network Analyzer

A network analyzer contains an S-parameter test set that allows
automatic selection of S11, S21, S12, and S22 measurements.
S-parameters are used to quantify the signals involved in
microwave design. S, for scattering, describes the act of an
energy wave front entering, exiting, or reflecting off the 2-port
network being characterized. Physically, the wave is an
electromagnetic flow of energy, a traveling complex voltage
wave. Mathematically, the S-parameter is a voltage normalized
by the impedance of the environment so that its expression
relates all information about voltage, current, and impedance at
the same time.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

The primary advantage of characterization with S-parameters is
that they can be measured by terminating a network in its
characteristic impedance instead of a short or open. The
following figure mathematically illustrates how S-parameters
are defined.

Referring to the previous figure, when a network port is
terminated so that there is no reflected energy, it is said to be
terminated in its characteristic impedance Z0. If at port 2, a2 = 0
because b2 looked into a Z0 load and was not reflected, then

b1 = S11 • a1+S12 • 0 or

This defines an input reflection coefficient with the output
terminated by a matched load (Z0). Similarly,

defines an output reflection coefficient with the input
terminated by Z0.

Figure 2 Mathematical Description of S-parameters

S11

b1
a1
------=

a2 0=

S22

b2
a2
------=

a1 0=
87

88

1 Supported Instruments

defines the forward transmission (insertion) gain with the
output port terminated in Z0.

defines the reverse transmission (insertion) gain with the input
port terminated in Z0.

The following figure is a graphic description of how
S-parameters are defined.

S21

b2
a1
------=

a2 0=

S12

b1
a2
------=

a1 0=
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Figure 3 Graphic Description of S-parameters

The smaller S11, the less energy
is reflected (better source
match.

S21 is gain. Usually, the
larger the better.

The smaller S22, the less
energy is reflected
(better load match.

The smaller S12, the
more isolation the
source has from the
load.
89

1 Supported Instruments

 Agilent E5071C ENA Series Network Analyzer

NOTE The error terms saved to file during a network analyzer software
calibration are not identified by error code.

The order shown below represents the order in which they are saved and
displayed in IC-CAP:

0. EDF [directivity]
1. EDR [directivity]
2. EXF [isolation]
3. EXR [isolation]
4. ESF [source match]
5. ERF [ref freq response]
6. ESR [source match]
7. ERR [ref freq response]
8. ELF [load match]
9. ETF [trans freq response]
10. ELR [load match]
11. ETR [trans freq response]
90
IC-CAP supports the Agilent E5071C ENA Series RF network
analyzer. The following table lists each analyzer and its
frequency range:

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

Table 20 Supported ENA Series Network Analyzers

Instrument Name Low Frequency High Frequency

Agilent E5071C-240/440 9 kHz 4.5 GHz

Agilent E5071C-245/445 100 kHz 4.5 GHz

Agilent E5071C-280/480 9 kHz 8.5 GHz

Agilent E5071C-285/485 100 kHz 8.5 GHz
IC-CAP Reference

Supported Instruments 1
NOTE IC-CAP loads the Instrument Options parameters, including Source Power,
Sweep Time, and so on, during an ENA measurement. Since this involves
setting values critical to the calibration, an error or warning may be issued.
IC-CAP Reference

The ENA Series network analyzers are recognized when you
issue the Rebuild, Measure, or Calibrate command.

This driver only supports Frequency mode with sweep types of
Linear, List, Log, and Constant.

• Linear sweep mode allows you to specify the start/stop
frequencies, number of points, and step size.

• List sweep mode allows you to sweep up to 202 individual
frequencies.

• Log sweep mode allows you to specify start/stop frequencies,
number of decades, and points per decade. The points are log
spaced and you can specify a total of 202 points.

• Constant mode allows you to measure 1 individual
frequency.

Table 21 on page 92 describes the E5071C ENA options and
their default values, where applicable. For more information on
options, refer to the E5071C ENA Series Network Analyzer Help
file located in the analyzer.

A self-test function is not provided for this instrument.

Calibration

The IC-CAP Calibrate command loads Setup information into
the ENA prior to calibrating. When running a measurement
afterwards, the calibration set must match IC-CAP's Setup and
it must be valid.

Only hardware calibration is supported. The calibration must
be either manually executed or executed using dedicated
calibration software and saved in a directory in the ENA. The
calibration and state file must have extension .sta. To measure
calibrated data, set the instrument option Cal Type to H
(Hardware) and specify a file name with a .sta extension in the
Instrument Option field Cal/State File Name.
91

92

1 Supported Instruments
On the ENA mainframe, the default directory for saving and
reading calibration and state files is D:\State. You can save the
calibration file in a different directory and still recall it from
IC-CAP by setting the system variable ENA_CAL_FILE_PATH to
the new directory (use full path such us D:\my_dir\).

When running a measurement recalling a calibration set, the
frequency sweep and the instrument options should be
consistent with the calibration set. Warnings will be issued in
the IC-CAP Status window when relevant ENA measurement
settings (such as IF Bandwidth or Port Power) differ from the
calibration settings.

NOTE The .sta file type should be a save state file that includes the instrument
state and the calibration data. So when saving the .sta file inside the
instrument for further use, make sure to use the State & Cal save type in
the Save/Recall menu.

The ENA has the capability to interpolate between points. Therefore, you
can specify a different frequency range and number of points during a
measurement as long as the measured frequency range is within the
calibrated frequency range. However, be aware that a loss in accuracy
occurs due to interpolation.
Table 21 Agilent E5071C ENA Options

Option Description

Use User Sweep
[Yes/No]

Yes = use user sweep. No = use instrument's internal
sweep.
Default = No

Hold Time (sec) Time, in seconds, the instrument waits before each sweep
to allow for DC settling.
Default = 0

Delay Time (sec) Time the instrument waits before setting each frequency in
user sweep mode.
Default = 0

Sweep Time (sec) Time the instrument takes for each sweep. 0 = Auto
Default = 0
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Sweep Type [SA] S = Stepped mode. A = Analog (ramp) mode
Default = S

Port Power
Coupled [Yes/No]

Yes = Coupled mode. No = Non-Coupled mode.
Default = Yes.
When ports are coupled, the Port1 Src Power value is used
for both Port 1 and 2. Port2 Src Power is ignored.

Port1 Src Power
(dBm)

Defines the source Power for Port 1 and 2 when ports are
coupled or the source power for Port 1 when ports are
uncoupled. The power range depends on the ENA model
and options.

Port2 Src Power
(dBm)

Defines the source power for Port 2 when ports are
uncoupled. This option field is ignored when ports are
coupled. The power range depends on the ENA model and
options.

Power Slope
(db/GHz)

Can be any value between −2 and +2 dB/GHz
Default = 0

IF Bandwidth (Hz) Range 10 Hz to 500 kHz
Nominal settings are: 10, 15, 20, 30, 40, 50, 70, 100, 150, 200,
300, 400, 500, 700, 1k, 1.5k, 2k, 3k, 4k, 5k, 7k, 10k, 15k, 20k,
30k, 40k, 50k, 70k, 100k, 150k, 200k, 300k, 400k, 500kHz
Default = 1000 Hz
Note: If a invalid value is specified, the ENA will not round it
to the nearest available value. It will round up to the next
higher value.

Avg Factor
[1-1024]

Number of averages per measurement. [1-1024]
Default = 1

Cal Type [HN] H = Hardware calibration. N = No calibration
Default = N

Cal/State File
Name [.sta only]

Name of .sta file (with stored calibration and instrument
state) to be used.
Default = none

Table 21 Agilent E5071C ENA Options (continued)

Option Description
93

94

1 Supported Instruments

Technical Notes

• You can perform averaging by increasing the number of
averages or decreasing the IF filter bandwidth. Both methods
result in more samples taken at each frequency point.
Decreasing the IF filter bandwidth not only increases the
number of samples but also the time at each frequency point
resulting in a longer sweep time. Increasing the number of
averages, increases the number of sweeps. Although the
driver supports both modes, using IF bandwidth for
averaging is generally more efficient.

Use ENA
Calibration
Settings [Yes/No]

This setting can be set to Yes only if a calibration file is
available and Calibration Type is set to H (Hardware).
Default = No
When set to Yes, IC-CAP loads the calibration and runs the
measurement without further initializing the instrument (i.e.
without downloading the current Instrument Table
settings). Although IC-CAP uses the calibration settings for
measurements, it still sets the sweep settings (e.g. Start,
Stop, Sweep Type, etc.). Therefore, make sure the requested
sweep setting is consistent with the calibration settings as
IC-CAP attempts to run the measurement without
performing any frequency range checking. Also note that
when this option is set to Yes, the driver responds as if
MEASURE_FAST=Yes (i.e., calibration is loaded only when
the measurement is first run or after errors or warnings
occur).

Delay for timeouts
(sec)

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts.
Default = 0

Init Command Command field to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Table 21 Agilent E5071C ENA Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• Coupled ports have the same source power connected to Port
1 and Port 2 for forward and reverse S-parameter
measurements.

• If you have significant insertion loss due to cables or bias
networks, use power slope. Using the appropriate power
slope can compensate for insertion loss as the frequency
increases. However, if the network's return loss is too high,
increasing the power slope will not compensate because the
power is reflected back.

• Step sweep mode is more accurate than analog (ramp) mode,
but analog mode is typically faster than step sweep mode. In
step sweep mode, RF phase locking is performed at each
frequency, which ensures that the frequency value is very
accurate. This results in a longer transition time from 1
frequency point to the next and a longer total sweep time. In
analog mode, the RF frequency is swept across the frequency
range and its frequency accuracy depends on the linearity of
the VCO (Voltage Controlled Oscillator).

• Sweep time is the total time to sweep from Start to Stop
frequency. Several factors contribute to sweep time. For
example at each point in step mode, sweep time is the
summation of transient time due to phase locking, settling
time, and measurement time, which depends on the IF
Bandwidth filter. Although you can specify a sweep time, you
should use auto mode (Sweep Time field = 0). This allows the
ENA to determine the fastest sweep time based on the other
settings. To view the actual sweep time, select Sweep
Setup/Sweep Time on the ENA application's main window.
For additional details on sweep time, see the E5071C ENA's
online help.
Agilent PNA Series Vector Network Analyzer
IC-CAP supports the Agilent PNA Series vector network
analyzers grouped as the Agilent PNA. The following table lists
each analyzer and its frequency range:
95

96

1 Supported Instruments

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

Table 22 Supported PNA Series Vector Network Analyzers

Instrument Name Low Frequency High Frequency

Agilent E8356A 300 kHz 3 GHz

Agilent E8357A 300 kHz 6 GHz

Agilent E8358A 300 kHz 9 GHz

Agilent E8361A 10 MHz 67 GHz

Agilent E8362A 45 MHz 20 GHz

Agilent E8362B 10 MHz 20 GHz

Agilent E8363A 45 MHz 40 GHz

Agilent E8363B 10 MHz 40 GHz

Agilent E8364A 45 MHz 50 GHz

Agilent E8364B 10 MHz 50 GHz

Agilent E8801A 300 kHz 3 GHz

Agilent E8802A 300 kHz 6 GHz

Agilent E8803A 300 kHz 9 GHz

Agilent N5250A 10 MHz 110 GHz
NOTE IC-CAP loads the Instrument Options parameters, including Source Power,
Attenuation, and so on, during a PNA measurement. Since this involves
setting values critical to the calibration, an error or warning may be issued.
The PNA Series network analyzers are recognized when you
issue the Rebuild, Measure, or Calibrate command.

This driver only supports Frequency mode with sweep types of
Linear, List, Log, and Constant.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• Linear sweep mode allows you to specify the start/stop
frequencies, number of points, and step size.

• List sweep mode allows you to sweep up to 202 individual
frequencies.

• Log sweep mode allows you to specify start/stop frequencies,
number of decades and points per decade. The points are log
spaced and you can specify a total of 202 points.

• Constant mode allows you to measure 1 individual
frequency.

Table 23 describes the PNA options and their default values,
where applicable. For more information on options, refer to the
PNA Series Network Analyzer Help file located in the analyzer.

A self-test function is not provided for this instrument.

Calibration

The IC-CAP Calibrate command loads Setup information into
the PNA prior to calibrating. When running a measurement
afterwards, the calibration set must match IC-CAP’s Setup and
it must be valid.

Only hardware calibration is supported. The calibration must
be either manually executed or executed using dedicated
calibration software and saved in a directory in the PNA. The
calibration file must have extension .cst.
NOTE The .cst file type includes the instrument state and a pointer to the internal
calset. The .cst file does not save the calibration coefficients (the internal
calset). Do not delete the internal calset referenced by the .cst file
otherwise the IC-CAP measurement will issue an error.

If you wish to save the calibration coefficients, save the active calset using
a .cal file extension. If the internal calset is accidentally deleted, you can
reinstate it by loading the .cal file from the front panel. Do this BEFORE
running an IC-CAP measurement that uses the .cst file.
To measure calibrated data, set the instrument option Cal Type
to H (Hardware) and specify a file name with a .cst extension in
the Instrument Option field Cal/State File Name.
97

98

1 Supported Instruments

On the PNA mainframe, the default directory for saving and
reading calibration and state file is C:\Program Files\Agilent\
Network Analyzer\Documents. You can save the calibration file
in a different directory and still recall it from IC-CAP by setting
the System Variable PNA_CAL_FILE_PATH to the new directory
(use full path such us C:\my_dir\).

When running a measurement recalling a calibration set, the
frequency sweep and the instrument options should be
consistent with the calibration set. Warnings will be issued in
the IC-CAP Status Window when relevant PNA measurement
settings (such as IF Bandwidth or Port Power) differ from the
calibration settings.
NOTE The PNA has the capability to interpolate between points. Therefore, you
can specify a different frequency range and number of points during a
measurement as long as the measured frequency range is within the
calibrated frequency range. However, be aware that a loss in accuracy
occurs due to interpolation.
Table 23 Agilent PNA Options

Option Description

Use User Sweep Yes = use user sweep. No = use instrument’s internal
sweep.
Default = No

Hold Time Time, in seconds, the instrument waits before each sweep
to allow for DC settling.
Default = 0

Delay Time Time the instrument waits before setting each frequency
in user sweep mode.
Default = 0

Sweep Time Time the instrument takes for each sweep. 0 = Auto
Default = 0

Sweep Type[SA] S = Stepped mode. A = Analog (ramp) mode
Default = S
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Port Power Coupled Yes = Coupled mode. No = Non-Coupled mode.
Default = Yes.
When ports are coupled, the Port Src Power value is used
for both Port 1 and 2. Port 2 Src Power is ignored.
Attenuators are also coupled so that Port Src Atten is
used for both ports and Port 2 Src Atten is ignored.

Port Src Power Defines the source Power for Port 1 and 2 when ports are
coupled or the source power for Port 1 when ports are
uncoupled. The power range depends on the attenuator
settings and the PNA model and options.

Port 2 Src Power Defines the source power for Port 2 when ports are
uncoupled. This option field is ignored when ports are
coupled. The power range depends on the attenuator
settings and the PNA model and options.

Port Atten Auto Yes = Auto mode. No = Non-Auto mode.
Default = No. When attenuators are in auto-mode, the
PNA will set the most efficient values for the attenuators
to obtain the requested output power at the port. In
auto-mode, the full power range is directly available at the
output port. In auto-mode, the instrument options Port Src
Atten and Port 2 Src Atten are ignored.

Port Src Atten Possible Values: 0, 10, 20, 30, 40, 50, 60, 70 dB
Default = 0
The available range depends on the PNA model. For
example, the E8364A attenuator range is 0-60 dB.
This option is ignored when attenuators are in auto-mode.

Port 2 Src Atten Possible Values: 0, 10, 20, 30, 40, 50, 60, 70 dB
Default = 0
The available range depends on the PNA model. For
example, the E8364A attenuator range is 0-60 dB.
This option is ignored when attenuators are in auto-mode.

Power Slope Can be any value between –2 and +2 dB/GHz
Default = 0

Dwell Time Sets the dwell time, in seconds, between each sweep
point. Only available in Stepped sweep type.
Default = 0 (Auto - PNA will minimize dwell time)

Table 23 Agilent PNA Options (continued)

Option Description
99

100

1 Supported Instruments

IF Bandwidth Possible Values: 1, 2, 3, 5, 7, 10, 15, 20, 30, 50, 70, 100, 150,
200, 300, 500, 700, 1k, 1.5k, 2k, 3k, 5k, 7k, 10k, 15k, 20k,
30k, 35k, 40k
Default = 1000 Hz
Note: If a invalid value is specified, the PNA will not round
it to the nearest available value. It will round up to the next
higher value.

Avg Factor Number of averages per measurement. [1-1024]
Default = 1

Cal Type[HN] H = Hardware calibration. N = No calibration
Default = N

Cal/State File
Name

Name of .cst file (cal file and instrument state) to be used.
Default = none

Use PNA
Calibration Settings
[Yes/No]

This setting can be set to Yes only if a calibration file is
available and Calibration Type is set to H (Hardware).
Default = No
When set to Yes, IC-CAP loads the calibration and runs the
measurement without further initializing the instrument
(i.e., without downloading the current Instrument Table
settings). Although IC-CAP uses the calibration settings
for measurements, it still sets the sweep settings (e.g.,
Start, Stop, Sweep Type, e.t.c.). Therefore, make sure the
requested sweep setting is consistent with the calibration
settings as IC-CAP attempts to run the measurement
without performing any frequency range checking. Also
note that when this option is set to Yes, the driver
responds as if MEASURE_FAST=Yes (i.e., calibration is
loaded only when the measurement is first run or after
errors or warnings occur).

Delay for timeouts For long-running measurements (that use a high number
of averages, for example) use this option to avoid
measurement timeouts.
Default = 0

Table 23 Agilent PNA Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Technical Notes

• You can perform averaging by increasing the number of
averages or decreasing the IF filter bandwidth. Both methods
result in more samples taken at each frequency point.
Decreasing the IF filter bandwidth not only increases the
number of samples but also the time at each frequency point
resulting in a longer sweep time. Increasing the number of
averages, increases the number of sweeps. Although the
driver supports both modes, using IF bandwidth for
averaging is generally more efficient.

• Coupled ports have the same source power connected to Port
1 and Port 2 for forward and reverse S-parameter
measurements. In addition, the attenuator settings are
coupled.

• When port attenuators are set to auto mode, the PNA
automatically chooses the attenuator value that provides the
requested power level at the output port. Accurate
S-parameter calibration requires that the attenuator settings
do not change during measurements or calibration, therefore
auto mode is not recommended.

• If you have significant insertion loss due to cables or bias
networks, use power slope. Using the appropriate power
slope can compensate for insertion loss as the frequency
increases. However, if the network’s return loss is too high,
increasing the power slope will not compensate because the
power is reflected back.

Init Command Command field to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal
C escape characters such as \n (new line) are available.
Default = none

Table 23 Agilent PNA Options (continued)

Option Description
101

102

1 Supported Instruments

• Step sweep mode is more accurate than analog (ramp) mode,
but analog mode is typically faster than step sweep mode. In
step sweep mode, RF phase locking is performed at each
frequency, which ensures that the frequency value is very
accurate. This results in a longer transition time from 1
frequency point to the next and a longer total sweep time. In
analog mode, the RF frequency is swept across the frequency
range and its frequency accuracy depends on the linearity of
the VCO (Voltage Controlled Oscillator).

• Sweep time is the total time to sweep from Start to Stop
frequency. Several factors contribute to sweep time. For
example at each point in step mode, sweep time is the
summation of transient time due to phase locking, settling
time, dwell time, and measurement time, which depends on
the IF Bandwidth filter. Although you can specify a sweep
time, you should use auto mode (Sweep Time field = 0). This
allows the PNA to determine the fastest sweep time based on
the other settings. To view the actual sweep time, select
Sweep/Sweep Time on the PNA application’s main window.
For additional details on sweep time, see the PNA’s online
help.

• Dwell time is the time spent at each frequency point before
sampling starts. For most applications, you should set dwell
time to auto mode. In auto mode, the PNA increases the dwell
time as the sweep time increases to comply the total sweep
time. If long delays are present in the circuit and additional
settling time is needed, set the dwell time to an appropriate
value.

Dwell time is not active in analog mode—only in step mode. If
the sweep time in analog mode is increased significantly
(because of a setting), the PNA can internally switch to step
mode and set an optimum value for the dwell time.
HP 3577 Network Analyzer
The HP 3577 has a frequency range of 5 Hz to 200 MHz (100 kHz
to 200 MHz with HP 35677A/B S-Parameter Test Set). The RF
source is an integral part of this instrument; DC bias levels must
be supplied from external sources.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

Because this instrument does not offer full 2-port calibration,
IC-CAP provides a popular 12-term correction for this
instrument that is widely used for 2-port measurements.
Manual operation is required to measure standards
interactively. Separate calibration data can be obtained for each
Setup; the data is saved and retrieved when Setups are written
to or read from files.

Though IC-CAP supports the HP 3577A and B models, the
Discrete Sweep capability of HP 3577B is not available with
IC-CAP. Therefore, the log and list frequency sweeps must be
performed as a User Sweep.

For most 2-port AC measurements, the network analyzer units
must be biased with a current or voltage source to supply DC
power to the DUT. A DC analyzer can be used for this.
Therefore, a typical S-parameter measurement Setup
specification would use the unit name of the network analyzer
unit (NWA) in the Unit field of the Output and the unit names of
the DC analyzer units in the Unit fields of the biasing Inputs.
NOTE The HP 35677A/B S-Parameter Test Set has a maximum DC bias range of
±30V and ±20mA with some degradation of RF specifications; ±200mA
damage level.
The measurement methods, listed in the following table, are
selected by setting the Use User Sweep and Use Fast CW flags in
the HP 3577 Instrument Options folder.

Table 24 HP 3577 Measurement Modes

Mode Description

Slow CW Sweep
Mode

Use User Sweep = Yes. Use Fast CW = No
The instrument sets each frequency then measures all 4
S-Parameters. Although somewhat slow, this method has
the advantage of gathering all of the parameters for a
frequency at approximately the same time.
103

104

1 Supported Instruments

The following table describes the HP 3577 options and their
default values, where applicable. For more information on
options, refer to the HP 3577 Operating and Programming
Manual.

Fast CW Sweep
Mode

Use User Sweep = Yes. Use Fast CW = Yes
This mode is faster than Slow CW Sweep because it
performs just 2 user sweeps. The instrument first measures
the forward parameters (S11 and S21), then changes the
test set direction and measures the reverse parameters (S12
and S22).

Single Freq CW
Mode

Use User Sweep = Yes. Use Fast CW = No
The instrument performs a spot frequency measurement.
Except for the number of frequencies, this mode is the same
as the Slow CW Sweep Mode.

Internal Sweep
Mode

Use User Sweep = No
Fastest available sweep type. Sweep must be linear. Values
for start, stop, and number of points are stored in the
instrument. The number of points in the linear sweep must
match 1 of the HP 3577’s allowed number of points choices.
When IC-CAP is unable to fit an internal sweep, it attempts
to use the Fast CW Mode.

Table 25 HP 3577 Options

Option Description

Use User Sweep Yes = use user sweep. No = use instrument’s internal
sweep.
Default = No

Hold Time Time, in seconds, the instrument waits before each sweep
to allow for DC settling. Default = 0

Delay Time Time the instrument waits before setting each frequency in
user sweep mode. Default = 100 msec

Input A Attn Sets Input A attenuation. Choices are 0 or 20 dB. Default =
20 dB

Table 24 HP 3577 Measurement Modes (continued)

Mode Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

The system variables used by the 12-term software calibration
are listed in the following table. They primarily affect S11 and
S22 corrections at high frequencies. Load and Short standards
are assumed ideal in the calibration frequency range. These
variables can be defined at Setup or higher levels.

Input B Attn Sets Input B attenuation. Choices are 0 or 20 dB. Default =
20 dB

Input R Attn Sets Input R attenuation: 0 or 20 dB. Default = 20 dB

Source Power Source signal level. Range is −45 to 15 dBm. Default =
−10 dBm

Sweep Time [.05 -
16]

Instrument internal sweep time, in seconds.
Default = 100 msec.

IF Bandwidth Instrument receiver resolution, in Hz. Default = 1000 Hz

Use Fast CW Enables Fast CW mode. Default = Yes

Avg Factor
[1-256]

Number of averages per measurement.
Default = 1

Cal Type[SN] S = Software calibration. N = No calibration. Default = S

Soft Cal Sequence Software calibration requires measurement of (L)oad,
(O)pen, (S)hort, (T)hru, and optionally (I)solation in a certain
order. This string defines the sequence of these standard
measurements by these letters (L, O, S, T, I). Default = LOST

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available.
Default = none

Table 25 HP 3577 Options (continued)

Option Description
105

106

1 Supported Instruments

Note: CAL_OPEN_C is replaced by CAL_OPEN_C0; CAL_Z0 is replaced by
TWOPORT_Z0. Use the new variables when possible; the old variables are
effective for the software calibration when the new variables are undefined.

Table 26 System variables

Variable Description

CAL_OPEN_C0
CAL_OPEN_C1
CAL_OPEN_C2

Define a capacitance of an Open standard in Farads. This
value applied to port 1 and port 2. A second-order
polynomial is assumed for its frequency response. Copen =
C0 + C1 • F + C2 • F2.
Default = 0 (for C0, C1, and C2)

TWOPORT_Z0 Defines impedance of port 1 and port 2, in Ohms. This and
the open capacitance value are used to calculate open
gamma correction data. Also used by TwoPort function.
Default = 50 Ohms
HP/Agilent 8510 Network Analyzer
The HP/Agilent 8510 is identical to the HP 8753 except:

• The 8510A has a frequency range of 45 MHz to 26.5 GHz.

• The 8510B options can source frequencies up to 100 GHz.

• The RF source is a separate external instrument.

• The 8510A does not support frequency list mode—it cannot
run internal log and list sweeps.

IC-CAP assumes an A model if the instrument is manually
added to the Instrument List (in the Hardware Setup window)
by selecting it and clicking the Add button. For IC-CAP to
recognize a newer model, use the Rebuild command or perform
a dummy measurement: use a linear sweep with the Use Linear
List option set to No. Note that the 8510C is treated as the B
model.

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit
IC-CAP Reference

Supported Instruments 1
NOTE IC-CAP loads the Instrument Options parameters, including Source Power,
Attenuation, and so on, during an 8510 measurement. Because this
involves setting values critical to the calibration, the following warning
may be issued: Calibration may be invalid.

If the IC-CAP Calibrate command is used to load Setup information to the
8510 prior to calibrating, the calibration set must match IC-CAP’s Setup
and be valid.
IC-CAP Reference
For information on the processes listed below, refer to the
section, “HP 3577 Network Analyzer” on page 102.

• Use of DC bias sources

• Available measurement modes

• System variables used in software calibration

NOTE Use the 12-term software calibration carefully at very high frequencies
where accuracy of the Load termination generally degrades.
The following table describes the 8510 options and their default
values, where applicable. For more information on options,
refer to the HP 8510 Operating and Programming Manual.

Table 27 HP/Agilent 8510 Options

Option Description

Use User Sweep Yes = use user sweep. No = use instrument’s internal
sweep. Default = Yes

Hold Time Time, in seconds, the instrument waits before each sweep
to allow for DC settling. Default = 0

Delay Time Time the instrument waits before setting each frequency in
user sweep mode. Default = 100 msec

Port 1 Attn Sets Port 1 attenuation. This option is ignored by the
8510XF. Range is 0 to 90 dB. Default = 20 dB
107

108

1 Supported Instruments

Port 2 Attn Sets Port 2 attenuation. This option is ignored by the
8510XF. Range is 0 to 90 dB. Default = 20 dB

Source Power Range is −90 to 30 dbm. Default = −10 dBm

Power Slope Range is 0 to 1.5 dbm/GHz. Default = 0

Fast Sweep
(Ramp)

Enables ramp sweep. Default = No

Sweep Time
[.05 - 100]

Instrument sweep time. Default = 100 msec

Use Fast CW Enables Fast CW mode. Default = Yes

Trim Sweep Adjusts frequency at each band edge. Default = 0

Avg Factor
[1-4096]

Number of averages per measurement. Default = 1

Cal Type[SHN] S = Software calibration. H = Hardware calibration.
N = No calibration. Default = H

Cal Set No. [1-8] Specifies an instrument calibration set. Default = 1

Soft Cal Sequence Software calibration requires measurement of (L)oad,
(O)pen, (S)hort, (T)hru, and optionally (I)solation in a certain
order. This string defines the sequence of these standard
measurements by these letters (L, O, S, T, I). Default = LOST

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Use Linear List Yes = load linear sweeps into the 8510’s frequency list
instead of 1 of the fixed point counts. (Not available on
8510A.) Default = Yes

Init Command Command field to set the instrument to a mode not
supported by the option table. Command is sent at the end
of instrument initialization for each measurement. Normal C
escape characters such as \n (new line) are available.
Default = none

Table 27 HP/Agilent 8510 Options (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

When performing 2 sequential CW measurements that use
different CW cal subsets, the 8510 may report the error RF
UNLOCKED. A system variable is available in IC-CAP, in the
Measurement Options group, to ignore this error:

IGNORE_8510_RF_UNLOCK

When defined as Yes, IC-CAP ignores a temporary and benign
RF UNLOCKED error from the 8510.

Making Measurements with Uncoupled Ports

To calibrate using the 8510XF driver:

1 Set input sweeps and instrument options. To set port 1
power, set Source Power. To set port 1 power slope, set Power
Slope. Set averaging. Ignore the Port 1 and 2 Attenuators
fields as the 8510XF does not have attenuators.

2 In the Init Command field, type the following command
string to set port 2 power and slope:
PPCOUPLEOFF;POWP2 <power>SLPP2ON <slope>

Example:
PPCOUPLEOFF;POWP2 -20;SLPP2ON 0.05;

sets P2=-20 dB and Power slope 2 to 0.05 dB/GHz

3 Click Calibrate. This downloads the sweep settings, the
instrument option settings, and sets the 8510XF with
uncoupled ports.

4 Perform RF Calibration and save the results in one of the
Calsets.

When making a measurement using the 8510XF driver, the
driver recalls the calibration data and the setting used during
calibration. If you want to use the same power level and slope,
you do not need to make any changes. If you want to change the
port 2 power setting, use the Init Command field as in step 2
(you do not need PPCOUPLEOFF since the ports are already off
when calibration is recalled). Be aware that the 8510XF will
issue a warning if you set a different port power for the
measurements.
109

1 Supported Instruments
HP/Agilent 8702 Network Analyzer
110

The HP/Agilent 8702 network analyzer has a frequency range of
300 kHz to 3 GHz (IC-CAP does not support the lightwave
analyzer features). Use Option 006 and turn on the frequency
doubler from the front panel if 6 GHz is desired. The RF source
is an integral part of this instrument. For other features, refer
to the section, “HP/Agilent 8753 Network Analyzer” on
page 114 because the HP/Agilent 8702 is almost identical to the
HP/Agilent 8753 in the E/E mode. IC-CAP supports both
HP/Agilent 85046A and HP/Agilent 85047A S-Parameter Test
Sets for the HP/Agilent 8702.

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

For most 2-port AC measurements, the network analyzer units
must be biased with a current or voltage source to supply DC
power to the DUT. A DC analyzer can be used to supply this
current or voltage source. Therefore, a typical S-parameter
measurement Setup specification would use the unit name of
the network analyzer unit (NWA) in the Unit field of the Output
and the unit names of the DC analyzer units in the Unit fields of
the biasing Inputs.

For information on the topics listed below, refer to the section,
“HP/Agilent 8753 Network Analyzer” on page 114.

• Measurement modes

• Options
NOTE The 8702 occupies 2 GPIB addresses, the instrument itself and the display.
The display address is derived from the instrument address by
complementing the least significant bit. Hence, if the instrument is at an
even address, the display occupies the next higher address; if the
instrument is at an odd address, the display occupies the next lower
address.
IC-CAP Reference

Supported Instruments 1
HP/Agilent 8719 Network Analyzer
IC-CAP Reference
The HP/Agilent 8719 is identical to the HP/Agilent 8720 except
the 8719 has a frequency range of 50 MHz to 13.5 GHz. For
information, refer to the next section, “HP/Agilent 8720
Network Analyzer.”
HP/Agilent 8720 Network Analyzer
The HP/Agilent 8720 network analyzer has a frequency range of
50 MHz to 20 GHz. The RF source and S-parameter test set are
an integral part of this instrument. IC-CAP supports the
HP/Agilent 8720 A, B, C, and D models. (The 8720 D is the only
model that supports uncoupled port power.)

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

NOTE The 8720 occupies 2 GPIB addresses, the instrument itself and the display.
The display address is derived from the instrument address by
complementing the least significant bit. Hence, if the instrument is at an
even address, the display occupies the next higher address; if the
instrument is at an odd address, the display occupies the next lower
address.
For most 2-port AC measurements, the network analyzer units
must be biased with a current or voltage source to supply DC
power to the DUT. A DC analyzer can be used to supply this
current or voltage source. Therefore, a typical S-parameter
measurement Setup specification would use the unit name of
the network analyzer unit (NWA) in the Unit field of the Output
and the unit names of the DC analyzer units in the Unit fields of
the biasing Inputs.

Measurement modes for the 8720 are the same as for the 8753;
refer to Table 29 for this information.

For system variables used in the software calibration, refer to
Table 26 in the HP 3577 section.
111

112

1 Supported Instruments

The following table describes the 8720 options and their default
values, where applicable.

Table 28 HP/Agilent 8720 Options

Option Description

Use User Sweep Yes = use user sweep. No = use instrument’s internal
sweep
Default = No

Hold Time Time, in seconds, that the instrument waits before each
sweep to allow for DC settling. Default = 0

Delay Time Time the instrument waits before setting each frequency.
Default = 100 msec

Port 1 Source
Power

Range is −65 to 10 dBm. Default = −10.00 dBm

Port 1 Power
Range

Specifies which instrument power range to use. Range is 1
to 12 for models A, B, and C; range is 0 to 11 for model D.
(The Hardware calibration is turned off by the instrument
when calibrated Power Range and requested Power Range
don’t match.) Default = 1

Port 1 Auto Power
Range†

Enables auto power ranging on port 1. Default = Yes

Coupled Port
Power†

Enables/disables coupled test port power. When disabled,
Port 2 options are ignored. Default = Yes

Port 2 Source
Power†

Range is −65 to 10 dBm. Default = −10.00

Port 2 Power
Range†

Specifies which instrument power range to use. Range is 1
to 12 for models A, B, and C; range is 0 to 11 for model D.
(The Hardware calibration is turned off by the instrument
when calibrated Power Range and requested Power Range
don’t match.) Default = 1

Port 2 Auto Power
Range†

Enables auto power ranging on port 2. Default = Yes

Sweep Time Instrument sweep time. A zero sweep time turns on the
Auto Sweep Time, which ensures the minimum sweep time.
Default = 100 msec
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

† These options apply only when using built-in test set (Model D).

IF Bandwidth
(Avg)

Instrument’s receiver IF bandwidth. Default = 1000 Hz

Use Fast CW Enables Fast CW mode. Default = Yes

Avg Factor [1-999] Number of averages per measurement. Default = 1

Cal Type[SHN] S = Software calibration. H = Hardware calibration.
N = No calibration. Default = H

Cal Set No. Models A, B, and C: 1 through 5 specifies which instrument
calibration sets to use; 6 specifies the active instrument
state.
Model D: 1 through 32 specifies which instrument
calibration sets to use; 33 specifies the active instrument
state. Default = 1

Soft Cal Sequence Software calibration requires measurement of (L)oad,
(O)pen, (S)hort, (T)hru, and optionally (I)solation in a certain
order. This string defines the sequence of these standard
measurements by these letters (L, O, S, T, I). Default = LOST

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Use Linear List Yes = load linear sweeps into the HP/Agilent 8720’s
frequency list instead of one of the fixed point counts. This
mode should be faster than using the instruments linear
frequency sweep. Default = Yes

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 28 HP/Agilent 8720 Options (continued)

Option Description
HP/Agilent 8722 Network Analyzer
The HP/Agilent 8722 is identical to the HP/Agilent 8720 except
for its frequency range—the HP/Agilent 8722 has a frequency
range of 50 MHz to 40 GHz.
113

1 Supported Instruments
HP/Agilent 8753 Network Analyzer
114
The HP/Agilent 8753 network analyzer has a frequency range of
300 kHz to 3 GHz (6 GHz with Option 006). The instrument
contains an RF source for frequency sweeps, but DC bias must
be supplied from external sources to acquire biased RF data.

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

IC-CAP supports the HP/Agilent 8753 A, B, C, D, E, and D opt
011 models (D models must be firmware revision 6.14 or
higher). The standard D and E models have a built-in test set;
the A, B, C, and D opt 011 models are used in conjunction with
an external test set. IC-CAP supports both the
HP/Agilent 85046A and HP/Agilent 85047A S-Parameter Test
Sets.

NOTE IC-CAP cannot differentiate between model D and D opt 011. When using
the 8753D with an external test set, alias it as an 8753C in the instraliases
file in the $ICCAP_ROOT/iccap/lib directory.

NOTE The 8753 occupies 2 GPIB addresses, the instrument itself and the display.
The display address is derived from the instrument address by
complementing the least significant bit. Hence, if the instrument is at an
even address, the display occupies the next higher address; if the
instrument is at an odd address, the display occupies the next lower
address.
The model is recognized when you issue the Rebuild, Measure,
or Calibrate command. If you manually add the instrument to
the active instrument list (by clicking the Add button), IC-CAP
assumes the instrument is an A model until one of the
previously described commands is issued.
IC-CAP Reference

Supported Instruments 1
NOTE Some early models of the 8753C (ROM 4.00 and 4.01) have GPIB problems
that prevent IC-CAP from finding this instrument during Rebuild. Add the
instrument manually after PRESET when IC-CAP ignores this instrument.
The model is recognized when Measure or Calibrate is performed.
IC-CAP Reference

A self-test function is not provided for this instrument.

For most 2-port AC measurements, the network analyzer units
must be biased with a current or voltage source to supply DC
power to the DUT. A DC analyzer can be used to supply this
current or voltage source. Therefore, a typical S-parameter
measurement Setup specification would use the unit name of
the network analyzer unit (NWA) in the Unit field of the Output
and the unit names of the DC analyzer units in the Unit fields of
the biasing Inputs.

Hardware calibration is only supported when using Internal
Sweep mode or Single Freq CW mode. For measurement modes
that do not support internal instrument calibration, software
calibration is provided. When software calibration is set in the
instrument options, use the Calibrate command to initiate the
calibration. IC-CAP will load the frequency values and options
into the instrument and then direct you to connect the various
calibration standards required to perform the calibration.

The Calibrate command can also be used to download the
desired instrument state when requesting a hardware
calibration You must then calibrate the instrument manually
(refer to the instrument manual) and store the results in one of
the instrument’s state registers. With this method there is no
need to manually input the instrument state to match the
IC-CAP settings.

The measurement modes listed in Table 29 are selected by
setting a combination of the following fields (details follow) in
the 8753 Instrument Options folder:

• Use User Sweep

• Use Fast CW

• Use Linear List

• Cal Type field
115

116

1 Supported Instruments

IC-CAP contains routines that compare its sweep values with
those stored in the 8753. In case of discrepancies, IC-CAP
prompts you to specify whether the sweeps should be modified
to match the instrument. This may not be practical when
variables are included in the sweep specifications.

Error checking ensures a valid measurement mode. When
discrepancies are found, the following changes are made:

• For CON frequency, Use User Sweep is set to Yes and Use Fast
CW is set to No.

• For internally calibrated sweeps, Use User Sweep is set to No.

• When frequency is not the main sweep, Use Fast CW is set to
No, Cal Type is set to N, and Use User Sweep is set to Yes.

Refer to “HP 3577 Network Analyzer” on page 102 for system
variables used in the software calibration.

Table 30 describes the 8753 options and their default values,
where applicable. Differences in options when using the 8753
with an external test set versus a built-in test set are noted.

For optimum performance of the HP/Agilent 85047 test set,
6 GHz mode requires Source Power to be +20dBm. The
Instrument Options folder should show 20 as the Source Power
level when the Freq Range is 6 GHz. Setting Source Power to
less than 20 can cause No IF Found errors in the 8753. Further
information on the power requirements for 6 GHz operation can
be found in the instrument’s operation manual.

When the test set switches between 3 and 6 GHz operation, the
8753 automatically changes Source Power level.

• 3 to 6 GHz Switching: 20 dBm.

• 6 to 3 GHz Switching: 0 dBm.

When Hardware calibration is used, a specified calibration set
recalls the original calibration power level. When Software or
no calibration is used, the Source Power will be forced to one of
the default levels if the test set has to switch modes. When a
Source Power level other than the above forced values is
required, perform one of the following:

• Make a dummy measurement first to switch the test set to the
desired frequency mode
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference
• Manually switch the test set to the desired frequency mode

• Use the Calibrate command to download the desired
instrument state
NOTE The 8753 may not reflect the power level specified in the Instrument
Options folder if the analyzer is in HOLD mode. When the 8753 is in HOLD
mode and receives a remote command to switch the frequency mode of
the test set, it postpones switching modes until an actual measurement
sweep is triggered. When the Measure or Calibrate command is issued,
IC-CAP initializes the state before triggering a measurement. Thus IC-CAP
will download the power level specified in the Instrument Options folder
and the analyzer will force it to its default value when the measurement is
triggered.

For descriptions of the variables used in software calibration,
refer to Table 26 in the HP 3577 Network Analyzer section.

Table 29 Supported Measurement Modes

Mode Description Use
User
Sweep

Use
Fast
CW

Use
Linear
List

Cal
Type

Slow
CW
Sweep

IC-CAP performs a spot
measurement of 2-port data by
setting the instrument to each
frequency point individually and
measuring all 4 S-parameters.
Although slow, this method has the
advantage of gathering all of the
parameters for a frequency at
approximately the same time. Only
uncalibrated data can be obtained
from this type of measurement since
each frequency point is measured in
CW mode. Typically used when
frequency is not the primary sweep
(Sweep Order ≠ 1).

Yes No Ignored S, N
117

118

1 Supported Instruments

Notes:
† For linear sweeps, the number of points requested must fit one of the 8753's
predefined number of points. If the desired number of points is not one of the legal
set values, IC-CAP checks to see if it still can make a valid measurement by
increasing the number of points on the instrument such that data at the desired
frequencies can be acquired. For example, a 300 to 500 kHz sweep in 6 steps
internally requires IC-CAP to set the instrument to 11 points because 11 is a legal
value. When IC- CAP is unable to fit an internal sweep, it attempts to use the Fast
CW mode. If CW mode is not desired, set Use Linear List = Yes.

For log and list sweeps, set Use Linear List = Yes. This uses the instrument's
frequency list capability. Because the 8753 is limited to thirty sub-sweeps, it can

Fast
CW
Sweep

Similar to Slow CW Sweep, this
mode is faster because it first
measures the forward parameters
(S11 and S21) with a single sweep,
then the reverse parameters (S12
and S22). This is accomplished by
using the dual channel feature of the
instrument. As with Slow CW
Sweep, instrument calibration is not
possible and only uncalibrated data
can be obtained.

Yes Yes Ignored S, N

Single
Freq
CW

This is the only user sweep mode
capable of acquiring 2-port data
using hardware calibration. A CW
mode calibration can be performed
and saved in one of the state
registers to be recalled when a
measurement is executed.

Yes No Ignored H,S,
N

Internal
Sweep

Fastest available sweep type.
Sweeps can be linear, log, or list.

†

Since this is an internal sweep,
hardware calibration is possible.
IC-CAP expects that the calibration
over the appropriate frequencies has
been completed before the
measurement is performed.

No No Yes or
No

H,S,
N

Table 29 Supported Measurement Modes (continued)

Mode Description Use
User
Sweep

Use
Fast
CW

Use
Linear
List

Cal
Type
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

store no more than sixty frequencies.
Instrument options must match those for which the 8753 was calibrated.

Table 30 Options for the HP/Agilent 8753

Option Description

Use User Sweep Yes = use user sweep. No = use instrument's internal
sweep
Default = No

Hold Time Time, in seconds, the instrument waits before each sweep
to allow for DC settling. Default = 0

Delay Time Time the instrument waits before setting each frequency.
Default = 100 msec

Port 1 Atten† Sets Port 1 attenuation. Range is 0 to 70 dB. Default =
20 dB

Port 2 Atten† Sets Port 2 attenuation. Range is 0 to 70 dB. Default =
20 dB

Source Power† Range is −10 to 25 dbm. Default = −10

Power Slope Models A, B, C, and D opt 11: Range is 0 to 2 dbm/GHz.
Default = 0
Models D and E: Range is −2 to +2dBm/GHz. Default =
0 dBm/GHz

Port 1 Source
Power††

Sets Port 1 source power level. Range is −85 to +10 dBm.
Default = −10 dBm

Port 1 Power
Range[0-7]††

Sets Port 1 source power range. The valid range is 0 to 7.
Default = 0

Port 1 Auto Power
Range††

Enables auto power ranging on port 1. Default = No

Coupled Port
Power††

Enables/disables coupled test port power. When disabled,
Port 2 options are ignored. Default = Yes

Port 2
Source Power††

Sets Port 2 source power level. Range is −85 to +10 dBm.
Default = −10 dBm

Port 2 Power
Range[0-7]††

Sets Port 2 source power range. The valid range is 0 to 7.
Default = 0
119

120

1 Supported Instruments

Port 2 Auto Power
Range††

Enables auto power ranging on port 2. Default = No

Sweep Time Instrument sweep time. Zero sweep time turns on the Auto
Sweep Time, which ensures the minimum sweep time.
Default = 100 msec

IF Bandwidth
(Avg)

Instrument receiver IF bandwidth setting in the Averaging
menu.
Default = 1000 Hz

Use Fast CW Enables Fast CW mode. Default = Yes

Avg Factor
[1-999]

Number of averages per measurement. Default = 1

Cal Type [SHN] S = Software calibration. H = Hardware calibration. N = No
calibration. Default = H

Cal Set No. Models A, B, C, and D opt 11: 1 through 5 specifies which
instrument calibration sets to use; 6 specifies the active
instrument state.
Models D and E: 1 through 32 specifies which instrument
calibration sets to use; 33 specifies the active instrument
state. Default = 1

Soft Cal Sequence Software calibration requires measurement of (L)oad,
(O)pen, (S)hort, (T)hru, and optionally (I)solation in a certain
order. This string defines the sequence of these standard
measurements by these letters (L, O, S, T, I). Default = LOST

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Use Linear List Yes = load linear sweeps into the 8753 frequency list
instead of one of the fixed point counts. This mode should
be faster than using the instrument’s linear frequency
sweep. Default = Yes

Freq Range [36N]† This option sets Frequency Range to 3 GHz, 6 GHz, or No
change.
Default = N

Table 30 Options for the HP/Agilent 8753 (continued)

Option Description
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Notes:
† These options apply only when using external test set (Models A, B, C, and D
opt 11).
†† These options apply only when using built-in test set (Models D and E).

Init Command This command field sets the instrument to a mode that is
not supported by the option table. This command is sent at
the end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 30 Options for the HP/Agilent 8753 (continued)

Option Description
121

1 Supported Instruments
Wiltron360 Network Analyzer
122

The Wiltron360 network analyzer has a frequency range of
10 MHz to 60 GHz depending on the RF source. If the frequency
sweep requested exceeds the limits of the source, IC-CAP issues
an error message, Parameter Out of Range. Check Inputs. The
RF source is an integral component of the system for frequency
sweeps, but DC bias must be supplied from external sources to
acquire biased RF data.

The Wiltron360 can be added to the active instrument list by
issuing the Rebuild command from the Hardware Setup
window. If the Wiltron360 is manually added to the active
instrument list using the Add button, IC-CAP verifies that the
instrument is available on the bus when either the Measure or
Calibrate command is first issued.

IC-CAP assigns the following name to this unit:

NWA Network Analyzer Unit

IC-CAP supports only hardware calibration for this instrument.
After a broadband calibration, the 360 can perform a spot
measurement of swept calibrated data—software calibration is
not required. This capability also allows a CON frequency input
defined in an IC-CAP setup to be used with a broadband
calibration. For either measurement method, the requested
frequency points must be a subset of the frequency sweep
currently set up on the instrument. If the requested frequency
point is not part of the instrument sweep, IC-CAP will issue an
error message.

The measurement modes listed in Table 31 are selected by
setting the following fields in the Wiltron360 Instrument
Options folder:

• Use User Sweep

• CW Mode Setup

• Cal Type
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

IC-CAP supports recalling calibration sets from the Wiltron360
internal disk drive. The Cal File Name option is provided to
recall the desired calibration state from disk. If no calibration
file name is supplied, the current active instrument state is
used.

IC-CAP loads the Instrument Options parameters during a
measurement. Because this involves setting stimulus values
sensitive to the calibration, instrument options must match
those for which the Wiltron360 was calibrated; otherwise, the
Wiltron360 will issue a Calibration may be invalid message if
any of the downloaded stimulus values are different from the
current calibration. If this message is displayed, check the
Instrument Options folder to verify which value is different and
modify as appropriate. Use the Calibrate command from the
Setup menu to download the options information to the
Wiltron360 prior to calibrating. This ensures that the
calibration will match IC-CAP’s Setup and be valid.

Table 31 Measurement Modes

Mode Description Use
User
Sweep

CW
Mode
Setup

Cal
Type

CW
Sweep

Used when frequency is not the primary
sweep (Sweep Order = 1). IC-CAP performs a
spot measurement of 2-port data by setting
the instrument to each frequency point
individually and measuring all S-parameters.
A broadband hardware calibration can be
performed. The calibration does not have to
match the IC-CAP sweep exactly; however,
the desired swept frequency points must be
a subset of the calibrated frequencies.

Yes No H or
N

Single
Freq
CW

Used when a CW mode hardware calibration
is performed.

Yes Yes H
123

124

1 Supported Instruments

The following table describes the Wiltron360 options and their
default values, where applicable.

Intern
al
Sweep

Linear, log, or list sweeps. Hardware
calibration over requested frequencies is
completed before an IC-CAP measurement is
performed. Unlike CW Sweep, the calibration
frequencies must match the setup.

No No H or
N

Table 32 Wiltron360 options

Option Description

Use User Sweep Yes = Use user sweep
No = use instrument's internal sweep. Default = No

Hold Time Time, in seconds, the instrument waits before each sweep
to allow for DC settling. Default = 0

Delay Time Time the instrument waits before setting each frequency in
user sweep mode. Default = 50 msec

Port 1
Src Atten

Sets Port 1 source attenuation. Range is 0 to 70 dB, in 10 dB
increments. Default = 0 dB

Port 2
Src Atten

Sets Port 2 source attenuation. Range is 0 to 70 dB, in 10 dB
increments. Default = 0 dB

Port 2
Test Atten

Sets test port attenuation (port 2). Range is 0 to 40 dB, in
10 dB increments. Default = 0 dB

Source Power Range is dependent on test set used. Default = 0 dBm

IF Bandwidth
[NRM]

Sets instrument's receiver IF Bandwidth. N = Normal
R = Reduced M = Minimum. Default = N

Avg Factor
[1-4095]

Sets number of averages per measurement Default = 1

Use CW Mode
Setup

Indicates to IC-CAP that NWA has been set up in single
point (CW) measurement mode. Default = No

Table 31 Measurement Modes

Mode Description Use
User
Sweep

CW
Mode
Setup

Cal
Type
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Cal Type[HN] H = Hardware calibration N = No calibration Default = H

Cal File Name Specifies instrument calibration file to recall. If hardware
calibration is requested and this option is empty, IC-CAP
will use the current active instrument state. Default = Null

Soft Cal Sequence Software calibration requires measurement of (L)oad,
(O)pen, (S)hort, (T)hru, and optionally (I)solation in a certain
order. This string defines the sequence of these standard
measurements by these letters (L, O, S, T, I). Default = LOST

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set to a mode not supported by the option
table. This command is sent at the end of instrument
initialization for each measurement. Normal C escape
characters such as \n (new line) are available. Default =
none

System Variables None. Software calibration is not provided for the
Wiltron360.

Table 32 Wiltron360 options (continued)

Option Description
125

1 Supported Instruments
Oscilloscopes
126

The oscilloscopes supported by IC-CAP are:

• HP 54120T Series Digitizing Oscilloscopes

• HP 54510 Digitizing Oscilloscope

• Agilent Infiniium Oscilloscope

• HP 54750 Series Digitizing Oscilloscopes
HP 54120T Series Digitizing Oscilloscopes
The HP 54120 Series of digitizing oscilloscopes measure
time-domain responses, including TDR (time-domain
reflectometry).

• HP 54121T measures signals from DC through 20 GHz.

• HP 54122T (does not have a step generator and cannot
perform TDR measurements) provides programmable input
attenuation. Bandwidth is reduced to 12.4 GHz due to the
input attenuators.

• HP 54123T operates up to 34 GHz; it operates up to 20 GHz
on channel 1 (the channel on which the step generator is
available).

IC-CAP assigns the following names to the units:

CHn Channel Unit n (1, 2, 3, and 4)

A Setup configured for measurements using an HP 54120 Series
is in the model file 54120.demo.mdl. See Appendix G, “54120
Demo” for additional information about this demonstration file.
These files also include examples using an HP 54120 Series
oscilloscope with an HP 8130 pulse generator and provides
hints for obtaining good alignment between measured and
simulated waveforms when a pulse generator is used.

The following instrument capabilities are supported by IC-CAP:

• Time-domain measurements nested within DC bias settings
provided by DC SMUs.

• 4-channel concurrent data acquisition.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• Offset, range, and probe attenuation adjustment for each
channel. HP 54122T includes options to set internal
attenuation for each channel (refer to Table 33).

• Averaging of between 1 and 2048 waveform acquisitions on
each channel.

• Automatic Pulse Parameter Measurements, such as risetime
and peak-to-peak voltage. These are requested in Outputs of
Mode T. For help on the available choices, click the middle
mouse button over the Pulse Param field and see the Status
window.

• Square-wave generation (except HP 54122T) on CH1, the
left-most connector on the test set. Frequency can be
adjusted from 15.3 Hz to 500 kHz. To activate the step
generator, the Setup should include an Input with Mode V
and Type TDR. In the absence of a type TDR Input, the step
generator is not activated.

The instruments do not support some of the fields present in a
TDR Input. For example, it is not possible for the instrument to
offer other than a 50-ohm source impedance. The one field that
is of consequence to oscilloscope measurements is Period.
IC-CAP directs the instrument to use the closest value
supported.

The other TDR Input fields are ignored during measurement,
and the following hardware-imposed values of the instrument’s
step function apply:

• Initial value of 0V

• Pulsed value of 200 mV into 50 ohms; 400 mV into an
open-circuit

• Delay of approximately 17 nsec

• Risetime of approximately 40 psec

• Pulse width equal to about 50 percent of the specified period

• Source impedance of 50 ohms

• Time-Domain Reflectometry (except HP 54122T). When a
type TDR Input is present in the Setup, the reflected signal is
available on the unit designated CH1.
127

128

1 Supported Instruments

To make a time-domain measurement, a Setup must have these
inputs and outputs:

• An Input with Mode T and Type LIN. Here, the values of
Start, Stop, and Number of Points govern the time axis of the
measurement. Start and Stop values define the time viewing
window, and are relative to the trigger event used by the
oscilloscope.

• Optionally, an Input of Mode V and Type TDR or PULSE. The
Period field in this Input controls the rate of the
oscilloscope’s internal square-wave generator. If Period is set
to 0, or if this Input is absent from the Setup, the
oscilloscope’s internal square-wave generator is not
activated for the measurement. In this case, a trigger signal
must be provided on the oscilloscope’s trigger input.

If the Input’s Unit field is set to ground, IC-CAP ignores the
Input during the measurement. In this manner,
measurements can be performed using a pulse generator
controlled by its front panel. If the Input’s Unit field is set to
the pulse unit of a supported pulse generator (for example,
PULSE1 for an HP 8130 generator), then IC-CAP will control
the pulse generator to provide stimulus to the DUT and
oscilloscope.

Refer to the HP 8130 Pulse Generator documentation
provided with IC-CAP.

• To capture a waveform from any of the instrument’s 4
channels requires an Output of Mode V. The Output Editor
permits you to specify from which channel a waveform is
desired. Define an Output for each channel of interest.

• To obtain automatically extracted pulse parameters at any of
the 4 channels requires an Output of Mode T.

The following pulse parameters can be requested:
DUTYCYCLE, FALLTIME, FREQ, OVERSHOOT, PERIOD,
PRESHOOT, RISETIME, VPP, VRMS, +WIDTH, and -WIDTH.
Consult the instrument’s Front Panel Operation Reference
for definitions of these parameters or information on the
process by which the instrument computes them.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

By defining multiple Outputs for a scope channel, it is
possible to obtain both the full time-domain waveform and
any number of automatically extracted pulse parameters for
that channel, all in the same measurement. This can be done
with any or all of the 4 channels within the same
measurement.

The following table describes the HP 54120 series options and
their default values, where applicable.

Table 33 HP 54120 Series Options

Option Description

Hold Time Time, in seconds, prior to performing time-domain
measurement. Can be used to permit additional DC
stabilization when a time-domain sweep is nested within
DC steps provided by a DC bias unit. Default = 0

Averages Number of averages. Maximum = 2048. Default = 1

CH1 Offset† DC offset value of Channel 1 in volts. Does not directly
affect waveforms returned from the oscilloscope. However,
an improper setting can cause the instrument to fail when
measuring pulse parameters, such as RISETIME. Set to a
value close to the middle of the expected range of the
output voltage waveform to maximize the instrument’s
ability to achieve high resolution without experiencing
clipping. Valid range is ± 500mV ⋅ (CH1 Probe Attn) ⋅ (CH1
Internal Attn).
Default = 200.0mV

CH1 Probe Attn† Set to 10 if the channel 1 probe provides a divide by 10
functionality (20dB). Specifying the attenuation of the probe
permits the oscilloscope to generate data in which the
probe attenuation is corrected out. Values between 1 and
1000 are accepted. Default = 1.0

CH1 Internal Attn† HP 54122T only. This option causes IC-CAP to control
attenuators inside the 54122 test set. The attenuators have
limited power-handling ability††. Measured voltages will
take the attenuation setting into account. Values 1, 3, 10,
and 30 are valid. Default = 1.0
129

130

1 Supported Instruments

Notes:
† Option table entries are also provided for Offset, Probe Attn, Internal Attn, and
Range on channels CH2, CH3, and CH4.
††Changing the Probe Attn options for CH1-CH4 and the trigger input does not
attenuate the input signals. It only changes the results reported by the instrument.
To deliver signals exceeding 2V DC or 16 dBm AC peak, use an external attenuator.

By using the internal attenuators of the HP 54122T (via the Internal Attn
options), larger voltages can be accepted. Limitations on attenuator voltage and
power handling are described in the Internal Atten documentation in the Channels
Menu chapter of the HP 54122T Front Panel Reference.

CH1 Range† Set in excess of the maximum anticipated signal swing for
this channel. Does not affect waveforms returned from the
oscilloscope. However, an improper setting can cause the
instrument to fail when measuring pulse parameters, such
as RISETIME. Specify a Range value between

CH1 Range†

(cont’d)
8mV ⋅ (CH1 Probe Attn) ⋅ (CH1 Internal Attn) and
640mV ⋅ (CH1 Probe Attn) ⋅ (CH1 Internal Attn).
Default = 640.0 mV

Table 33 HP 54120 Series Options (continued)

Option Description
NOTE The external trigger is ignored if a TDR type Input is defined in the Setup.
In the presence of a TDR type Input, the scope is triggered by its internal
TDR step generator.
The TRG options listed in the following table apply when
driving the trigger input of the oscilloscope with an external
signal. This is typically done with the trigger output from a
signal generator.

Table 34 Trigger Options for the HP 54120T Series

Option Description

TRG Probe Attn Set to 10 if the trigger probe is fitted with a 10X (20dB)
divider. Values between 1 and 1000 are accepted. Default =
1.0
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

TRG Slope Specify triggering on a rising (+) or falling (−) edge. Default
= +

TRG Level Voltage threshold at which triggering occurs. Valid range is
±1V ⋅ (TRG Probe Attn). Default = 100.0mV

Normalize TDR If Yes, TDR waveform data from CH1 is subject to the
HP 54120 series reflection normalization process. This can
substantially improve waveform integrity when cabling and
test fixtures have impedance mismatches. Prior to using
this option perform calibration of the network reflection
path via the front panel Network page. Default = No
(This option is not supported by the HP 54122.)

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example) use this option to avoid
measurement timeouts. Default=0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 34 Trigger Options for the HP 54120T Series (continued)

Option Description
HP 54510 Digitizing Oscilloscope
The HP 54510 is a 1 giga-sample/second, 2-channel digitizing
oscilloscope. The HP 54510 driver is an example of a driver
created using the Open Measurement Interface. The driver’s
source code can be found in the files user_meas3.hxx and
user_meas3.cxx in the directory $ICCAP_ROOT/src. For
information, refer to Chapter 2, “Drivers.”

IC-CAP assigns the following names to the units:

CHn Channel Unit n (1 and 2)

The following instrument capabilities are supported by IC-CAP:

• Time-domain measurements nested within DC bias settings
provided by DC SMUs.

• 2-channel concurrent data acquisition.
131

132

1 Supported Instruments

• Offset, range, and probe attenuation adjustment for each
channel. (Refer to Table 35.)

• Averaging 1 to 2048 waveform acquisitions on each channel.

• Automatic Pulse Parameter Measurements, such as risetime
and peak-to-peak voltage. These are requested in Outputs of
Mode T. For help on the available choices, click the middle
mouse button over the Pulse Param field and see the Status
window.

To make a time-domain measurement, a Setup must contain
these Inputs and Outputs:

• An Input with Mode T and Type LIN. Here, the values of
Start, Stop, and Number of Points govern the time axis of the
measurement. Start and Stop values define the time viewing
window, and are relative to the trigger event used by the
oscilloscope. The HP 54510 driver uses the repetitive
sampling mode and therefore always measures 501 points.
The timebase range is set to 500 × step size of the input
sweep. The timebase requires a value in the sequence 1-2-5,
that is, 1 nsec, 2 nsec, 5 nsec, 10 nsec, ... , 1 sec, 2 sec, or 5
sec. If the Input step size does not correspond to a valid
timebase, the driver aborts the measurement and
recommends new stop and step values for the input sweep.

• Optionally, an Input of Mode V and Type PULSE. A trigger
signal must be provided on the oscilloscope’s trigger input. If
the Input Unit field is set to ground, IC-CAP ignores the
Input during the measurement. In this manner, you may
perform measurements using a pulse generator controlled by
its front panel. If the Input Unit field is set to the pulse unit
of a supported pulse generator (for example, PULSE1 for an
HP 8130 generator), then IC-CAP will control the pulse
generator to provide stimulus to the DUT and oscilloscope.
For more information, refer to “HP 8130 Pulse Generator” on
page 149. Also refer to the documentation for the HP 54120
in the 54120.demo.mdl file as well as Appendix G, “54120
Demo.”

• To capture a waveform from either of the instrument’s 2
channels requires an Output of Mode V. The Output Editor
permits you to specify from which channel a waveform is
desired. Define one such Output for each channel of interest.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• To obtain automatically extracted pulse parameters at either
of the 2 channels, the Setup must include an Output of Mode
T.

The following pulse parameters can be requested:
DUTYCYCLE, FALLTIME, FREQ, OVERSHOOT, PERIOD,
PRESHOOT, RISETIME, VPP, VRMS, +WIDTH, and -WIDTH.
Consult the instrument’s Front Panel Operation Reference
for definitions of these parameters, or information on the
process by which the instrument computes them.

By defining multiple Outputs for a scope channel, both the
full time-domain waveform and any number of automatically
extracted pulse parameters for that channel can be obtained,
all in the same measurement. This can be done with either or
both of the channels in the same measurement.

The following table describes the HP 54510 options and default
values, where applicable.

Table 35 HP 54510 Options

Option Description

Hold Time Time, in seconds, prior to performing time-domain
measurement. Can be used to permit additional DC
stabilization when a time-domain sweep is nested within
DC steps provided by a DC bias unit. Default = 0.0

Averages Number of averages. Maximum = 2048. The HP 54510
rounds the number of averages to the nearest power of 2. If
the value is exactly halfway between, it takes the higher
value. Default = 1

CH1 Offset† DC offset value of Channel 1, in volts. This does not directly
affect waveforms returned from the oscilloscope. However,
an improper setting can cause the instrument to fail when
measuring pulse parameters, such as RISETIME. Set this to
a value close to the middle of the expected range of the
output voltage waveform; this will maximize the
instrument’s ability to achieve high resolution without
experiencing clipping. Valid range is ±250V • (CH1 Probe
Attn). Default = 0.0
133

134

1 Supported Instruments

Notes:
† Option table entries are also provided for Offset, Probe Attn, and Range for CH2.
††Changing Probe Attn options for CH1, CH2 and the External Trigger input does not
attenuate the input signals. It only changes the results reported by the instrument.
To deliver signals exceeding 5V rms (50 ohm) or 250V (1 Mohm), an external
attenuator should be used.

Refer to the following table for oscilloscope trigger options. The
TRG/TRIG options apply to the trigger input. This is typically
done with the trigger output from a signal generator. When
using the EXT TRIG channel, be sure the TRG Source option is
set to “E” (External Trigger).

CH1 Probe Attn†,

††
Set to 10 if the Channel 1 probe provides a divide by 10
functionality (20 dB) and 50 ohm input impedance is
selected. Specifying the attenuation of the probe permits
the oscilloscope to generate data in which the probe
attenuation is corrected out. Values between 0.9 and 1000
are accepted.
Default = 1.0

CH1 Range† Set in excess of the maximum anticipated signal swing for
this channel. This option does not affect waveforms
returned from the oscilloscope. However, an improper
setting can cause the instrument to fail when measuring
pulse parameters, such as RISETIME. Default = 2.0

Table 35 HP 54510 Options (continued)

Option Description
NOTE Instrument settings not included in the Instrument Options folder, such as
input impedance, can be set manually before executing Measure.
Table 36 Oscilloscope Trigger Options for the HP 54510

Option Description

EXT TRIG Attn Attenuation of the EXT TRIG channel. Set to 10 if the trigger
probe is fitted with a 10X (20dB) divider and the EXT TRIG
channel is set to 50 ohms. Values between 0.9 and 1000 are
accepted. Default = 1.0
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

TRG Source Specify the trigger source channel: 1 (CH1), 2 (CH2) or
E (External Trigger). Default = E

TRG Slope Specify + (rising edge) or − (falling edge). Default = +

TRG Level Voltage threshold at which triggering occurs. Valid range is
±2V • (TRG Probe Attn) for the EXT TRIG channel and
±1.5 • (full scale from center of screen) for channels CH1
and CH2.
Default = 0.0

Delay for
Timeouts

For long-running measurements (that use a high number of
averages, for example), use this option to avoid
measurement timeouts.
Default = 0.0

Init Command Use to set the instrument to a mode not supported by the
option table. This command is sent at the end of instrument
initialization for each measurement. Normal C escape
characters such as \n (new line) are available. Default =
none

Table 36 Oscilloscope Trigger Options for the HP 54510 (continued)

Option Description
Agilent Infiniium Oscilloscope
The Agilent Infiniium scopes are available as 2 or 4-channel
digitizing oscilloscopes. IC-CAP supports the following
Infiniium scopes:

• 54810A, 54815A, 54820A, 54825A 500 MHz bandwidth, 1
GSa/s sample rate and 32K of memory width.

• 54835A, 1 GHz bandwidth, 4 GSa/s sample rate, 62K memory
width.

• 54845A, 1.5 GHz bandwidth, 8 GSa/s sample rate, 64K
memory width.

The IC-CAP driver supports acquisition only from Channels 1
and 2.

IC-CAP assigns the following names to the units:

CHn Channel Unit n (1 and 2)
135

136

1 Supported Instruments

The following instrument capabilities are supported by IC-CAP:

• Time-domain measurements nested within DC bias settings
provided by DC SMUs.

• 2-channel concurrent data acquisition (Channel 1 and 2
only).

• Offset, range, and probe attenuation adjustment for each
channel. (Refer to Table 37.)

• Averaging 1 to 2048 waveform acquisitions on each channel.

• Automatic Pulse Parameter Measurements, such as risetime
and peak-to-peak voltage. These are requested in Outputs of
Mode T. For help on the available choices, click the middle
mouse button over the Pulse Param field and see the Status
window.

To make a time-domain measurement, a Setup must contain
these Inputs and Outputs:

• An Input with Mode T and Type LIN. Here, the values of
Start, Stop, and Number of Points govern the time axis of the
measurement. Start and Stop values define the time viewing
window, and are relative to the trigger event used by the
oscilloscope. The Infiniium acquisition range is given by the
number of acquisition points multiplied by the sampling
period (1/Acquisition Rate). Acquisition points and
frequency are set in the instrument option table. If the time
viewing window set by the Start and Stop values is wider
than the acquisition range, the driver aborts the
measurement. The Acquisition rate must be in the 1, 2.5, 5,
10 sequence, that is, 1MSa/s, 2.5 MSa/s, 5 MSa/s, etc. The
maximum acquisition rate depends on the scope model. The
acquisition mode may be Real or Equivalent Time. Real time
mode usually is used for single events, such as transients,
while equivalent time may be used for periodic signals.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• Optionally, an Input of Mode V and Type PULSE. A trigger
signal must be provided on the oscilloscope’s trigger input. If
the Input Unit field is set to ground, IC-CAP ignores the
Input during the measurement. In this manner, you may
perform measurements using a pulse generator controlled by
its front panel. If the Input Unit field is set to the pulse unit
of a supported pulse generator (for example, PULSE1 for an
HP 8130 generator), then IC-CAP will control the pulse
generator to provide stimulus to the DUT and oscilloscope.
For more information, refer to “HP 8130 Pulse Generator” on
page 149.

• To capture a waveform from either of the instrument’s 2
channels requires an Output of Mode V. The Output Editor
permits you to specify from which channel a waveform is
desired. Define one such Output for each channel of interest.
When acquisition range and points differ from sweep time
interval and points, the waveform is actually interpolated by
the actual measured data. It is a good practice to use an
acquisition range that is slightly greater than the time
window, but not too much greater.

• To obtain automatically extracted pulse parameters at either
of the 2 channels, the Setup must include an Output of Mode
T.

The following pulse parameters can be requested: DUTYCYCLE,
FALLTIME, FREQ, OVERSHOOT, PERIOD, PRESHOOT,
RISETIME, VPP, VRMS, +WIDTH, and -WIDTH. Consult the
instrument’s Front Panel Operation Reference for definitions
of these parameters, or information on the process by which the
instrument computes them.

By defining multiple Outputs for a scope channel, both the full
time-domain waveform and any number of automatically
extracted pulse parameters for that channel can be obtained, all
in the same measurement. This can be done with either or both
of the channels in the same measurement.

As shown in the following instrument options table, the trigger
source may be set to Channel 1 or 2, or to EXT or AUX. The
trigger sweep may be Auto, Triggered or Single. Trigger level
and slope are also specified.
137

138

1 Supported Instruments

The following table describes the Infiniium options and default
values, where applicable.

Table 37 Infiniium Options

Option Description

Hold Time Time, in seconds, prior to performing time-domain
measurement. Can be used to permit additional DC
stabilization when a time-domain sweep is nested within
DC steps provided by a DC bias unit. Default = 0.0

Sample Rate The internal sample frequency. It must be in the 1, 2.5, 5, 10
sequence. In real-time mode the maximum sample rate is 1
GSa for the 54810A/15A, 2GSa for the 54820A/25A, 4 GSa
for the 54835A and 8 GSa for the 54845A (2 channel mode).
Default = 1 GSa.

Acquisition
Mode

Can be real time (R) or equivalent time (E). Real time is used
for single events such as transients while equivalent time
may be used to increase the “equivalent” sampling rate
when the waveform is periodical. Default = R.

Acquisition
Count

Turns averaging on or off, and (when on) sets the number of
averages. Allowed range is 1 through 4096. Use 1 to turn
averaging off. Use 2 through 4096 to turn on averaging and
set the count. Default = 1.

Acquisition
Points

Number of acquired points at the sample rate. The
acquisition range is defined as the acquisition period
1/(Sample rate) multiplied by the number of points. The
number of points is limited by the memory depth: 32,768
points for the 54810A/15A/20A/25A and 65,536 points for
the 54835A/45A.

CH1 Scale†

[V/div.]
DC vertical sensitivity in Volts per division. When probe
attenuation is 1 maximum sensitivity is 5 V/div. Minimum
sensitivity is 1 mV/div for 54810A/15A/20A/25A and
2 mV/div for 54835A and 54845A. Default = 500 mV/div.

CH1 Offset†

[V]
DC available offset. It depends on the scale. Maximum
offset is ±250V when CHn Scale = 5 V/div.

CH1 Input† Channel input impedance: DC 50 ohm (DC50),1 Mohm (DC),
AC. LFR1 and LFR2 are also possible when using the Agilent
1153A differential probe.
Default is DC.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Notes:
† Option table entries are also provided for Scale, Offset, Input and Probe Attn, for
CH2.
††Changing Probe Attn options for CH1, CH2 and the External Trigger input does not
attenuate the input signals. It only changes the results reported by the instrument.
To deliver signals exceeding 5V rms (50 ohm) or 250V (1 Mohm), an external
attenuator should be used.

CH1 Probe Attn†

††
Set to 10 if the Channel 1 probe provides a divide-by-10
functionality (20 dB) and 50 ohm input impedance is
selected. Specifying the attenuation of the probe permits
the oscilloscope to generate data in which the probe
attenuation is corrected out. Values between 0.9 and 1000
are accepted. Default = 10.0.

Trigger Input Set trigger input source (1, 2, AUX or EXT). Default is 1 for
Channel 1.

Trigger Sweep Set trigger sweep Modes to Auto (A), Triggered (T), or
Single (S). Default is Auto (A).

Trigger Slope The only supported trigger mode is Edge. Trigger slope may
be positive (+) or negative (-). Default is positive (+).

Trigger Level [V] Sets voltage level at which trigger occurs. Level range
depends on sweep mode and scope type. Default is 500 mV.

Delay for
Timeouts

For long-running measurements, such as collecting a high
number of averages, use this option to avoid measurement
timeouts. Default = 0.0

Init Command Sets the instrument to a mode not supported by the option
table. This command is sent at the end of instrument
initialization for each measurement. Normal C escape
characters such as \n (new line) are available. Default =
none

Table 37 Infiniium Options (continued)

Option Description
139

1 Supported Instruments
HP 54750 Series Digitizing Oscilloscopes
140

The IC-CAP driver for the HP 54750 supports the following
plug-in modules:

• HP 54753A. This module is a 2-channel vertical plug-in with a
TDR step generator built into channel one. The bandwidth of
the TDR/vertical channel is 18 GHz. The bandwidth of
channel 2 is 20 GHz.

• HP/Agilent 54754A. This module has 2 independent vertical
channels and 2 independent step generators. The bandwidth
of both channels is 18 GHz.

• HP 54752A and HP 54752B. The 54752A has two 50 GHz
bandwidth channels and 54752B provides a single
cost-effective channel.

• HP 54751A. This module has two 20 GHz bandwidth
channels.

Since the instrument is configurable, the insertion of the
instrument in the active instrument table must be done using
rebuild active list. Plug-in modules must be placed starting from
slot 1 without discontinuities. IC-CAP assigns the following
names to the units:

• TDRn for TDR channels

• CHn for normal scope acquisition channels

Example files: A Setup configured for measurements using the
HP 54750, is in the model file
/examples/model_files/misc/hp54750.mdl.

The following instrument capabilities are supported by IC-CAP:

• Time domain acquisition for each channel (TDR or CH).

• Offset, Scale, and Probe Attenuation adjustment for each
channel.

• Averaging of between 1 and 4096 waveform acquisition.

• Automatic Pulsed/Waveform parameter measurements for
each TDR or CH type channel.

• Trigger Probe Attenuation, Slope, Level, Mode as well as the
trigger slot (2 or 4 in case 2 plug-ins are present) can be set in
the instrument table.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• Start time, Stop time, and number of points are set in the
Input Time sweep.

• Step generator on TDR channels. Frequency rate can be
adjusted between 50 and 250 kHz. To activate the step
generator the setup should include an Input with mode V and
Type TDR. Note that only one TDR step generator can be
active per setup (differential TDR is not supported). The
period on the TDR input is used to calculate frequency for
TDR/TDT measurements.

• TDR normalized measurements are supported for each of the
TDR channels. To acquire a normalized TDR response,
perform either software or hardware calibration, then set
Normalize to Y in the TDR channel and measure. To perform
software TDR calibration, first set the normalization option
to TDR, then run Calibrate and follow the steps.

• TDT normalized measurements are supported for each
plug-in. Plug-in channel 1 must be the TDR source, and
channel 2 must be the TDT sink. To acquire a normalized TDT
measurement on channel 2, perform either software or
hardware TDT calibration, then set Normalize to Y on
channel 2 (sink) and measure. To perform software TDT, set
the normalization option to TDT, run Calibrate, and follow
the steps.

You must be sure to insert the oscilloscope into IC-CAP’s
instrument table. Connect the instrument, switch it on, and
perform Rebuild in the Hardware Setup. The HP 54750 should
be now present in the Instrument List. Select HP 54750 in the
list and select Configure. The units should reflect the hardware
configuration and the plug-in type in the Unit Table. Here are
examples of what should appear in the table:

• If module HP/Agilent 54754 occupies slots 1 and 2, TDR1 and
TDR2 units should appear in the Unit Table.

• If module HP 54753 occupies slots 1 and 2, TDR1 and CH2
units should appear in the Unit Table.

To make time-domain measurements (acquisition only), a setup
must contain these Inputs and Outputs:
141

142

1 Supported Instruments

• An Input with Mode T, and Type LIN. Minimum start time is
20 nsec; max start time is 10 sec. The minimum time range is
100 psec while the maximum range is 10 sec. During
acquisition (no internal TDR) the number of acquired points
can be set to any number between 16 and 4096.

• A trigger signal must be provided at the trigger input (slot 2
or 4) to acquire any waveform. Trigger Mode can be selected
in the instrument option. Use trigger mode FREErun or
TRIGgered for periodic waveforms. Use option TRIGgered
when using external trigger for example for acquiring
transients or when using external TDR step generator.

• To capture a waveform, an Output of Mode V is required.
Define an output for each channel of interest.

• To obtain automatically-extracted pulse parameters, the
setup must include an output of mode T that specifies the
unit and the requested parameter. Examples of parameter
values are VPP and VRMS.

To make TDR or TDT measurements, a setup must contain these
Inputs and Outputs:

• An Input with Mode T and Type LIN. Minimum start time is
20 nsec, max start time is 10 sec. The minimum time range is
100 psec while the maximum range is 10 sec. When the
instrument’s Normalize option is turned OFF, the number of
acquired points can be set to any number between 16 and
4096. When the Normalize option is ON, the number of points
can be set to any number between 16 and 4096 that is a
multiple of 2, such as 512 or 1024.

• An Input with Mode V and Sweep Type TDR. The unit is set
to the TDR source channel. Only the value of the Period is
used during measurement for setting the frequency of the
internal step generator. Use a value between 50 Hz (20 msec)
and 250 kHz (4 usec). The other fields, such as Delay and
Width, are used only by the simulator. If an external TDR
step generator is used, then Unit must be set to GND, and all
parameters (including Period) are used only by the simulator.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

• To capture the output waveforms, insert 1 or 2 Outputs of
mode V referring to the TDR source channel for TDR
measurements, or to the sink channel for TDT
measurements.

• (Optional). To measure waveform parameters such as VPP
and RISETIME, insert 1 or more Outputs of mode T.

TDR or TDT measurements can be done with or without
normalization. Normalization establishes a reference plane
different from the oscilloscope output. The reflection and ohm
measurements are based on the actual measured step height.
Also, from this information, the scope builds a filter, which can
be applied to any reflected signal. The risetime of the filtered
step can be selected. The filtered step removes any losses or
discontinuities from the reference plane generated by the
plug-in.

To measure without normalization, simply set the Normalize
flag to N in the instrument options for any channel involved in
the TDR or TDT measurement.

To make normalized TDR measurements, either hardware or
software normalization must be performed prior to
measurement. To perform software calibration, set the
Normalization mode to TDR in the Instrument Option Table.
Then run Calibrate. This routine will load current sweeps (start,
stop and period) in the instruments and then will ask the
operator to insert the calibration standards (short and load) at
the reference plane.

Once the instrument has been successfully calibrated, set the
Normalize flag of the TDR source channel to ‘Y’ before running a
measurement to acquire normalized data. Set the normalized
response Unit to VOLT (default), REF or OHM in the Instrument
Options Table. When setting response scale to VOLT, IC-CAP
will acquire the actual normalized response. When the response
scale is OHM, IC-CAP will acquire the normalized-to-50 ohm
response. This is particularly useful when evaluating
characteristic impedance of different line series. Setting the
scale to REF will acquire the reflection due to a change of
impedance. The normalized rise time can also be set in the
instrument option table. The minimum settable rise time
143

144

1 Supported Instruments
actually depends on the number of points. Generally speaking,
increasing the number of points allows a smaller rise time and
therefore improves the space resolution (minimum distance
between 2 discontinuities to distinguish them in the space/time
domain).

To make normalized TDT measurements, either hardware or
software normalization must be performed prior to
measurement. To perform software calibration, set
Normalization mode to TDT in the Instrument Option Table.
Then connect source and sink together (without DUT) and run
Calibrate.

Once the instrument has been successfully calibrated, set the
Normalize flag of the TDT sink channel to ‘Y’ before running a
measurement to acquire normalized data. Normalized Response
unit can be set to VOLT (default) or GAIN. The normalize
risetime can also be varied with the same limitation described
above.
 Differential TDR/TDT Capability
New addition to TDR driver: Differential TDR/TDT capabilities.

Two new entries have been added to the Agilent 54750
Instrument table:

Differential Mode

Set the instrument in differential mode.

Channel 1 and 2 are the TDR channels.

The differential stimulus on channel 1 and 2 can be Differential
(DIFF) or Common (COMM).

Default is no differential stimulus (NONE).

Once the instrument has been calibrated in differential
Response mode, the response reading can be set to Differential
(DIFF) Mode or Common (COMM).

Note that this field is active only when the Normalize Flag of the
response channels is set to yes.

Default is DIFF.
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

To make TDR differential measurements, place the Agilent
54754A plug-in in the first 2 instrument slots (channel 1 and 2).

In the IC-CAP measurement page insert 1 input of type TDR
(Unit TDR1 or CH1).

Insert 1 input of Mode T (Type LIN) and set the time interval
and the number of points.

Insert 2 outputs of Mode V monitoring channel 1 and 2.

In the 54750 Instrument Option Table, set the Differential Mode
to DIFF or COMM.

To measure raw data simply set the Normalize flags of CH1 and
CH2 to N and run the measurements.

To measure normalized data, perform the TDR normalization
before running the measurements. Follow the instructions in
the 54754 manual to calibrate in differential TDR mode.

Once the instrument has been successfully calibrated, set the
Normalize Mode to TDR, set Differential Response Mode to DIFF
or COMM. To measure the normalized response simply set the
Normalize flag of channel 1 and 2 to yes.

Summary differential TDR

To make TDT differential measurements place 1 Agilent 54754A
plug-in in the first 2 instrument slots (channel 1 and 2) and
second 54754 plug-in in the third and fourth slots. When
measuring differential TDT, the driver assumes that Channel 1
and 2 supply the differential stimulus (input).

In the IC-CAP measurement setup page insert 1 input of type
TDR (Unit TDR1 or CH1).

Differential Mode Differential Response Mode Response Mode CH1 CH2

Raw
DIFF/COMM

Not Relevant Nor relevant N N

Norm
DIFF/COMM

DIFF/COMM TDR Y Y
145

146

1 Supported Instruments

Insert 1 input of Mode T (Type LIN) and set the time interval
and the number of points.

Insert 4 outputs of Mode V monitoring channel 1 to 4. In the
54750 Instrument Option Table, set the Differential Mode to
DIFF or COMM.

To measure raw data simply set the Normalize Flags of
CH1,CH2,CH3 and CH4 to N and run the measurements.

To measure normalized data, the user needs to perform the TDT
normalization before running the measurements.

Follow the instructions in the 54754 manual on how to calibrate
in differential TDT mode.

Once the instrument has been successfully calibrated, set the
Normalize Mode to TDT, set Differential Response Mode to DIFF
or COMM.

To measure the normalized response simply set the normalized
flag of channels 3 and 4 to yes.

Summary differential TDT:

The following table describes the HP 54750 options and default
values, where applicable.

Differential Mode Differential
Response Mode

Response Mode CH1 CH2 CH3 CH4

Raw
DIFF/COMM

Not Relevant Not relevant N N N N

Norm
DIFF/COMM

DIFF/COMM TDT N N Y Y

Table 38 HP 54750 Options Table

Option Description

Hold Time Time, in seconds, prior to performing time-domain
measurements. Default = 0
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

Averages Number of averages per sample. Min = 1 (off), Max = 4096.
Default = 16

Normalization
Mode

Two modes supported for calibration and measurements:
TDR or TDT.
Default = TDR

Normalized
Response Unit

Sets the type of unit for the acquired normalized response.
Possible choices are VOLT, REF or OHM for TDR type
measurements and VOLT or GAIN for TDT measurements.
Default = VOLT

Normalized
Response
Risetime

Set the risetime for the normalized response. Minimum
risetime depends on number of points. In case specified rise
time is greater than the minimum allowed for that number
of points, IC-CAP will set the minimum possible value.
Default = 40 psec

CHn Probe
Attenuation

Probe Input impedance is always 50 ohm. Specifying the
attenuation of the probe permits the oscilloscope to
generate data in which the probe attenuation is corrected
out. For example, set it to 10 if the channel 1 probe provides
a divide by 10 functionality. Values between 0.9 and 1000
are accepted.
Default = 1.0

CHn Offset DC offset value of Channel 1, in volts. This does not directly
affect waveforms returned from the oscilloscope. However,
an improper setting can cause the instrument to fail when
measuring pulse parameters, such as RISETIME. Set this to
a value close to the middle of the expected range of the
output voltage waveform; this will maximize the
instrument’s ability to achieve high resolution without
experiencing clipping. Valid range is ±250V. Default =
200.0 mV

CHn Scale Default = 100.0 mV/div.

CHn Normalize Normalization Flag. When set to ‘Y’, IC-CAP acquires the
normalized response with unit as specified in The
Normalized Response Unit. Default = N

TRG Probe
Attenuation

Default = 1.0

Table 38 HP 54750 Options Table (continued)

Option Description
147

148

1 Supported Instruments

TRG Slope Specifies triggering on a rising (+) or falling (−) edge.
Default = +

TRG Level Voltage threshold at which triggering occurs. Range
depends on attenuation. Default = 0.0 mV

TRG Slot Choose the input trigger channel. For example, when 54754
plug-in is present on slot 1 and 2, trigger will be on slot 2.
When another TDR plug-in is present on slot 3 and 4, slot 4
is another possible choice for trigger. Default = 2

TRG Mode Used when acquiring a waveform not in TDR mode (internal
trigger is used in that case). Possible choices are freerun
(FREE) usually used for periodic waveform or triggered
(TRIG) for transients. Default = FREE

Delay for timeout Increase this delay when acquiring a large number of points
or averages. This gives more time for the instrument to
digitize the waveform and save it into memory. Default = 3

Init Command Use to set the instrument to a mode not supported by the
option table. This command is sent at the end of instrument
initialization for each measurement. Normal C escape
characters such as \n (new line) are available. Default =
None

Table 38 HP 54750 Options Table (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
Pulse Generators
IC-CAP Reference
This section describes the HP 8130 and the HP 8131 pulse
generators.
HP 8130 Pulse Generator

The HP 8130 is a programmable pulse generator controllable by
IC-CAP. It provides excellent features for time-domain
characterization using pulse stimuli. The following pulse
characteristics are programmable:

• Period, Width, and Delay

• Risetime and Falltime

• Initial and Pulsed Voltage Levels

IC-CAP assigns the following name to the channel 1 output unit:

• PULSE1

The HP 8130 offers a fixed source impedance of 50 ohms. Pulse
period can be varied from 3 nsec to 99.9 msec. Rise and
falltimes can be varied from 670 psec to 100 µsec. The output
voltage range is from −5.2 to +5.2V, but the maximum voltage
swing must be less than or equal to 5.2V. A complementary
output signal is available (refer to the following table).

A Setup configured for measurements using the HP 8130, along
with HP 54120 Series digitizing oscilloscopes is in the model file
54120.demo.mdl. Additional information about this
demonstration file is available in Appendix G, “54120 Demo.”
These files also include examples using an HP 54120 Series
oscilloscope with no pulse generator, or with a manually
controlled pulse generator. The “54120 Demo” also provides
hints for obtaining good alignment between measured and
simulated waveforms.

The following table describes the HP 8131 options and their
default values, where applicable.
149

150

1 Supported Instruments

Table 39 HP 8130 Options

Option Description

Width at Top Flag provided to aid simulator compatibility. The HP 8130
defines pulse width to include the top section of the pulse
plus one-half of the rising and falling edges. SPICE defines
pulse width to include the top of the pulse only. For
compatibility with SPICE, set this option to Yes (the 8130
pulse will become wider). Default = No

Enable Comp Out If Yes, complementary data can be obtained by cabling to
the complementary output connector on the HP 8130.
Default = No

Pulse Delay Offset The HP 8130 has a delay between its trigger output and
signal output (SPICE has nothing like this). The value is
added to the TDR or PULSE sweep Delay value. Positive
values will shift the waveform to the right; negative values
will shift the waveform to the left. This option permits one
to align the simulated and measured waveforms. The option
may need adjustment if the period is changed. Additional
hints about the use of this option are provided in
Appendix G, “54120 Demo,” in the section Aligning Data.
Default = 0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none
HP 8131 Pulse Generator
The HP 8131 is a programmable pulse generator controllable by
IC-CAP. It provides excellent features for time-domain
characterization using pulse stimuli. The following pulse
characteristics are programmable:

• Period, Width, and Delay

• Initial and Pulsed Voltage Levels

IC-CAP assigns the following name to the channel 1 output unit:

PULSE1
IC-CAP Reference

Supported Instruments 1

IC-CAP Reference

The HP 8131 offers a fixed source impedance of 50 ohms. Pulse
period can be varied from 2 nsec to 99.9 msec. Rise and fall
times are fixed <200 psec; if >200 psec, IC-CAP will issue a
warning PULSE1 Rise/Fall time fixed at less than 200ps.

The output voltage range is from −5.0 to +5.0V; the maximum
voltage swing must be less than or equal to 5.0V. The offset
voltage is from -4.95V to +4.95V. A complementary output signal
is available (refer to the following table).

A Setup configured for measurements using the HP 8131, along
with HP 54120 Series digitizing oscilloscopes is in the model file
54120.demo.mdl. Additional information about this
demonstration file is available Appendix G, “54120 Demo.”
These files also include examples using a HP 54120 Series
oscilloscope without a pulse generator, or with a manually
controlled pulse generator. The “54120 Demo” also provides
hints for obtaining good alignment between measured and
simulated waveforms.

The following table describes the HP 8131 options and their
default values, where applicable.

Table 40 Options for the HP 8131

Option Description

Width at Top Flag provided to aid compatibility with SPICE and other
simulators. The HP 8131 defines pulse width to include the
top section of the pulse plus one-half of the rising and
falling edges. SPICE defines pulse width to include only the
top of the pulse; as a result, SPICE pulses are wider. For
SPICE compatibility, set this option to Yes. Default = No

Enable Comp Out If Yes, complementary data can be obtained by cabling to
the complementary output connector on the HP 8131.
Default = No
151

152

1 Supported Instruments

Pulse Delay Offset The HP 8131 has a delay between its trigger output and
signal output (SPICE does not). The value is added to the
TDR or PULSE sweep Delay value. Positive values will shift
the waveform to the right; negative values will shift the
waveform to the left. This option permits alignment of
simulated and measured waveforms. The option may need
adjustment if the period is changed. Additional hints about
the use of this option are provided in Appendix G, “54120
Demo,” in the section Aligning Data. Default = 0

Init Command Command field to set the instrument to a mode not
supported by the option table. This command is sent at the
end of instrument initialization for each measurement.
Normal C escape characters such as \n (new line) are
available. Default = none

Table 40 Options for the HP 8131 (continued)

Option Description
IC-CAP Reference

Supported Instruments 1
Dynamic Signal Analyzer
IC-CAP Reference
IC-CAP supports the HP/Agilent 35670A dynamic signal
analyzer.
HP/Agilent 35670A Dynamic Signal Analyzer

The HP/Agilent 35670A portable 2- or 4-channel dynamic signal
analyzer evaluates signals and devices under 102.4 kHz
real-time rate at 800 lines of resolution. It provides spectrum,
network, and time- and amplitude-domain measurements from
virtually DC to slightly over 100 kHz.

IC-CAP assigns the following names to the units:

The following table describes the HP/Agilent 35670A options
and their default values, where applicable.

CHn Channel Unit (1 and 2)

SRC Source Unit

Table 41 HP/Agilent 35670A Options

Option Description

Hold Time Time delay, in seconds, before each primary sweep begins.

Delay Time Time delay, in seconds, before each sweep point is
measured.

Averages Defines the averaging of the instrument. Maximum is
9,999,999.

Source Mode Source waveforms: (R) random noise, (B) burst random,
(P) periodic chirp, or (S) fixed sine.

DC Offset Specifies a DC offset for the source output.

Source Freq Sets the frequency of the sine source.

Window Type Type of windowing function:
(H) Hanning, (U) uniform, (F) flat or (E) exponential.
153

154

1 Supported Instruments

CHn Units Vertical unit for the specified display’s Y axis:
(V) volts, (V2) square volts, (V/RTHZ) square root power
spectral density, or (V2/HZ) power spectral density.

Init Command Extra command to initialize the instrument to a certain
mode.

Table 41 HP/Agilent 35670A Options (continued)

Option Description
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

2
Drivers

Prober Drivers 156

Prober Driver Test Program 166

Matrix Drivers 168

Using IC-CAP with the HP 5250A Matrix Driver 180

Using IC-CAP with HP 4062UX and Prober/Matrix Drivers 187

Adding Instrument Drivers to IC-CAP 191

Class Hierarchy for User-Contributed Drivers 228

Order in Which User-Supplied Functions are Called 231

Handling Signals and Exceptions 238

This chapter describes prober and matrix driver functions,
prober settings and commands, the prober driver test
program, and using OMI to add drivers.
155Agilent Technologies

2 Drivers
Prober Drivers
156

A prober driver is a set of USERC functions designed to
control an IC wafer prober from an IC-CAP macro program.
There are 3 types of probers (an initial call declares which
type is in use) with these symbolic names:

• EG1034X (ElectroGlas 1034X), EG2001X (ElectroGlas
2001X)

• APM3000A (and APM6000A and APM7000A) (TSK APM
models)

• SUMMIT10K (Cascade SUMMIT 10000)

These probers share the same driver functions. External user
functions and internal design functions, as well as prober
settings and commands, are described in this section.

Additional TIS prober drivers required the renaming of
native IC-CAP prober functions from prober_xxxx() to
icprober_xxxx(). This only affects systems where the
prober.c file has been customized in the OMI environment,
and will not affect previously-written macros. See the
Readme file in $ICCAP_ROOT/src/README for information
about these functions.

To provide easier manipulation of a raw GPIB device file,
IC-CAP offers a set of low-level I/O functions named
ice_hpib_xxxx. The declarations of these functions are found
in icedil.h; their definitions are in icedil.c. Both files are
provided as C source files. For more information on these
I/O functions, see Appendix I, “icedil Functions” in online
help. Driver functions are contained in the directory
$ICCAP_ROOT/src in the files shown in the following table.

Table 42 Prober Driver Source Files

File Name Description

prober.h Prober call prototypes for userc.c

prober.c Actual code for each prober function

icedil.h Low level I/O call prototypes for prober.c
IC-CAP Reference

Drivers 2

IC-CAP Reference

A custom driver can be added by editing prober.c in
$ICCAP_ROOT/src and generating a new shared library file,
libicuserc.<ext> (where ext is a platform-specific extension)
because all prober drivers are written in C and treated as
library functions.

• For information on libicuserc, refer to “Creating a New
Shared Library” on page 203.

• For details regarding adding library functions, refer to
“Creating C Language Functions in IC-CAP" in the IC-CAP
User’s Guide.

Source code is provided with this open interface.
Recompilation and relinking are necessary if this driver is
user-modified.

icedil.c Actual code for each ice_hpib_xxxx call

testprob.c Small interactive program to test the driver

run_testprob Properly sets your shared library lookup path and runs
./testprob if it exists, otherwise it runs
$ICCAP_ROOT/bin/testprob. ICCAP_ROOT must be
properly set in your environment for run_testprob to work.

Table 42 Prober Driver Source Files

File Name Description
External Prober User Functions
This section describes the external user functions.

Prober_debug This function takes 2 arguments and sets the
internal flags. The first argument defines the debug flag;
when it is 1, all debugging information is displayed in the
Status window. The second argument defines the stop flag;
when it is 1, the Macro execution stops when an error is
detected. After Prober_init(), the debug flag is off (0) and
the stop flag is on (1). This function does not exist in TIS.
This function always returns 0. An example call is:
x = Prober_debug (1, 0);
157

158

2 Drivers

Every function looks at this internal debug flag and prints
out any GPIB commands it is going to send, or a string it
just received from the prober.

Prober_init This function must be called before any other
prober calls are made in a Macro program. This function
takes a GPIB address of the prober, flat orientation, prober
type name, and a raw GPIB interface name to which the
prober is connected. The flat orientation is usually 0, 90,
180, or 270. The function returns 0 when prober
initialization is successful and −1 when it fails. The following
table lists the GPIB configuration recommended for
HP 4062UX.
NOTE A raw GPIB interface name is different for each platform. Refer to the
following table for this name. A separate GPIB interface may be
necessary if the given prober does not conform to IEEE 488 standard.
For a Sun SPARC computer, use the following call because a
National Instruments GPIB card has this name by default:
x = Prober_init (1, 0, “EG1034X”, “/dev/gpib0”);

For an HP 700 Series computer, use the following call
because it involves a symbolic name rather than a GPIB
interface filename:
x = Prober_init (1, 0, “EG1034X”, “hpib”);

This function also checks the prober type and sets the
internal prober type flag for subsequent driver calls. It closes
its private unit descriptor from any previous prober access,
opens the given GPIB interface file and keeps a new entity
id. It then calls an appropriate subfunction, which does the
prober-dependent initialization.

Table 43 Standard HP 4062UX Configuration

Select Code Devices

7 or 27 Instruments and Switching Matrix

25 Wafer Prober
IC-CAP Reference

Drivers 2

IC-CAP Reference

Prober_reset This function takes no arguments and sets the
prober to Local mode. It returns 0 when successful and 1
when it fails. This function is not available for EG1034X (for
which it is a no-operation). An example call is:
x = Prober_reset ();

This function clears the interface file and sends a selected
device clear command to the prober.

Prober_status This function takes no arguments and returns
3 Real values in 1 array. The first element of the array
indicates whether the prober is Remote (1) or Local (0). The
second element indicates whether the edge contact is
detected (1) or not (0). The last element indicates whether
the Cassette is empty (1) or not (0). An example call is:
status = Prober_status ();
if (status[0] == 1) then ...

This function sends a query command to the prober and
receives information about Remote/Local state as well as the
edge sensor output. The Cassette Empty error is detected in
the function Phome and referred by this function, which
keeps these states and returns them back in an array of Real
values.

Pdown This function takes no arguments and lowers the
chuck of the wafer prober. It returns 0 when successful and
−1 when it fails. An example call is:
x = Pdown ();

Phome This function takes no arguments and performs
several tasks depending on the prober type. It returns 0
when successful and −1 when it fails. When it detects a
Cassette Empty error, it returns 1. An example call is:
x = Phome ();

This function calls a subfunction based on the prober type.
A subfunction actually does the prober-dependent operation
appropriate for Phome.
NOTE Set the SUMMIT 10000 prober to Remote manually after this function to
move the chuck to its Load position and turn the mode to Manual for wafer
alignment.
159

160

2 Drivers

Pimove Like Pmove, this function takes 2 arguments and
moves the chuck relative to the current position. It returns 0
when successful and −1 when it fails. An example call is:
x = Pimove (1, 0);

Pink This function takes 1 argument and triggers the
specified inker. It returns 0 when successful or −1 when it
fails. EG1034X and SUMMIT10K probers do not support an
inker, so this function is a no-operation for them. An
example call is:
x = Pink (1);

Pmove This function takes 2 arguments and moves the
chuck to the specified absolute coordinates established by
Pscale and Porig. The first argument specifies the new X
position and the second specifies the new Y position. It
returns 0 when successful and −1 when it fails. An example
call is:
x = Pmove (2, 4);

This function calculates how many machine units the chuck
must move relative to the current position, and sends an
appropriate GPIB command to move the chuck. It also
updates its internal variables to keep track of the position.

Porig This function takes 2 numbers and defines these
numbers as X and Y coordinates of the current chuck
position. This function must be called before any Pmove or
Pimove functions. It always returns 0. An example call is:
x = Porig (0, 0);

This function stores the given numbers in its private
variables.

Ppos This function takes no arguments and returns 2 Real
values in an array, indicating the current die X and Y
position being probed. The first element of the array is the
X coordinate and the second is the Y coordinate. An
example call is:
position = Ppos ();
print “X = “; position[0], “Y = “; position[1];

This function copies its private variables (which indicate the
current position) and returns them.
IC-CAP Reference

Drivers 2

IC-CAP Reference
Pscale This function takes the die X and Y dimensions in
micrometers. These numbers are later used in Pmove, Porig,
and Pimove functions. It always returns 0. An example call
is:
x = Pscale (5000, 5000);

This function stores the given numbers in its private
variables.

Pup This function takes no arguments and raises the chuck
of the wafer prober so that probe pins come in contact with
the wafer. It returns 0 when successful and −1 when it fails.
An example call is:
x = Pup ();
Internal Prober Functions

Several internal functions support the user functions to
customize the prober driver. For each algorithm, refer to the
prober.c source file.

prober_get_err This function takes 1 argument and calls a
subfunction depending on the prober type. Each subfunction
reads any error status from the prober. If it encounters an
unknown error, it prints out the given number with an error
message to the Status window. It always returns 0. An
example call is:
ret = prober_get_err(n);

prober_get_srq This function takes no arguments and returns
0 (no SRQ) or 1 (SRQ) depending on the SRQ line of the
device file. An example call is:
ret = prober_get_srq();

prober_message This function takes 1 argument, a pointer to
a string, and prints an error message to the Status window
such as <name>: unknown prober type, where <name> is
replaced with the given string. An example call is:
ret = prober_message(“Prober_reset”);

prober_precheck This function takes no arguments and
checks prober state such as Remote/Local and SRQ. It
returns 0 when successful and −1 when it fails. An example
call is:
ret = prober_precheck();
161

162

2 Drivers
prober_response This function takes 1 argument that is
either a pointer to a character array or null. It calls a
subfunction depending on the prober type and each
subfunction reads any status information from the prober.
Internal flags are set according to the status and any errors
are reported. It returns 0 if there is no error. If a non-null
pointer is given, a received string from the prober is
returned using this pointer. An example call is:
char buffer[PSIZE];
ret = prober_response(buffer);

prober_spoll This function takes no arguments and performs
serial polls in a prober-dependent way that may be different
from the standard IEEE 488 implementation. It returns a
status byte from the prober. An example call is:
ret = prober_spoll();

prober_wait_srq This function takes 1 argument that is a
timeout value in seconds, and waits for SRQ to be asserted.
It returns 0 when SRQ is detected and −1 when a timeout or
error occurs. An example call is:
ret = prober_wait_srq(60.0); /* 60 sec */

Prober Settings and Commands
This section describes the correct IC-CAP wafer prober
settings and their associated GPIB commands.

EG1034X

This simple manual prober uses 2 settings. (Note that
IC-CAP uses SRQ whereas HP 4062UX does not.)

• GPIB Address: Any

• SRQ Switch: Enabled

The following table lists the EG1034X GPIB commands. (Note
that IC-CAP uses the MM command to move the chuck;
HP 4062UX uses the MO commands for the EG1034X.)
IC-CAP Reference

Drivers 2

IC-CAP Reference

EG2001X

This driver is tested with a prober software version called
AC. The parameters listed in the following table must be set
to control this prober. Note that the I/O PROTOCOL is
different from the one for HP 4062UX. The Die Size is
optional, but is included because IC-CAP does not set the
size for manual operations.

The following table lists the EG2001X GPIB commands. Note
that Chuck Home uses both UL and LO commands
(HP 4062UX uses LO).

Table 44 EG1034X GPIB Commands

Item Command Reply Item Command Reply

Move Chuck MM MC Chuck Home HO MC

Chuck Up ZU MC Chuck Status ?S SZ...

Chuck Down ZD MC

Table 45 EG2001X Settings

Parameter Value Parameter Value

METRIC/ENGLISH METRIC AUTO LOAD ENB if available

DIE X and Y SIZE Any AUTO ALIGN ENB if available

AUTO PROBER PAT. EXTERNAL AUTO PROFILE ENB if available

AUTO DIAMETER ENB MF/MC on X-Y ENB

Z-TRAVELING MODE EDGE-SEN MF/MC on Z DIS

I/O PROTOCOL ENHANCED MF/MC on OPT. ENB

I/O PORT GPIB-SP MF/MC on others DIS

GPIB ADDRESS Any

SRQ SWITCH ENB
163

164

2 Drivers

APM3000A, APM6000A, APM7000A

This prober uses the following settings:

• GPIB Address: Any

• Mode Switches: 3-4 OFF, 3-5 ON, 23-4 ON

The following table lists the commands.

SUMMIT10K

This driver waits for an SRQ for an operation completed.
With Summit Software version 2.10, the F10 key enables
Remote mode. This prober uses the following settings.

• COMMUNICATION PROTOCOL: GPIB

• COMMAND SET: native

• DISP REMOTE CMDS: off

• BUS ADDRESS: any

• TIMEOUT: 30.0

• CONTROL MODE: remote

Table 46 EG2001X GPIB Commands

Item Command Reply Item Command Reply

Move Chuck MM MC or MF Auto Profile PZ MC or MF

Chuck Up ZU Auto Align AA MC or MF

Chuck Down ZD Trigger Inker IK MC or MF

Chuck Home UL/LO MC or MF Chuck Status ?S SZ...

Table 47 APM3000A, APM6000A, and APM7000ACommands

Item Command Reply Item Command Reply

Move Chuck A 65 CPU Halt T

Chuck Up Z 67 or 73 Trigger Inker M 69

Chuck Down D 68 Chuck Home L 70 or 76
IC-CAP Reference

Drivers 2

IC-CAP Reference

SUSS PA 150, PA 200

The SUSS ProberBench Interface developed by Karl Suss for
IC-CAP is provided as a convenience, but is not supported
by Agilent Technologies. The prober driver supports all
functions described in “External Prober User Functions” on
page 157 and “Internal Prober Functions” on page 161 except
prober_spoll(), prober_get_srq(), and prober_wait_srq(). In
addition to these IC-CAP functions, you can use the complete
ProberBench command set (150 functions) to enhance
operation. For information on these functions, refer to the
ProberBench User Manual. For information on writing macros
to control the prober, refer to “Writing a Macro” on page 187.

The SUSS PA 150 and PA 200 Semiautomatic Probers utilize
a Microsoft Windows-based user interface running on an
IBM-compatible PC. The IC-CAP environment communicates
with the prober via a macro over the IEEE 488 bus.

The required PC IEEE488 control hardware is: IOtech
Personal488/AT.

The PC configuration must use the following values for the
settings shown; all other settings use default values:

Interface Type: GP488B

Name: IEEE

IEEE Bus Address: 22

System Controller: Off

Time-out (ms): 3000

Interface Bus Address: 02E1

DMA Channel: None

Interrupt: None
165

2 Drivers
Prober Driver Test Program
166

This section describes the prober test program testprob,
which is provided with C source code. This program runs
independently from IC-CAP and interactively calls driver
functions to test an Agilent-supplied or a custom driver.

The file for this program is located in $ICCAP_ROOT/src and
is called testprob.c. It includes the test program main. The
Makefile offers an option to build this test program. This
program is linked with prober.o, iceswn.o, icedil.o, a GPIB
library to exercise both prober and switching matrix drivers.
If testprob has been rebuilt with a custom driver, use an
absolute path to specify the new testprob because
$ICCAP_ROOT/bin has another, original testprob executable.

The testprob executable is an interactive program that gets
user input from its stdin and calls an appropriate driver
function, then prints out the return value(s) of the driver
function to the Status window.

The run_testprob script properly sets your shared library
lookup path and runs ./testprob if it exists, otherwise it runs
$ICCAP_ROOT/bin/testprob. Therefore, you should use the
run_testprob script to run testprob. Make sure
$ICCAP_ROOT is properly set in your environment, then
type run_testprob.

An actual prober (matrix) must be connected to a raw GPIB
device file in order to perform driver (matrix) tests. Off-line
testing is not available with this program.

This program expects to see a function name and its
arguments as if they appeared in an IC-CAP Macro program.
However an argument list cannot include another function,
that is, nesting is not allowed.

A command example is:
Prober_init(1, 0, “EG1034X”, “hpib”)
IC-CAP Reference

Drivers 2

IC-CAP Reference
The currently supported functions are shown next.

Connect Prober_debug

FNPort Prober_init

Pdown Prober_reset

Phome Prober_status

Pimove Pscale

Pink Pup

Pmove SWM_debug

Porig SWM_init

Ppos Wait
NOTE Any line starting with # is treated as a comment and is ignored. A blank
line is skipped (this is helpful when a file is used to supply input to this
program).

Because this test program is not a real Macro interpreter, it
has the following restrictions:

• No control constructs

• No variables

• No nesting of functions

• No function library other than the prober and matrix
driver

• No capability to execute IC-CAP Macro programs.

Because nesting is not supported, the Connect function
needs a port address such as 32701 instead of FNPort(1).
Refer to the HP 4062UX Programming Reference for more
information about port addresses.
167

2 Drivers
Matrix Drivers
168

A matrix driver is a set of USERC functions designed to
control the switching matrices through an HP 4084
controller from an IC-CAP Macro program. The matrix
driver supports the matrices listed in the following table.

External user functions and internal design functions are
described in this section. They are designed to be compatible
with HP 4062UX TIS where possible.

Source files for this matrix driver are iceswm.h and
iceswm.c. The header file iceswm.h is included in userc.c so
that the function names can appear in the Function List of
IC-CAP.

Source code is provided with this open interface.

Table 48 Types of Matrix Drivers

Matrix Controller Pins Device

HP 4085A HP 4084A 48 HP 4062A and HP 4062B

HP 4085B HP 4084B 48 HP 4062C and HP 4062UX

HP 4089A HP 4084B 96 same as above, with 2 controllers
External Matrix Driver User Functions
This section describes the matrix driver external user
functions.

SWM_debug This function takes 1 argument and sets the
internal debug flag. When the argument is 1, debugging
information is printed out to the Status window; when the
argument is 0, printing is turned off. It always returns 0.
This function does not exist in TIS. An example call is:
x = SWM_debug(1)

Every function looks at this flag and prints out any GPIB
commands it is going to send, or a string it just received
from a matrix controller.
IC-CAP Reference

Drivers 2

IC-CAP Reference

SWM_init This function takes 2 GPIB addresses, a matrix
name, and a raw GPIB interface name to which the matrix
is connected. The first GPIB address is for the block 1
(usually 19) and the second is for the block 2 (22). However,
a different address can be assigned for each matrix
controller. For the HP 4085A and HP 4085B (both 48-pin
systems), the second address is used as the controller
address, and the first address is ignored. It returns 0 when
successful and −1 when it fails. This function does not exist
in TIS. An example call is:
x = SWM_init (19, 22, “HP4089A”, “hpib”); ! for 96-pin

or
x = SWM_init (0, 22, “HP4085B”, “hpib”); ! for 48-pin

This function checks the matrix type and sets the internal
type flag for subsequent matrix calls. It closes its private
entity id from a previous matrix access (when it exists), and
opens the given raw GPIB device file. Then it calls an
internal function swm_init_unit to reset a controller. This
clears all pins and ports.

Connect This function takes a port address and a pin
number and connects the given port to the pin. The port
address is either 0 or from 32701 to 32711, inclusive. The
pin number is 0 or from 1 to 48/96 inclusive. When a pin
card does not exist for the given pin number, it gives an
error message and aborts the Macro execution.

An example call is:
x = Connect(32701, 25);

This function sends GPIB commands to the matrix controller
and either connects or disconnects the specified port and
pin. The following table lists argument combinations.

Table 49 Argument Combinations

Port Address Pin Number Description

0 0 Disconnect all pins from all ports.

0 X Disconnect pin X from its connected port.

X 0 Disconnect all pins connected to port X.
169

170

2 Drivers

As in TIS, multiple pins can be connected to 1 port by
calling this function several times. Pin numbers 1 through 48
belong to block 1; pin numbers 49 through 96 belong to
block 2. When a 96-pin matrix is used, do not connect block
1 and block 2 pins to 1 single port. Because this function
does not include switching delay, allow enough wait time
before and after measurement to prevent relay damage.
Virtual Front Panel (VFP) is not supported.

FNPort This function takes a port number and returns a
port address for Connect. This allows compatibility with the
HP 4062UX. An example call is:
port = FNPort(1);

Wait This function takes a wait time, in seconds, to give a
necessary delay to wait until SMU outputs become zero for
dry switching. This function does not exist in TIS. It returns
0 when successful or −1 when it fails. An example call is:
x = Wait (0.1) ! 100ms delay;

X Y Connect port X to pin Y.

Table 49 Argument Combinations

Port Address Pin Number Description
Internal Matrix Driver Functions
The internal functions described next support the user
functions. Refer to the source file for each algorithm.

swm_connect_pin This function takes a GPIB address of a
controller, a port number, and a pin number. It sends a Pin
Connect command to the controller, and is called from
swm_connect (Connect) to actually perform the pin
connection and disconnection.

swm_connect_port This function takes a GPIB address and a
port number to send a Port Connect command to the
controller, which manages input relays of an HP 4089A
matrix.
IC-CAP Reference

Drivers 2

IC-CAP Reference
swm_cut_port_pin This function takes a GPIB address and a
pin number to cut the pin connection when a 96-pin matrix
is used. It also checks if the port to which the pin was
connected can be turned off; if it can (both Force and Guard
are off), it turns off this port.
NOTE When a switching matrix controller shares a single GPIB with other
instruments, set the system variable INST_START_ADDR to a value
greater than the matrix controller’s GPIB address. This prevents IC-CAP
from accessing the controller while performing Rebuild (instrument list).

swm_init_unit This function takes a file designator (or eid,
a small integer usually obtained by calling the open system
function) and a GPIB address of a matrix controller. It is
called from swm_init to initialize a controller and clear all
pins and ports for which the controller is responsible.

swm_parse_err This function takes a status byte sent from a
matrix controller and determines the cause of an SRQ. If
there is no error, it returns 0 to allow the caller to keep
running. If there is an error, it returns −1 to abort the
execution of the caller.

swm_release_port This function takes a GPIB address and a
port number to send a Port Disconnect command to the
controller only when a 96-pin matrix is used. Because block
1 and block 2 pins should not be connected to a single port,
a disconnect request such as Connect(32701, 0) not only cuts
the connection between a port and a pin, but also
disconnects the input relays of the port.
171

2 Drivers
Using IC-CAP with B2200A/B2201 Low-Leakage Mainframe Driver
172

This section describes the transforms implemented for the
B2200A/B2201 Low-Leakage Mainframe Driver.

List of the transforms:

• B2200_bias_card_enable

• B2200_bias_ch_enable

• B2200_bias_enable

• B2200_bias_init

• B2200_close_interface

• B2200_connect

• B2200_couple_enable

• B2200_couple_setup

• B2200_debug

• B2200_disconnect_card

• B2200_GPIB_handler

• B2200_ground_card_enable

• B2200_ground_enable

• B2200_ground_init

• B2200_ground_outch_enable

• B2200_ground_unused_inputs

• B2200_init

• B2200_open_interface

The following sections describe these transforms. For more
details about the Agilent B2200A/B2201A, see its User
Guide.
Utility Functions
B2200_debug When set to 1, prints out all command strings
sent to the instrument. This flag is common to all B2200A’s
on the bus, regardless of their GPIB address.
B2200_debug(<flag>)
IC-CAP Reference

Drivers 2

IC-CAP Reference
where:

<flag> is "1", "0", "Yes", or "No".

B2200_close_interface Closes the current interface, which
was opened by calling B2200_open_interface().

B2200_GPIB_handler Returns -1 if the interface has not been
initialized (invalid handler). Returns a positive integer
(handler) if the interface has been opened.

Returns the current interface handler. The function is
provided as a utility function, which enables you to write
advanced PEL code to write and read data to the B2200A
using the HPIB_write and HPIB_read functions. Initializing
the handler using B2200_open_interface enables you to use
B2200A's built-in driver functions as well as writing PEL
code to support other features that are not currently
supported by the built-in functions, all in the same PEL
code.

Initialization and General Configuration
B2200_open_interface Opens and initializes the GPIB
interface and must be run first in the PEL program. The
interface handler is saved in a static variable so that the
interface will be shared by all the other B2200's function
calls. You can drive multiple B2200 instruments as long as
they are on the same interface bus (obviously, they must
have different addresses).
B2200_open_interface(<Interface Name>)

where:

<Interface Name> is the name of the GPIB interface.

B2200_init Must be run first in the PEL program to
initialize the instrument and set the configuration mode.
When the instrument is in AUTO configuration mode and
multiple plug-in cards are installed in the B2200 slots from
173

174

2 Drivers

slot 1 continuously, the installed cards are then treated as
one card (numbered 0). This function resets all the settings
to factory default before setting the configuration mode.

This function also sets the default connection rule for the
specified card. When the connection rule is FREE (default
mode), each input port can be connected to multiple output
ports and each output port can be connected to multiple
input ports. When the connection is SINGLE, each input port
can be connected to only one output. Connection sequence
specifies the open/close sequence of the relays when
changing from an existing connection to a new connection.
B2200_init(<addr>,<cardNumber>,<config>,<connectionRule>,
<connectionSequence>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<cardNumber> is 0(auto), 1, 2, 3, or 4.

<config> is "AUTO" or "NORMAL" (string input).

<connectionRule> is "FREE" or "SINGLE".

<connectionSequence> is "NSEQ", "BBM", or "MBBR".

• NSEQ (No SEQuence): Disconnect old route, connect
new route.

• BBM (Break Before Make): Disconnect old route, wait,
connect new route.

• MBBR (Make Before BReak): Connect new route, wait,
disconnect old route.
Transforms Governing the Bias Mode
B2200_bias_init Selects the Input Bias Port for the specified
card. The Input Bias Port is the dedicated bias port.
B2200_bias_init(<addr>, <CardNumber>, <InputBiasPort>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).
IC-CAP Reference

Drivers 2

IC-CAP Reference

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<InputBiasPort> is 1 to 14 (numeric input) or −1 to
disable bias port.

B2200_bias_ch_enable This function bias-enables specific
output ports in the channel list for the specified card. The
input ports specified in the channel list are ignored since
the input port is always the Bias Input Port. By default, all
the outputs are bias-enabled after a reset.
B2200_bias_ch_enable(<addr>,<CardNumber>,<State>,<Channel list>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<State> is the output port's state (allowed values are
"ENABLE", "DISABLE", "E", or "D")

<Channel list> is the list of channels, known as connection
routes. Example channel list: (@10102, 10203,
10305:10307)

B2200_bias_card_enable This function bias-enables all the
output ports of the specified card. By default, all ports are
bias-enabled after a reset.
B2200_bias_card_enable(<addr>, <CardNumber>, <CardState>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<CardState> is the card output port's state (allowed values
are "ENABLE", "DISABLE", "E", or "D").

B2200_bias_enable Enables the bias mode for the specified
card once Input Bias Port and Enabled Output ports are
specified. When Bias Mode is ON, the Input Bias Port is
connected to all Bias Enabled output ports that are not
175

176

2 Drivers
connected to any other input ports. Bias Disabled output
ports are never connected to an Input Bias Port when Bias
Mode is ON.

If another input port is disconnected from a bias enabled
output port, this port is automatically connected to the
Input Bias Port.

If another input port is connected to a Bias Enabled output
port, the output port is automatically disconnected from the
Bias Input Port. When Bias Mode is OFF, the Input Bias
Port is the same as the other ports.
B2200_bias_enable(<addr>, <CardNumber>, <mode>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<mode> is "On", "Off", "1", or "0".
 Transforms Governing the Ground Mode
B2200_ground_init Selects the input Ground Port for the
specified card. For each card, you can specify the same or a
different Ground Port. By default, the input Ground Port is
port 12. The ground port should be connected to 0 V output
voltage. See the Agilent B2200 User's Guide for details.
B2200_ground_init(<addr>,<CardNumber>,<InputGroundPort>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<InputGroundPort> is 1 to 14 (numeric input) or −1 to
disable ground port.

B2200_ground_outch_enable Ground-enables or
ground-disables output ports. When Ground Mode is turned
ON, the ground-enabled output ports that have not been
IC-CAP Reference

Drivers 2

IC-CAP Reference

connected to any other input port are connected to the
input ground port. The input ports specified in channel lists
are ignored since the input port is always the Input Ground
Port. By default, all the outputs are ground-disabled after a
reset.
B2200_ground _outch_enable(<addr>,<CardNumber>,<State>,
<Channel list>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<State> is the port's state (allowed values are "ENABLE",
"DISABLE", "E", or "D").

<Channel list> is the list of channels, known as connection
routes. Example channel list: (@10102, 10203,
10305:10307)

B2200_ground_unused_inputs Specifies the ground-enabled (or
unused) input ports for the specified card. When Ground Mode
is turned ON, the ground-enabled input ports that have not been
connected to any other port are connected to the input Ground
Port. By default, all the inputs are ground-disabled after a reset.
B2200_ground _unused_inputs(<addr>,<CardNumber>,<Input Channels>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, 4.

<Input Channels> is the list of input channels (e.g., "1, 2,
5"). Only input ports 1 to 8 can be defined as unused
(these are the input Kelvin Ports).

B2200_ground_card_enable Enables ground-enabling for all
the output ports of the specified card. By default, all ports
are ground-disabled.
B2200_ground_card_enable(<addr>,<CardNumber>,<CardState>)

where:
177

178

2 Drivers

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<CardState> is the card output port's state (allowed values
are "ENABLE", "DISABLE", "E", or "D").

B2200_ground_enable Enables the bias mode for the
specified card. When Ground Mode is turned ON, the Input
Ground Port (default is 12) is connected to all the Ground
Enabled input/output ports that have not been connected to
any other port. At Reset, Ground Mode is OFF. Ground
Mode cannot be turned ON when Bias Mode is ON.

See the Agilent B2200 User's Guide for additional comments
and restrictions.
B2200_ground_enable(<addr>, <CardNumber>, <mode>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, 4.

<mode> is "On", "Off", "1", or "0".
Transforms Governing the Couple Mode
B2200_couple_enable Use this function to enable or disable
Couple Port mode. Couple Port mode allows synchronized
connection of two adjacent input ports to two adjacent
output ports.
B2200_couple_enable(<addr>, <CardNumber>, <Mode>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<mode> is "On", "Off", "1", or "0".
IC-CAP Reference

Drivers 2

IC-CAP Reference
B2200_couple_setup Selects the couple ports for Kelvin
connections. At Reset, no input ports are coupled.
B2200_couple_setup(<addr>,<CardNumber>,<ListOfCoupledPorts>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<ListOfCoupledPorts> is the list of odd number input
channels (e.g., "1, 3, 5" means coupled ports are 1-2, 3-4,
5-6).
Transforms Governing the Switching

B2200_connect Connects or disconnects specified channels.
Bias Mode and coupling Mode are also taken into account
when a channel is closed or opened.

For example, in the list (@10102, 10203:10205), the following
channels are connected or disconnected on card 1. Input
port 1 to output port 2. Input port 2 to output port 3 and 5.
B2200_connect(<addr>,<Connect/Disconnect>,<ChannelList>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<Connect/Disconnect> is C or D.

<ChannelList> is the list of connections to close.

B2200_disconnect_card Opens all relays or channels in the
specified cards.
B2200_disconnect_card(<addr>, <CardNumber>)

where:

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.
179

2 Drivers
Using IC-CAP with the HP 5250A Matrix Driver
180

This section describes the transforms implemented for the
HP 5250A Switching Matrix.
NOTE The old switching box transforms that were implemented for the HP 40XX
series are not compatible with the new ones. The instruments have
different commands for switching and the 5250A has new features such
as BIAS and COUPLE modes, which were not available for the old 40XX
series.
List of the transforms:

• HP5250_debug

• HP5250_init

• HP5250_card_config

• HP5250_bias_init

• HP5250_bias_card

• HP5250_bias_channel

• HP5250_bias_setmode

• HP5250_couple_setup

• HP5250_couple_enable

• HP5250_connect

• HP5250_disconnect_card

• HP5250_compensate_cap

• HP5250_show()

The following sections describe these transforms. For more
details about the HP 5250A, see its User Guide.
IC-CAP Reference

Drivers 2
Utility Functions
IC-CAP Reference

HP5250_debug This transform is only for debugging. When
the debug flag is set to 1, all the functions print out all the
command strings that are sent to the instruments. Set flag
using the values 1 or 0, or use YES or NO.
HP5250_debug(<flag>)

HP5250_compensate_cap This transform is the equivalent
IC-CAP C routine for the HP BASIC capacitance
compensation routine called Ccompen_5250 supplied with
the HP 5250A. It returns a 2 by 1 matrix (2 rows, 1 column)
defined as follows:

• output.11 represents compensated capacitance data [F].

• output.21 represents compensated conductance data [S].
HP5250_compensate_cap (RawCap, RawCond, Freq, HPTriaxLenght,
UserTriaxLenghtHigh, UserTriaxLenghtLow, UserCoaxLenghtHigh,
UserCoaxLenghtLow)

where:

RawCap is Input Dataset containing raw capacitance data
[F]

RawCond is the Input Dataset containing raw
conductance data [S]

Freq is the measured frequency [Hz]

HPTriaxLenght is the HP Triax Cable Length [m]

UserTriaxLenghtHighis the user Triax Cable Length
(High) [m]

UserTriaxLenghtLow is the user Triax Cable Length
(Low) [m]

UserCoaxLenghtHigh is the user Coax Cable Length
(High) [m]

UserCoaxLenghtLow is the user Coax Cable Length (Low)
[m]
181

182

2 Drivers

HP5250_show() This transform has no inputs. It returns to
the standard output (screen or file) the following data about
the instrument status:

• Instrument Name

• Instrument Configuration (AUTO/NORMAL).

The following information is output for each card installed in
the instrument (card 0 if the instrument is in auto
configuration mode):

• Connection mode

• Connection sequence

• Input Bias Port

• Enabled Output Bias Ports

• Bias Sate (ON/OFF)

• Coupled Input Ports (only lower number is listed, e.g.,
“3,5” means ports 3 and 4 are coupled

• Couple Port Mode (ON/OFF)

• Connection Matrix Inputs(10)xOutputs(12,24,36, or48). The
following table shows an output example of the Channel
Matrix State where Card 1 is a 10x12 matrix switch. A
“1” in a matrix cell means the connection is closed.

Output Ports

1 2 3 4 5 6 7 8 9 10 11 12

1 0 0 0 1 0 0 0 0 0 0 0 0

2 1 1 1 1 1 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0

Input 4 0 0 0 0 0 0 0 0 0 0 0 0

Ports 5 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
IC-CAP Reference

Drivers 2
Initialization and General Configuration
IC-CAP Reference

HP5250_init This transform must be run first to initialize
the instrument with the address and interface. Using this
transform the configuration mode can be set to AUTO. When
the instrument is in AUTO configuration mode the same type
of card must be installed in the HP 5250 slots from slot 1
continuously. The installed cards are then treated as 1 card
(numbered 0).
HP5250_init (BusAddress, "Interface", "Configuration")

where

BusAddress is interface bus address (default is 22)

"Interface" is interface name (default is hpib)

"Configuration" is AUTO/NORMAL A/N (default is
NORMAL)

HP5250_card_config This transform is used to change the
default configuration for the specified card. When the
connection rule is FREE (default mode), each input port can
be connected to multiple output ports and each output port
can be connected to multiple input ports. When the
connection is SINGLE, each input port can be connected to
only 1 output. Connection sequence specifies the open/close
sequence of the relays when changing from an existing
connection to a new connection.
HP5250_card_config (CardNumber, "ConnRule", "ConnSequence")

where

CardNumber specifies the card (0 for AUTO configuration
mode)

"ConnRule" is FREE/SINGLE (default is FREE)

"ConnSequence" is NSEQ/BBM/MBBR (default is BBM)

• NSEQ (No SEQuence): Disconnect old route, connect
new route.

• BBM (Break Before Make): Disconnect old route, wait,
connect new route.
183

184

2 Drivers

• MBBR (Make Before BReak): Connect new route, wait,
disconnect old route.
Transforms Governing the Bias Mode
HP5250_bias_init This transform selects the bias port. When
using the HP/Agilent E5255A card, the Input Bias Port is the
dedicated bias port; however, for the HP/Agilent E5252A the
Input Bias Port must be selected using this function.
HP5250_bias_init(CardNumber, InputBiasPort)

where

Card Number specifies the card (allowed values 0-4, 0 =
auto configuration mode)

InputBiasPort specifies the input bias port number
(allowed values are 1-10)

HP5250_bias_card This transform bias-enables all the output
ports for the specified card.
HP5250_bias_card(CardNumber, "CardState")

where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

"CardState" is the card’s state (allowed values are
ENABLE/DISABLE or E/D)

HP5250_bias_channel This transform bias-enables the
specified output ports in the channel list. Note that the
input ports are ignored since the input port is always the
Bias Input Port.
HP5250_bias_channel ("State", "Channel list")

where

"State" is the output port’s state (allowed values are
ENABLE/DISABLE or E/D)

"Channel list" is the list of channels, known as connection
routes
IC-CAP Reference

Drivers 2

IC-CAP Reference

Example channel list: (@10102, 10203, 10305:10307)

HP5250_bias_setmode This transform enables the bias mode
for the specified card once Input Bias Port and Enabled
Output ports have been specified.
HP5250_bias_setmode (CardNumber, "BiasMode")

where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

"BiasMode" sets the bias mode on or off (allowed values
are ON/OFF or 1/0)

When Bias Mode is ON, the Input Bias Port is connected to
all the Bias Enabled output ports that are not connected to
any other input ports. Bias Disabled output ports are never
connected to an Input Bias Port when Bias Mode is ON.

• If another input port is disconnected from a bias enabled
output port, this port is automatically connected to the
Input Bias Port.

• If another input port is connected to a Bias Enabled
output port, the output port is automatically disconnected
from the Bias Input port.

When Bias Mode is OFF, the Input Bias Port is the same as
the other ports.
Transforms Governing the Couple Mode
HP5250_couple_setup This transform sets up couple ports
for making kelvin connections.
HP5250_couple_setup (CardNumber, "InputPorts")

where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

"InputPorts" is the list of coupled ports

Example: In the list "1,3,5,7,9" the coupled ports are 1-2,
3-4, 5-6, 7-8, 9-10
185

186

2 Drivers

HP5250_couple_enable This transform enables couple port
mode. Couple port allows synchronized connection of 2
adjacent input ports to 2 adjacent output ports.
HP5250_couple_enable (CardNumber, "CoupleState")

where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

"CoupleState" is the coupled state (allowed values are
ON/OFF or 1/0)
Transforms Governing the Switching
HP5250_connect This transform connects or disconnects
specified channels. Note that Bias Mode and/or coupling
Mode are also taken into account when a channel is closed
or opened.
HP5250_connect ("Action", "Channel list")

where

"Action" connects or disconnects channels (allowed values
are C and D)

"Channel list" is the list of connection routes to be
switched

Example: In the list (@10102, 10203:10205), the following
channels are connected or disconnected on card 1:

Input port 1 to output port 2.

Input port 2 to output port 3, 4, and 5.

HP5250_disconnect_card This transform simply opens all
relays or channels in the specified cards.
HP5250_disconnect_card (CardNumber)

where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)
IC-CAP Reference

Drivers 2
Using IC-CAP with HP 4062UX and Prober/Matrix Drivers
IC-CAP Reference

This section describes how to use HP 4062UX instruments
and the prober/matrix from IC-CAP for wafer device
characterization. Also included in this section is information
about writing a macro, controlling the prober, and conditions
of which to be aware.

While the HP 4062UX is an ideal instrument for performing
device characterization with IC-CAP, it is necessary to
understand IC-CAP, probers, matrices, and the instruments
under control. IC-CAP is an independent program from
HP 4062UX TIS or VFP. It is not necessary, and can be
damaging, to run the START program before running
IC-CAP. To run IC-CAP after running the START program,
the HP/Agilent 4142B must first be reset manually.

After running the HP 4062UX START program, the
HP/Agilent 4142B is put into its binary mode. Because
IC-CAP assumes that all the instruments to which IC-CAP is
connected accept ASCII commands, IC-CAP cannot recognize
the 4142B. Reset the 4142B by sending a Device Clear or by
turning the instrument off and on again. To send a Device
Clear to the 4142B, use the IC-CAP GPIB analyzer (Tools
menu):

1 In the Instrument Setup Window, choose Tools > Send Byte.

2 Enter the default value 20 and choose OK.
Writing a Macro

NOTE Execute the START program to run TIS applications on the HP 4062UX,
similar to a normal power-up.
While instruments like the HP/Agilent 4142B and the
HP 4280A are controlled by IC-CAP with Setup tables, both
the wafer prober and the switching matrix must be
controlled through macro programs using the Pxxxxx() and
187

188

2 Drivers

Connect() functions. The Setup table defines which
measurement unit is going to force certain output. Users
must perform the following actions:

1 Determine which matrix port needs to be connected to
which matrix pin.

2 Write several Connect() functions in a macro program that
invokes this Setup measurement with a iccap_func()
statement.

The example shown in the following figure involves 4 SMUs
of an HP/Agilent 4142B and measures Id_vs_Vg
characteristics of an NMOS device on a wafer.

! Prober and Matrix Test Program
x = swm_init(19, 22, "HP4085B", "/dev/ice_raw_hpib")
x = connect(fnport(1), 15) ! SMU1 - Drain
x = connect(fnport(2), 7) ! SMU2 - Gate
x = connect(fnport(3), 8) ! SMU3 - Source
x = connect(fnport(4), 6) ! SMU4 - Bulk
x = prober_init(2, 0, "EG2001X", "/dev/ice_raw_hpib")
!
linput "Load Cassette and Press OK", msg
status = prober_status() ! wait until Remote
while (not status[0])

status = prober_status()
endwhile
iccap_func("/nmos2/large/idvg", "Display Plots")
!
x = pscale(8200, 8200) ! test chip die size
x = phome() ! goes to the first die
while (x == 0)

x = porig(0, 0) ! first die coordinates
i = 0
while (i < 5) ! test diagonal 5 dies

x = pdown()
x = pmove(i, i)
x = pup()
print
print "Die Position X=";i;" Y=";i;
iccap_func("/nmos2/large/idvg", "Measure")
iccap_func("/nmos2/large/idvg", "Extract")
i = i + 1

endwhile
x = phome() ! load next wafer

endwhile
if (x == 1) then linput "Cassette Empty. Test End.", msg
x = connect(0, 0) ! disconnect matrix pins

Figure 4 Sample Wafer Test Program
IC-CAP Reference

Drivers 2
Prober Control
IC-CAP Reference

Prober control is determined by the number of test modules,
which is either single or multiple per die.

With the Pxxxx functions, it is assumed that there is a
single test module on each die and every test module exists
in the same place relative to its die origin. In this case, it is
easy to control the wafer prober.

The example in Figure 4 shows the size of each die to be
8200 µm × 8200 µm. The operator first indicates to the
prober where the test module is on the first die. Once the
prober is set to find this test module, Pmove() or Pimove()
can step to any die and probe the same test module.

When there are multiple modules per die, every module
position must be calculated in microns and Pscale(1,1) must
be called. You must know each module position relative to
its die origin, and each die position relative to its wafer
origin. You must calculate these numbers to move the wafer
chuck to its correct probing position.
Special Conditions
When using probers and matrices, be aware of the following
conditions:

Interface File A dedicated GPIB interface for a prober is
recommended to avoid unknown effects on other
instruments. However, if the given prober conforms to the
IEEE 488 standard, it is possible to put the prober on the
same GPIB with other instruments. Set the
INST_START_ADDR system variable high enough to protect
the prober from being accessed by the Rebuild (instrument
list) operation.

Interrupt Both prober and matrix functions are simple C
functions called from the Macro interpreter of IC-CAP. It is
possible to interrupt any one of these functions during its
GPIB communication. Therefore, whenever you interrupt the
execution of a Macro program that involves prober or matrix
control, it might be necessary to reset the bus. Prober_init()
189

190

2 Drivers

resets its interface bus to clear any pending GPIB
communications with the prober. However, SWM_init() only
sends a Selected Device Clear to the matrix controller. If
necessary, you can reset the measurement bus by choosing
Tools > Interface > Reset.

Bus Lock The HP 4062UX can lock the measurement bus
even when a TIS program is not running. Be sure that the
GPIB for measurement instruments is unlocked when
IC-CAP starts up. The easiest way to ensure this unlocked
condition is to exit the HP BASIC process from which any
HP 4062UX program has been executed. IC-CAP also locks
the measurement bus only during a measurement, which is
similar to “Implicit Locking” of the HP 4062UX.

Measurement Accuracy While the HP 4062UX performs
certain error corrections for its 48- and 96-pin matrices,
IC-CAP does not know about these internal parameters.
Therefore the capacitance measurement accuracy is not
specified when IC-CAP measures a capacitance through a
switching matrix. However, performing a calibration at the
matrix pins should reduce these errors introduced by the
matrix.
NOTE HCU and HVU are not supported by HP 4062UX. Do not use HCU or HVU
with HP 4062UX because their output range exceeds the maximum ratings
of the switching matrix and may cause damage to the switching matrix.
IC-CAP Reference

Drivers 2
Adding Instrument Drivers to IC-CAP
IC-CAP Reference
Many instruments can measure a device or a circuit. While
IC-CAP supports major HP/Agilent instruments, other
instruments manufactured by HP/Agilent or other vendors
could be used for characterization work within IC-CAP. The
Open Measurement Interface (OMI) is part of IC-CAP’s open
system philosophy that allows the addition of new
instrument drivers.
NOTE Because creating new drivers requires using C++, you must obtain C++
software that will compile with both your operating system and with
IC-CAP. To determine appropriate software media options and to obtain
the most up-to-date part numbers, consult an appropriate pricing and
configuration guide, or contact your sales representative.

This section provides information about OMI and the basic
form of an OMI driver. Alternatives to creating a new driver
are also addressed.
Using the Open Measurement Interface
The Open Measurement Interface enables you to add drivers
for other instruments. User-added drivers can be
full-featured, fully integrated, and indistinguishable from the
Agilent-provided drivers. Like the Agilent-provided drivers,
they are written using C++. OMI was designed to ensure that
C Language programmers do not experience language
barriers when creating new drivers.

Much of the work necessary to lay out the required code is
performed by a tool kit comprised of Driver Generation
Scripts described in “Adding a Driver” on page 196. These
scripts also write all necessary code for the Instrument Options
editors for a new driver, and all necessary code for the driver to
be included in the Instruments Library shown in the Hardware
Setup window.
191

192

2 Drivers

The user is responsible for filling in the bodies of a set of
functions that IC-CAP calls during measurements. A set of
reusable software constructs is provided for accomplishing
common programming tasks; refer to “Programming with C++”
on page 221.

With the first version of the Open Measurement Interface
(IC-CAP version 4.00), only GPIB based instrument I/O is
formally supported.

OMI Guidelines

To use the Open Measurement Interface, the following
qualifications are recommended.

• One year of C programming experience or recent
completion of a good course in C. Familiarity with the use
of struct data types in C (or record data types in
PASCAL) is essential, because C++ classes build upon the
struct concept.

• Experience writing code to control an instrument.

• Familiarity with the particular instrument’s features and
operation.

• A willingness to learn the details of the requests IC-CAP
places on drivers, and the order in which they occur
during principal operations: Measure, Calibrate, and
Rebuild (instrument list).

• A copy of the C++ language system provided by your
computer vendor, including manuals and a license.
Driver Development Concepts
The basic form of user-added drivers involves 1 file with
declarations of data types and functions, and 1 file with
implementations of functions. Because Driver Generation
Scripts are provided, very few modifications to the
declarations file are necessary; work is largely confined to
the function implementations file. The separation of
declarations and implementations is common practice, and
IC-CAP Reference

Drivers 2

IC-CAP Reference

has been used with User C Functions. The source directory
$ICCAP_ROOT/src is used for OMI compilation, just as it is
for User C Functions.

The default source files for new drivers already contain
example drivers:

• HP 4194: user_meas.hxx and user_meas.cxx

• HP 4140: user_meas2.hxx and user_meas2.cxx

• HP 54510: user_meas3.hxx and user_meas3.cxx

Unless you choose to add files to optimize your compilation
process, the $ICCAP_ROOT/src/Makefile permits the make(1)
command to create an up-to-date IC-CAP executable file
with your latest modifications. This Makefile accounts for the
distinct compilation needs of the C++ and C source files by
invoking the appropriate compiler. By default, make(1)
understands a .cxx suffix to mean C++ compilation, and .c to
mean C compilation; the Open Measurement Interface follows
this convention.

The process for building the shared libraries libicuserc.<ext>
and libicusercxx.<ext> is demonstrated in the following figure.
It is not necessary to know the details; the make(1) command
can perform the entire process (provided the
$ICCAP_ROOT/src/Makefile is correct).

The user driver files, user_meas.hxx and user_meas.cxx, to
which your driver is added by default, already contain an
example driver. This keeps the facility simple but could slow
your compilation. If you choose to add your code to other
files, adjust the Makefile. Otherwise, do not modify the
Makefile.
193

194

2 Drivers

Figure 5 Flow Diagram for the User Build Process

s:

d)

uild Process

icedil.o
iceswm.o
prober.o
userc.o
userc_io.o
pbench.o

ources (e.g.):

my_extr.o

libicuserc.sl (or .so)

cc
cc

cc
cc

cc

cc

cc

le Sources:
x
xx
xx

user_meas.o
user_meas2.o
user_meas3.o

nstrument drivers (e.g.):

my_meter.o

libicusercxx.sl (or .so)

iled with the C++ compiler (Open Measurement Interface)

CC

CC

CC
CC

CC

iled with the C compiler

EN_DIR=<path to libicuserc.sl and/or libicusercxx.sl>
EN_DIR=<path to libicuserc.sl and/or libicusercxx.sl>

al.
NOTE The pbench.o file is supplied since it is required to build the shared library.
However, the source is not provided, so you cannot modify it.

Additional information is available online in example drivers, header files,
and comments inside the code generated by the driver generation scripts.
Agilent Source
icedil.c
iceswm.c
prober.c
userc.c
userc_io.c
(.o file provide
Overall C and C++ B
User-Defined S
my_extr.c
Agilent Examp
user_meas.cx
user_meas2.c
user_meas3.c
User-Defined i
my_meter.cxx
Modules comp
Modules comp
ksh: export ICCAP_OP
csh: setenv ICCAP_OP

Launch IC-CAP as norm
IC-CAP Reference

Drivers 2

IC-CAP Reference

Example Drivers Three example drivers HP 4194, HP 4140,
and HP 54510 can be seen in the Instrument Library in the
Hardware Setup window.

• Source files for the HP 4194 are user_meas.hxx and
user_meas.cxx

• Source files for the HP 4140 are user_meas2.hxx and
user_meas2.cxx

• Source files for the HP 54510 are user_meas3.hxx and
user_meas3.cxx

The information provided by these example drivers should
serve as valuable reference material for adding a new driver.

Header Files Files that are normally modified and
re-compiled, user_meas.hxx and user_meas.cxx, use include
(or header) files. The most important header files are
unit.hxx, user_unit.hxx, instr.hxx, and user_instr.hxx.
These files declare all of the virtual functions for each
driver, and provide information to write (or avoid writing)
each function.

Generated Code and Comments The driver generation scripts
generate both code and comments. Generally, the comments
state what each required function must return, when it is
invoked, and its purpose. Code examples are often provided
that you can use as the basis for the code you must provide.
To access this information, run the scripts. For information,
refer to “Driver Generation Scripts” on page 196.

Binary Byte Order

For information on transferring binary data between an
instrument and IC-CAP, see the README.byteorder file in
the source directory $ICCAP_ROOT/src. It contains
important information with respect to the order of bytes in
a multi-byte number.
195

2 Drivers
Adding a Driver
196

The basic steps (details are provided in the paragraphs that
follow) for adding a driver are:

1 Run the Driver Generation Scripts.

2 Fill in functions that control your instrument.

3 Inform IC-CAP of the new instrument type.

4 Build the IC-CAP executable file.

5 Debug the new driver.

Driver Generation Scripts

The driver generation scripts provide a framework of functions
into which a user’s driver code is placed.

mk_unit This script generates code for units in an instrument.
In the case of an HP 4141, for example, there are 8 units,
including 4 DC SMUs, 2 VS and 2 VM units. The HP 4194
example has just 1 unit, which is typical for a CV driver.

A transcript of the mk_unit session used for the HP 4194 driver
is as follows:
$ mk_unit
Enter a name for the unit class for which you want code:
cvu_4194
Enter a name for the instrument class that will use this unit
class: hp4194
Enter the full name of the .hxx file that will declare hp4194
default: user_meas.hxx]:
Enter a name of twelve characters or less; the emitted code
will be appended to .cxx and .hxx files with this basename
[default: user_meas]:
Done. C++ code was added to user_meas.hxx and user_meas.cxx.
You should re-run mk_unit if more unit types are needed.
Otherwise, you probably need to run mk_instr now.

You must supply the name of 2 C++ classes. A class is a name for
a user-defined C++ type and is like a struct in C. The mk_unit
script uses your chosen class names throughout the generated
code. In this example a unit class name (cvu_4194) was chosen
to denote CV Unit in a 4194, and an instrument class name
(hp4194) was chosen to reflect the name of the instrument. Try
to select class names in the same style. Class names should be
meaningful and specific, since this helps to avoid name
collisions during compilation. Use, for example, a suffix relating
IC-CAP Reference

Drivers 2

IC-CAP Reference

to the instrument or company. Do not hesitate to take
advantage of the fact that the C and C++ compilers generally
accept very long names. The use of long descriptive names helps
prevent compilation or linking problems due to name collisions.

If the instrument has more than 1 kind of unit to drive, like
the HP 4141, run mk_unit repeatedly. If it has several
identical units, do not re-run mk_unit. Identical units can
be taken into account after running mk_instr.

mk_instr This script generates code for instrument-wide
functionality in a driver, such as calibration, self-test, and
getting the instrument recognized during Rebuild
(instrument list).

A transcript of the mk_instr session used for the HP 4194
driver is:
$ mk_instr
Enter the name of the instrument class for which you want
code: hp4194
Enter a name of twelve characters or less; the emitted code
will be appended to .cxx and .hxx files with this basename
[default: user_meas]:
Done. C++ code was added to user_meas.hxx and user_meas.cxx.
Now you can go take a look at user_meas.cxx, and start doing
the real work.
NOTE: in user_meas.cxx you may eventually need to add
#include statements to ensure that user_meas.cxx sees the
class declarations of any unit classes used by hp4194.
Disregard this if the necessary unit declarations appear at
the beginning of user_meas.hxx.(The mk_unit script should
generally have put them there.)
You WILL need to declare some units in the class declaration
of hp4194 in user_meas.hxx (see comments therein).
After running this script, you generally need to run
mk_instr_ui next.

This script requires the class name hp4194 to be repeated
again, exactly as it was entered in mk_unit. (In your own
driver, use another class name besides hp4194, but repeat
the same instrument class name when each script asks for
it.)

The script mentions the need to declare some units, which
is accomplished by manual edits to the user_meas.hxx file;
for example
cvu_4194* cv_unit ;
197

198

2 Drivers

accomplishes that for the HP 4194 driver in the file
user_meas.hxx file. If the HP 4194 had 2 identical CV units
available, this declaration might have been
cvu_4194* cv_unit_1 ;
cvu_4194* cv_unit_2 ;

mk_instr_ui This script generates code that fully implements
the Instrument Options tables appearing in Setups that use
the instrument driver. Within these tables, an IC-CAP
operator can specify such things as Delay Time, Integration
Time, and other instrument-specific options. Because this
script completely writes out the necessary C++ code for this
user interface functionality, it asks more questions than the
previous scripts.

A transcript of the mk_instr_ui session used for the
HP 4194 driver is:
$ mk_instr_ui
NOTE: valid types for editor fields are these:
{ real | int | char | boolean | string }
Enter the name of the instrument class for which you want UI

code: hp4194
Enter a name of twelve characters or less; the emitted code

will be appended to .cxx and .hxx files with this basename
[default: user_meas]:

Enter the label for an editor field (or enter a null string
if no more fields are desired): Use User Sweep

Enter a type for editor field ’Use User Sweep’ [h for help] :
boolean

Enter an initial value for this field [0 or 1] : 0
Enter the label for an editor field (or enter a null string

if no more fields are desired): Hold Time
Enter a type for editor field "Hold Time" [h for help] : real
Enter the minimum legal value for this field: 0
Enter the maximum legal value for this field: HUGE
Enter a granularity value (for rounding this field; 0 for no

rounding): 0
Enter an initial value for this field: 0
Enter the label for an editor field (or enter a null string

if no more fields are desired): Delay Time
Enter a type for editor field "Delay Time" [h for help] :

real
Enter the minimum legal value for this field: 0
Enter the maximum legal value for this field: 3600
Enter a granularity value (for rounding this field; 0 for no

rounding): 0
Enter an initial value for this field: 0
Enter the label for an editor field (or enter a null string

if no more fields are desired): Meas Freq
Enter a type for editor field "Meas Freq" [h for help] :
Sorry, "" is not a valid type.
The valid types are: { real | int | char | boolean | string }
Enter a type for editor field "Meas Freq" [h for help] : real
Enter the minimum legal value for this field: 100
Enter the maximum legal value for this field: 100e6
IC-CAP Reference

Drivers 2

IC-CAP Reference

Enter a granularity value (for rounding this field; 0 for no
rounding): 1

Enter an initial value for this field: 1e6
Enter the label for an editor field (or enter a null string

if no more fields are desired): Integ Time
Enter a type for editor field "Integ Time" [h for help] :

char
This field will force the user to enter one character, from

within a set of valid characters you will specify now.
Example set of valid characters: TFYN
Enter the set of character values that this field can take

on: SML
Enter whether this field should force user input to

uppercase [y/n]: y
Enter an initial value for this field: S
Enter the label for an editor field (or enter a null string

if no more fields are desired): Osc Level [.01-1Vrms]
Enter a type for editor field "Osc Level [.01-1Vrms]"

[h for help] : real
Enter the minimum legal value for this field: .01
Enter the maximum legal value for this field: 1
Enter a granularity value (for rounding this field; 0 for no
rounding): 0 Enter an initial value for this field: .01
Enter the label for an editor field (or enter a null string

if no more fields are desired): Averages [1-256]
Enter a type for editor field "Averages [1-256]" [h for help]

: int
Enter the minimum legal value for this field: 1
Enter the maximum legal value for this field: 256
Enter an initial value for this field: 1
Enter the label for an editor field (or enter a null string

if no more fields are desired): Delay for Timeouts
Enter a type for editor field "Delay for Timeouts"

[h for help] : real
Enter the minimum legal value for this field: 0
Enter the maximum legal value for this field: HUGE
Enter a granularity value (for rounding this field; 0 for no

rounding): 0
Enter an initial value for this field: 0
Enter the label for an editor field (or enter a null string

if no more fields are desired):
Done. All necessary C++ UI code was added to user_meas.hxx

and user_meas.cxx.

From the nature of the questions in this script, this process
defines an editor table for the instrument. The table offers
some advanced features, such as constraining the type and
the range of values that an operator can enter in each field.

Running the Scripts on Windows

To run the mk_instr, mk_unit, and mk_instr_ui scripts on
Windows, first edit the file $ICCAP_ROOT/bin/icrun.bat. You
must set ICCAP_ROOT accordingly by modifying the line:

SET ICCAP_ROOT=<Path to IC-CAP>
199

200

2 Drivers

for example if you installed IC-CAP at C:\Agilent\
ICCAP_2006B, edit the file to read

SET ICCAP_ROOT=C:\Agilent\ICCAP_2006B

Once this is set, simply change <name> below to mk_instr,
mk_unit, or mk_instr_ui to run those scripts.

icrun <name>

Running the Scripts on UNIX

This section contains information about running the scripts,
questions asked by the script, and the form of user
responses.

• They are invoked as UNIX commands. Execute cd
$ICCAP_ROOT/src unless you just want to experiment
with the scripts in another directory like /tmp. The cd
command ensures that the code goes where the Makefile
expects.

• Make backup copies of user_meas.hxx and user_meas.cxx
before starting to use the scripts.

• The scripts are run in order: mk_unit, mk_instr, and
mk_instr_ui. Running the scripts out of order may cause
compilation errors when the compiler encounters types,
classes, or variables before they are properly declared.

• All the scripts prompt you with a series of questions. The
effect of the scripts is to write C++ code onto the end of
the user_meas.hxx header file and the user_meas.cxx
implementation file.

Plan your response by reviewing the transcripts and
comments presented previously for each script to avoid
re-running the script. Multiple passes by the scripts could
put declarations into user_meas.hxx more than once
causing error messages from the scripts or a compile-time
message such as error 1113: class <some_class_name>
defined twice. To re-run the script, restore user_meas.hxx
and user_meas.cxx to the same state as they appear on
the IC-CAP product media.
IC-CAP Reference

Drivers 2

IC-CAP Reference

• When providing real number values to mk_instr_ui supply
values that a C compiler will accept. The engineering
notation accepted by IC-CAP’s PEL interpreter, such as
15meg, or 2k, is not accepted by the compiler. Examples
of acceptable real numbers are:

1.0
10.5e6
HUGE (a constant from /usr/include/math.h)

• granularity as used in real fields, refers to a flexible
rounding feature. For example, if your instrument has an
option Osc Level for which the instrument has only
10 mV resolution, enter granularity as 10e-3. The
Instrument Options editor then protects the IC-CAP
operator from entering values the instrument can’t
support.

The scripts require you to fill in functions in user_meas.cxx.
They also require a few minor adjustments in
user_meas.hxx. These adjustments are:

• The instrument class should declare any units owned by
the instrument. This is discussed under mk_instr.

• You may encounter compilation errors when unit and
instrument functions attempt access to each other’s data
members, since this violates normal C++ access rules. For
example, in user_meas.cxx, in hp4194::init_instr(), a
function of the hp4194 class accesses a data member of
the cvu_4194 class with this statement: cv_unit ->
oscillator_on = 1 ;

A typical compiler error message would be:
error 1299: init_instr() cannot access
cvu_4194::oscillator_on:
private member

One way to remedy this is to let the unit and instrument
class declare each other as friends. For example, the
declarations
friend class cvu_4194 ;

and
friend class hp4194 ;
201

202

2 Drivers

in user_meas.hxx, permit the hp4194 functions to access
the cvu_4194 data members, and vice-versa.

Filling in Necessary Functions

After running the scripts, you must write the body portions
of the functions added to user_meas.cxx. This section
provides hints to help you accomplish this.

For help filling in a function body, look at the declarations
and functions generated by the scripts. These provide
comments explaining the purpose, return value, and
invocation time of each function.

Next look at the declarations and functions of the HP 4194
example driver. This section contains examples of code
accomplishing required tasks. The following manual sections
may also be helpful.

• “Programming with C++” on page 221

• “Order in Which User-Supplied Functions are Called” on
page 231. Provides useful information about the sequence in
which functions are invoked. Decisions must often be made
about which function should perform particular instrument
manipulations; these decisions can be aided by seeing when
each function runs.

• “What Makes up an IC-CAP Driver” on page 209. Explains the
functionality expected in areas such as Calibration and
Hardware Setup Operations. The functions whose bodies
you need to write are grouped in that section by functional
category.

You may want to proceed in stages. For example, start with
Hardware Setup Operations to demonstrate that Rebuild
(instrument list) can find the instrument and display the
driver and instrument in the Hardware window. Then
implement the functions that support Measure. Address
those functions that support Calibrate, if desired. During the
time your driver is partially implemented, compiler warnings
serve as a rough indication of functions not yet
implemented.
IC-CAP Reference

Drivers 2

IC-CAP Reference

The GPIB analyzer (Tools menu), and especially its macro
features (described elsewhere in this chapter), are helpful
when developing the appropriate sequence of commands to
use with the instrument.

Making a New Instrument Type Known to IC-CAP

Running the mk_instr script makes a new instrument type
known to IC-CAP. The code involves an add_user_driver()
function call, placed in user_meas.cxx by the mk_instr
script.

Creating a New Shared Library

After any series of edits to the source files, you must
generate 1 or 2 new shared libraries to pick up the modified
files. The shared library names are libicuserc.<ext> and
libicusercxx.<ext> where ext is a platform-specific extension.
Use the extension .so for Solaris. The library libicuserc.<ext>
holds C code and is used to add user C functions. The library
libicusercxx.<ext> holds C++ code and is used to add
instruments. The default location of these files on SUN Solaris
2.X is $ICCAP_ROOT/lib/sun2x. When you issue the make
command, you will create a local version of the same file that
includes your modifications. By setting an environment
variable, you can direct IC-CAP to use your new shared library
instead of the default library.

To generate the new shared library:

1 Create a work directory for the source files (for example,
mkdir my_source, and change it to (cd my_source).

2 Copy the set of source files from $ICCAP_ROOT/src to the
new work directory (cp $ICCAP_ROOT/src/* .).

3 Use the touch command on the *.o files so that all *.c and
*.o files appear to have been created at the same time
(touch *.o). (This step is important for the make
procedure.)
203

2 Drivers
NOTE If the drive you’re copying to is NFS mounted, clock skews can result if the
NFS drive’s system has a slightly different system time than the local
system. If you think this might apply to you, first, execute touch * then
execute touch *.o. The first touch synchronizes all files to your local
system’s time; the following touch causes the make system to believe that
all of the .o files were generated later than the source files, so it will not
attempt to rebuild any unnecessary files.
204

4 Copy your source code to the working directory. Modify
the function add_users_c_funcs() in userc.c to add your C
functions to IC-CAP’s list of functions, and/or modify the
function add_users_drivers() in user_meas.cxx to add
your drivers to IC-CAP’s library of instrument drivers.
Modify the Makefile to add your source code modules to
the list of objects.

5 Issue the make command and debug any compiler errors.

6 Set the environment variable ICCAP_OPEN_DIR to point
to the directory containing the libicuserc.<ext> or
libicusercxx.<ext> file where ext is a platform-specific file
extension (ext is .so on Solaris).

Alternately, if you want to use the new files site wide,
you can replace the original files (after copying to another
name to preserve them) under
$ICCAP_ROOT/lib/<platform>.

7 Start IC-CAP as usual.

Troubleshooting Compiler Errors

The definitive authority on compiler errors is your compiler
documentation. This section offers assistance with some of
the common messages you may encounter when compiling
OMI drivers.

The message
CC: “user_meas.cxx”, line 899: warning: outptr not used (117)

usually indicates that you have not yet filled in a function,
with the result that the function is not using all of its
arguments. In some cases the function may not use all of its
arguments, so the message may not be important.
IC-CAP Reference

Drivers 2

IC-CAP Reference
Resolution of the message
error 1299: some_unit_func cannot access
some_instr_class_name::some_member: private member

is discussed in “Running the Scripts on Windows” on page 199.

The message
CC: “user_meas.hxx”, line 9: error: class x defined twice (1113)

indicates that the Driver Generation Scripts were probably
run twice.

For help, refer to “Running the Scripts on Windows” on
page 199.
Debugging

This section provides information about debugging driver
code, after iccap.new has been compiled, including the xdb
debugger and GPIB analyzer (Tools menu).

Using the xdb Debugger

The default Makefile arranges for debug information to be
available after linking the executable file. This is done with
the -g flag among the CFLAGS in the Makefile.

The debugger commands described in the following table
should be tried in the order presented.

Table 50 Debugger commands for the xdb debugger

Command Action

cd $ICCAP_ROOT/src Changes directories. Debugging works best when the
current directory contains the source files and the
binary.

xdb iccap.new Starts the debugger.

z 8 isr; z 16 isr ; z 18 isr Tells the debugger not to interfere with 3 signals
managed by other parts of iccap.new.
205

206

2 Drivers

r bjt_npn.mdl Runs iccap.new, specifying bjt_npn.mdl as a
command line argument. If the debugger stops with a
message such as bad access to child process, ignore
it and enter c to continue.

BREAK or CTRL-C Suspends iccap.new, to give further debugger
commands. xdb does not execute commands unless
iccap.new is suspended.

v user_meas.cxx Enables you to view and edit a source file. This
command is helpful for setting breakpoints.

td Toggle display. Toggles the display mode between
assembly code and C/C++. Use this if the preceding
command displays assembly code on the screen, or if
no code is displayed.

/hp4194::find Searches forward (as in vi) to view the source for the
function hp4194::find_instr().

v nnn Enables you to view line nnn at the center of the
screen where nnn is the line number you want to
view.

b Sets a breakpoint at the line currently centered on the
screen. Sometimes the debugger chooses another
nearby line, especially if the currently centered line is
blank, or is only a declaration statement. When
iccap.new resumes running, the debugger stops
iccap.new whenever this line of code is about to be
executed. You may set several breakpoints.

b nnn Similar to the last command. Sets a breakpoint at line
nnn where nnn is the line number you specify.
Sometimes the debugger chooses another nearby
line, especially if you chose a blank line, or a line with
only a declaration statement.

S Big step. Steps through 1 line of source code without
stopping inside any procedure calls encountered.

Little Like S, but this stops inside any debuggable
procedure that is encountered while executing the
line of code.

Table 50 Debugger commands for the xdb debugger

Command Action
IC-CAP Reference

Drivers 2

IC-CAP Reference

GPIB Analyzer (Tools menu) and IC-CAP Diagnostics

In addition to xdb, debugging capabilities are built into
IC-CAP.

The GPIB analyzer (Tools menu) in the Hardware Setup
window includes the following features.

• The I-O Screen Debug On menu selection can monitor all
activity on the GPIB bus. Observe the GPIB commands
and responses associated with your driver, as well as
other IC-CAP drivers.

• The analyzer can be used for interactive I/O activities, to
force an instrument state, poll the instrument, or test the
effect of a command.

• Analyzer operations can be collected into a file for macros
for rapidly prototyping the GPIB commands to be used in
a driver. For more information about macro files of this
sort, refer to “GPIB Analyzer” on page 787.

c Continues execution of iccap.new.

Execute a menu
function

To reach breakpoints in the driver code, use Measure,
Calibrate, or Rebuild as appropriate. For help in
making this choice, refer to “Order in Which
User-Supplied Functions are Called” on page 231. Be
sure that the function will actually be called if you
want the breakpoint reached.

p address When the debugger hits a breakpoint in a procedure,
this command prints the value of an argument passed
to the procedure, or a local variable in the procedure.
In this example, the argument/variable is named
address.

p address=23 To assign a new value to an integer variable named
address, employ this special form of the p (print)
command.

p *this\K Prints the member data of the C++ object in whose
member function the current breakpoint is located.

Table 50 Debugger commands for the xdb debugger

Command Action
207

208

2 Drivers

The generation of IC-CAP diagnostic messages can be
activated by menu functions under Tools in the IC-CAP Main
window.
Alternatives to Creating New Drivers
If you don’t need an instrument driver to be as fully
integrated as HP/Agilent-provided drivers, it may be
worthwhile to consider controlling the instrument by means
less formal than creating a driver using the Open
Measurement Interface.
NOTE There is an important shortcoming with these suggestions. An IC-CAP
measurement currently provides no mechanism for Program Transforms or
Macros to be invoked at critical times in the interior of the measurement
(for example, at the instant when DC bias levels have just been
established by SMUs, and it is time for a main sweep instrument to
stimulate the DUT and collect data). Use of the Open Measurement
Interface overcomes such limitations.
• Use the PRINT statement in an IC-CAP Macro to direct
commands to an instrument, when a suitable device file
has been established using the mknod command.

• Use the functions listed with USERC_write and
USERC_read in a Program Transform or Macro to provide
limited instrument control. For descriptions of the User C
functions in general, refer to Chapter 8, “IC-CAP
Functions.” For details and examples of the input/output
functions, refer to Appendix H, “User C Functions.”

• Rather than using the Measure menu selection directly,
construct Macros in the following style to enclose the
measurement between operations controlling other
hardware:

! Steps 1, 2, and 3 are assumed to be implemented by PRINT.
! 1) Force next desired set point on temperature chamber.
! 2) Enable waveform generator.
iccap_func(“/opamp/time_domain/positive_slew”,”Measure”)
! 3) Disable waveform generator.
! One way to control the values desired for temperature and
! frequency is to access IC-CAP system variables.
IC-CAP Reference

Drivers 2
What Makes up an IC-CAP Driver
IC-CAP Reference

In addition to measurement capabilities, each IC-CAP driver
possesses other capabilities, such as the user interface
functionality provided in Instrument Options folder and the
ability to participate in Input, Output and Setup Checking
prior to measuring. Each of these essential areas is
discussed in this section. In each area, information is
provided about the specific functions necessary to complete
that part of a driver.

In the tables throughout this section, the prefix unit:: means
the class name(s) you provided for units when you ran the
mk_unit script. The prefix instr:: should be considered to
mean the class name you provided for the instrument when
you ran the mk_instr script. The column Importance
indicates whether you typically need to write any code for
the function. Because of the inheritance features of C++, you
must often rely on inherited default functions. Functions
important to write, typical return values, and other
information can be determined from the comments for the
function in $ICCAP_ROOT/src/user_meas.cxx.

Instrument Options

The Instrument Options folder provides a method for
selecting certain instrument conditions for a measurement.
Certain instrument conditions are separated into different
groups of instrument options (rather than appearing in
Input sweep editors) because they are highly instrument
specific, and play no role in simulation. The options
displayed in the Instrument Options folder typically vary
with each setup that participates in the measurement
involving a particular instrument.

The Driver Generation Scripts, described in Procedure for
Adding a Driver, can write all the C++ code that is
necessary to establish appropriate instrument options tables
for a new driver. The driver generation script named
mk_instr_ui prompts for the desired contents of the
instrument options tables, after which it proceeds to
generate the necessary declarations and implementations in
209

210

2 Drivers

C++. The generated code will contain data structures in
which options are stored, as well as the user interface
linkages that display the options for editing.

Input, Output and Setup Checking

When you initiate Measure or Calibrate for a Setup, IC-CAP
first verifies the validity of the measurement Setup. This
permits many operator errors to be detected and reported
before IC-CAP undertakes instrument I/O.

IC-CAP performs the following 3 kinds of checks:

• Checks Input (Sweep) specifications; for example, does a
Start or Stop value exceed the instrument’s range?

• Checks Output specifications; for example, can the
instrument measure the type of data desired, such as
capacitance?

• Checks overall Setup structure; for example, is there more
than 1 time or frequency sweep being requested?

The following table describes the functions related to input
(sweep) checking.

Table 52 shows a summary of the supported Input (Sweep)
modes in IC-CAP. The column Character Used in Driver
Functions shows the character passed when an Input Mode
is passed to a function, such as unit::can_source.

Table 53 describes the functions related to output checking.

Table 54 shows a summary of the supported Output modes in
IC-CAP. The column Character Used in Driver Functions
shows the character passed when an Output Mode is passed
to a function, such as unit::can_measure.

Table 51 Functions for Input Checking

Function Name Purpose Importance

instr::use_second_sweep tells if unit has 2 internal
sweeps

default usually OK
IC-CAP Reference

Drivers 2

IC-CAP Reference

unit::can_source tells if unit can source a
given Mode

important

unit::can_source_vs_time tells if unit can source
time-domain signals

important for pulse
generators

unit::check_bias_swp reserved for future use default is OK

unit::check_sweep lets unit check/preview
Input data set

important

unit::check_sync checks sync sweep spec. important if
implementing sync
sweeps

Table 52 IC-CAP Input (Sweep) Modes

Character Used in Driver Functions Meaning

V Voltage

I Current

F Frequency

T Time

P Parameter

U User (refer to “User-Defined Input and
Output Modes” on page 213)

Table 53 Functions for Output Checking

Function Name Purpose Importance

unit::can_measure tells if unit can measure
a given Mode

important

unit::can_measure_vs_time tells if unit can measure
time-domain signals

important for
oscilloscopes

Table 51 Functions for Input Checking (continued)

Function Name Purpose Importance
211

212

2 Drivers

Setup checking is performed primarily by logic embedded in
IC-CAP. A limited amount of the checking is accomplished
with user-supplied functions. The following table describes
the user functions related to overall Setup checking.

unit::check_out lets unit check/preview
Output data set

important if measures
multiple data sets

Table 54 IC-CAP Output Modes

Character Used in Driver Functions Meaning

V Voltage

I Current

C Capacitance

G Conductance

T Time Domain Pulse Parameter (like
RISETIME)

S, H, Z, Y, K, A Two-Port

U User (refer to “User-Defined Input and
Output Modes” on page 213)

Table 55 Functions for Overall Setup Checking

Function Name Purpose Importance

instr::find_instr checks GPIB for
instrument

necessary

instr::find_units locates optional units default usually OK

instr::set_found remembers instrument
was found; could set
internal flags concerning
presence of optional
hardware modules

default usually OK

Table 53 Functions for Output Checking (continued)

Function Name Purpose Importance
IC-CAP Reference

Drivers 2

IC-CAP Reference

User-Defined Input and Output Modes

Mode U is a reserved user-defined mode that allows some
flexibility for safely checking any new signal modes to be
sourced or measured. This feature is for situations where it
is not practical or safe to use existing Input or Output
modes (such as voltage or capacitance).

The following considerations apply:

• Units associated with existing drivers are likely to reject
U. For example, a HP 4141 VM unit will not force or
measure U. In such a case the measurement is disallowed.
(It does not make sense for the IC-CAP HP 4141 driver to
try to force or measure U-Mode data, since it does not
know what U-Mode means.)

• The unit functions associated with the new driver can
enforce any desired policy for a U-mode Input or Output,
as well as the other Input and Output Modes.

• With a U-Mode Input or Output in an IC-CAP Setup, do
not expect the Simulate menu function to work on that
Setup.

instr::use_second_sweep tells if unit has 2 internal
sweeps

default usually OK

unit::bias_compatible checks if this unit can
tolerate signal or bias
from another unit

could potentially
save fuses.

unit::can_do_second_sweep tells if another sweep
and unit can be an
internal sweep
secondary to the sweep
for this unit

default is OK

Table 55 Functions for Overall Setup Checking (continued)

Function Name Purpose Importance
213

214

2 Drivers

Calibration

Calibration functions are associated with the instrument, not
its units. To perform calibration procedures initiated from
the IC-CAP program, implement the functions shown in the
following table.

Several of the functions required for Measure are also used
during Calibrate. Refer to “Order in Which User-Supplied
Functions are Called” on page 231 in this chapter for a list of
functions called during Calibrate.

Storage is provided in the instr_options class for limited
calibration data for a particular instrument in a particular
Setup. The instr_options class is declared in instr.hxx.

The data members in instr_options for holding calibration
results are:

• String cal_data ; //
declare your own data if String is not an appropriate type

• calib_status last_cal_status ; //
calib_status is an enumeration with these possible values:

• CAL_OK

• CAL_ERROR

• CAL_ABORTED

• CAL_NEVER_DONE

Table 56 Functions for Calibration

Function Name Purpose Importance

cal_possible tells if the other 2
functions do anything

These functions are
necessary if IC-CAP is to
calibrate the instrument.

do_cal downloads Setup, leads
operator through
calibration procedure

recall_n_chk_calib activates calibration during
Measure; checks sweep
IC-CAP Reference

Drivers 2

IC-CAP Reference

Set calib_status during do_cal() and test it during
recall_n_chk_calib(). Recall that cal_possible() and do_cal()
are invoked (in that order) during Calibrate, while
recall_n_chk_calib() is later called during Measure, with the
purpose of enabling the desired calibration set.

Derived from the class instr_options (declared in instr.hxx)
is user_instr_options, declared in user_instr.hxx. For the
new driver, a further derived class will have been declared
in user_meas.hxx by the mk_instr_ui script. The section
Class Hierarchy for User-Contributed Drivers clarifies the
relationships of these classes.

The class in user_meas.hxx that is derived from
user_instr_options is an appropriate place to declare
additional calibration data the workstation should retain,
because a distinct object (or data structure) of this type
exists in every situation where distinct instrument
calibration data might be needed. In other words, an
instrument has a distinct user_instr_options object in every
Setup where the instrument is used. For the example of the
HP 4194 driver, such data (if any) would be declared in the
class named hp4194_table in user_meas.hxx. You might
declare several double numbers, to keep a record of sweep
limits that were in effect at the time of Calibrate, so that
they can be verified during Measurement. (With many
instruments, calibration is not valid unless measurements
employ the same sweep limits that were in effect during
calibration.)
NOTE To simplify an initial pass at implementing calibration, do not declare
additional data structures for remembering sweep parameters, and do not
perform much verification during recall_n_chk_calib().
If you choose to declare additional calibration-related data
in the class derived from user_instr_options, it is possible
for this data to be archived and re-loaded with IC-CAP
Model(.mdl), DUT(.dut), and Setup(.set) files. Note that the
215

216

2 Drivers

archiving of user-defined calibration data is an advanced
feature that most implementations can probably avoid
considering.

To archive user-defined calibration data, your class derived
from user_instr_options must redeclare and implement 2
virtual functions. These functions are read_from_file and
write_from_file, declared for the class instr_options, in the
file instr.hxx. When called, these functions receive an open
stdio FILE*, which provides read or write access to the
IC-CAP archive file at the appropriate time during a Read
From File or Write to File menu function.

Measurement: Initialization, Control and Data Acquisition

The functions in this area perform the real work of the
instrument driver; this area accounts for the largest number
of functions present in each driver.

Initialization functions are listed in the following table.

Table 57 Initialization Functions

Function Name Purpose Importance

instr::init_instr downloads information
from the Instrument
Option Table

necessary

instr::reset_instr_info clears flags in driver,
refer to instr.hxx

default usually OK

instr::reset_outptrs nulls out output data set
pointers, refer to
instr.hxx

default usually OK

instr::zero_supplies puts instrument to safe
state, turns off sources

necessary

unit::enable_output enables any output unit
needing explicit enabling
(refer to user_meas.cxx)

necessary with
some instruments,
such as the
HP 4141

unit::init_unit reserved for future use default is OK
IC-CAP Reference

Drivers 2

IC-CAP Reference

Control and data acquisition functions are shown in the
following table.

Because many of the functions in this category must
perform non-trivial work, such as instrument communication
and error reporting, refer to “Programming with C++” on
page 221, where such operations are explained. The examples
for the cvu_4194 member functions and the hp4194 member
functions in user_meas.cxx are also helpful.

A few of the functions in this area are provided for the
support of a particular instrument, for example, the
HP 4145. The intermediate classes user_unit and user_instr
do not redeclare some of these low-usage functions, though
their declarations are inherited from the unit and instr
classes, so they could be used in a new driver if needed. For
example, instr::use_second_sweep() is re-declared and used
only by the HP 4145 driver.

unit::reset_inassign reserved for use by 4142
and 4145

default is OK

unit::reset_outassign reserved for use by 4142
and 4145

default is OK

unit::set_2_internal_sweeps downloads specifications
for 2 nested internal
sweeps

default usually OK

unit::set_internal_sweep downloads specifications
for internal sweep

necessary

unit::set_sync downloads specifications
for sync sweeps

default usually OK

unit::zero_supply puts unit to safe state,
suppresses bias and so
on

necessary, if the
unit can source
bias or other signal

Table 57 Initialization Functions (continued)

Function Name Purpose Importance
217

218

2 Drivers

Table 58 Control and Data Acquisition Functions

Function Name Purpose Importance

instr::copy_outds does delayed data set
stuffing (refer to instr.hxx)

default usually OK

instr::fill_outds similar to copy_outds
(refer to instr.hxx)

default usually OK

instr::get_outptr gives pointer to Output
data set

default usually OK

instr::keep_mdata keeps 1 data point default is OK

instr::out_count tells number of output
pointers in instr class

default usually OK

unit::can_do_second_s
weep

tells if 2 internal sweeps
OK (refer to unit.hxx)

default is OK

unit::define_channel reserved for 4145 default is OK

unit::enable_sync reserved for future use default is OK

unit::fill_outds any data this unit has kept
internally, or in data
structures of the
instrument or unit driver,
that belong in outptr,
should be saved there
now (refer to
user_meas.cxx)

default usually OK

unit::get_data gets data from the
instrument
(Refer to user_meas.cxx)

necessary

unit::get_int_bias reserved for future use default is OK

unit::get_scalar_data reserved for 54120 series default is OK

unit::list_chan_num reserved for 4142 default is OK

unit::list_output_name reserved for 4145 default is OK

unit::meas_err used by some drivers to
make error messages

default is OK
IC-CAP Reference

Drivers 2

IC-CAP Reference

Hardware Setup Operations

The Hardware Setup functions, listed in the following table, are
used in the following operations:

• Maintaining lists of instruments and units

unit::set_bias forces a bias value necessary for user
sweep

unit::set_data_out reserved for 4145 default is OK

unit::set_scalar reserved for 54120 series default is OK

unit::source_const_unit reserved for 4145 default is OK

unit::source_unit reserved for 4145 default is OK

unit::trigger directs a unit to perform
the measurement
specified earlier via
set_internal_sweep

necessary

unit::turn_chan_OFF reserved for 4145 default is OK

unit::wait_data_ready allows the instrument to
finish measurement
before trying to get data
after trigger. In the
cvu_4194 code, this wait
is accomplished in the
trigger function.

default usually OK

unit::wait_delay_time implements Delay Time
prior to a spot
measurement. Refer to
cvu_4194 case in
user_meas.cxx.

necessary

unit::wait_hold_time implements Hold Time
prior to a User Main
Sweep. Refer to cvu_4194
case in user_meas.cxx.

necessary

Table 58 Control and Data Acquisition Functions (continued)

Function Name Purpose Importance
219

220

2 Drivers

• Adding and deleting instruments

• Maintaining the unit table, including the addition of
entries due to newly added instruments

• The Rebuild (instrument list) function

• Self-testing the instruments

• Polling the instruments

Table 59 Hardware Setup Functions

Function Name Purpose Importance

instr::addl_addr_label reserved for 8510 and
8753

default is OK

instr::build_units creates unit objects.
Refer to
hp4194::build_units in
user_meas.cxx.

necessary

instr::find_instr checks GPIB for
instrument

necessary

instr::find_units locates optional units default usually OK

instr::get_addl_addr reserved for 8510 and
8753

default is OK

instr::get_ID gets instrument ID string.
Refer to user_meas.cxx.

necessary

instr::get_unit_by_name finds a unit in the
instrument

default is OK

instr::instr * initializes data members
of instrument object

necessary

~instr::instr * cleans up members of
instrument object

necessary

instr::read_units reserved for 4142 default is OK

instr::rebuild_units reserved for 4142 default is OK
IC-CAP Reference

Drivers 2

IC-CAP Reference

* denotes a constructor or destructor function for which the actual name is the unit
or instr class name chosen when the mk_unit and mk_instr scripts were run. For
example, hp4194::hp4194, in user_meas.cxx.

instr::set_found remembers that instr
found; may test and set
internal flags concerning
presence of optional
hardware modules

default usually OK

instr::test_instr supports the Run Self
Tests menu function in
the Hardware Setup
window

default is OK (no
self-test)

instr::unit_count tells how many units the
instrument has

necessary

instr::units_configurable reserved for 4142 default is OK

instr::write_units reserved for 4142 default is OK

unit::unit * initializes data members
of unit object

necessary

~unit::unit * cleans up members of
unit object

necessary

Table 59 Hardware Setup Functions (continued)

Function Name Purpose Importance
Programming with C++
This section provides examples of code for common Open
Measurement Interface programming tasks.

• Access to Inputs (Sweeps) and Outputs

• Error and Warning Messages

• Reading from an Instrument

• Serial Poll of an Instrument

• String Handling

• Time Delay

• User Input with a Dialog Box
221

222

2 Drivers

• Writing to an Instrument

Access to Inputs (Sweeps) and Outputs

In user_meas.cxx the function cvu_4194::check_sweep
demonstrates how to determine sweep properties like Mode
(V, for example), Type (LOG, for example), compliance, and
start and stop values.

IC-CAP computes all necessary step values. Do not attempt
to compute them from start, stop, and so on, because
simulations will use the values IC-CAP computes. Instead,
access individual sweep steps with the get_point function.

Following are statements from cvu_4194::check_sweep that
determine sweep properties and get sweep values. These
statements are isolated examples and are not necessarily to
be used in the order shown.
int cvu_4194::check_sweep(sweep* swp)
// header of the function used here
sweep_def *swpdef = swp->get_sweep_def();
// a sweep uses sweep_def for values
switch(swpdef->get_esweep_type())
// to see if it’s CON, LOG, LIN, ...
compval = swp->get_compliance();
// compliance
case CON:

val1 = ((con_sweep *)swpdef)->get_value();
// value of CON sweep
case LIN:

val1 = ((lin_sweep *)swpdef)->get_start();
// start value of LIN sweep

val2 = ((lin_sweep *)swpdef)->get_stop();
// stop value
((lin_sweep *)swpdef)->get_stepsize()
// step size
// next 2 are taken from cvu_4194::set_internal_sweep:
linswp = (lin_sweep*)swpdef ;
// to enable lin_sweep functions
numpoints = linswp -> get_num_points();
// number of points
if (swp->get_sweep_order() == 1)
// sweep order; 1 => main sweep
switch (swp->get_mode())
// Mode: ’V’, ’I’, ’F’, ...
swp->get_size() // Number of points
swp->get_point(step_num)
// get one point (indexed from 0)
IC-CAP Reference

Drivers 2

IC-CAP Reference

The class named sweep is declared in sweep.hxx. Using a
sweep often involves using functions it inherits from the
class ds (data set), declared in ds.hxx. The function
get_point is an example of a function inherited from ds. The
sweep_type class is in sweep_type.hxx.

To save measured data to an IC-CAP Output data set,
employ the style in cvu_4194::get_data:
dsptr -> keep_point (index++, datapoint, DATA_MEAS);
// datapoint is a double

In the example, dsptr points to a ds object. The class ds
declares other forms of the keep_point function in ds.hxx.
These can store complex or 2-port matrix data into the
Output data set.

Error and Warning Messages

The IC-CAP error box appears after a measurement, displays
one or more messages, and must be dismissed by clicking
OK if you make one or more statements such as
errbox << "ERROR: HP4194 unsupported internal sweep type."
<< EOL;
errbox << "ERROR: HP4194 sweep produced " << num_points_kept
<< "when" << swp_num_points << " were requested" << EOL ;

Warnings are displayed in the Status window:
cerr << "WARNING: HP4194 frequency rounded up to 100Hz" << EOL ;

The objects errbox and cerr accept any number of
arguments, of various types, including double, String, char*,
int, and char. Separate them with << .

Reading from an Instrument

The user_meas.cxx file demonstrates 2 styles. Writing and
reading are done with separate calls. In hp4194::get_id a
readstring function is used as follows:
stat=ioport->readstring(ad,id_buf,255);
// below is the code needed to call readstring from
// a unit class function
stat=get_io_port()->readstring(ad,id_buf,255);
// because the instrument owns and maintains the ioport
// object, the unit gets it this way before using it

The first argument above is the GPIB address. The id_buf
argument is a buffer guaranteed to be adjusted by readstring
to hold 255 bytes, if the read produces that many.
223

224

2 Drivers

A function is also provided to write a query and then read
an answer:
if (ioport->write_n_read(addr,"MKRB?", urbuf, 80) == -1)

The first argument above is the GPIB address. The second
argument is a char* to be written. The third argument is a
buffer guaranteed to be adjusted by readstring to hold 80
bytes, if the read produces that many.

The above functions are 2 of many available for an
hpib_io_port. Complete declarations of its functions are in
io_port.hxx.

Serial Poll of an Instrument

The following functions are 2 of many available for an
hpib_io_port. Complete declarations of its functions are in
io_port.hxx.

Serial polling is done as follows:
int status_byte = ioport->spoll(addr);
// this example not from user_meas.cxx
int status_byte = get_io_port()->spoll(addr);
// call from a unit function

To wait for a particular serial poll bit:
// from cvu_4194::zero_supply:
hpib_io_port *ioport = get_ioport();
// bit-weight 1 below is to await ’measurement complete bit’
if (ioport -> poll_wait(addr, 1, 0, 10.0) == -1)

The arguments are: GPIB address, bit-weight to wait for, a
flag reserved for future use, and maximum time that
poll_wait should try (10 seconds).

String Handling

C++ offers a substantial improvement over C for handling
String type data. In the file String.h a number of String
functions are declared. The following code demonstrates
several.
IC-CAP Reference

Drivers 2
String str_hello = "hello" ; // declare and initialize a string
String str_world ; // just declare
str_world = "world" ; // assignment
String hello_world = str_hello + " " + str_world ;// concatenation
errbox << hello_world + "0 ; // writing to errbox
if ("hello world" == hello_world) // test for equality
String instr_cmd = "*RST" ; // initialize for next statement:
if ioport->writestring(addr,instr_cmd) == -1) // String to instrument
IC-CAP Reference

In the final example, a char* is expected by writestring, and
C++ automatically extracts it from the String. Do not pass a
String to printf or scanf. The declarations of these functions
in /usr/include/stdio.h use the ellipsis notation (...), so C++
does not know that a char* should be passed to them.

Time Delay

An example of a time delay is:
delay (10E-3) ; // 10 millisecond delay

User Input with a Dialog Box

A number of functions for this purpose are declared in
dialog.hxx. Examples to get data from dialog boxes are:
// These use the versions of get_double and get_String that
// each take 3 arguments.
double double_result ;
String String_result ;
int ok_or_cancel ; // 0 => OK pressed by user, and -1 => CANCEL
ok_or_cancel = get_double ("Give a double:",default_dbl_val,&double_result);
ok_or_cancel = get_String ("Give a string:",default_string,&String_result);
Writing to an Instrument

An example of writing to an instrument is:
if (ioport->writestring(addr,"TRIG") == -1)
// cvu_4194::zero_supply

The arguments are the GPIB address and a char* string to
send. You can also write a query and read a response with 1
call, write_n_read, discussed in Reading from an
Instrument. Writestring and write_n_read are 2 of many
functions available for an hpib_io_port. Complete
declarations of its functions are in io_port.hxx.
225

226

2 Drivers

Syntax

This section provides help with reading the IC-CAP source
code in user_meas.hxx, user_meas.cxx, and the various
include files. Follow the example code in user_meas.hxx and
user_meas.cxx when implementing a new driver.
NOTE For best results when using the vi editor to browse the source files,
execute the command :set tabstop=3
The C++ language introduces several keywords to help
understand OMI programming, for example, class, new,
delete, and virtual. Terms that are peculiar to OMI
programming, for example, Measurer, sweep type, sweep
order, main sweep, internal sweep, user sweep, unit
function, and instrument data, are used in this chapter and
in the source files.

Function declarations in C++ use the improved function
prototypes of ANSI/C. For example,
int mult_by_2(int input);
// style for forward declaration int y=2 ;
int y = 2 ;
int x = mult_by_2(y) ; // example of invocation
int mult_by_2(int input)
// style for implementation (SAME AS DECLARATION)
{

return 2*input ;
}

This is an area of incompatibility with original (Kernighan
and Ritchie) C. However, it is easier to read, and write, and
is the emerging new standard. It also gives the compiler
information with which function call argument lists can be
checked, saving run-time aggravation.

Sometimes in class declarations you will see the function
body present:
const char *class_name()
// this code from user_meas.hxx
{ return “cvu_4194” ; }
IC-CAP Reference

Drivers 2

IC-CAP Reference

These cases are called inline functions. They behave like
normal functions, but the C++ compiler emits code inline,
without normal function call overhead. For short functions
this reduces both execution time and code size.

New Symbols and Operators

This section defines new symbols and operators in C++.

// A pair of slashes introduces an end-of-line comment.
(/* and */ can still be used for C-style comments.)

& Appearing after a type name or class name, & usually
indicates that an argument to a function is passed by
reference. Although C can pass arguments by address, the
C++ notion of reference arguments eliminates many
error-prone uses of * (pointer de-reference)
and & (address) operators used with pointer handling in C.
In the following example, the called function increments the
callers variable:
// ’input’ passed by reference:
void increment(int& input) {

input++ ; // need not use *input
}
int x=3;
increment(x); // Need not pass &x
// Now x is equal to 4

object. member_function() In C, the . operator is used to
access data members in a struct object. In C++, . is also
used to access (execute) function members.

ptr_to_object->member_function() In C, the -> operator is
used to access data members in a struct object to which one
holds a pointer. In C++, -> is also used to access (execute)
function members of a class type object to which you hold a
pointer.
227

2 Drivers
Class Hierarchy for User-Contributed Drivers
228

cvu_4194

user_unit

unit

inherits

inherits
The diagram in the following figure depicts the relationships
of the classes that are of principle interest to a user creating
a driver. The arrows without labels indicate pointers held in
the objects.

At the top of the hierarchy are classes named unit, instr,
and instr_options. All instrument drivers in IC-CAP consist
of classes derived from these 3 classes. When Agilent
Technologies adds a driver to IC-CAP, one new class is
derived from instr, one or more new classes are derived
from unit, and one new class is derived from instr_options.
The process of deriving new classes from these base classes
permits the new driver to efficiently reuse generic

Figure 6 Classes Involved in the HP 4194 Example of a User Driver

user_instr_options

hp4194_table

instr_options

hp4194

user_instr

instr

inherits inherits

inheritsinherits
IC-CAP Reference

Drivers 2

IC-CAP Reference

functionality present in the base classes, while also
introducing new code where necessary to accommodate the
specialized needs of the new instrument.

The division of a driver into unit, instr, and instr_options
components helps modularity. Generally, the role of each of
these parts is as follows:

• instr - manages operations associated with the whole
instrument, such as self-test and initialization.

• instr_options - presents a user interface for and stores
the values of options unique to each Setup in which an
instrument is used. For example, the option Use User
Sweep determines whether an instrument does or does
not use its internal sweep capability during measurement
in a particular Setup.

• unit - manages operations on a single SMU for example,
in the case of a DC analyzer, or on a single oscilloscope
input, in the case of a multi-channel digitizing
oscilloscope like the 54120 series. Operations undertaken
at this level include the application of DC and other
signals to the DUT, as well as the acquisition of the
measured data.

Intermediate in the hierarchy are 3 classes named user_unit,
user_instr, and user_instr_options. These serve the following
purposes:

• Hide any virtual functions of unit and instr that are
unlikely to be necessary to override in new driver classes.
This allows the critical function declarations to be
concentrated in one location, with comments close at
hand.

• Introduce new member functions provided for Instrument
Options management or for convenience.

At the bottom of the hierarchy are examples of classes
introduced by the Driver Generation Scripts. When a user
adds a driver to IC-CAP, the Driver Generation Scripts add
a class derived from user_instr, one or more classes derived
from user_unit, and a class derived from user_instr_options.
The class derived from user_instr_options, which is
hp4194_table in the example driver, is completely declared
229

230

2 Drivers

and implemented when the user runs the mk_instr_ui
script. In other words, a programmer using the Open
Measurement Interface need not become involved with any
coding that pertains to this user interface component of the
driver. The programmer also does not need to provide
declarations for any new classes needed for the driver, since
these are completely written out when the driver generation
scripts mk_unit, mk_instr, and mk_instr_ui are run.
However, the programmer is required to fill-in the
implementations of several functions that ultimately perform
the work done by the driver.
IC-CAP Reference

Drivers 2
Order in Which User-Supplied Functions are Called
IC-CAP Reference
Table 60 through Table 63 illustrate the following 3 essential
instrument operations:

• Rebuild (instrument list)

• Calibrate

• Measure

These tables are representative of a typical order of
invocation. Some functions may be used more than once,
particularly since Measure involves looping through different
bias levels. The column Function Category indicates the
location of further information about the function in “What
Makes up an IC-CAP Driver” on page 209. Other valuable
information is located in the comments for each function,
provided in user_instr.hxx, user_unit.hxx, user_meas.hxx,
and user_meas.cxx.

During Rebuild
During this operation, the Hardware Manager locates
addresses that respond to a serial poll. At each such
address, available drivers determine if they own the
instrument, until 1 driver succeeds. They try in the order
shown in the Instrument Library list. Note that unless
find_instr() is successful, none of the ensuing functions are
called.

The functions called during Rebuild (instrument list) are
shown in the following table.
231

232

2 Drivers

Table 60 Functions Called During Rebuild (instrument list)

Function Name Function Category

get_addl_addr Hardware Editor Operations

addl_addr_label

find_instr

units_configurable

rebuild_units or build_units

find_units

set_found

unit_count

get_unit
During Calibrate
During this operation the Measurer initiates calibration
procedures for each instrument in a Setup that has
calibration supported by IC-CAP.

The functions called during Calibrate are shown in the
following table.

Table 61 Functions Called During Calibrate

Function Name Function Category

instr::find_instr Setup Checking

unit::get_int_bias Control and Data Acquisition
Functions

unit::can_source Checking of Inputs

unit::can_source_vs_time Checking of Inputs

unit::can_measure_vs_time Checking of Outputs

unit::can_measure Checking of Outputs

unit::bias_compatible Setup Checking
IC-CAP Reference

Drivers 2

IC-CAP Reference
unit::check_sweep Checking of Inputs

unit::check_sync Checking of Inputs

instr::cal_possible Calibration

instr::find_instr Setup Checking

instr::do_cal Calibration

Table 61 Functions Called During Calibrate (continued)

Function Name Function Category
During Measure

This operation undertakes a potentially complex series of
operations on the instruments used by a Setup. The exact
functions called vary, depending on whether calibration is
available for particular instruments, and whether the main
sweep instrument operates in an internally swept fashion, or
in a stepped/spot-mode fashion (the case when the
instrument option Use User Sweep is set to Yes for the main
sweep instrument).

The functions called during Measure are shown in the following
table (user main sweep) and Table 63 (internal main sweep).

Table 62 Functions Called During Measure (with User Main Sweep)

Function Name Function Category Notes

instr::find_instr Setup Checking

instr::find_units Hardware Editor
Operations

instr::set_found Hardware Editor
Operations

unit::get_int_bias Control and Data
Acquisition Functions

unit::can_source Checking of Inputs

unit::can_source_vs_time Checking of Inputs
233

234

2 Drivers

unit::can_measure_vs_time Checking of Outputs

unit::can_measure Checking of Outputs

unit::bias_compatible Setup Checking

instr::reset_instr_info Initialization

unit::check_sweep Checking of Inputs

unit::check_sync Checking of Inputs

instr::reset_outptrs Initialization

unit::check_out Checking of Outputs

unit::can_do_second_sweep Control and Data
Acquisition Functions

instr::cal_possible Calibration

instr::recall_n_chk_calib Calibration

instr::init_instr Initialization

instr::zero_supplies Initialization

BEGIN BIAS LOOP Loop to END BIAS
LOOP

unit::set_bias Control and Data
Acquisition

unit::enable_output Initialization

unit::set_scalar Control and Data
Acquisition

BEGIN USER MAIN SWEEP
LOOP

 Loop to END
MAIN SWEEP

unit::wait_hold_time Control and Data
Acquisition

unit::set_bias Control and Data
Acquisition

Table 62 Functions Called During Measure (with User Main Sweep)

Function Name Function Category Notes
IC-CAP Reference

Drivers 2

IC-CAP Reference

unit::set_sync Control and Data
Acquisition

unit::wait_delay_time Control and Data
Acquisition

unit::get_data Control and Data
Acquisition

unit::get_scalar_data Control and Data
Acquisition

END MAIN SWEEP LOOP

END BIAS LOOP

instr::zero_supplies Initialization

unit::fill_outds Control and Data
Acquisition

Table 63 Functions Called During Measure (with Internal Main Sweep)

Function Name Function Category Notes

instr::find_instr Setup Checking

instr::find_units Hardware Editor
Operations

instr::set_found Hardware Editor
Operations

unit::get_int_bias Control and Data
Acquisition Functions

unit::can_source Checking of Inputs

unit::can_source_vs_time Checking of Inputs

unit::can_measure_vs_time Checking of Outputs

unit::can_measure Checking of Outputs

unit::bias_compatible Setup Checking

Table 62 Functions Called During Measure (with User Main Sweep)

Function Name Function Category Notes
235

236

2 Drivers

instr::reset_instr_info Initialization

unit::check_sweep Checking of Inputs

unit::check_sync Checking of Inputs

instr::reset_outptrs Initialization

unit::check_out Checking of Outputs

unit::can_do_second_sweep Control and Data
Acquisition Functions

instr::cal_possible Calibration

instr::recall_n_chk_calib Calibration

instr::init_instr Initialization

instr::zero_supplies Initialization

BEGIN BIAS LOOP Loop through END
BIAS LOOP below

unit::set_bias Control and Data
Acquisition

unit::enable_output Initialization

unit::set_scalar Control and Data
Acquisition

unit::enable_sync Control and Data
Acquisition

unit::set_2_internal_sweeps Initialization

unit::set_internal_sweep Initialization

unit::set_bias Control and Data
Acquisition

unit::set_sync Control and Data
Acquisition

unit::trigger Control and Data
Acquisition

Table 63 Functions Called During Measure (with Internal Main Sweep)

Function Name Function Category Notes
IC-CAP Reference

Drivers 2

IC-CAP Reference

unit::wait_data_ready Control and Data
Acquisition

unit::get_data Control and Data
Acquisition

unit::get_scalar_data Control and Data
Acquisition

END BIAS LOOP

instr::zero_supplies Initialization

unit::fill_outds Control and Data
Acquisition

Table 63 Functions Called During Measure (with Internal Main Sweep)

Function Name Function Category Notes
237

2 Drivers
Handling Signals and Exceptions
238

A variety of conditions may result in termination of a
measurement. Among the most common exceptions for a
driver is an I/O timeout. Timeouts usually occur when one
or more of the following conditions is present:

• Instruments are turned off

• Cabling is incorrect

• The driver software makes errors with respect to
instrument protocol or the time required by the
instrument’s operations

There are numerous examples in the hp4194 and cvu_4194
functions code that demonstrate setting the timeout before
making different queries to the instrument. A timeout is
usually detected as a value of -1, returned from the spoll,
readstring, or writestring functions of the hpib_io_port
used by the driver software.

In addition to instrument I/O problems, either of the
following signals may be generated:

• SIGFPE This signal occurs when the code executes an
operation like a divide by zero. By default, there is no
provision in IC-CAP for trapping this signal.
NOTE If this signal occurs during Measure, the default handling of SIGFPE
terminates the measurement; if it occurs during the execution of a
transform, the function or macro will continue to execute and upon
completion, an error message is displayed indicating a floating point error
occurred.
• SIGINT This signal is generated when you issue the
Interrupt command. By default, there is no provision in
IC-CAP for trapping this signal. The measurement is
terminated immediately. Note: For complex operations, it
may take several minutes before control is returned.
IC-CAP Reference

Drivers 2

IC-CAP Reference
If your application requires special error recovery for these
signals, it is possible to trap them. For details, refer to
“Handling Signals and Exceptions" in the User’s Guide.

NOTE Do not alter the handling of SIGUSR1 and SIGUSR2; both signals are used
internally by IC-CAP for error trap and recovery purposes.
239

2 Drivers

240 IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

3
SPICE Simulators

SPICE Simulation Example 244

Piped and Non-Piped Simulations 246

Output Data Formats 252

SPICE Parameter Sweeps 254

Circuit Model Descriptions 256

Circuit Description Syntax 263

SPICE Simulator Differences 267

Using the PRECISE Simulator with IC-CAP 269

Using the PSPICE Simulator with IC-CAP 272

This chapter describes the details of using the SPICE
simulators with IC-CAP. For general information on IC-CAP
simulation, refer to Chapter 6, “Simulating,” in the User’s
Guide.
NOTE The Solaris OS must include the cpp utility, which IC-CAP uses to manage
output from SPICE simulators. See “System Requirements" in the
Installation and Configuration Guide for more details.
IC-CAP can interface with the following SPICE simulators.
They are provided as a courtesy to IC-CAP users (though
not supported by Agilent Technologies), and you must
purchase a license to use them.

• SPICE2 The SPICE2G.6 simulator developed at U.C.
Berkeley.

• SPICE3 The SPICE3E2 simulator developed at U.C.
Berkeley.
241Agilent Technologies

242

3 SPICE Simulators

• HPSPICE The Agilent Technologies implementation of
SPICE2. Although there are some differences between this
version and the SPICE2G.6 version from U.C. Berkeley,
these 2 simulators are compatible. For more information
refer to “SPICE Simulator Differences” on page 267. The
version of HPSPICE provided with IC-CAP can be run only
from within the IC-CAP program—it cannot be run
stand-alone.
NOTE The HSPICE simulator, developed by Cadence, uses input deck syntax
similar to that of the SPICE-type simulators; thus, it is referred to as a
SPICE-type simulator in this manual. IC-CAP currently supports only the
features of HSPICE also available in the U.C. Berkeley SPICE simulators.
The SPICE simulators support the following analysis types:

• DC

• AC

• Transient

• Noise

• Capacitance Voltage (CV)

• 2-Port (S,H,Y,Z,K,A parameter)

• Time-Domain Reflectometry (TDR)
NOTE The latter 3 simulation types are not directly available in the SPICE
simulators; IC-CAP builds the additional circuitry required in the simulator
input files to perform the simulation.
IC-CAP supports the features of ELDO that are also
available in the UCB SPICE simulators but also provides
limited support for models written in either ELDO-FAS or
HDL-A. ELDO is an analog simulator developed by Mentor
Graphics Corp. ELDO input deck syntax is compatible with that
of the SPICE type simulators; therefore, in ELDO is categorized
as a SPICE-type simulator this manual.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

The IC-CAP version of SPICE3 supports the following
models:

The following additional SPICE-like simulators are also
discussed in this chapter:

• PRECISE

• PSPICE

Model Group Supported Models Model Files

MOSFET Level 1, Level 2, Level 3 nmos/pmos2
nmos3/pmos3

BSIM3, BSIM4 BSIM3_DC_CV_Measure
BSIM3_DC_CV_Extract
BSIM3_RF_Measure
BSIM3_RF_Extract
BSIM3_AC_Noise_Tutorial
BSIM3_CV_Tutorial
BSIM3_DC_Tutorial
BSIM3_Temp_Tutorial
BSIM3_DC_CV_Finetune
BSIM4_DC_CV_Measure
BSIM4_DC_CV_Extract
BSIM4_RF_Measure
BSIM4_RF_Extract
BSIM4_DC_CV_Tutorial
BSIM4_DC_CV_Finetune

MOS Model 9 mm9
mm9_demo

BJT Gummel Poon bjt_npn/bjt_pnp
bjt_nhf
bjt_ncehf
bjt_ft
mnsnpn
sabernpn

GaAs Statz UCBGaas
UGaashf

Diode PN Diode pn_diode

Philips JUNCAP juncap
243

3 SPICE Simulators
SPICE Simulation Example
244

The circuit description is predefined for all IC-CAP
configuration files. Enter this description if a new model is
being defined; edit the description to fit specific needs. The
syntax is identical to the syntax used for describing circuits
in a typical SPICE simulation deck.

This simulation example will use the IC-CAP supplied Model
bjt_npn.mdl.

1 Select the simulator by choosing Tools > Options > Select
Simulator > spice2. Choose OK.

2 Choose File > Open > bjt_npn.mdl. Choose OK.

3 View the circuit description by clicking the Circuit tab.

The circuit description is shown in Figure 7. This deck
describes the circuit (in this case, a single device) to be
used in the simulation.

4 To view input and output for the fearly setup, click the
DUTs-Setups tab and select fearly.

The Measure/Simulate folder appears with the inputs vb,
vc, ve, and vs, and the output ic. The vc input specifies a
voltage source at node C that sweeps linearly from 0 to
5V in 21 steps. The ic output specifies that current at
node C be monitored.

In the Plots folder, icvsvc is specified so that the results
of the simulation can be viewed graphically.

5 To simulate, click the Simulate button in the
Measure/Simulate folder. The Status line displays Simulate
in progress.

When the simulation is complete, the Status line displays
IC-CAP Ready.

6 To view the results of the simulation, display the Plots
folder and click Display Plot. The plot displays measured
data represented by solid lines and simulated data
represented by dashed lines.
IC-CAP Reference

SPICE Simulators 3
NOTE For syntax examples of running a remote simulation, refer to “Remote
Simulation Examples" in the User’s Guide.
IC-CAP Reference

Q1 1 = C 2 = B 3 = E 4 = S NPN AREA = 1.0
.MODEL NPN NPN
+ IS = 36.76e-18
+ BF = 336.1
+ NF = 1.003
+ VAF = 35.25
+ IKF = 22.07m
+ ISE = 1.882f
+ NE = 1.932
+ BR = 4.103
+ NR = 1.005
+ VAR = 1.651
+ IKR = 147.3u
+ ISC = 15.69f
+ NC = 1.857
+ RB = 522.0
+ IRB = 61.43u
+ RBM = 1.000m
+ RE = 8.435
+ RC = 57.05
+ XTB = 1.700
+ EG = 1.110
+ XTI = 3.000
+ CJE = 44.06f
+ VJE = 871.7m
+ MJE = 429.9m
+ TF = 10.49p
+ TR = 1.700m
+ XTF = 247.4
+ VTF = 1.622
+ ITF = 140.6m
+ PTF = 218.8
+ CJC = 68.94f
+ VJC = 603.8m
+ MJC = 290.6m
+ XCJC = 300.0m
+ TR = 1.700n
+ CJS = 111.9f
+ VJS = 465.0m
+ MJS = 241.9m
+ FC = 500.0m

Figure 7 Circuit Description Deck for an NPN Bipolar Transistor
245

3 SPICE Simulators
Piped and Non-Piped Simulations
246

The following sections describe the differences in piped and
non-piped simulations for the various SPICE simulators.
Each section also describes the argument syntax required to
invoke each of the template simulators. This information is
needed when writing the user translation module, since
these are the arguments supplied by IC-CAP when it calls
the translation module. For information on the translation
module and adding a simulator, refer to the section “Adding
a Simulator" in the User’s Guide.
Piped and Non-Piped SPICE Simulations
A non-piped simulation receives the input deck information
from a file, performs the simulation and sends the binary
output data and resulting text output to other files. The
simulator process is restarted for every simulation.

A piped simulation receives the input deck information from
a pipe connected to standard input, performs the simulation
and sends the output data to a pipe connected to standard
output. The simulator process will remain on until another
simulator is selected. Setting the RETAIN_SIMU variable to
TRUE overrides this behavior and allows multiple simulators
to remain running. This uses additional memory but
increases speed when frequently switching between
simulators. In all cases, a piped simulator process will be
turned off when the Simulation Debugger is turned on.

The text output from a simulation usually contains an
explanation of any errors which may have been encountered
during the simulation. Piped simulations do not save any
text output from the simulation. If an error occurs during a
piped simulation, IC-CAP issues a message in an error box
stating that an error has occurred and recommending that
the simulation be repeated with the Simulation Debugger
turned on. IC-CAP performs non-piped simulations when the
Simulation Debugger is ON.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

In general, piped simulations are faster than non-piped
simulations for any given simulator because the simulator
process does not have to be restarted for every simulation
and less file activity is required.

Syntax: Non-Piped 2G.6, 3E2, and HPSPICE Simulations

The command formats for non-piped simulations are shown
next:

UCB SPICE 2G.6
ucbspice2g6 rawfile

where:

rawfile is the output binary data file.

The input deck file containing the circuit description and
analysis commands comes from standard input and the
output text file containing the results of the simulation goes
to standard output.

UCB SPICE 3E2
spice3e2 -b -r rawfile -o textfile deckfile

where:

-b specifies batch mode.

rawfile is the output binary data file.

textfile is the output text file containing the results of the
simulation.

deckfile is the input deck file containing the circuit
description and analysis commands.

HPSPICE
spice2.4n1 deckfile textfile rawfile

where:

deckfile is the input deck file containing the circuit
description and analysis commands.

textfile is the output text file containing the results of the
simulation.
247

248

3 SPICE Simulators

rawfile is the output binary data file.

Syntax: Piped 2G.6, 3E2, and HPSPICE Simulations

The command formats for piped simulations are shown next:

UCB SPICE 2G.6
ucbspice2g6 -

where:

The "-" denotes that the binary data output is going to the
standard output pipe. The input deck information comes
from the standard input pipe and the output text is sent
to the file /dev/null.

UCB SPICE 3E2
spice3e2 -s

where:

The -s option specifies that the input deck information is
coming from standard input and the binary data output
is going to standard output.

HPSPICE
spice2.4n1 - /dev/null -

where:

The first "-" denotes that the input deck information is
coming from the standard input pipe.

The output text is sent to the file /dev/null.

The last "-" denotes that the binary data output is going to
the standard output pipe.
IC-CAP Reference

SPICE Simulators 3
Non-Piped HSPICE Simulations

NOTE Starting with the IC-CAP 2008 release, the CAN_PIPE token for HSPICE in
usersimulators is supported. This token can now be used on local HSPICE
and local Solaris HSPICE simulations with HSPICE-2007.03.SP1. It is not a
true piped mode (netlists and raw files are still written to disk), but
provides substantial performance improvement by using an interactive
mode that avoids restarting HSPICE for every simulation. Beginning in
HSPICE 2008.03-SP1, HSPICE license will time out in 1800 seconds for
CAN_PIPE mode. You can customize the license timeout by setting
variable HSPICE_LICENSE_TIMEOUT (unit by second).
IC-CAP Reference

Non-piped HSPICE simulations are identical to non-piped
SPICE simulations. This type of simulation is performed when
the Simulation Debugger is set to ON. If CANNOT_PIPE is
specified for HSPICE, even when the Simulation Debugger is
OFF, it still performs a non-piped simulation. This means that
HSPICE must be restarted for every simulation. Because of this,
there is no noticeable difference in simulation speed when the
Simulation Debugger is set to ON or OFF.

Syntax: Piped HSPICE Simulations

The command format for an HSPICE piped simulation is as
follows:

hspice -I

load deckname and run commands are then passed to the
running HSPICE process.

Syntax: Non-Piped HSPICE Simulations

The command format for an HSPICE non-piped simulation is as
follows:

hspice -i deckfile -o logfile

where

deckfile is the input deck file containing the circuit
description and analysis commands.
249

250

3 SPICE Simulators

logfile is the listing of information about the simulation
generated by HSPICE. If the simulation debugger is open, this
file will be displayed in the Output Text portion of the
simulation debugger.

The output binary data file is written to a file named
deckfile.suffix where suffix depends on the type of analysis
being performed. Refer to the HSPICE User's Manual for more
information.

Syntax: Client/Server mode HSPICE Simulations

On Windows, provides a method of invoking a standing server
process to access HSPICE licenses. If this was launched via the
hspui program, IC-CAP can simulate faster by launching
HSPICE with the followin syntax:

hspice -C deckfile -o logfile

where

deckfile is the input deck file containing the circuit
description and analysis commands.

logfile is the listing of information about the simulation
generated by HSPICE. If the simulation debugger is open, this
file will be displayed in the Output Text portion of the
simulation debugger.

However, if the server has not been started, the simulation still
occurs but at a slower speed.

To configure IC-CAP to send the -C instead of -i, specify the
template name hspice-C as the second field in your
usersimulators line example:
hspiceC hspice-C c:\synopsys\Z-2007.09\bin\hspice.exe ""
CANNOT_PIPE
Non-Piped ELDO Simulations
Non-piped ELDO simulations are identical to non-piped SPICE
simulations. This type of simulation is performed when the
Simulation Debugger is set to ON. ELDO is not capable of
performing a piped simulation, so even when the Simulation
Debugger is OFF, it still performs a non-piped simulation. This
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

means that ELDO must be restarted for every simulation.
Because of this, a there is no noticeable difference in simulation
speed when the Simulation Debugger is set to ON or OFF.

Syntax: Non-Piped ELDO Simulations

The command format for an ELDO non-piped simulation is as
follows:
eldo deckfile

where

deckfile is the input deck file containing the circuit
description and analysis commands. The name of this
deckfile is in the form <circuit_name>.cir.

The output binary data file is written to a file named
<circuit_name>.spi3. This output binary data format is similar
to the output binary format of the UCB SPICE3 simulator and is
generated when you specify the option
 .option spi3bin

Refer to the ELDO User’s Manual for more information.

The output text file, is sent to the file named
<circuit_name>.chi This file is displayed in the Output table of
the Simulation Debugger if it is on.
251

3 SPICE Simulators
Output Data Formats
252
The example in the following figure shows the output data
format of the spice2 template simulator supported in IC-CAP.

Record 1: Title card (80 bytes), date (8 bytes), time (8 bytes) TOTAL-96 BYTES
Record 2: Number of output variables (including "sweep" variable) (2 bytes)
Record 3: Integer ’4’ (2 bytes)
Record 4: Names of each output variable (8 bytes each)
Record 5: Type of each output (2 bytes each)
 0 = no type
 1 = time
 2 = frequency
 3 = voltage
 4 = current
 5 = output noise
 6 = input noise
 7 = HD2
 8 = HD3
 9 = DIM2
 10 = SIM2
 11 = DIM3
 Outputs 7 through 11 are distortion outputs.
Record 6: The location of each variable within each sweep point. (2-bytes each)
 (Normally just 1,2,3,4,...but needed if outputs are mixed up)
Record 6a: 24 characters that are the plot sub-title if Record 3 is a ’4’.
Record 7: Outputs at first sweep point
Record 8: Outputs at second sweep point
Record 9:
 .
 .
 .
last record
All real data are 8-byte quantities.
All complex data are single precision reals, that is 4-byte quantities.
 (4-byte quantity for the real part,
 4-byte quantity for the imaginary part)
EOF A special "end-of-file" indicator: 9.87654321D+27 for real data
 (9.876E+0,5.432E+0) for complex data
EOI A 4 byte integer zero indicates the end of all raw data
Figure 8 Output File Format Used For spice2

The binary format output by the spice3 template simulator is
shown in the following figure.
IC-CAP Reference

SPICE Simulators 3
Title Card (Newline (\n) terminated string)
Date and Time (Newline (\n) terminated string)
Plot Title (Newline (\n) terminated string)
Flags (Newline (\n) terminated string)
Number of Variables (No. Variables: [an integer])
Number of Points (No. Points: [an integer])
Version (Newline (\n) terminated string)
Variables List
 (Variables:

[tab] (index) [tab] (name) [tab] (type)
.

 .
 .
 { repeated num_var times }
 where: index = variable index [integer]
 name = variable name [string]
 type = variable type [string (that is, "current" or "voltage")]
 num_var = number of variables
Binary: (Newline (\n) terminated string indicating the
 start of the binary data)
Each data point is listed in the order listed in the variables list.
Each real data point is represented by 8 bytes.
Each complex data point consists of the real part and the imaginary
part of 8 bytes each.
There are no separators between data points.
IC-CAP Reference

Figure 9 Output File Format Used For spice3
253

3 SPICE Simulators
SPICE Parameter Sweeps

NOTE Parameter sweeps should always be the outer most sweep.

LSYNC sweeps should have master sweeps that are also parameter
sweeps.
254

For SPICE-type simulators, specifying parameter sweeps for
devices and circuits requires an input added to the setup (in
this example, nmos2/short/idvd) with Mode P.

Figure 10 SPICE Parameter Sweep Setup Example

IC-CAP performs a simulation for each value of the parameter
sweep. The following figure shows the resulting plot.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

Figure 11 SPICE Parameter Sweep Plot Example

For additional information on sweeping parameters, refer to the
section, “Specifying Parameter or Variable Sweeps" in the User’s
Guide.
255

3 SPICE Simulators
Circuit Model Descriptions
256

The circuit description for the HSPICE and ELDO simulators is
similar to the UCB SPICE simulator circuit description. The
details in the following sections also apply to HSPICE and
ELDO.
Specifying Simulator Options
For information on available options and their syntax, refer to
the User’s Manual for that simulator. Simulator options are
specified in the first line of the circuit definition using the
following syntax:
.OPTIONS OPT1 = OPTVAL1 OPT2 = OPTVAL2 ... OPTN = OPTVALN

where

OPTs denote the option keywords used by the simulator

OPTVALs are the corresponding option values. Some options
do not require a value; this field may or may not be specified,
depending on the option.

A space is the only delimiter required between options.

The nominal and operating temperatures, TNOM and TEMP, are
commonly used options; they can also be specified by entering a
value (in °C) for the global variables TNOM and TEMP. To do
this, enter the variable and its value in the System Variables
table in the Utilities application.

• TNOM is the temperature at which the model parameters are
extracted; TEMP is the temperature at which the simulation
is performed. When performing an optimization to extract
model parameters, TEMP and TNOM should be set to the
same value so that simulations during optimization are
performed at TNOM. TNOM must be defined to guarantee
consistency between simulation and extraction.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference
• In general, TNOM and TEMP can be in any variable table,
allowing different Models, DUTs or Setups to use different
nominal and operating temperatures. IC-CAP checks for
these global variables before running a simulation. If the
variable is not found, the value of the option set in the
.OPTIONS statement in the Circuit Editor is used when it
exists. Otherwise, the circuit is analyzed using the
simulator’s default values.

IC-CAP automatically adds the option POST=1 to the options list
when the selected simulator is hspice. Specifying this option
causes hspice to return the binary raw data file, which IC-CAP
requires for reading back the simulated data. This option is not
necessary when performing a Manual Simulation from the
Simulation Debugger command menu because the data is not
read back into IC-CAP.
Describing the Device Model

A device model is used to characterize a single SPICE element
of any type. This description requires 2 parts:

• An element statement that calls a defined model

• A .MODEL definition, which is identical to a .MODEL card in
SPICE

The general form of the element statement that calls the device
model is:
DNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN MNAME
+ DPAR1 = DVAL1 DPAR2 = DVAL2 ...DPARN = DVALN

where

DNAME is the device name with the first letter being a
simulator defined key letter denoting the type of model being
specified.

NNUM denotes the node number connections.

NNAME denotes node names corresponding to the node
numbers.

DPAR is a predefined DUT parameter name.
257

258

3 SPICE Simulators

DVAL is the specified DUT parameter value. Refer to the
SPICE Reference manual for DUT parameter names available
for each model.

MNAME is the model name being referenced. This is the same
MNAME specified in the .MODEL definition described below

A .MODEL definition specifies the parameters of a device model
that describe a particular element. When a parameter is not
specified, the default value in the model is used. The general
form of the .MODEL definition is:
.MODEL MNAME TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...PNAMEN=PVALN

where

MNAME is the model name. Regardless of the model name
entered in the MNAME field of the .MODEL definition
statement, IC-CAP substitutes the name of the Model as it is
called in the Model List when the simulator input deck is
built.

TYPE is a valid SPICE component type

PNAME is a parameter name for the particular model type

PVAL is the parameter value

As in SPICE, a plus sign (+) that appears as the first character
of a line denotes a continuation of the previous line. This
continuation character is often used for easier readability when
specifying the .MODEL card.
NOTE When using the SPECTRE simulator with either the OSI, SPECTRE442, or
SPECTRE443 interfaces (see “SPECTRE Interfaces” on page 276), the
LEVEL parameter for a MOS .MODEL card may not translate properly.
IC-CAP outputs the value as a real number in the netlist, but SPECTRE
requires an integer. To work around this issue, use the model type BSIM3
instead of MOS and omit the LEVEL parameter. Alternatively, enclose the
LEVEL parameter with parentheses, for example, LEVEL = (11). By doing
the later, IC-CAP does not flag it as a model parameter and leaves the
expression alone when passing the netlist to SPECTRE.
IC-CAP Reference

SPICE Simulators 3
Describing Subcircuits
IC-CAP Reference

A subcircuit model is used to describe a circuit that contains
more than 1 element.

The syntax is similar to the syntax in SPICE. The subcircuit
description must begin with a .SUBCKT and end with a .ENDS
declaration. Statements between these 2 declarations describe
the subcircuit components.

The general form of the first line of a subcircuit definition is:
.SUBCKT SUBNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN =
NNAMEN + (PAR1=PARVAL1 PAR2=PARVAL2 ...PARN=PARVALN)

where

SUBNAME is the name you give to the subcircuit. Regardless
of the subcircuit name entered in the SUBNAME field of the
.SUBCKT definition statement, IC-CAP substitutes the name
of the Model being simulated when the simulator input deck
is built.

NNUM are the numbers of the external nodes of the
subcircuit. These external nodes are used to connect the
subcircuit to another circuit. External nodes in the .SUBCKT
declaration cannot be 0 (ground), but internal nodes can be
connected to ground and any external node to ground in a
surrounding circuit.

NNAME is a node name assigned to a node number. As in the
device model description, IC-CAP allows the option of
equating node numbers to node names. If you assign node
names, use these names when specifying the Inputs and
Outputs in the Setup.

PAR1 ... PARN are subcircuit parameters that can be passed
through subcircuit calls. These parameters are added to the
DUT parameter table in IC-CAP.

PARVAL1 ... PARVALN are the corresponding parameter
values. These subcircuit parameters become DUT parameters
and can be modified in the DUT Parameter Editor.

(While the syntax shown here is correct, passed parameters are
ignored by IC-CAP.)
259

260

3 SPICE Simulators
The body of the subcircuit model description contains the
components of the subcircuit using element and .MODEL
statements.
Assigning Node Names
IC-CAP allows the option of equating node numbers to node
names in circuit descriptions because it is typically easier to
refer to a node by a meaningful name rather than a number. If
node numbers only are specified, these node numbers must be
used when specifying inputs and outputs. Node identities can
also be specified with the format %<name>. For example:
Q1 1=C 2=B 3=E 4=S NPN or Q1 %C %B %E %S NPN

Although HSPICE and ELDO allow alphanumeric characters for
node names, node numbers must still be associated with node
names because IC-CAP parses HSPICE as a SPICE-type
simulator.

When using this format, all node names within the circuit or
device must be referenced using the %[nodename] syntax.

Test Circuits and Hierarchical Simulation
When characterizing a circuit, it is often necessary to add
circuitry around a circuit or device to model the actual
measurement Setup. IC-CAP provides a Test Circuit Editor to
allow modeling of this additional bias circuitry. Select the DUT
from the DUT/Setup panel. Click the Test Circuit tab and enter
the test circuit description in the same manner you would enter
a Circuit Description. The test circuit definition should include
a call to the device or subcircuit defined in the Circuit Editor, as
well as the additional circuitry needed to model the external
parasitics of the measurement Setup.
NOTE When you define a test circuit, the DUT parameter table contains the
values specified in the test circuit specification. Regardless of the
subcircuit name entered in the SUBNAME field of the .SUBCKT
declaration, IC-CAP uses the name of the DUT being simulated when the
simulator input deck is built.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

Subcircuit and device model specifications can be called from
inside another Model. This enables you to perform hierarchical
simulations to study a circuit at different levels.

When making reference to another model, the model name must
be used as it appears in the IC-CAP Model List. For example,
assume you have defined 3 Models, model1, model2, and
model3. model1 has a circuit model description that is a device
definition. The circuit model description for model2 is a
subcircuit definition at the gate level that includes a call to
model1 in a device call statement. And, the circuit model
description for model3 is a subcircuit definition that includes a
call to model2 in a subcircuit call statement. When you simulate
a Setup in model3, IC-CAP traverses the Model hierarchy and
uses the circuit model description defined in model3, which
includes calls to model1 and model2. The syntax for calling a
device model is identical to that described in the Device Model
Description section.

The general form of the device call is:
DNAME NNUM1 = NNAME1 NNUM2 = NNAME2 ...NNUMN = NNAMEN MNAME
+ DPAR1 = DVAL1 DPAR2 = DVAL2 ...DPARN = DVALN

Calling a subcircuit specification allows you to insert an entire
subcircuit into a circuit as if it were a single component. The
call requires a syntax identical to that used in SPICE. The
general form of the subcircuit call is:
XNAME NNUM1 NNUM2 ...NNUMN SUBNAME (PARVAL1 PARVAL2 ... PARVALN)

where

XNAME is the name of the subcircuit call statement. The only
requirement for this name is that it must start with the letter
X.

NNUM are the node numbers of the calling circuit that
connect to the external nodes of the subcircuit. The calling
circuit node numbers need not be the same as the external
nodes of the subcircuit. The nodes are connected in the order
specified. Specify the same number of nodes declared in the
subcircuit definition.
261

262

3 SPICE Simulators
SUBNAME is the name of the subcircuit, previously
described by a .SUBCKT definition. This must have the name
of the model as it appears in the Model List if it is in a
different model.

PARVAL are subcircuit parameter values. The order in which
they are listed in the subcircuit call statement must match
the parameters list in the subcircuit definition.

(While the syntax shown here is correct, passed parameters are
ignored by IC-CAP.)

NOTE When a test circuit is included in the Model, IC-CAP uses the test circuit
description as the top level circuit definition. The node number
connections defined in the test circuit description, not the circuit
description, are used as the external nodes. Because of this, any
node-number-to-node-name cross-referencing in the circuit description is
not used. Only node names equated to node numbers in the test circuit
description can be used when specifying Inputs and Outputs in the Setup
Editor. When only node numbers are specified in the test circuit
description, (that is, they are not equated to node names) these same
node numbers must be used in the Input and Output node fields.
IC-CAP Reference

SPICE Simulators 3
Circuit Description Syntax
IC-CAP Reference
This section describes basic syntax rules for creating a circuit
description.
SPICE Simulators

Start an input line with * to denote a comment in the circuit
model description or in the input file of the simulation
debugger. Although some simulators accept # and * , IC-CAP
accepts * only. (# is recognized as a preprocessor directive
when the simulator input deck is built. Adding a comment using
causes a simulation generated from a DUT or Setup to fail.)

The following table lists the SPICE element component
specifications. For information on available options and their
syntax, refer to the SPICE Reference manual.

Table 65 lists the semiconductor device specifications. For
information on available options and their syntax, refer to the
SPICE Reference manual.

Table 64 SPICE Element Component Specifications

Component General Form Example

Resistor RXXXXXXX N1 N2 VALUE
<TC=TC1<TC2>>

R1 1 2 1000
TC=0.001,0.015

Capacitor CXXXXXXX N+ N- VALUE
<IC=INCOND>

COSC 15 2 10U IC=3

Inductor LXXXXXXX N+ N- VALUE
<IC=INCOND>

LSHUNT 3 29 10U
IC=15.7m

Mutual Inductor KXXXXXXX LYYYYYYY LZZZZZZZ
VALUE

K43 LAA LBB 0.999

Transmission
Line

TXXXXXXX N1 N2 N3 N4 Z0=VALUE
<TD=VALUE>+ <F=FREQ
<NL=NRMLEN>> <IC=V1,I1,V2,I2>

T1 1 0 2 0 Z0=50
TD=10NS
263

264

3 SPICE Simulators

Linear Voltage-
Controlled
Current Source

GXXXXXXX N+ N- NC+ NC- VALUE G1 2 0 5 0 0.1M

Linear Voltage-
Controlled
Voltage Source

EXXXXXXX N+ N- NC+ NC- VALUE E1 2 3 14 1 2.0

Linear Current-
Controlled
Current Source

FXXXXXXX N+ N- VNAM VALUE F1 13 5 VSENS 5

Linear Current-
Controlled
Voltage Source

HXXXXXXX N+ N- VNAM VALUE HX 5 17 VZ 0.5K

Independent
Voltage Source

VXXXXXXX N+ N- <<DC> DC/TRAN
VALUE> + <AC <ACMAG
<ACPHASE>>>

VIN 12 0 DC 6

Independent
Current Source

IXXXXXXX N+ N- <<DC> DC/TRAN
VALUE> + <AC <ACMAG
<ACPHASE>>>
+ SFFM(0 1 10K 5 1K)

ISRC 23 21 AC
0.333 45.0

Table 65 SPICE Semiconductor Component Specifications

Component General Form Example

Junction
Diode

DXXXXXXX N1 N2 MNAME
+ <AREA><OFF><IC=VD>

DCLAMP 3 7 DMOD 3.0 IC=0.2

BJT QXXXXXXX NC NB NE <NS>
MNAME
+ <AREA> <OFF>
<IC=VBE,VCE>

Q2A 11 26 4 20 MOD1

JFET JXXXXXXX ND NG NS
MNAME
+ <AREA> <OFF>
<IC=VDS,VGS>

J1 7 2 3 JM1 OFF

Table 64 SPICE Element Component Specifications (continued)

Component General Form Example
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference
MOSFET MXXXXXXX ND NG NS NB
MNAME
+
<L=VAL><W=VAL><AD=VAL
><AS=VAL>
+<PD=VAL><PS=VAL><NRD
=VAL><NRS=VAL>
+ <OFF> <IC=VDS,VGS,VBS

M1 2 9 3 0 MOD1 L=10U W=5U

Table 65 SPICE Semiconductor Component Specifications (continued)

Component General Form Example
HSPICE Simulator
Basic HSPICE syntax rules are the same as SPICE-type
simulators. Refer to the HSPICE User’s Manual for complete
syntax and rules.

ELDO Simulator

NOTE Before performing HSPICE simulations, specify the HSPICE version name
in the System Variable HSPICE_VERSION. If this variable is not specified,
IC-CAP will assume the latest version of HSPICE is being used.
Basic ELDO syntax rules are the same as SPICE-type
simulators. In addition to the SPICE-type syntax, FAS
user-defined models can be defined and instantiated in the
IC-CAP Circuit Editor. An FAS model is defined as:
amodel name(pin1,pin2..)
.
<model body>
.
endmodel

(smodel and fmodel are also accepted).

The above model is instantiated in a circuit as:
yxx name [pin:] 1 2 ... [param: par1 = var1 ...] [model: ...]

In addition, the parser accepts the following ELDO constructs:
.ADDLIB number pathname
#com . . #endcom
265

266

3 SPICE Simulators

FIDEL models (oxx p1:typ p2:typ ... mod=modelname) and
transfer functions (FNS, FNZ) are not currently supported by
the IC-CAP parser. However, the #echo keyword can be used to
insert these statements into a circuit in the IC-CAP Circuit
Editor.

The #echo keyword is available in the IC-CAP Circuit Editor for
all supported simulators. #echo can be used to pass a deck card
or command directly through to the simulator without any
parsing by IC-CAP. For example, the line
#echo <something that the IC-CAP parser doesn't understand>

is sent to the simulator as
<something that the IC-CAP parser doesn't understand>

The following analog model instantiation syntax is supported
for HDL-A:

HDL-A user-defined models with the following syntax can also
be instantiated in the IC-CAP Circuit Editor.
yxx name(xx) [pin:] 1 2 ... [param: par1 = var1 ...]

and
yxx name(xx) [pin:] 1 2 ... [generic: par1 = var1 ...]
NOTE Before performing ELDO simulations specify the ELDO version name in the
System Variable ELDO_VERSION. If this variable is not specified, IC-CAP
will use the version name specified in the environment variable eldover, if
it exists. If neither ELDO_VERSION or eldover are specified, IC-CAP
assumes that the latest version of ELDO is being used.
IC-CAP Reference

SPICE Simulators 3
SPICE Simulator Differences
IC-CAP Reference

Subtle differences in syntax, behavior, error handling and
calculation of data between the simulators must be considered
when creating a circuit description.

• SPICE2 simulations will fail if an underscore is used in the
Model name. An error message will appear in the output text
file generated by the Simulation Debugger:

0*ERROR*: MODEL TYPE IS MISSING

• SPICE2 simulations will fail if an underscore is used in a test
circuit and DUT name because the simulation input deck
uses the DUT name as a model name. An error message will
appear in the output text file:

0*ERROR*: SUBCIRCUIT NODES MISSING

• When attempting a SPICE2 or SPICE3 simulation in the BJT
model, if the ideal maximum forward beta parameter BF=0 or
the transport saturation current parameter IS=0, the
simulation will fail without an error message. (Other
parameters may yield similar results when set to zero.)

• SPICE3 is the only simulator that supports the UCB GaAs
model. Refer to “Simulators" in the Nonlinear Device Models,
Volume 1 manual for details on the syntax required to
simulate this model.

• HPSPICE is the only simulator that supports the Curtice
GaAs model. Refer to “Simulators" in the Nonlinear Device
Models, Volume 1 manual for details on the syntax required
to simulate this model.

• When using HPSPICE to simulate a UC Berkeley MOSFET
model, specify the ucb option in the .OPTIONS statement of
the circuit description:

.OPTIONS ucb
267

268

3 SPICE Simulators

• When using SPICE3 with the Simulation Debugger to
perform an IC-CAP simulation (as opposed to a manual
simulation), an output text file with the following message
results: print card ignored since rawfile was produced. To
generate a more informative output text file, perform a
manual simulation. The manual simulation results in an
output text file that includes the requested output data
values.
IC-CAP Reference

SPICE Simulators 3
Using the PRECISE Simulator with IC-CAP
IC-CAP Reference

PRECISE is a UCB SPICE-based simulator developed by Mentor
Graphics Corp. Using IC-CAP’s Open Simulator Interface, a
C-language Translation Module is provided that makes
PRECISE simulation capability available in IC-CAP. This module
and instructions for performing PRECISE simulations in
IC-CAP are described here. For general information on the Open
Simulator Interface, refer to the section “Adding a Simulator" in
the User’s Guide.

The IC-CAP/PRECISE link uses UCB SPICE2G.6 as the template
simulator. When performing a PRECISE simulation in IC-CAP,
IC-CAP behaves as if it is performing a SPICE2 simulation.
Therefore it generates an input deck in SPICE2 format, calls the
simulator and reads back a binary raw data file in SPICE2
format. Through the Open Simulator Interface, the call to the
simulator is actually calling the executable version of the
C-language Translation Module, precise.c. This executable,
called precise, translates the SPICE2 input deck to a PRECISE
input format, calls PRECISE to perform the simulation, then
translates the PRECISE format binary raw data file to SPICE2
format which is read by IC-CAP. The source code file precise.c is
located in the $ICCAP_ROOT/src directory.

To set up PRECISE simulation capability in IC-CAP:

1 Add the precise simulator to the usersimulators file in the
directory $ICCAP_ROOT/iccap/lib, as shown next:
precise spice2 /<your path>/precise "<host_machine_name>"
CANNOT_PIPE

2 The host_machine_name is the host computer for the
PRECISE simulations. This name can be left blank ("") if
PRECISE and IC-CAP are running on the same computer.
Since PRECISE does not have the ability to perform piped
simulations in IC-CAP, the CANNOT_PIPE flag must always
be set, as shown in the above example.
269

3 SPICE Simulators
NOTE The IC-CAP/PRECISE interface is only supported for the HP 9000 Series
700 version of PRECISE. Therefore the host computer must be a Series 700
workstation.
270

3 Make the following changes to the precise.c program to
customize it for your environment:

• In the main routine, specify the full pathname of the
actual PRECISE simulator on your system.

• In the spice2_to_precise routine, specify the full
pathname of the Mentor Graphics supplied program
ppphp700.exe, which translates a SPICE2 input deck to
the equivalent PRECISE input deck.

4 Compile the translation module using the following
command:
cc -o precise precise.c -lm

5 Move the executable file, precise to a permanent location
such as $ICCAP_ROOT/bin The location must match the path
specified in the usersimulators file.

6 In IC-CAP, set the SIMULATOR variable to precise or specify
precise with the Select Simulator command on the IC-CAP
Tools Menu.

The following files are generated in your home directory when
running PRECISE simulations in IC-CAP:

• namefile - File that contains the name of the spice input deck
file indeck.spi.

• indeck.spi - SPICE 2G.6 format input deck file that is the
input to the input deck translator program ppphp700.exe
provided by Mentor Graphics.

• indeck.ckt - PRECISE format circuit description deck output
from the input deck translator program ppphp700.exe.

• indeck.use - PRECISE format analysis command deck output
from the input deck translator program ppphp700.exe.

• xndeck.use - PRECISE format analysis command deck
referenced by indeck.use. Also generated by the input deck
translation.
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

• rawout - PRECISE formatted binary raw data output file
generated by a PRECISE simulation.
271

3 SPICE Simulators
Using the PSPICE Simulator with IC-CAP
272

PSPICE is a SPICE-based circuit simulator developed by
MicroSim Corporation. PSPICE uses the same basic numeric
algorithms as the UCB SPICE2 simulator but claims superior
convergence and performance. Using IC-CAP’s Open Simulator
Interface, a C-language Translation Module is provided that
makes PSPICE simulation capability available in IC-CAP. This
module and instructions for performing PSPICE simulations in
IC-CAP are described here. For general information on the Open
Simulator Interface, refer to the section “Adding a Simulator" in
the User’s Guide.

The IC-CAP/PSPICE link uses UCB SPICE2 as the template
simulator. When performing a PSPICE simulation in IC-CAP,
IC-CAP behaves as if it is performing a SPICE2 simulation.
Therefore it generates an input deck in SPICE2 format, calls the
simulator and reads back a binary raw data file in SPICE2
format. Through the Open Simulator Interface, the call to the
simulator is actually calling the executable version of the
C-language Translation Module, pspice.c. This executable,
called pspice, translates the SPICE2 input deck to a PSPICE
input format, calls PSPICE to perform the simulation, then
translates the PSPICE format binary raw data file to SPICE2
format which is read by IC-CAP. The source code file pspice.c is
located in the $ICCAP_ROOT/src directory.
NOTE The IC-CAP/PSPICE translation module pspice.c has been updated in
IC-CAP 5.0 to support the output binary data format of PSPICE 6.3. Only
PSPICE versions with the identical output binary data format will work
with this translation module. For older PSPICE versions, use the
translation module pspice5_4.c, also supplied with this release.
To set up PSPICE simulation capability in IC-CAP:

1 Add the pspice simulator to the usersimulators file in the
directory $ICCAP_ROOT/iccap/lib, as shown next.
pspice spice2 /<your path>/pspice "<host_machine_name>"
CANNOT_PIPE
IC-CAP Reference

SPICE Simulators 3

IC-CAP Reference

2 The host_machine_name is the host computer for the
PSPICE simulations. This name can be left blank ("") if
PSPICE and IC-CAP are running on the same computer.
Since PSPICE does not have the ability to perform piped
simulations in IC-CAP, the CANNOT_PIPE flag must always
be set, as shown in the above example.

3 Make the following change to the pspice.c program to
customize it for your environment:

• In the main routine, specify the full pathname of the
actual PSPICE simulator on your system.

4 Compile the translation module using the following
command:
cc -o pspice pspice.c -lm

5 Move the executable file, pspice to a permanent location such
as ICCAP_ROOT/bin. The location must match the path
specified in the usersimulators file.

6 In IC-CAP, set the SIMULATOR variable to pspice or specify
pspice with the Select Simulator command in the IC-CAP
Tools Menu.

The following files are generated in your home directory when
running PSPICE simulations in IC-CAP:

• psp.cir - PSPICE format circuit description deck file
translated from the SPICE2 circuit description deck.

• psp.raw - PSPICE formatted binary raw data output file
generated by a PSPICE simulation.

• psp.out - Output print file generated by a PSPICE simulation.

psp.raw and psp.out are automatically removed from your
home directory after the simulation is completed in IC-CAP.
NOTE When using PSPICE, the LM_LICENSE_FILE environment variable must be
set. This variable contains the directory path for the license file required by
the PSPICE simulator. Refer to the PSPICE Reference Manual for detailed
procedures on installing the PSPICE simulator.
273

3 SPICE Simulators

274 IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

4
SPECTRE Simulator

SPECTRE Interfaces 276

Circuit Model Descriptions 278

Piped and Non-Piped SPECTRE Simulations 288

This chapter describes the details of using the SPECTRE
simulator with IC-CAP. For general information on IC-CAP
simulation, refer to Chapter 6, “Simulating,” in the User’s
Guide.
275Agilent Technologies

4 SPECTRE Simulator
SPECTRE Interfaces
276

SPECTRE is a SPICE-like circuit simulator developed by
Cadence Design Systems that simulates analog and digital
circuits at the differential equation level using direct
methods.

SPECTRE uses the same basic algorithms used in UCB
SPICE but the implementation of these algorithms uses the
most up-to-date methods currently available.

IC-CAP offers 3 different interfaces for use with the
SPECTRE simulator:

• SPECTRE

• SPECTRE443

• SPECTRE442
SPECTRE Interface
The SPECTRE interface is compatible with SPECTRE version
4.4.3 simulators and later. Unlike the SPECTRE443 and
SPECTRE442 interfaces which invoke the SPICE netlist
parser, this interface uses native SPECTRE netlist syntax to
parse data from the circuit page. This alleviates the need to
translate SPECTRE netlists to SPICE syntax prior to entering
the netlists on the circuit page. See the following section, “Valid
SPECTRE Netlist Syntax for IC-CAP” on page 279.”
SPECTRE443 Interface
This interface is compatible with SPECTRE versions up to
5.0.0. The SPECTRE443 interface invokes a SPICE netlist
parser, unlike the SPECTRE implementation which uses
native SPECTRE netlist syntax to parse data from the circuit
page. This interface requires that SPECTRE netlists are first
converted to SPICE syntax prior to entering them on the
circuit page.
IC-CAP Reference

SPECTRE Simulator 4
SPECTRE442 Interface
IC-CAP Reference
This interface is compatible with SPECTRE simulator version
4.2.2 only. The SPECTRE442 interface invokes the SPICE netlist
parser, unlike the SPECTRE interface which uses native
SPECTRE netlist syntax to parse data from the circuit page.
This interface requires that SPECTRE netlists are first
converted to SPICE syntax prior to entering them on the circuit
page.
Open Simulator Interface (OSI)

CAUTION The SPECTRE442 interface is no longer recommended. IC-CAP is only
tested against the latest version of SPECTRE. The SPECTRE442
interface is documented only to assist in migrating to the SPECTRE443
or SPECTRE interface.

This interface requires the compilation of a translation
module (see spectre3.c in $ICCAP_ROOT/src). This
translation module allows IC-CAP to operate as though it is
interfacing to SPICE 3. This interface is no longer
recommended, but is documented to help migration efforts
from the old interface to the new SPECTRE interface
template. For details, see “Using Template SPICE3 and the Open
Simulator Interface spectre3.c” on page 290.
277

4 SPECTRE Simulator
Circuit Model Descriptions
278

The following section describes the type of circuit page
netlists required when using the SPECTRE interface. Please
refer to “Circuit Model Descriptions” on page 256 for the netlist
requirements for the SPECTRE443, SPECTRE442, or the
SPICE3 OSI interfaces.

For valid circuit syntax descriptions, see the Cadence
SPECTRE simulator user’s documentation.
Specifying Simulator Options
For information on available simulator options and their
syntax, refer to the Cadence SPECTRE simulator user’s
documentation.

Simulator options are specified in the first line of the circuit
definition using the following syntax:
options OPT1 = OPTVAL1 OPT2 = OPTVAL2 ... OPTN = OPTVALN

where

OPT denotes the option keyword used by the simulator.

OPTVAL is the corresponding option value. Some options
do not require a value. This field may or may not be
specified, depending on the option.

A space is the only delimiter required between options.

The nominal and operating temperatures, TNOM and TEMP,
are commonly used options. TNOM is the temperature at
which the model parameters are extracted. TEMP is the
temperature at which the simulation is performed.
NOTE When performing an optimization to extract model parameters, TEMP and
TNOM should be set to the same value so that simulations during
optimization are performed at TNOM. TNOM must be defined to guarantee
consistency between simulation and extraction.
IC-CAP Reference

SPECTRE Simulator 4

IC-CAP Reference
You can also specify these variables by entering a value (in
°C) for the global variables TNOM and TEMP in the System
Variables table in the Utilities application.

In general, TNOM and TEMP can be in any variable table,
allowing different Models, DUTs or Setups to use different
nominal and operating temperatures.

IC-CAP checks for these global variables before running a
simulation. If it does not find the variable, IC-CAP uses the
value set in the Circuit Editor options statement. Otherwise,
IC-CAP analyzes the circuit using the simulator’s default
values.
Valid SPECTRE Netlist Syntax for IC-CAP

The SPECTRE interface parses netlists written in native
SPECTRE syntax.

During a simulation using the SPECTRE template, IC-CAP
examines the netlist entered on the Circuit page for:

• The name of the device to be modelled

• The external nodes of the device

• The model-level parameters

• The device-level parameters

IC-CAP is intended for single-device model extractions.
Therefore, not all valid SPECTRE netlists are accepted by
IC-CAP.

Valid SPECTRE Constructs

IC-CAP uses 3 SPECTRE constructs:

• the device statement

• the subcircuit (subckt) block

• the model statement

Valid SPECTRE Circuit Page Configurations

There are 3 valid Circuit page configurations:
279

280

4 SPECTRE Simulator

• A single device statement and a single model card

• A single subcircuit block

• A single device statement followed by a single subcircuit
block
Describing a Device

NOTE Other supporting statements can be added in and around the
configurations mentioned above. This includes all valid SPECTRE syntax
statements other than the device, subckt, and model statements. These 3
constructs are limited in number and combination as described above.
A device statement describes a single SPECTRE element of
any type. The general form of device statement is:
DNAME NODE1 NODE2...NODEN MNAME DPAR1=DVAL1 DPAR2=DVAL2

where

DNAME is the device name with the first letter being a
simulator-defined key letter, denoting the type of model
being specified.

NODE denotes the node name for the device connection.

MNAME is the name of a built-in device, or the name of a
model or subcircuit definition. This is the same MNAME
specified in the model definition described below.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to the
MNS and SPICE Reference for the DUT parameter names
available for each model.

A plus sign (+) that appears as the first character of a line
or a back slash (\) that appears as the last character in a
previous line denotes a continuation of the previous line.
This continuation character is often used for easier
readability when specifying the model card.
IC-CAP Reference

SPECTRE Simulator 4
Describing the Model
IC-CAP Reference
A model definition specifies the parameters of a particular
model that is referenced by a device statement (see “Describing
a Device” on page 280). When a parameter is not specified, the
default value in the model is used. The general form of the
model definition is:
model MNAME TYPE PNAME1=PVAL1 PNAME2=PVAL2 ...PNAMEN=PVALN

where

MNAME is the model name. Regardless of the model name
entered in the MNAME field of the model definition
statement, IC-CAP substitutes the name of the Model as it is
called in the Model List when the simulator input deck is
built.

NOTE Noise is a reserved word in SPECTRE and must not be used in naming
components of the netlist. Do not use the name “noise” for DUTs or
Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.
TYPE is a valid SPECTRE component type.

PNAME is a parameter name for the particular model
type.

PVAL is the parameter value.

A plus sign (+) that appears as the first character of a line
or a back slash (\) that appears as the last character in a
previous line denotes a continuation of the previous line.
This continuation character is often used for easier
readability when specifying the model card.
Describing Subcircuits
A subcircuit model is used to describe a circuit that contains
more than 1 element.
281

282

4 SPECTRE Simulator
The syntax is similar to the syntax in SPICE. The subcircuit
description must begin with a subckt and end with an ends
declaration. Statements between these 2 declarations
describe the subcircuit components.

The general form of a subcircuit definition is:
subckt SUBNAME (NODE1 NODE2...NODEN)

parameters PAR1=PARVAL1 PAR2=PARVAL2 ...PARN=PARVALN

<subcircuit devices and/or models listed here>

ends SUBNAME

where

SUBNAME is the subcircuit name. Regardless of the
subcircuit name entered in the SUBNAME field of the
subckt definition statement, IC-CAP substitutes the name
of the Model being simulated when the simulator input
deck is built.

NOTE Noise is a reserved word in SPECTRE and must not be used in naming
components of the netlist. Do not use the name “noise” for DUTs or
Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.
NODE denotes the node name for the device connection.

PAR1 ... PARN are subcircuit parameters that can be
passed through subcircuit calls. If a subcircuit is used in
conjunction with a device statement, then the parameters
specified on the device line will also need to be listed
here. In this case, those parameters are added to the DUT
Parameters table. All other parameters not listed in the
device statement will be added to the Model Parameters
table. If the subcircuit description is used without an
associated device statement, then all parameters listed
here will be entered in the DUT Parameters table.
IC-CAP Reference

SPECTRE Simulator 4

IC-CAP Reference
PARVAL1 ... PARVALN are the corresponding parameter
values. Depending on the context (see previous
paragraph), these parameters become either DUT
parameters or model parameters which can be modified in
the DUT Parameters table of the Model Parameters table.

The body of the subcircuit model description contains the
components of the subcircuit using element and model
statements.
Using a Device Statement and Model Card Configuration

The device statement and model card is the simplest circuit
page configuration. The template parses the model card into
the Model Parameters page and the device parameters into
the DUT Parameters page. The device statement provides the
external nodes.

Example syntax:

q1 C B E S NPN area = 1.0
model NPN bjt
+ is = 1E-16
+ bf = 100

In this case, is and bf will appear on the Model Parameters
page, and area will appear in the DUT Parameters page.
Using a Single Subcircuit Block Configuration

NOTE The device statement and model card may appear in any order.
This circuit page configuration interprets the subcircuit as a
single device. If the subcircuit includes a Parameters
statement, the template parses these parameters as device
parameters, where they appear in the DUT Parameter Table.
All parameters on model or device statements within the
subcircuit appear in the Model Parameter Table in the form:

<inst/model>.<parameter>
283

284

4 SPECTRE Simulator

Example syntax:

subckt realnpn (C B E)
parameters area=1
LE E 4 inductor l=.35n
LB B 5 inductor l=.2n
CC C 0 capacitor c=.255p
Q1 C 5 4 NPN area = area
model NPN bjt
+ is = 1E-16
+ bf = 100
ends realnpn

In this case, LE.l, LB.l, CC.c, NPN.is, and NPN.bf will appear
in the Model Parameters table and area will appear in each
DUT Parameters table.
NOTE Note, Q1.area does not appear because its value is not a simple number.
IC-CAP only identifies parameters with simple numbers for extraction.
When this circuit is simulated, IC-CAP outputs the
subcircuit as well as an device statement to call the
subcircuit.

See the example file model_files/bjt/spectre_ncehf.mdl for a
working model.
Using a Device Statement Followed by a Subcircuit Block
In some situations, you must extract parameters from a
device defined by a subcircuit whose parameters listed in
the Parameters statement within the subcircuit are your
model parameters and not your device parameters. Use the
“device statement followed by a subcircuit block”
configuration.

In this configuration, all parameters listed with the
subcircuit parameters statement are parsed as model
parameters, unless they are referenced on the device
statement, in which case they are treated as device
parameters.
IC-CAP Reference

SPECTRE Simulator 4

IC-CAP Reference
Example syntax:

q1 C B E S realnpn area=1.0
subckt realnpn C B E S
parameters area=1.0 is=1e-16 bf=100 lb=1
lb1 B 1 inductor l=lb
q1 C 1 E S NPN area=area
model NPN bjt is=is bf=bf
ends realnpn

In the this example, there are 3 model parameters, is, bf and
lb, and 1 device parameter, area.

Note the difference between this configuration and the
single-subcircuit configuration which has only a subckt
definition and no device.
Test Circuits and Hierarchical Simulation

When characterizing a circuit, it is often necessary to add
circuitry around a circuit or device to model the actual
measurement Setup. IC-CAP provides a Test Circuit Editor
to allow modeling of this additional bias circuitry. Select the
DUT from the DUT/Setup panel. Click the Test Circuit tab
and enter the test circuit description in the same manner
you would enter a Circuit Description. The test circuit
definition should include a call to the device or subcircuit
defined in the Circuit Editor, as well as the additional
circuitry needed to model the external parasitics of the
measurement Setup.
NOTE When you define a test circuit, the DUT Parameter table contains the
values specified in the test circuit specification. Regardless of the
subcircuit name entered in the SUBNAME field of the subckt declaration,
IC-CAP uses the name of the DUT being simulated when the simulator
input deck is built.

NOTE Noise is a reserved word in SPECTRE and must not be used in naming
components of the netlist. Do not use the name “noise” for DUTs or
Models. IC-CAP substitutes the Model/DUT name for the name in the
Circuit or Test Circuit folders respectively.
285

286

4 SPECTRE Simulator

Subcircuit and device model specifications can be called
from inside another model. This enables you to perform
hierarchical simulations to study a circuit at different
levels.

When making reference to another model, the model name
must be used as it appears in the IC-CAP Model List. For
example, assume you have defined 3 models, model1,
model2, and model3. model1 has a circuit model description
that is a device definition. The circuit model description for
model2 is a subcircuit definition at the gate level that
includes a call to model1 in a device call statement. And, the
circuit model description for model3 is a subcircuit
definition that includes a call to model2 in a subcircuit call
statement. When you simulate a Setup in model3, IC-CAP
traverses the Model hierarchy and uses the circuit model
description defined in model3, which includes calls to
model1 and model2. The syntax for calling a device model is
identical to that described in the Device Model Description
section.

The general form of the device call is:
DNAME NODE1 NODE2...NODEN MNAME DPAR1=DVAL1 DPAR2=DVAL2

Calling a subcircuit specification allows you to insert an
entire subcircuit into a circuit as if it were a single
component. The call requires a syntax identical to that used
in SPECTRE. The general form of the subcircuit call is:
DNAME NODE1 NODE2...NODEN SUBNAME DPAR1=DVAL1 DPAR2=DVAL2

where

DNAME is the name of the subcircuit call statement. The
only requirement for this name is that it must start with
the letter D.

NODE denotes the node name for the device connection.

SUBNAME is the name of the subcircuit, previously
described by a subckt definition. This must have the name
of the model as it appears in the Model List if it is in a
different model.

DPAR are passed in the parameter names.
IC-CAP Reference

SPECTRE Simulator 4

IC-CAP Reference
DVAL are subcircuit parameter values. The order in which
they are listed in the subcircuit call statement must match
the parameters list in the subcircuit definition.

NOTE When a test circuit is included in the Model, IC-CAP uses the test circuit
description as the top level circuit definition. The node number
connections defined in the test circuit description, not the circuit
description, are used as the external nodes. Because of this, any
node-number-to-node-name cross-referencing in the circuit description is
not used. Only node names equated to node numbers in the test circuit
description can be used when specifying Inputs and Outputs in the Setup
Editor. When only node numbers are specified in the test circuit
description, (that is, they are not equated to node names) these same
node numbers must be used in the Input and Output node fields.
287

4 SPECTRE Simulator
Piped and Non-Piped SPECTRE Simulations
288

The following sections describe the differences in piped and
non-piped simulations for the various SPECTRE simulators.
Each section also describes the argument syntax required to
invoke each of the template simulators. This information is
needed when writing the user translation module, since
these are the arguments supplied by IC-CAP when it calls
the translation module. For information on the translation
module and adding a simulator, refer to the section “Adding
a Simulator" in the User’s Guide.

There are 3 methods you can use to link to the SPECTRE
simulator interface:

• Use template SPECTRE, SPECTRE443, or SPECTRE442
with CANNOT_PIPE.

• Use template SPECTRE, SPECTRE443, or SPECTRE442
with CAN_PIPE.

• Use template SPICE3 and the Open Simulator Interface
spectre3.c.
Using SPECTRE Simulator Templates with CANNOT_PIPE

NOTE The methods using SPECTRE or SPECTRE442/443 offer significant speed
enhancements with some minor features that will not work properly. Be
sure to read the following sections describing their limitations.

NOTE The method using SPICE3 is fully supported, but offers the slowest speed.
It is not recommended, except when methods using SPECTRE or
SPECTRE442/443 do not work, or are unavailable.
If you specify the template SPECTRE, SPECTRE442 or
SPECTRE443, you can greatly speed up your simulations.
This template will use the SPECTRE alter command to
simulate multiple bias steps in 1 simulation. This improves
IC-CAP Reference

SPECTRE Simulator 4

IC-CAP Reference

many multi-sweep simulations such as an S-parameter setup
with 2 sweeps. Using the Open Simulator Interface method,
each of these bias steps would require a separate simulation.

The one known limitation with this method is that
parameter sweeps will not work properly with certain
parameters that are declared in a subcircuit at the Circuit
page level when a Test circuit is being used. Parameters that
are declared with an “=” sign will work even under this
configuration, but parameters that are declared without an
“=” sign will not work. In the following example, parameter
sweeps will work for IS, but not for R1.

Circuit Page:
subckt CIRC 1=A 2=C
R1 1 2 50
Q1 1 2 1 2 NPN
model NPN BJT IS=10e-15
.ENDS

Test Circuit:
subckt CIRC2 1=A 2=C
XTEST 1 2 CIRC
.ENDS
Using SPECTRE Simulator Templates with CAN_PIPE
IC-CAP may not work properly with parameters defined
using $mpar() in #echo lines. If using such a circuit, Agilent
Technologies does not recommend using CAN_PIPE. Use
CANNOT_PIPE instead.

Specifying CAN_PIPE with SPECTRE, SPECTRE442 or
SPECTRE443 templates will use a mode that will allow the
simulator to stay up for multiple simulations of the same
setup as long as the only thing changing are parameters.
This is what happens during an optimization which has all
targets within 1 setup. This mode is not officially supported
by Cadence, so use the link at your own risk. Our testing
has shown it to provide significant performance
improvements.

Limitations of this method include:

• This mode has the same limitation described in the
previous section.
289

290

4 SPECTRE Simulator

• If a Test circuit is used, this mode offers no performance
enhancement.

• This mode does not work with remote hosts.
Using Template SPICE3 and the Open Simulator Interface spectre3.c

NOTE Using Template SPICE3 requires more processing time than the other
SPECTRE templates. Using Template SPICE3 is not recommended, except
when methods using SPECTRE, SPECTRE442, or SPECTRE443 are
unavailable.
Using IC-CAP’s Open Simulator Interface, a C-language
Translation Module is provided that makes SPECTRE
simulation capability available in IC-CAP. This module and
instructions for performing SPECTRE simulations in IC-CAP
are described here. For general information on the Open
Simulator Interface, refer to the section “Adding a Simulator"
in the User’s Guide.

The IC-CAP/SPECTRE link uses UCB SPICE3 as the
template simulator. When performing a SPECTRE simulation
in IC-CAP, IC-CAP behaves as if it is performing a SPICE3
simulation. Therefore it generates an input deck in SPICE3
format, calls the simulator and reads back a binary raw data
file in SPICE3 format. Through the Open Simulator Interface,
the call to the simulator is actually calling the executable
version of the C-language Translation Module, spectre3.c.
This executable, called spectre3, translates the SPICE3 input
deck to a SPECTRE input format, calls SPECTRE to perform
the simulation, then translates the SPECTRE format binary
raw data file to SPICE3 format which is read by IC-CAP.
The source code file spectre3.c is located in the
$ICCAP_ROOT/src directory.
NOTE When using SPECTRE, the CDS_LICENSE_DIR environment variable must
be set. This variable contains the directory path for the license file required
by the SPECTRE simulator. Refer to the SPECTRE Reference Manual for
detailed procedures on installing the SPECTRE simulator.
IC-CAP Reference

SPECTRE Simulator 4
NOTE SPECTRE does not support a secondary sweep in the DC specification. For
DC simulations, set the System Variable MAX_DC_SWEEPS to 1 so that
IC-CAP generates a separate input deck for every point in the secondary
sweep, if it exists.

NOTE If you set the SPECTRE variable SPECTRE_DEFAULTS in your system
startup file, for example, the .profile file, do not use the −E option. Use the
following syntax:

SPECTRE_DEFAULTS +l %C.r.out -f psfascii
IC-CAP Reference

To set up SPECTRE simulation capability in IC-CAP:

1 Add the spectre simulator to the usersimulators file in
the directory $ICCAP_ROOT/iccap/lib, as shown next.
spectre spice3 /<your path>/spectre3
"<host_machine_name>" CANNOT_PIPE

2 The host_machine_name is the host computer for the
SPECTRE simulations. This name can be left blank ("") if
SPECTRE and IC-CAP are running on the same computer.
Since SPECTRE does not have the ability to perform
piped simulations in IC-CAP, the CANNOT_PIPE flag must
always be set, as shown in the above example.

3 Make the following change to the spectre3.c program to
customize it for your environment:

• In the main routine, specify the full pathname of the
actual SPECTRE simulator on your system.

4 Compile the translation module using the following
command:
cc -o spectre3 spectre3.c -lm

5 Move the executable file, spectre3 to a permanent location
such as $ICCAP_ROOT/bin. The location must match the
path specified in the usersimulators file.

6 In IC-CAP, set the SIMULATOR variable to spectre or
specify spectre with the Select Simulator command in the
IC-CAP Tools Menu.

The following files are generated in your home directory
when running SPECTRE simulations in IC-CAP:
291

292

4 SPECTRE Simulator
• spectre.cki - SPECTRE format circuit description deck file
translated from the SPICE3 circuit description deck.

• spectre.raw - SPECTRE formatted binary raw data output
file generated by a SPECTRE simulation.

• spectre.log - Output print file generated by a SPECTRE
simulation.

spectre.raw and spectre.log are automatically removed from
your home directory after the simulation is completed in
IC-CAP.

NOTE Some of the new models implemented in SPECTRE use slightly different
syntax for the model statement than they would for SPICE3. This
difference will not be accounted for by the translator; you must change the
model statement in the Circuit Description folder before simulating. The
following examples show how the model statement would read for the
MM9 and BSIM3 models:

model <name> mos902 type=n <parameters>
model <name> bsim3 type=n <parameters>
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

5
Saber Simulator

Saber Simulation Example 295

Piped and Non-Piped Saber Simulations 297

Saber Parameter Sweeps 300

The Alter Command 302

Circuit Model Description 303

This chapter describes the details of using the Saber
simulator with IC-CAP. For general information on IC-CAP
simulation, refer to Chapter 6, “Simulating,” in the User’s
Guide.

The Saber simulator, developed by Analogy, Inc., analyzes
analog, digital, event-driven analog and mixed-mode systems.

IC-CAP supports these Saber simulator features:

• Vary command for unlimited sweeps and simulation at
multiple operating points

• DC Operating Point Analysis used with DC Transfer, AC
Frequency, and Transient Analysis

• Options for each type of analysis (these options must be
specified in the IC-CAP Variables Table)

• Parameter sweeps

• Alter command (For details, refer to “The Alter Command”
on page 302)

• Hierarchical simulation

• Remote simulation
293Agilent Technologies

294

5 Saber Simulator

IC-CAP supports other Saber features as follows. (Limited
support includes workarounds to achieve desired results
that may not be in an ideal format.)

• MAST capabilities.

• Limited support for the syntax required for model and
element development. This can be done in a separate
file and included in the Circuit Description using the
MAST syntax:

<filename

where filename is the name of the file that contains the
template description of the model or element under
development.

• IC-CAP does not support stimulus conversion to collect
data on non-electrical nodes

• Limited support for noise analysis, Fourier analysis,
distortion analysis, mixed-mode simulation, and mixed
technology simulation. This includes simulations involving
non-electrical types such as pressure, revolutions per
minute, and torque.

IC-CAP does not support digital state type stimulus and
response for mixed-mode simulation. Hypermodels must be
used to convert digital states to analog signals.

The Saber simulator supports the following analysis types:

• DC

• AC

• Transient

• Capacitance Voltage (CV)

• 2-Port (S,H,Y,Z,K,A parameter)

• Time-Domain Reflectometry (TDR)
IC-CAP Reference

Saber Simulator 5
Saber Simulation Example
IC-CAP Reference

The circuit description is predefined for all IC-CAP
configuration files. Enter this description if a new model is
being defined; edit the description to fit specific needs. The
syntax is identical to the syntax used for describing circuits
in a typical Saber simulation deck.

This simulation example will use the IC-CAP supplied Model
sabernpn.mdl.

1 Select the simulator by choosing Tools > Options > Select
Simulator > saber. Choose OK.

2 Choose File > Open > sabernpn.mdl. Choose OK.

3 View the circuit description by clicking the Circuit tab.

The circuit description is shown in Figure 12. This deck
describes the circuit (in this case, a single device) to be
used in the simulation.

4 To view the input and output for the fearly setup, click
the DUTs-Setups tab and select fearly;

The Measure/Simulate folder appears with the inputs vb,
vc, ve, and vs, and the output ic. The vc input specifies a
voltage source at node C that sweeps linearly from 0 to
5V in 21 steps. The ic output specifies that current at
node C be monitored.

In the Plots folder, icvsvc is specified so that the results
of the simulation can be viewed graphically.

5 To simulate, click the Simulate button in the
Measure/Simulate folder. The Status line displays Simulate
in progress.

When the simulation is complete, the Status line displays
IC-CAP Ready.

6 To view the results of the simulation, display the Plots
folder and click Display Plot. The plot displays measured
data represented by solid lines and simulated data
represented by dashed lines.
295

5 Saber Simulator
NOTE For syntax examples of running a remote simulation, refer to “Remote
Simulation Examples” in the User’s Guide.
296

Saber NPN Device
q..model sabernpn= (IS=le-16,
TYPE= n,
BF = 100,
NF = 1,
VAF = 1000,
IKF = 10,
ISE = 0,
NE = 1.5,
BR = 1,
NR = 1,
VAR = 1000,
IKR = 10,
ISC = 0,
NC = 2,
RB = 0,
IRB = 10,
RBM = 0,
RE = 0,
RC = 0,
XTB = 0,
EG = 1.110,
XTI = 3.000,
CJE = 0,
VJE = 750m,
MJE = 333m,
TF = 0,
XTF = 0,
VTF = 1000,
ITF = 0,
CJC = 0,
VJC = 750m,
MJC = 333m,
XCJC = 1.0,
TR = 0,
CJS = 0,
VJS = 750m,
MJS = 0,
FC = 500.0m)
q.qckt C B E S= model = sabernpn, AREA = 1.0

Figure 12 MAST Circuit Description Deck for an NPN Bipolar Transistor
IC-CAP Reference

Saber Simulator 5
Piped and Non-Piped Saber Simulations
IC-CAP Reference

Non-piped Saber simulations are identical to non-piped
SPICE simulations. However, there are differences between
the 2 types of piped simulation. A piped simulation in Saber
does the following:

1 Read the input deck from a file upon start up of the
simulator

2 Read in the analysis commands from a pipe connected to
standard input

3 Perform the simulation

4 Send the text output to a pipe connected to standard
output

5 Save the output data to files

Saber is restarted if any topological changes are made to the
circuit description. If changes are made which do not affect
the topology of the circuit, such as changed parameter
values, then alter commands are used and the simulator is
not restarted.
NOTE The path of the AIM shell interpreter (aimsh) must be specified in
usersimulators. IC-CAP uses this utility from the saber installation to
interpret the simulation results and read them into IC-CAP. (AIM is a
high-level, embedded scripting language that controls and manages user
input and other kinds of analyses and processes in SaberDesigner
applications.) The default saber specification in $ICCAP_ROOT\iccap\
lib\usersimulators is as follows:

saber saber $SABER_HOME/bin/saber "" CAN_PIPE ""
$SABER_HOME/bin/aimsh

Therefore, no modifications to usersimulators are required if
SABER_HOME is properly set in your environment before launching
IC-CAP.
297

298

5 Saber Simulator

Syntax: Non-Piped simulations

This section describes the argument syntax required to invoke
the template simulator. This information is needed when
writing the user translation module, since these are the
arguments supplied by IC-CAP when it calls the translation
module. For information on the translation module and adding
a simulator, refer to “Adding a Simulator” in the User’s Guide.

The command format for a Saber non-piped simulation is as
follows:
saber -b deckfile

where:

-b specifies batch mode.

deckfile is the input file name. Saber will read deckfile as
the input deck file containing the circuit description and
deckfile as the command file containing the analysis
statements.

The textfile is written to a file called deckfile.out.

The rawfile information is written to 2 files, called the
control file and the data file. The control file is named
deckfile.p1.suffix and the data file is named
deckfile.p2.suffix where suffix is a keyword assigned by
Saber according to the analysis being performed. Refer to
the Saber User’s Manual for more information.

Syntax: Piped simulations

The command format for a Saber piped simulation is as
follows:
saber -c deckfile

where:

-c specifies the Saber command mode.

deckfile is the input deck file containing the circuit
description.

Saber reads the analysis commands through standard input.

The textfile is written to a file called <deckfile>.out.
IC-CAP Reference

Saber Simulator 5

IC-CAP Reference

The rawfile is written to a file called <deckfile>.p1.<suffix>
where suffix is a keyword assigned by Saber according to the
analysis being performed. Refer to the Saber User’s Manual for
more information.
299

5 Saber Simulator
Saber Parameter Sweeps

NOTE The LSYNC sweep is not supported with the Saber simulator.
300

When using the Saber simulator, IC-CAP allows parameter
sweeps of only parameters and Saber global variables, such as
the global variable for temperature called TEMP. Like
SPICE-type simulators, specifying parameter sweeps for devices
and circuits is done the same way. Parameter names must be
entered in the Name field of the Input table exactly as they
appear in the Parameters table. An input for vto, with Mode set
to P, is added to the nmos2/short/idvd setup, as shown in the
following figure.

The following figure shows the resulting plot.

Figure 13 Saber Parameter Sweep Setup Example
IC-CAP Reference

Saber Simulator 5

IC-CAP Reference

For additional information on sweeping parameters, refer to
“Specifying Parameter or Variable Sweeps” in the User’s Guide.

The following sections of this chapter describe in more detail
each of the steps in these simulation overview examples.

Figure 14 Saber Parameter Sweep Plot Example
301

5 Saber Simulator
The Alter Command
302

An alter command temporarily changes the value of any
element or parameter in a MAST template. It is used to make a
change in a template description so that a simulation can be
re-executed without reloading the original circuit. The alter
command cannot be used to make a change that modifies the
topology of a design.

Alter commands are used in IC-CAP Saber simulations when
the Circuit Description and Setup information, other than the
sweep limits, remain unchanged from the previous simulation.

If only parameter values in the Device Parameters table or
Model Parameters table are changed, IC-CAP will not restart the
Saber simulator and reload the circuit. Instead, IC-CAP
generates alter commands for every parameter, then
re-executes the simulation commands. The USE_ALTER
variable can be specified and set to No to override this behavior.
In this case, Saber is restarted with every simulation whether
or not the Circuit Description or Setup was changed. If the
USE_ALTER variable does not exist, IC-CAP behaves as if the
variable were set to Yes.

After a successful simulation, if a resistor is changed from a
non-zero to zero value, Saber collapses the nodes. This causes
an implicit topological change in the circuit that is not
recognized by IC-CAP since the Circuit Description or Setup
information has not been changed. Turn the USE_ALTER
variable off by setting it to NO to allow IC-CAP to restart the
Saber simulator and reload the altered circuit.
IC-CAP Reference

Saber Simulator 5
Circuit Model Description
IC-CAP Reference
This section discusses the circuit description for the Saber
simulator.
Selecting Simulator Options

Saber simulation options are not specified in the circuit
description, but rather in the analysis command line. Saber
simulator options are set using the SABER_OPTIONS variable
in the Setup, DUT or System variable tables.

Enter the options in the Value section of the variable exactly as
they should appear in the Saber command string. For example,
to perform a transient simulation from 0 to 0.8 nsec in 10 psec
steps, the Saber command generated in IC-CAP is:
tr(ts le-11, te 8e-10, tb 0)

To specify that all step sizes be fixed instead of variable, append
the following option to the Saber command:
steps fix

To do this in IC-CAP, specify the options command steps fix in
the value field of the SABER_OPTIONS variable. Simulation
now performs the following transient analysis command:
tr(ts le-11, te 8e-10, tb 0, steps fix)

The SABER_OPTIONS variable can be specified in a variable
table at any level. However, it is important to note that a
SABER_OPTIONS variable specified in the DUT, Model or
System variable tables is used by all simulations executed below
that level. For example, if a SABER_OPTIONS variable is
specified in the DUT variable table, every Setup under that DUT
will use the specified option. This may result in simulation
errors because 1 particular option may not be valid for every
type of analysis being specified in the DUT.

Any number of options can be specified in the SABER_OPTIONS
variable; they must be separated by a comma.
303

304

5 Saber Simulator

A Saber analysis in IC-CAP is always preceded by a DC
operating point analysis. This DC command can also contain
options and can be specified using the SABER_DC_OPTIONS
variable.

Refer to Saber manuals for available options and corresponding
syntax for each simulation type. Invalid options entered into
the SABER_DC_OPTIONS and SABER_OPTIONS variables
cause the simulation to fail.
Entering Circuit Descriptions
Circuit descriptions contain templates of devices and
components, as well as node connections and model
descriptions written in the MAST modeling language. All model
parameter names must be specified when defining models.
Circuit descriptions can also be read into the IC-CAP Circuit
Editor from a file that already contains a description. You must
enter circuit descriptions using valid model names and valid
parameter names for the particular model being used.

Enter circuit descriptions for a Saber input deck with the
Circuit Editor. IC-CAP contains a parser for descriptions
written in the MAST modeling language.

There are 2 types of Saber circuit editor descriptions: devices
and templates. Syntax rules for each type are described in the
following sections.

Device Model Descriptions

A device model is used to characterize a single element of any
type. This element can be predefined in the Saber library or
defined by the user using the MAST modeling language.

A device model description requires a model definition written
in the MAST modeling language and an element statement that
calls a defined model.
IC-CAP Reference

Saber Simulator 5

IC-CAP Reference

A model description specifies the values of a device model that
describes a particular element. When a parameter is not
specified, the default value in the model template is used and
the parameter does not appear in the IC-CAP Parameters table.
The general form of the model definition is:
ENAME..model MNAME = (PNAME1=PVAL1, PNAME2=PVAL2,
...PNAMEX=PVALX)

where

ENAME is the name of the element template

MNAME is the user-specified name of the model being
defined

PNAME is a parameter name for the particular model type

PVALs are the corresponding parameter values

The general form of the element statement that calls the device
model is:
ENAME.DNAME NNAME1 NNAME2 ...NNAMEN = model = MNAME,
DPAR1 = DVAL1, DPAR2 = DVAL2 ...DPARN = DVALN

where

ENAME is the element template name

DNAME is the device name

NNAME specifies a node name

MNAME is the name of the model being referenced

DPAR is a predefined DUT parameter name

DVAL is the corresponding DUT parameter value

A sample element statement in the MAST modeling language is:
q.qckt C B E S = model = sabernpn,AREA = 1.0

where

q is the element template name defined in the Saber
component library

qckt is the user-specified device name

C, B, E, and S are the node names
305

306

5 Saber Simulator

sabernpn is the model name. The model corresponding to
this model name must be defined in the circuit
description before the reference is made.

AREA is a DUT parameter of this model with an assigned
value of 1.0

As in Saber, a line ending with a comma is continued on the
next line.

Template Descriptions

A template is used to characterize a circuit that contains
more than 1 device. The syntax for defining a template is
identical to that of the MAST modeling language. A template
can be defined as either an element template or a model
template. The general form of the first line of a template
element definition is:
element template TEMPNAME NNAME1 NNAME2 ...NNAMEN = PAR1,
PAR2, ...PARN

where

TEMPNAME is the template name

NNAME is a node name of the external node of the
template. External nodes are used to connect the template
to another circuit.

PAR is the name of the parameter passed into the
template

The general form of the first line of a template model
definition is:
element template TEMPNAME NNAME1 NNAME2 ...NNAMEN = model

where

TEMPNAME is the template name

NNAME is the node name of the external node of the
template. External nodes are used to connect the template
to another circuit.

The body of a model definition defines the model
parameters. For more information on writing templates, refer
to the Saber MAST Reference manual.
IC-CAP Reference

Saber Simulator 5

IC-CAP Reference

When writing a template for model development within
IC-CAP, the recommended procedure is to define the
template in an external file and include this file in the
IC-CAP circuit description using the MAST nomenclature
<filename> to include a file. This minimizes the changes to
be made in the IC-CAP Circuit Description and thereby
increases the rate of model development because changes in
the external template file will immediately be recognized in
IC-CAP.

Non-Numeric Parameter Values

Saber allows non-numeric values for a number of
parameters in predefined templates. The MOS model
parameter type is 1 example. This parameter can take on
the value of _n for an nmos device and _p for a pmos
device.

When a Saber input parameter is in alpha format, it does
not appear in the IC-CAP Parameters table but is still
present in the input deck and passed to the simulator for
analysis.

Node Names

Saber accepts alphanumeric names as well as numbers to
represent nodes. There is no limit to the number of
characters allowed in a node name (the command line has a
limit of 1024 characters).

Test Circuits and Hierarchical Simulations

When characterizing a circuit, it is often necessary to add
circuitry around a circuit or device to model the actual
measurement Setup. IC-CAP provides a Test Circuit Editor
to allow modeling of this additional bias circuitry. Select the
DUT from the DUT/Setup panel. Click the Test Circuit tab
and enter the test circuit description in the same manner
you would enter a Circuit Description. The test circuit
definition should include a call to the device or template
307

308

5 Saber Simulator

circuit defined in the Circuit Editor, as well as the
additional circuitry needed to model the external parasitics
of the measurement Setup.
NOTE When you define a test circuit, the DUT Parameters table contains the
values specified in the test circuit specification. Regardless of the name
entered in the TEMPNAME field of the template definition statement,
IC-CAP uses the name of the DUT being simulated when the simulator
input deck is built.
Template circuit and device model specifications can be called
from inside another Model. This allows you to perform
hierarchical simulations to study a circuit at different levels.
For example, assume you have defined 3 Models, model1,
model2, and model3. Model1 has a circuit model description
that is a device definition. The circuit model description for
model2 is a template circuit definition at the gate level that
includes a call to model1 in a device call statement. And, the
circuit model description for model3 is a template circuit
definition that includes a call to model2 in a subcircuit call
statement. When you simulate a Setup in model3, IC-CAP
traverses the Model hierarchy and uses the circuit model
description defined in model3, which includes calls to model1
and model2. The syntax for calling a device model is identical to
that described in the Device Model Specifications section
above.

The general form of the device call is:
ENAME.DNAME NNAME1 NNAME2 ...NNAMEN = model MNAME,
DPAR1 = DPAR1, DPAR2 = DVAL2 ...DPARN = DVALN

Calling a template specification allows you to insert an entire
template into a circuit as if it were a single component. The call
requires a syntax identical to that used in the MAST modeling
language. The general form of the template element call is:
TEMPNAME.TNAME NNAME1 NNAME2 ...NNAMEN = TPAR1 = TPARVAL1,
TPAR2 = TPARVAL2, ...TPARN = TPARVALN

where
IC-CAP Reference

Saber Simulator 5

IC-CAP Reference

TEMPNAME is the name of the template previously described
by a template definition. This template definition could exist
in a different Model.

TNAME is the user specified name given to this particular
instance of the template described by TEMPNAME.

NNAMEs represent the node names of the calling circuit that
connect to the external nodes of the template. The calling
circuit’s node names need not be the same as the external
nodes of the template. The order in which you specify these
nodes is the order in which they are connected. The same
number of nodes as declared in the template definition must
be specified.

TPARs are predefined template parameter names. These
parameters are defined in the template definition. TPARVALs
are the corresponding values of the template parameters.

A hierarchical simulation, in which a template in 1 model
references a device defined in a different model, requires the
use of a MAST external declaration in the template definition.
For example, assume a MOS device model (Saber template m
named nmos2), which is called in the body of a circuit template
called inverter in another model. This inverter template must
include the following declaration in order for the nmos2 device
model to be recognized.
external m..model nmos2

The complete template for the inverter circuit is:
template inv A B C D E F
electrical A, B, C, D, E, F
{
external m..model nmos2
m.minv A B C D = model = nmos2, l = 10u, w = 10u
m.mload E F A D = model = nmos2, l = 10u, w = 10u
}

The external declaration does not need to be added when a
template calls another template.

Refer to the Saber manuals for complete syntax and rules of the
MAST modeling language.
309

310

5 Saber Simulator
Saber Libraries

The Saber library of components and templates includes the
SPICE components as well as the components developed by
Analogy, Inc. Refer to the Saber manuals for a list of supported
simulator components, higher level templates and the required
specification formats.

Saber Input Deck Comments

To indicate comments in the Saber simulator input deck, start
an input line with the pound symbol (#). This denotes a
comment in the circuit model description or in the input file of
the Simulation Debugger.

NOTE The SABER_DATA_PATH environment variable must be set. This variable
contains the directory paths for the executable files and libraries required
by the Saber simulator. Refer to the Saber Reference Manual for
installation procedures.
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

6
MNS Simulator

MNS Simulation Example 313

Piped MNS Simulations 316

Non-Piped MNS Simulations 317

MNS Parameter Sweeps 318

Circuit Model Description 323

MNS Input Language 328

MNS Libraries 328

This chapter describes the details of using the MNS
simulator with IC-CAP. For general information on IC-CAP
simulation, refer to Chapter 6, “Simulating,” in the User’s
Guide.

IC-CAP supports the following Microwave Nonlinear
Simulator (MNS) features:

• DC, Small Signal AC, Small Signal S-Parameter, and
Transient analysis options

• Parameter sweeps for device and circuit simulation

• Temperature sweeps

• Hierarchical simulation

• Variables

• Constants

• Expressions

The MNS Optimizer features are not currently supported in
IC-CAP. IC-CAP optimization (different from the MNS
Optimizer) of simulated data to target data is supported.
311Agilent Technologies

312

6 MNS Simulator
The MNS simulator supports the following analysis types:

• DC

• AC

• 2-port

• Transient

• Noise

• Capacitance Voltage (CV)

• Time-Domain Reflectometry (TDR)

• Harmonic Balance

NOTE IC-CAP does not add extra circuitry in order to perform a 2-port simulation
since this is a standard type in MNS.
IC-CAP Reference

MNS Simulator 6
MNS Simulation Example
IC-CAP Reference

The circuit description is predefined for all IC-CAP
configuration files. Enter this description if a new model is
being defined; edit the description to fit specific needs. The
syntax is identical to the syntax used for describing circuits
in a typical MNS simulation deck.

This MNS simulation example will use the IC-CAP supplied
Model mnsnpn.mdl.

1 Select the simulator by choosing Tools > Options > Select
Simulator > mns. Choose OK.

2 Choose File > Open > mnsnpn.mdl. Choose OK.

3 View the description by clicking the Circuit tab.

The circuit description is shown in the following figure.
This deck describes the circuit (in this case, a single
device) to be used in the simulation.

4 To view the input and output for the fearly setup, click
the DUTs-Setups tab and select fearly.

options ascii=no
model npnbjt bjt NPN=yes \
IS=4.015e-16 BF = 87.01 \
NF = 0.9955 VAF = 84.56 \
IKF = 0.01195 ISE = 3.405E-14 \
NE = 1.594 BR = 10.79 \
NR = 1.002 VAR = 9.759 \
IKR = 0.0237 ISC = 1.095E-15 \
NC = 1.1 RB = 9.117 \
IRB = 0.001613 RBM = 5.62 \
RE = 1.385 RC = 9.292 \
XTB = 1.7 EG = 1.11 \
XTI = 3 CJE = 1.312E-12 \
VJE = 1.11 MJE = 0.3475 \
TF = 5.274E-11 XTF = 5.625 \
VTF = 2.678 ITF = 0.02382 \
PTF = 154.1 CJC = 1.396E-12 \
VJC = 0.4511 MJC = 0.1924 \
XCJC = 0.3 TR = 1E-09 \
CJC = 9.985E-14 VJS = 0.8137 \
MJS = 0.3509 FC = 0.5
npnbjt:qckt C B E S

Figure 15 MNS Circuit Description Deck for an NPN Bipolar Transistor
313

314

6 MNS Simulator
The Measure/Simulate folder appears with the inputs vb,
vc, ve, and vs, and the output ic. The vc input specifies a
voltage source at node C that sweeps linearly from 0 to
5V in 21 steps. The ic output specifies that current at
node C be monitored.

In the Plots folder, icvsvc is specified so that the results
of the simulation can be viewed graphically.

5 To simulate, click the Simulate button in the
Measure/Simulate folder. The Status line displays Simulate
in progress.

When the simulation is complete, the Status line displays
IC-CAP Ready.

6 To view the results of the simulation, display the Plots
folder and click Display Plot. The plot displays measured
data represented by solid lines and simulated data
represented by dashed lines.

The Simulation Debugger

NOTE Phase information from the sin input cannot be included in the netlist.

NOTE For syntax examples of running a remote simulation, refer to “Remote
Simulation Examples” in the User’s Guide.
When using MNS with the Simulation Debugger to perform
an IC-CAP simulation (as opposed to a manual simulation),
an output text file consists of only the computational
analysis information. An example of a typical AC analysis
output text file is as follows:
MNS (ver. 03.00 -- 12 Feb 2004)
Copyright Agilent Technologies, 2004
AC ac1[1] <baaa07774> freq=(1 kHz->10 MHz)
Time required for ac1[1] was 0.30 seconds.
IC-CAP Reference

MNS Simulator 6

IC-CAP Reference

This file does not include the resulting data. To generate a
more informative output text file, change the ascii option in
the Input File from ascii=no to ascii=yes and perform a
manual simulation. An output text file that includes the
simulated output data values is produced. The ascii option
is set to no by IC-CAP before every simulation so that the
binary raw data file is generated by MNS. IC-CAP needs the
binary raw data file to read the resulting simulation data.
However, this data is not needed for a manual simulation.

MNS version 4.0 requires that the option nutmeg be set to
yes to cause MNS to generate the binary raw data file
required by IC-CAP. If the nutmeg option is not specified,
the default is nutmeg = yes. If you set nutmeg = no, MNS
will generate an output data format that IC-CAP cannot
understand.
315

6 MNS Simulator
Piped MNS Simulations
316

Specifying CAN_PIPE (the default) in your usersimulators
file for MNS enables IC-CAP to take advantage of the tune
mode built into the MNS simulator. This mode permits
changing parameters of a simulation without requiring the
simulator to be relaunched. This greatly reduces the time
required for an optimization which has all simulated targets
within 1 setup. Whenever the setup is changed, the
simulator is stopped and restarted with the new resulting
netlist. Thus, an optimization that has multiple simulated
targets from different setups must stop the simulator and
restart it at each iteration as it switches between setups. The
performance of this second scenario is the same as if the
non-piped mode were used.
IC-CAP Reference

MNS Simulator 6
Non-Piped MNS Simulations
IC-CAP Reference

Non-piped MNS simulations are identical to non-piped
SPICE simulations. Execute a simulation with the Simulation
Debugger ON to perform a non-piped simulation. MNS is
capable of performing piped simulations, which enables you
to turn the Simulation Debugger OFF without requiring that
MNS be restarted for every simulation.

Syntax: Non-piped simulation

This section describes the argument syntax required to
invoke the template simulator. This information is needed
when writing the user translation module, since these are
the arguments supplied by IC-CAP when it calls the
translation module. For information on the translation
module and adding a simulator, refer to “Adding a
Simulator” in the User’s Guide.

The command format for an MNS non-piped simulation is as
follows:
mns -r rawfile deckfile

where:

deckfile is the input deck file containing the circuit
description and analysis commands.

rawfile is the output binary data file.

The output text file, which normally is sent to standard
output is redirected by IC-CAP to a file. This file is
displayed in the Output table of the Simulation Debugger if
it is on.
317

6 MNS Simulator
MNS Parameter Sweeps
318

When using the MNS simulator in IC-CAP, the method of
specifying parameter sweeps differs between performing
single device simulations and circuit simulations.
NOTE When performing parameter sweeps, the name of the parameter to be
swept must be recognized by MNS, since the analysis is performed from
within the simulator. This means that the global declaration must be used
within the MNS circuit description. Simply adding the parameter name to
the Variables table results in a failed simulation.
Device Simulation Parameter Sweep

To sweep a parameter in an MNS device simulation:

1 Add an input specification of mode P to the Setup. Enter
the name of the parameter as it appears in the
Parameters table.

2 Enter the sweep type and values.

The Device Simulation Parameter Sweep example uses the
mnsnpn.mdl model with an input of mode P to the fearly
setup. This input specifies a linear sweep of the parameter
from 200.0e−15 to 230.0e−15 amperes in steps of 15.0e−15
amperes.

Figure 16 MNS Device Simulation Parameter Sweep Setup Example
IC-CAP Reference

MNS Simulator 6

IC-CAP Reference

During the simulation, IC-CAP generates the following input
deck.
; Simulation Input File options ascii=no
model mnsnpn bjt npn=yes\
is=4.015E-16\
bf = 60 \ nf = 0.9955\
 vaf = 84.56\
 ikf = 0.01195 \
 ise = 3.405E-14 \
 ne = 1.594 \
 br = 10.79 \
 nr = 1.002 \
 var = 9.759 \
 ikr = 0.00237 \
 isc = 1.095E-15 \
 nc = 1.1 \
 rb = 9.117 \
 irb = 0.001613 \
 rbm =5.62 \
 re = 1.385 \
 rc = 9.292 \
 xtb = 1.7 \
 eg = 1.11 \
 xti = 3 \
 cje = 1.312E-12 \
 vje = 1.11 \
 mje = 0.3475 \
 tf = 5.274E-11 \
 xtf = 5.625 \
 vtf = 2.678 \
 itf = 0.02382 \
 ptf = 154.1 \
 cjc = 1.396E-12 \
 vjc = 0.4511 \
 mjc = 0.1924 \
 xcjc = 0.3 \
 tr = 1E-09 \
 cjs = 9.985E-14 \
 vjs = 0.8137 \
 mjs = 0.3509 \
 fc = 0.5
mnsnpn:devckt 1 2 3 4 \
area = 1
; START SOURCES
ivs:V2GROUND 2 0 vdc=0
ivs:V1GROUND 3 0 vdc=0
ivs:V3GROUND 3 0 vdc=0
ivs:V4GROUND 4 0 vdc=0
; END SOURCES
stim:swp1 start=0 stop=5 step=0.25
stim:swp2 start=0.7 stop=0.72 step=0.01
stim:swp3 start=200a stop=230a step=15a
dc:dc1 stim=swp1 var="V1GROUND.vdc"
ct:ct1 an="dc1" stim=swp2 var="V2GROUND.vdc"
ct:ct2 an="ct1" stim=swp3 var="mnsnpn.is"
319

320

6 MNS Simulator

Circuit Simulation Parameter Sweep

Specifying a parameter sweep for a circuit simulation
requires a different approach from a parameter sweep for a
device simulation.

To sweep a parameter in an MNS circuit simulation:

1 Specify a global variable in the MNS circuit description
and set it to an initial value.

2 Set the value of the parameter in the circuit description
equal to the global variable name.

3 Add a variable in IC-CAP with the same name as the
global MNS parameter.

4 Add an input specification of mode P to the Setup.

5 Enter the global variable name in the Name field of the
Input table.

6 Enter the sweep type and values.
IC-CAP Reference

MNS Simulator 6
Example Circuit Simulation Parameter Sweep
IC-CAP Reference

The Circuit Simulation Parameter Sweep example, uses the
model mnsopamp.mdl. The following line is added to the
circuit description:

global RC1_r=4352

This complete circuit description is shown below.
; Simulation Input File in MNS Input Deck Format
options ascii=no
define opamp1 (2 3 4 6 7)
global RC1_r=4352
;Internal OpAmp circuit
;using Boyle-Pederson Macro Model
;Input differential amplifier
npn1:Q1 10 2 12
npn2:Q2 11 3 13
model npn1 bjt npn=yes is = 8E-16 bf = 52.81
model npn2 bjt npn=yes is = 8.093E-16 bf = 52.66
r:RC1 7 10 r=RC1_r
r:RC2 7 11 r=4352
c:C1 10 11 c=4.529E-12
r:RE1 12 14 r=2392
r:RE2 13 14 r=2392
r:RE 14 0 r+7.27E+06
c:CE 14 0 c=7.5E-12
; Power dissipation modeling resistor
r:RP 7 4 r=1.515E+04
; 1st gain stage
vccs:GCM 0 15 14 0 gm=1.152E-09
vccs:GA 15 0 10 11 gm=0.0002298
r:R2 15 0 r=1E+05
; Compensation capacitor
c:C2 15 16 c=1E-11
; 2nd gain stage
vccs:GB 16 0 15 0 gm=37.1
r:RO2 16 0 r=489.2
dmod1:D1 16 17
dmod1:D2 17 16
model dmod1 diode is = 3.822E-32
r:RC 17 0 r=0.0001986
vccs:GC 0 17 6 0 gm=5034
; Output circuit
r:RO1 16 6 r=76.8
dmod2:D3 6 18
dmod2:D4 19 6
model dmod2 diode is = 3.822E-32
ivs:VC 7 18 vdc=1.604
ivs:VE 19 4 vdc=3.104
; Input diff amp bias source
ics:IEE 14 4 idc=2.751E-05
end opamp1

In this example, the value of r:RC1 is set to RC1_r. You must
also add a variable called RC1_r to the IC-CAP model
variables table and set the variable to a value, such as,
321

322

6 MNS Simulator

4.000K. In the setup mnsopamp/inv_amp/B_P_macro add an
input called RC1_r. The Inputs table is shown in the
following figure.

For additional information on sweeping parameters, refer to
“Specifying Parameter or Variable Sweeps” in the User’s
Guide.

The following sections of this chapter describe in more detail
each of the steps in these simulation overview examples.

Figure 17 MNS Circuit Parameter Sweep Setup Example
IC-CAP Reference

MNS Simulator 6
Circuit Model Description
IC-CAP Reference
This section explains the circuit descriptions for the MNS
simulator.
Selecting Simulator Options
MNS simulation options are specified using the
MNS_OPTIONS variable in the Setup DUT or System Variable
tables. Enter the options in the value section of the variable
exactly as they should appear in the MNS options command.
Entering Circuit Descriptions

The circuit description is entered into the IC-CAP Circuit
Editor or the Test Circuit Editor. The circuit description
includes the necessary definitions of devices, sources and
components, as well as node connections and model
descriptions. MNS accepts a netlist description that is
different from SPICE and Saber simulators.

Parameter Table Generation

The circuit description is parsed by IC-CAP and specific
model information (such as parameters and their
corresponding values) as well as circuit component values
are reflected in the Parameters table. Model parameters and
component values specified in the circuit description entered
in the Circuit Editor are saved in the Parameters table.
Device parameters specified in the model call statement are
saved in the DUT Parameters table—unless a Test Circuit is
specified, in which case, parameter values specified in the
test circuit description are saved in the DUT Parameters
table.

Non-numeric Parameter Values

MNS allows non-numeric values for a number of parameters
in predefined component definitions. One example is the BJT
model parameter npn. This parameter can take on the value
323

324

6 MNS Simulator
of yes if it is an nmos device. Alpha format parameters do
not appear in the IC-CAP Parameters table but do appear in
the simulation input decks.

Circuit descriptions must be entered with valid model and
parameter names for the particular model being used.

Node Names

MNS accepts alphanumeric names as well as numbers to
represent nodes. There is no limit on the number of
characters allowed in a node name; however, delimiters or
non-alphanumeric characters are not allowed. Also, a node
name that begins with a digit must consist only of digits.

Comments

To indicate comments in an MNS input deck, start an input
line with a semicolon (;). All text on the line following the
semicolon will be ignored.

Device Model Descriptions

NOTE MNS will treat the suffix M as MEG and m as milli, whereas IC-CAP parses
both M and m as milli. When specifying a value multiplied by10-3 use m;
when specifying a value multiplied by 106 use MEG.
A device model is used to characterize a single MNS-defined
element of any type. This specification requires a model
definition that describes the device and an instance
statement that calls the model definition.

The model description specifies the value of a device model
that describes a particular element. When a parameter is not
specified, the default value in the model is used. The general
form of the model definition is:
model MNAME TYPE PNAME1 = PVAL1 PNAME2 = PVAL2...

where
IC-CAP Reference

MNS Simulator 6

IC-CAP Reference

MNAME is the model name. (Regardless of the model
name entered into the MNAME field of the MNS model
definition statement, IC-CAP substitutes this field with
the name of the Model as it is called in the Model List
when the simulator input deck is built.)

TYPE is a valid MNS element type.

PNAMEs are parameter names available for the particular
model type.

PVALs are the parameter values.

A backslash immediately followed by a return (no space
between the backslash and the return) at the end of a line
indicates that the statement is continued on the next line
This continuation character is often used for easier
readability when specifying the model description.

The general form of the instance statement that calls the
device model is:
TYPE :DNAME NNAME1 NNAME2...NNAMEN DPAR1 = DVAL1
DPAR2 = DVAL2...DPARN = DVALN

where

TYPE is the instance type descriptor. This field can
contain either the MNS instance type name or a
user-supplied model or subcircuit name.

DNAME is the device name.

NNAMEs denote node names.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to the
MNS User’s Guide for DUT parameter names available for
each model.
Subcircuit Model Descriptions
A subcircuit definition represents a circuit that contains
more than 1 device. The syntax for defining a subcircuit is
identical to the syntax used for the MNS input language.

The general form of the subcircuit definition is:
325

326

6 MNS Simulator

define SUBCKTNAME (NNAME1 NNAME2 ...NNAMEN)
parameters PAR1 = VAL1 PAR2 = VAL2 ...PARN = VALN
< body of subcircuit >
end SUBCKTNAME

where

SUBCKTNAME is the name of the subcircuit.

NNAMEs are the node names of the external nodes of the
subcircuit. These external nodes are used to connect the
subcircuit to another circuit.

PARs are the names of the parameters passed into the
subcircuit. These parameters are optional in a subcircuit
definition.

If parameters are specified, the assigned default values VAL
are also optional. A parameter is assigned to this default
value if the parameter is not specified in the subcircuit call.

The body of the subcircuit contains element statements. It
can contain calls to other subcircuits but it cannot contain
other subcircuit definitions.

The subcircuit definition is completed using the end
SUBCKTNAME statement.

Calling a subcircuit definition allows you to insert all
instances specified within the subcircuit into the circuit. The
call requires a syntax identical to the syntax used in the
MNS input language for any instance statement. The general
form of the instance statement is:
TYPE :INAME NNAME1 NNAME2....NNAMEN PAR1 = VAL1
PAR2 = VAL2......PARN = VALN

(While the syntax shown here is correct, passed parameters
are ignored by IC-CAP.)

where

TYPE is the instance type descriptor. If a subcircuit is
being called, this field would contain the subcircuit name
denoted by SUBCKTNAME.

INAME is the instantiated name of the subcircuit.

NNAMEs denote node names.
IC-CAP Reference

MNS Simulator 6

IC-CAP Reference

PARs are the subcircuit parameter names.

VALs are the specified subcircuit parameter values.

The following is an example of a complete subcircuit
definition and subcircuit call.

• Defined by the user in the Circuit folder:
options ascii=no
define opamp1 (2 3 4 6 7)
; Internal OpAmp circuit
; using Boyle-Pederson Macro Model
; Input differential amplifier
npn1:Q1 10 2 12
npn2:Q2 11 3 13
model npn1 bjt npn=yes is = 8E-16 bf = 52.81
model npn2 bjt npn=yes is = 8.093E-16 bf = 52.66
r:RC1 7 10 r=4352
r:RC2 7 11 r=4352
c:C1 10 11 c=4.529E-12
r:RE1 12 14 r=2392
r:RE2 13 14 r=2392
r:RE 14 0 r=7.27E+06
c:CE 14 0 c=7.5E-12
: Power dissipation modeling resistor
r:RP 7 4 r=1.515E+04
: 1st gain stage
vccs:GCM 0 15 14 0 gm=1.152E-09
vccs:GA 15 0 10 11 gm=0.0002298
r:R2 15 0 r=1E+05
; Compensation capacitor
c:C2 15 16 c=1E-11
; 2nd gain stage
vccs:GB 16 0 15 0 gm=37.1
r:RO2 16 0 r=489.2
dmod1:D1 16 17
dmod1:D2 17 16
model dmod1 diode is = 3.822E-32
r:RC 17 0 r=0.0001986
vccs:GC 0 17 6 0 gm=5034
; Output circuit
r:RO1 16 6 r=76.8
dmod2:D3 6 18
dmod2:D4 19 6
model dmod2 diode is = 3.822E-32
ivs:VC 7 18 vdc=1.604
ivs:VE 19 4 vdc=3.104
; Input diff amp bias source
ics:IEE 14 4 idc=2.751E-05
end opamp1
327

328

6 MNS Simulator

• Defined by the user in the Test Circuit folder:
;Inverting Amplifier
define inv_amp (1 2 3 4 6 7)
opamp1:X1 2 3 4 6 7
r:Rf 6 2 r=1E+04
r:Rin 2 1 r=2000
r:Rgnd 3 0 r=0.001
end inv_amp

• Added by IC-CAP to the circuit description:
inv_amp:XCKT 1 2 3 4 5 6
; START SOURCES
ivs:V1GROUND 1
0 vdc=0 vac=1 ivs:V7GROUND 6 0 vdc=15
ivs:V5GROUND 4 0 vdc=-15 ; END SOURCES
r:RO2 2 0 100000
r:RO3 3 0 100000
r:RO5 5 0 100000
stim:swpfreq start=1000 stop=1e=07 dec=3
ac:ac1 stim=swpfreq var="freq"

For more information on MNS subcircuit definitions, refer to
the MNS User’s Guide.
MNS Input Language
The MNS Input Language, which describes circuit and
simulator control statements, is different from the SPICE
Input Language and the Saber Input Language (MAST). For
information about the MNS input language, refer to the MNS
User’s Guide.
MNS Libraries
MNS contains a library of elements and components. For
information about the MNS Libraries, refer to the MNS
User’s Guide.
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

7
ADS Simulator

ADS Interfaces 332

Hardware and Operating System Requirements 333

Codewording and Security 333

Setting Environment Variables 334

ADS Simulation Example 335

Piped ADS Simulations 338

Non-Piped ADS Simulations 340

Circuit Model Description 340

ADS Parameter Sweeps 347

Interpreting this Chapter 354

General Syntax 357

The ADS Simulator Syntax 358

Instance Statements 366

Model Statements 367

Subcircuit Definitions 368

Expression Capability 370

VarEqn Data Types 392

“C-Preprocessor” 393

Data Access Component 396

Reserved Words 398

This chapter describes the details of using the Advanced
Design System (ADS) Simulator with IC-CAP. For general
information on IC-CAP simulation, refer to Chapter 6,
“Simulating,” in the User’s Guide.
329Agilent Technologies

7 ADS Simulator
NOTE The PC version of IC-CAP supports ADS version 2002 or newer. Older
versions of ADS can not be used with the PC version of IC-CAP.
330

IC-CAP supports the following ADS features:

• DC, Small Signal AC, Small Signal S-Parameter, and
Transient analysis options

• Parameter sweeps for device and circuit simulation

• Temperature sweeps

• Hierarchical simulation

• Variables

• Constants

• Expressions

• Spectre circuit page

The ADS Optimizer features are not currently supported in
IC-CAP. IC-CAP optimization (different from the ADS
Optimizer) of simulated data to target data is supported.

The ADS simulator supports the following analysis types:

• DC

• AC

• 2-port

• Transient

• Noise

• Capacitance Voltage (CV)

• Time-Domain Reflectometry (TDR)

• Steady State Harmonic Balance
IC-CAP Reference

ADS Simulator 7

NOTE 2-port simulation with high frequency noise is supported to extract noise
parameters such as noise figure, optimum source reflection coefficients,
equivalent noise resistance data, minimum noise figure data, and
equivalent noise temperature data.

IC-CAP does not add extra circuitry in order to perform a 2-port simulation
since this is a standard type in ADS.
IC-CAP Reference 331

7 ADS Simulator
ADS Interfaces
332

IC-CAP provides two template names to interface to the ADS
simulator’s Circuit and Test Circuit pages—hpeesofsim uses
native ADS simulator syntax and spmodeads uses spectre
simulator syntax. Both interfaces use native ADS simulator
syntax to specify the sweep and output requests.

To specify the hpeesofsim or spmodeads interface,
usersimulators should have a line similar to the following:
hpeesofsim hpeesofsim $ADS_DIR/bin/iccapinterface "" CAN_PIPE

or
spmodeads spmodeads $ADS_DIR/bin/iccapinterface "" CAN_PIPE

The first field can be any name you choose, it will show up in
your simulator list, and it can be used with the SIMULATOR
variable.

Both the hpeesofsim and spmodeads lines shown above are in
the usersimulators file by default.

When using the spmodeads interface, refer to “Circuit Model
Descriptions” on page 278 in Chapter 4, “SPECTRE Simulator”
for spectre syntax for the Circuit and Test Circuit pages.
IC-CAP Reference

ADS Simulator 7
Hardware and Operating System Requirements
IC-CAP Reference
The ADS Simulator on IC-CAP is supported on the following
platforms:

• Linux RedHat Enterprise 4.0 or Linux Novell SUSE SLES 9

• Solaris 10

• Microsoft Windows XP or Microsoft Windows Vista.
Codewording and Security

The ADS Simulator is a secured program that requires, at a
minimum, a license for the E8881 Linear Simulator to run.
Depending on the type of simulation, additional licenses may be
required.
333

7 ADS Simulator
Setting Environment Variables
334

Before running the ADS Simulator, set the environment variable
HPEESOF_DIR on UNIX or ADS_DIR on Windows to point to
the ADS Simulator’s installation location.

• To set HPEESOF_DIR using the Korn Shell, add the following
to your ~/.profile.
export HPEESOF_DIR=<ADS_install_directory>

• To set HPEESOF_DIR using the C Shell, add the following to
your ~/.cshrc.
setenv HPEESOF_DIR <ADS_install_directory>

• To set ADS_DIR for Windows 2000, right click on My Computer
and select Properties. Click on the Advanced tab. Then select
Environment Variables and set ADS_DIR either for the local
user or system wide, depending on your needs.

• To set ADS_DIR for Windows NT 4.0, right click on My
Computer and select Properties. Click on the Environment tab.
Then set ADS_DIR either for the local user or system wide,
depending on your needs. You may need to log off and log
back onto the computer for the new variable to be found by
IC-CAP.
IC-CAP Reference

ADS Simulator 7
ADS Simulation Example
IC-CAP Reference

The circuit description is predefined for all IC-CAP
configuration files. Enter this description if a new model is
being defined; edit the description to fit specific needs. The
syntax is identical to the syntax used for describing circuits in a
typical ADS simulation deck.

This ADS simulation example will use the IC-CAP supplied
Model hpsimnpn.mdl.

1 Choose File > Examples > model_files/bjt/hpsimnpn.mdl. Choose
OK.

2 View the description by clicking the Circuit tab.

The circuit description is shown in the following figure. This
deck describes the circuit (in this case, a single device) to be
used in the simulation.

3 To view the input and output for the fearly setup, click the
DUTs-Setups tab and select fearly.

; Simulation Input File for BJT
options ascii=no
model npnbjt BJT NPN=yes \
Is=401.5a Bf = 87.01 \
Nf = 995.5m Vaf = 84.56 \
Ikf = 11.95m Ise = 34.05f \
Ne = 1.594 Br = 10.79 \
Nr = 1.002 Var = 9.759 \
Ikr = 23.7m Isc = 1.095f \
Nc = 1.100 Rb = 9.117 \
Irb = 1.613m Rbm = 5.620 \
Re = 1.385 Rc = 9.292 \
Xtb = 1.7 Eg = 1.110 \
Xti = 3.000 Cje = 1.312p \
Vje = 1.110m Mje = 347.5m \
Tf = 52.74p Xtf = 5.625 \
Vtf = 2.678 Itf = 23.82 \
Ptf = 154.1 Cjc = 1.396p \
Vjc = 451.1m Mjc = 192.4m \
Xcjc = 300m Tr = 1.00n \
Cjs = 99.85f Vjs = 813.7m \
Mjs = 350.9m Fc = 500.0m \
Tnom = 27
npnbjt:Q1 C B E S

Figure 18 ADS Circuit Description Deck for an NPN Bipolar Transistor
335

336

7 ADS Simulator

The Measure/Simulate folder appears with the inputs vb, vc,
ve, and vs, and the output ic. The vc input specifies a voltage
source at node C that sweeps linearly from 0 to 5V in 21
steps. The ic output specifies that current at node C be
monitored.

In the Plots folder, icvsvc is specified so that the results of
the simulation can be viewed graphically.

4 To simulate, click the Simulate button in the
Measure/Simulate folder. The Status line displays Simulate in
progress. Under most configurations, the ADS status window
will appear. For more information about these
configurations, see “Piped ADS Simulations” on page 338.

When the simulation is complete, the Status line displays
Simulate Complete.

5 To view the results of the simulation, right-click on fearly,
then choose Plots > icvsvc. (This is a shortcut for displaying
the plot from the Plots folder.) The plot displays measured
data represented by solid lines and simulated data
represented by dashed lines.
The Simulation Debugger

NOTE For syntax examples of running a remote simulation, refer to “Remote
Simulation Examples" in the User’s Guide.
When using ADS with the Simulation Debugger to perform an
IC-CAP simulation (as opposed to a manual simulation), an
output text file consists of only the computational analysis
information. An example of a typical AC analysis output text file
is as follows:
IC-CAP Reference

ADS Simulator 7
HPEESOFSIM (ver. 03.00 -- 12/14/01 09:28:45)
Copyright Agilent Technologies, 2004

CT ct1[1] </var/tmp/ICCAAa18727> VBGROUND.Vdc=(700 mV->720 mV)

DC ct1[1].dc1[1/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=700 mV VCGROUND.Vdc=(0 V->5 V)

DC ct1[1].dc1[2/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=710 mV VCGROUND.Vdc=(0 V->5 V)

DC ct1[1].dc1[3/3] </var/tmp/ICCAAa18727> VBGROUND.Vdc=720 mV VCGROUND.Vdc=(0 V->5 V)

Simulation finished.

IC-CAP Reference

This file does not include the resulting data. To generate a more
informative output text file, change the ASCII_Rawfile option in
the Input File from ASCII_Rawfile=no to ASCII_Rawfile=yes
and perform a manual simulation. An output text file that
includes the simulated output data values is produced. The
ASCII_Rawfile option is set to no by IC-CAP before every
simulation so that the binary raw data file is generated by ADS.
IC-CAP needs the binary raw data file to read the resulting
simulation data. However, this data is not needed for a manual
simulation.

ADS version 1.3 requires that the option UseNutmegFormat be
set to yes to cause ADS to generate the binary raw data file
required by IC-CAP. If the UseNutmegFormat option is not
specified, the default is UseNutmegFormat = yes. If you set
UseNutmegFormat = no, ADS will generate an output data
format that IC-CAP cannot understand.
337

7 ADS Simulator
Piped ADS Simulations
338

Specifying CAN_PIPE (the default) in your usersimulators file
for the ADS simulator enables IC-CAP to take advantage of the
tune mode built into the ADS simulator. This mode permits
changing parameters of a simulation without requiring the
simulator to be relaunched. This greatly reduces the time
required for optimizations to run. However, each setup requires
a new simulator to be launched. By default, IC-CAP permits up
to 3 ADS simulators to be running at once so that an
optimization across as many as 3 setups can be completed in the
fastest time possible. Certain large simulations may require a
great deal of system resources and having 3 simulations
currently active can degrade system performance. If you
encounter this problem, you can set the
MAX_PARALLEL_SIMULATORS system variable to 1 or 2. If
your system can handle more than 3 simulators in parallel and
you need to optimize across more than 3 setups at a time, the
value of MAX_PARALLEL_SIMULATORS can be increased.

When CAN_PIPE mode is used, the ADS simulator will bring up
a status window during simulation. The first time the simulator
is launched it can take several seconds for this window to
appear. Once it is open, successive simulations will attach to the
same status window. Each time a new setup is simulated, a new
simulator must be started. There is a certain start-up delay
associated with each invocation. This will be much shorter than
the very first invocation which needed to launch the status
window. Successive simulations of a setup which has been
previously simulated will return in the shortest time as the
simulator does not need to be reinvoked.

Opening the Simulation Debugger will terminate all running
simulators, and close the ADS status window. Simulations done
with the Simulation Debugger window open are performed in
non-piped mode and thus the ADS status window is not opened.

In situations when you want to use the $mpar or $dpar feature
in #echo lines for MNS and ADS netlists, you must enter names
properly. The proper ADS name syntax is a dot-separated name,
such as NPN.Bf. If you fail to use a proper name, simulations
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

will yield incorrect results when you try to use the simulator in
CAN_PIPE mode. If names cannot be revised, use
CANNOT_PIPE.

This was especially problematic for userdefined models
requiring many #echo lines using the $mpar feature in order for
IC-CAP to parse it properly. This problem occurs when the
technique used to implement userdefined models in ADS is
declaring 2 new components, 1 a modelform and another an
instance. This implementation of user-defined models led to the
requirement for #echo lines. The modelform component looked
like any other ADS netlist component, but it had no nodes. The
parser is modified for IC-CAP 2001 to recognize a nodeless
component as a userdefined model; however, only in the context
of a subcircuit. If you want to create this type of userdefined
model in ADS, then you must use a subcircuit. Doing so
eliminates the need for #echo lines in the netlist and the
subcircuit will parse and simulate properly.
339

7 ADS Simulator
Non-Piped ADS Simulations
340

Non-piped ADS simulations are identical to non-piped MNS
simulations. Execute a simulation with the Simulation Debugger
ON to perform a non-piped simulation. ADS is capable of
performing piped simulations, which enables you to turn the
Simulation Debugger OFF without requiring that ADS be
restarted for every simulation.
Circuit Model Description
This section explains the circuit descriptions for the ADS
simulator.
Selecting Simulator Options
ADS simulation options are specified using the
HPEESOFSIM_OPTIONS variable in the Setup DUT or System
Variable tables. Enter the options in the value section of the
variable exactly as they should appear in the ADS options
command.
Entering Circuit Descriptions
The circuit description is entered into the IC-CAP Circuit Editor
or the Test Circuit Editor. The circuit description includes the
necessary definitions of devices, sources and components, as
well as node connections and model descriptions. ADS accepts
a netlist description that is different from SPICE and Saber
simulators.
NOTE IC-CAP accepts a modified form of a netlist that enables you to use
binning. To simulate a netlist with binned models from IC-CAP, you must
declare the bin model (and only the bin model) immediately following the
subcircuit definition. You must declare each Model[x]= to be a name of the
form XCKT.modname since that is how IC-CAP netlists the bin model.
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

Parameter Table Generation

The circuit description is parsed by IC-CAP and specific model
information (such as parameters and their corresponding
values) as well as circuit component values are reflected in the
Parameters table. Model parameters and component values
specified in the circuit description entered in the Circuit Editor
are saved in the Parameters table. Device parameters specified
in the model call statement are saved in the DUT Parameters
table—unless a Test Circuit is specified, in which case,
parameter values specified in the test circuit description are
saved in the DUT Parameters table.

By default, all parameter names will be converted to uppercase,
since most extraction routines look for parameters named with
all uppercase letters. Some extraction routines (e.g., Root
models and EExxx models) require all lowercase letters. In
these .mdl files, the variable
HPEESOFSIM_USE_LOWER_CASE_PARAMS is declared to
override the default behavior. If you want to write extraction
routines using the native mixed case parameters, declare the
variable HPEESOFSIM_USE_MIXED_CASE_PARAMS in your
model file. For a description of these functions, see the System
Variables.

Non-numeric Parameter Values

ADS allows non-numeric values for a number of parameters in
predefined component definitions. One example is the BJT
model parameter npn. This parameter can take on the value of
yes if it is an nmos device. Alpha format parameters do not
appear in the IC-CAP Parameters table but do appear in the
simulation input decks.

Circuit descriptions must be entered with valid model and
parameter names for the particular model being used.
341

342

7 ADS Simulator
Node Names

ADS accepts alphanumeric names as well as numbers to
represent nodes. There is no limit on the number of characters
allowed in a node name; however, delimiters or
non-alphanumeric characters are not allowed. Also, a node
name that begins with a digit must consist only of digits.

Numeric node names are discouraged as they will result in
warnings during simulation that the results will not be
displayed properly in ADS Data Display Server (DDS). However,
these warnings are of no consequence to ICCap.

Comments

To indicate comments in an ADS input deck, start an input line
with a semicolon (;). All text on the line following the semicolon
will be ignored.

Device Model Descriptions

NOTE ADS will treat the suffix M as MEG and m as milli, whereas IC-CAP parses
both M and m as milli. When specifying a value multiplied by10-3 use m;
when specifying a value multiplied by 106 use MEG.
A device model is used to characterize a single ADS-defined
element of any type. This specification requires a model
definition that describes the device and an instance statement
that calls the model definition.

The model description specifies the value of a device model that
describes a particular element. When a parameter is not
specified, the default value in the model is used. The general
form of the model definition is:
model MNAME TYPE PNAME1 = PVAL1 PNAME2 = PVAL2...

where
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

MNAME is the model name. (Regardless of the model name
entered into the MNAME field of the ADS model definition
statement, IC-CAP substitutes this field with the name of the
Model as it is called in the Main window when the simulator
input deck is built.)

TYPE is a valid ADS element type.

PNAMEs are parameter names available for the particular
model type.

PVALs are the parameter values.

A backslash immediately followed by a return (no space
between the backslash and the return) at the end of a line
indicates that the statement is continued on the next line This
continuation character is often used for easier readability when
specifying the model description.

The general form of the instance statement that calls the device
model is:
TYPE :DNAME NNAME1 NNAME2...NNAMEN DPAR1 = DVAL1
DPAR2 = DVAL2...DPARN = DVALN

where

TYPE is the instance type descriptor. This field can contain
either the ADS instance type name or a user-supplied model
or subcircuit name.

DNAME is the device name.

NNAMEs denote node names.

DPAR is a predefined DUT parameter name.

DVAL is the specified DUT parameter value. Refer to
“General Syntax” on page 357 for DUT parameter names
available for each model.
Subcircuit Model Descriptions
A subcircuit definition represents a circuit that contains more
than 1 device. The syntax for defining a subcircuit is identical to
the syntax used for the ADS input language.

The general form of the subcircuit definition is:
343

344

7 ADS Simulator

define SUBCKTNAME (NNAME1 NNAME2 ...NNAMEN)
parameters PAR1 = VAL1 PAR2 = VAL2 ...PARN = VALN
< body of subcircuit >
end SUBCKTNAME

where

SUBCKTNAME is the name of the subcircuit.

NNAMEs are the node names of the external nodes of the
subcircuit. These external nodes are used to connect the
subcircuit to another circuit.

PARs are the names of the parameters passed into the
subcircuit. These parameters are optional in a subcircuit
definition.

If parameters are specified, the assigned default values VAL are
also optional. A parameter is assigned to this default value if
the parameter is not specified in the subcircuit call.

The body of the subcircuit contains element statements. It can
contain calls to other subcircuits but it cannot contain other
subcircuit definitions.

The subcircuit definition is completed using the end
SUBCKTNAME statement.

Calling a subcircuit definition allows you to insert all instances
specified within the subcircuit into the circuit. The call requires
a syntax identical to the syntax used in the ADS input language
for any instance statement. The general form of the instance
statement is:
TYPE :INAME NNAME1 NNAME2....NNAMEN PAR1 = VAL1 PAR2 =
VAL2......PARN = VALN

(While the syntax shown here is correct, passed parameters are
ignored by IC-CAP.)

where

TYPE is the instance type descriptor. If a subcircuit is being
called, this field would contain the subcircuit name denoted
by SUBCKTNAME.

INAME is the instantiated name of the subcircuit.

NNAMEs denote node names.
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

PARs are the subcircuit parameter names.

VALs are the specified subcircuit parameter values.

The following is an example of a complete subcircuit definition
and subcircuit call.

• Added by IC-CAP for output format/etc.
Options ASCII_Rawfile=no UseNutmegFormat=yes

• Defined by the user in the Circuit folder:
;Simulation Input File in hpeesofsim Input Deck Format

global RC1_r=4352

define hpsimopamp (2 3 4 6 7)
; Internal OpAmp circuit
; using Boyle-Pederson Macro Model
; Input differential amplifier
NPN1:Q1 10 2 12
NPN2:Q2 11 3 13
model NPN1 BJT NPN=yes \
Is = 8E-16 \
Bf = 52.81
model NPN2 BJT NPN=yes \
Is = 8.093E-16 \
Bf = 52.66
R:RC1 7 10 R=RC1_r
R:RC2 7 11 R=4352
C:C1 10 11 C=4.529E-12
R:RE1 12 14 R=2392
R:RE2 13 14 R=2392
R:RE 14 0 R=7.27E+06
C:CE 14 0 C=7.5E-12
; Power dissipation modeling resistor
R:RP 7 4 R=1.515E+04
; 1st gain stage
 #uselib "ckt", "VCCS"
VCCS:GCM 14 0 0 15 G=1.152E-09
VCCS:GA 10 11 15 0 G=0.0002298
R:R2 15 0 R=1E+05
; Compensation capacitor
C:C2 15 16 C=3E-11
; 2nd gain stage
VCCS:GB 15 0 16 0 G=37.1
R:RO2 16 0 R=489.2
DMOD1:D1 16 17
DMOD1:D2 17 16
model DMOD1 Diode \
Is = 3.822E-32
R:RC 17 0 R=0.0001986
VCCS:GC 6 0 0 17 G=5034
; Output circuit
R:RO1 16 6 R=76.8
DMOD2:D3 6 18
DMOD2:D4 19 6
model DMOD2 Diode \
Is = 3.822E-32
V_Source:VC 7 18 Vdc=1.604
V_Source:VE 19 4 Vdc=3.104
345

346

7 ADS Simulator

; Input diff amp bias source
I_Source:IEE 14 4 Idc=2.751E-05
end hpsimopamp

• Defined by the user in the Test Circuit folder:
; Inverting Amplifier
define inv_amp (1 2 3 4 6 7)
hpsimopamp:X1 2 3 4 6 7
R:Rf 6 2 R=1E+04
R:Rin 2 1 R=2000
R:Rgnd 3 0 R=0.001
end inv_amp

• Added by IC-CAP to the circuit description:
inv_amp:XCKT n1 n2 n3 n4 n5 n6
; START SOURCES
V_Source:V1GROUND n1 0 Vdc=0 Vac=1
V_Source:V7GROUND n6 0 Vdc=15
V_Source:V4GROUND n4 0 Vdc=-15
; END SOURCES
R:RO2 n2 0 R=100MEG
R:RO3 n3 0 R=100MEG
R:RO5 n5 0 R=100MEG
SweepPlan:swpfreq Start = 1000 Stop = 1e+07 Dec = 3
AC:ac1 SweepPlan=swpfreq SweepVar="freq"
IC-CAP Reference

ADS Simulator 7
ADS Parameter Sweeps
IC-CAP Reference
When using the ADS simulator in IC-CAP, the method of
specifying parameter sweeps differs between performing single
device simulations and circuit simulations.
NOTE When performing parameter sweeps, the name of the parameter to be
swept must be recognized by ADS, since the analysis is performed from
within the simulator. This means that the global declaration must be used
within the ADS circuit description. Simply adding the parameter name to
the Variables table results in a failed simulation.

Device Simulation Parameter Sweep

To sweep a parameter in an ADS device simulation:

1 Add an input specification of mode P to the Setup. Enter the
name of the parameter as it appears in the Parameters table.

2 Enter the sweep type and values.

The Device Simulation Parameter Sweep example uses the
hpsimnpn.mdl model with an input of mode P to the fearly
setup. This input specifies a linear sweep of the parameter from
200.0e−15 to 230.0e−15 amperes in steps of 15.0e−15 amperes.

During the simulation, IC-CAP generates the following input
deck.

Figure 19 ADS Device Simulation Parameter Sweep Setup Example
347

348

7 ADS Simulator

Options\
 ASCII_Rawfile=no UseNutmegFormat=yes
; Simulation Input File for BJT

model npn BJT NPN=yes \
Is = 2.704E-16 \
Bf = 86.16 \
Nf = 0.979 \
Vaf = 86.95 \
Ikf = 0.01491 \
Ise = 1.886E-14 \
Ne = 1.522 \
Br = 8.799 \
Nr = 0.9967 \
Var = 9.757 \
Ikr = 0.02369 \
Isc = 1.095E-15 \
Nc = 1.1 \
Rb = 8.706 \
Irb = 0.001509 \
Rbm = 5.833 \
Re = 1.385 \
Rc = 10.68 \
Xtb = 0 \
Eg = 1.11 \
Xti = 3 \
Cje = 1.312E-12 \
Vje = 0.6151 \
Mje = 0.2052 \
Tf = 4.781E-11 \
Xtf = 4.359 \
Vtf = 3.237 \
Itf = 0.01753 \
Ptf = 176.2 \
Cjc = 1.394E-12 \
Vjc = 0.5428 \
Mjc = 0.2254 \
Xcjc = 1 \
Tr = 5.099E-09 \
Cjs = 1.004E-13 \
Vjs = 0.5668 \
Mjs = 0.2696 \
Fc = 0.5 \
Tnom = 27
npn:devckt 1 2 3 4
; START SOURCES
V_Source:VBGROUND 2 0 Vdc=0
V_Source:VCGROUND 1 0 Vdc=0
V_Source:VEGROUND 3 0 Vdc=0
V_Source:VSGROUND 4 0 Vdc=-3
; END SOURCES
SweepPlan:swp1 Start=0 Stop=5 Step=0.25
SweepPlan:swp2 Start=0.7 Stop=0.72 Step=0.01
DC:dc1 SweepPlan=swp1 SweepVar=”VCGROUND.Vdc”
ParamSweep:ct1 SimInstanceName=”dc1” SweepPlan=swp2
SweepVar=”VBGROUND.Vdc”
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference
Circuit Simulation Parameter Sweep

Specifying a parameter sweep for a circuit simulation requires a
different approach from a parameter sweep for a device
simulation.

To sweep a parameter in an ADS circuit simulation:

1 Specify a global variable in the ADS circuit description and
set it to an initial value.

2 Set the value of the parameter in the circuit description
equal to the global variable name.

3 Add a variable in IC-CAP with the same name as the global
ADS parameter.

4 Add an input specification of mode P to the Setup.

5 Enter the global variable name in the Name field of the Input
table.

6 Enter the sweep type and values.

Example Circuit Simulation Parameter Sweep
The Circuit Simulation Parameter Sweep example, uses a model
for opamp simulation. The following line is included with the
circuit description:

global RC1_r=4352

This complete circuit description is shown below.
;Simulation Input File in hpeesofsim Input Deck Format

global RC1_r=4352

define opamp1 (2 3 4 6 7)
; Internal OpAmp circuit
; using Boyle-Pederson Macro Model
; Input differential amplifier
NPN1:Q1 10 2 12
NPN2:Q2 11 3 13
model NPN1 BJT NPN=yes \
Is = 8E-16 \
Bf = 52.81
model NPN2 BJT NPN=yes \
Is = 8.093E-16 \
Bf = 52.66
R:RC1 7 10 R=RC1_r
R:RC2 7 11 R=4352
C:C1 10 11 C=4.529E-12
R:RE1 12 14 R=2392
349

350

7 ADS Simulator

R:RE2 13 14 R=2392
R:RE 14 0 R=7.27E+06
C:CE 14 0 C=7.5E-12
; Power dissipation modeling resistor
R:RP 7 4 R=1.515E+04
; 1st gain stage
#uselib "ckt", "VCCS"
VCCS:GCM 14 0 0 15 G=1.152E-09
VCCS:GA 10 11 15 0 G=0.0002298
R:R2 15 0 R=1E+05
; Compensation capacitor
C:C2 15 16 C=1E-11
; 2nd gain stage
VCCS:GB 15 0 16 0 G=37.1
R:RO2 16 0 R=489.2
DMOD1:D1 16 17
DMOD1:D2 17 16
model DMOD1 Diode \
Is = 3.822E-32
R:RC 17 0 R=0.0001986
VCCS:GC 6 0 0 17 G=5034
; Output circuit
R:RO1 16 6 R=76.8
DMOD2:D3 6 18
DMOD2:D4 19 6
model DMOD2 Diode \
Is = 3.822E-32
V_Source:VC 7 18 Vdc=1.604
V_Source:VE 19 4 Vdc=3.104
; Input diff amp bias source
I_Source:IEE 14 4 Idc=2.751E-05
end opamp1

define inv_amp (1 2 3 4 6 7)
opamp1:X1 2 3 4 6 7
R:Rf 6 2 R=1E+004
R:Rin 2 1 R=2000
R:Rgnd 3 0 R=0.001
end inv_amp

inv_amp:XCKT n1 n2 n3 n4 n5 n6
; START SOURCES
V_Source:V1GROUND n1 0 Vdc=0 Vac=polar(1,0)
V_Source:V7GROUND n6 0 Vdc=15
V_Source:V4GROUND n4 0 Vdc=-15 ; END SOURCES
R:RO2 n2 0 R=100MEG
R:RO3 n3 0 R=100MEG
R:RO5 n5 0 R=100MEG
SweepPlan:swpfreq Start=1000 Stop=1e+07 Dec=3
SweepPlan:swp1 Start=4 Stop=10 Step=6
AC:ac1 SweepPlan=swpfreq SweepVar="freq"
ParamSweep:ct1 SimInstanceName="ac1"
SweepPlan=swp1 SweepVar="RC1_r"

In this example, the value of R:RC1 is set to RC1_r. You must
also add a variable called RC1_r to the IC-CAP model variables
table and set the variable to a value, such as, 4.000K. In the
example model, you must then add an input call RC1_r to the
setup . The Inputs table is shown in the following figure.
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

For additional information on sweeping parameters, refer to
“Specifying Parameter or Variable Sweeps" in the User’s Guide.

The following sections of this chapter describe in detail the
syntax for the ADS Simulator.

Using LSYNC sweeps

When you use LSYNC sweeps for an ADS simulation, data is
written to a data access component file. This file contains the
synchronized lists and the specific elements in the netlist that
refer to LSYNC values. These elements are accessed using
variables and an index.

A single sweep for the LSYNC group is then created to sweep
the index.

Figure 20 ADS Circuit Parameter Sweep Setup Example
351

352

7 ADS Simulator

Example Netlist:
Options ASCII_Rawfile=no UseNutmegFormat=yes

model nmos3 MOSFET nmos=yes \
UO = 1000 \
Vto = 1.136 \
Nfs = 0 \
Tox = 1E-007 \
Nsub = 5.31E+015 \
Nss = 0 \
Vmax = 1E+006 \
Rs = 0 \
Rd = 0 \
Rsh = 0 \
Cbd = 0 \
Cbs = 0 \
Cj = 0 \
Mj = 0.5 \
Cjsw = 0 \
Mjsw = 0.33 \
Is = 1E-014 \
Pb = 0.8 \
Fc = 0.5 \
Xj = 9.438E-008 \
Ld = 2.955E-007 \
Delta = 0.9338 \
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

Theta = 0.04124 \
Eta = 0 \
Kappa = 0.2

nmos3:devckt n1 n2 n3 n4 L = lsync0_0 W = lsync0_1 Ad = 1e-10
As = 1e-10 Pd = 0.000104 Ps = 0.000104 ; START SOURCES
V_Source:VGGROUND n2 0 Vdc=0 V_Source:VBGROUND n4 0 Vdc=0
V_Source:VDGROUND n1 0 Vdc=0.1 V_Source:VSGROUND n3 0 Vdc=0
; END SOURCES

INDEX0=0
#uselib "ckt" , "DAC"
DAC:DAC0 File="c:\ictmp\IC19_lsync0" Type="dscr"
InterpMode="index_lookup" iVar1=1 iVal1=INDEX0

lsync0_0=file {DAC0, "lval0"}
lsync0_1 = file {DAC0, "lval1"}
SweepPlan:swp1 Start=0 Stop=5 Step=0.2
SweepPlan:swp2 Start=-3 Stop=0 Step=1.5 Reverse=yes
SweepPlan:swp3 Start=0 Stop=2 Step=1
DC:dc1 SweepPlan=swp1 SweepVar="VGGROUND.Vdc"
ParamSweep:ct1 SimInstanceName="dc1" SweepPlan=swp2
SweepVar="VBGROUND.Vdc"
ParamSweep:ct2 SimInstanceName="ct1" SweepPlan=swp3
SweepVar="INDEX0"

And the contents of IC19_lsync0 will be:
BEGIN DSCRDATA
% INDEX0 lval0 lval1
0 5e-05 5e-05
1 5e-05 5e-06
2 2.5e-06 5e-05
353

7 ADS Simulator
Interpreting this Chapter
354

To make this chapter more accurate and easier to update, much
of the information in it is derived directly from the help facility
in the ADS Simulator. The parameter information in the help
facility has the following format.

Parameters:
 name (units) attributes description

Attributes:
 field 1: settable.
 s = settable.
 S = settable and required.
 field 2: modifiable.
 m = modifiable.
 field 3: optimizable.
 o = optimizable.
 field 4: readable.
 r = readable.
 field 5: type.
 b = boolean.
 i = integer.
 r = real number.
 c = complex number.
 d = device instance.
 s = character string.

Table 66 Model Parameter Attribute Definitions

Attribute Meaning Example

settable Can be defined in the instance
or model statement. Most
parameters are settable, there
are a few cases where a
parameter is calculated
internally and could be used
either in an equation or sent to
the dataset via the OutVar
parameter on the simulation
component. The parameter must
have its full address.

Gbe (Small signal
Base-Emitter Conductance) in
the BJT model can be sent to
the dataset by setting
OutVar=”MySubCkt.
X1.Gbe” on the
simulation component.

required Has no default value; must be
set to some value, otherwise the
simulator will return an error.

modifiable The parameter value can be
swept in simulation.
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

optimizable The parameter value can be
optimized.

readable Can be queried for value in
simulation using the OutVar
parameter. See settable.

boolean Valid values are 1, 0, True, and
False.

integer The maximum value allowed for
an integer type is 32767, values
between 32767 and 2147483646
are still valid, but will be
netlisted as real numbers. In
some cases the value of a
parameter is restricted to a
certain number of legal values.

The Region parameter in the
BJT model is defined as
integer but the only valid
values are 0, 1, 2, and 3.

real number The maximum value allowed is
1.79769313486231e308+.

complex
number

The maximum value allowed for
the real and imaginary parts is
1.79769313486231e308+.

device
instance

The parameter value must be set
to the name of one of the
instances present in the circuit.

The mutual inductance
component (Mutual), where
the parameters Inductor1 and
Inductor2 are defined by
instance names of inductors
present in the circuit or by a
variable pointing to the
instance names.
Inductor1=”L1” or
Inductor1=Xyz
where Xyz=”L1”

character
string

Used typically for file names.
Must be in double quotes.

Filename=”MyFileName”

Table 66 Model Parameter Attribute Definitions

Attribute Meaning Example
355

356

7 ADS Simulator

There are 2 other identifiers not in flag format. One is [] next to
a parameter name and it means that the parameter is
structured as an array. The other is (repeatable) appended to
the parameter description and it means that the parameter can
appear more than once in the same instance. An example is
OutVar.
IC-CAP Reference

ADS Simulator 7
General Syntax
IC-CAP Reference

In this chapter, the following typographical conventions apply:

Table 67 Typographic Conventions

Type Style Used For

[. . .] Data or character fields enclosed in brackets are optional.

italics Names and values in italics must be supplied

bold Words in bold are ADS simulator keywords and are also
required.
357

7 ADS Simulator
The ADS Simulator Syntax
358

The following sections outline the basic language rules.
Field Separators
A delimiter is one or more blanks or tabs.
Continuation Characters
A statement may be continued on the next line by ending the
current line with a backslash and continuing on the next line.
Name Fields
A name may have any number of letters or digits in it but must
not contain any delimiters or non alphanumeric characters. The
name must begin with a letter or an underscore (_).

Table 68 Fundamental Units

Dimension Fundamental Unit

Frequency Hertz

Resistance Ohms

Conductance Siemens

Capacitance Farads

Inductance Henries

Length meters

Time seconds

Voltage Volts

Current Amperes

Power Watts

Distance meters

Temperature Celsius
IC-CAP Reference

ADS Simulator 7
Parameter Fields
IC-CAP Reference
A parameter field takes the form name = value, where name is a
parameter keyword and value is either a numeric expression,
the name of a device instance, the name of a model or a
character string surrounded by double quotes. Some
parameters can be indexed, in which case the name is followed
by [i], [i,j], or [i,j,k]. i, j, and k must be integer constants or
variables.
Node Names
A node name may have any number of letters or digits in it but
must not contain any delimiters or non alphanumeric
characters. If a node name begins with a digit, then it must
consist only of digits.
Lower/Upper Case
The ADS Simulator is case sensitive.

Units and Scale Factors
An integer or floating point number may be scaled by following
it with either an e or E and an integer exponent (e.g., 2.65e3,
1e-14).

An ADS Simulator parameter with a given dimension assumes
its value has the corresponding units. For example, for a
resistance, R=10 is assumed to be 10 Ohms. The fundamental
units for the ADS Simulator are shown in Table 68.

A number or expression can be scaled by following it with a
scale factor. A scale factor is a single word that begins with a
letter or an underscore. The remaining characters, if any,
consist of letters, digits, and underscores. Note that ‘‘/’’ cannot
be used to represent ‘‘per’’. The value of a scale factor is
resolved using the following rule: If the scale factor exactly
matches one of the predefined scale-factors (Table 69), then use
the numerical equivalent; otherwise, if the first character of the
scale factor is one of the legal scale-factor prefixes (Table 70),
the corresponding scaling is applied.
359

360

7 ADS Simulator

Predefined Scale Factors

This type of scale factor is a predefined sequence of characters
which the ADS Simulator parses as a single token. The
predefined scale factors are listed in the previous table.

Table 69 Predefined Scale Factors

Scale Factor Scaling Meaning

A 1 Amperes

F 1 Farads

ft 0.3048 feet

H 1 Henries

Hz 1 Hertz

in 0.0254 inches

meter 1 meters

meters 1 meters

metre 1 meters

metres 1 meters

mi 1609.344 miles

mil 2.54*10
-5 mils

mils 2.54*10
-5 mils

nmi 1852 nautical miles

Ohm 1 Ohms

Ohms 1 Ohms

S 1 Siemens

sec 1 seconds

V 1 Volts

W 1 Watts
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

Single-character prefixes

If the first character of the scale factor is one of the legal
scale-factor prefixes, the corresponding scaling is applied.The
single-character prefixes are based on the metric system of
scaling prefixes and are listed in the following table

For example, 3.5 GHz is equivalent to 3.5*109 and 12 nF is
equivalent to 1.2*10-8. Note that most of the time, the ADS
Simulator ignores any characters that follow the
single-character prefix. The exceptions are noted in
“Unrecognized Scale Factors” on page 362.

Most of these scale factors can be used without any additional
characters (e.g., 3.5 G, 12n). This means that m, when used
alone, stands for ‘‘milli’’.

The underscore _ is provided to turn off scaling. For example,
1e-9 _farad is equivalent to 10-9, and 1e-9 farad is
equivalent to 10-24.

Predefined scale factors are case sensitive.

Unless otherwise noted, additional characters can be appended
to a predefined scale factor prefix without affecting its scaling
value.

Table 70 Single-character prefixes

Prefix Scaling Meaning

T 1012 tera

G 109 giga

M 106 mega

K 103 kilo

k 103 kilo

- 1

m 10-3 milli

u 10-6 micro

n 10-9 nano
361

362

7 ADS Simulator

A predefined scale factor overrides any corresponding
single-character-prefix scale factor. For example, 3 mm is
equivalent to 3*10-3, not 3*106. In particular, note that M does
not stand for milli, m does not stand for mega, and F does not
stand for femto.

There are no scale factors for dBm, dBW, or temperature, see
section on “Functions” on page 374 for conversion functions.

Unrecognized Scale Factors

The ADS Simulator treats unrecognizable scale factors as equal
to 1 and generates a warning message.

Scale-Factor Binding

More than one scale factor may appear in an expression, so
expressions like x in + y mil are valid and behave properly.

Scale factors bind tightly to the preceding variable. For
instance, 6 + 9 MHz is equal to 9000006. Use parentheses to
extend the scope of a scale factor (e.g., (6 + 9) MHz).

p 10-12 pico

f 10-15 femto

a 10-18 atto

Table 70 Single-character prefixes (continued)

Prefix Scaling Meaning
Booleans
Many devices, models, and analyses have parameters that are
boolean valued. Zero is used to represent false or no, whereas
any number besides zero represents true or yes. The keywords
yes and no can also be used.
IC-CAP Reference

ADS Simulator 7
Ground Nodes
IC-CAP Reference
Node 0 is assumed to be the ground node. Additional ground
node aliases can be defined using the ground statement. Multiple
ground statements can be used to define any number of ground
aliases, but they must all occur at the top-level hierarchy in the
netlist.

General Form:

Ground [:name] node1 [... nodeN]

Example:
Ground gnd
Global Nodes

Global nodes are user-defined nodes which exist throughout the
hierarchy. The global nodes must be defined on the first lines in
the netlist. They must be defined before they are used.

General Form:

 globalnode nodename1 [nodename2] [... nodenameN]

Example:
globalnode sumnode my_internal_node
Comments
Comments are introduced into an ADS Simulator file with a
semicolon; they terminate at the end of the line. Any text on a
line that follows a semicolon is ignored. Also, all blank lines are
ignored.
Statement Order
Models can appear anywhere in the netlist. They do not have to
be defined before a model instance is defined.
363

364

7 ADS Simulator

Some parameters expect a device instance name as the
parameter value. In these cases, the device instance must
already have been defined before it is referenced. If not, the
device instance name can be entered as a quoted string using
double quotes (").
Naming Conventions
The full name for an instance parameter is of the form:

[pathName].instanceName.parameterName[index]

where pathName is a hierarchical name of the form

[pathName].subcircuitInstanceName

The same naming convention is used to reference nodes,
variables, expressions, functions, device terminals, and device
ports.

For device terminals, the terminal name can be either the
terminal name given in the device description, or tn where n is
the terminal number (the first terminal in the description is
terminal 1, etc.). Device ports are referenced by using the name
pm, where m is the port number (the first pair of terminals in
the device description is port 1, etc.).

Note that t1 and p1 both correspond to the current flowing into
the first terminal of a device, and that t2 corresponds to the
current flowing into the second terminal. If terminals 1 and 2
define a port, then the current specified by t2 is equal and
opposite to the current specified by t1 and p1.
Currents
The only currents that can be accessed for simulation,
optimization, or output purposes are the state currents.

State currents

Most devices are voltage controlled, that is, their terminal
currents can be calculated given their terminal voltages.
Circuits that contain only voltage-controlled devices can be
solved using node analysis. Some devices, however, such as
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

voltage sources, are not voltage controlled. Since the only
unknowns in node analysis are the node voltages, circuits that
contain non-voltage-controlled devices cannot be solved using
node analysis. Instead, modified node analysis is used. In
modified node analysis, the unknown vector is enlarged. It
contains not only the node voltages but the branch currents of
the non-voltage-controlled devices as well. The branch currents
that appear in the vector of unknowns are called state currents.
Since the ADS Simulator uses modified node analysis, the
values of the state currents are available for output.

If the value of a particular current is desired but the current is
not a state current, insert a short in series with the desired
terminal. The short does not affect the behavior of the circuit
but does create a state current corresponding to the desired
current.

To reference a state current, use the device instance name
followed by either a terminal or port name. If the terminal or
port name is not specified, the state current defaults to the first
state current of the specified device. Note that this does not
correspond to the current through the first port of the device
whenever the current through the first port is not a state
current. For some applications, the positive state current must
be referenced, so a terminal name of t1 or t3 is acceptable but
not t2. Using port names avoids this problem. The convention
for current polarity is that positive current flows into the
positive terminal.
365

7 ADS Simulator
Instance Statements
366

General Form:

type [:name] node1 ... nodeN [[param=value] ...]

type [:name] [[param=value] ...]

Examples:
ua741:OpAmp in out out
C:C1 2 3 C=10pf
HB:Distortion1 Freq=10GHz

The instance statement is used to define to the ADS Simulator
the information unique to a particular instance of a device or an
analysis. The instance statement consists of the instance type
descriptor and an optional name preceded by a colon. If it is a
device instance with terminals, the nodes to which the
terminals of the instance are connected come next. Then the
parameter fields for the instance are defined. The parameters
can be in any order. The nodes, though, must appear in the same
order as in the device or subcircuit definition.

The type field may contain either the ADS Simulator instance
type name, or a user-supplied model or subcircuit name. The
name can be any valid name, which means it must begin with a
letter, can contain any number of letters and digits, must not
contain any delimiters or non alphanumeric characters, and
must not conflict with other names including node names.
IC-CAP Reference

ADS Simulator 7
Model Statements
IC-CAP Reference

General Form:

model name type [[param = value] ...]

Examples:
model NPNbjt bjt NPN=yes Bf=100 Js=0.1fa

Often characteristics of a particular type of element are
common to a large number of instances. For example, the
saturation current of a diode is a function of the process used to
construct the diode and also of the area of the diode. Rather
than describing the process on each diode instantiation, that
description is done once in a model statement and many diode
instances refer to it. The area, which may be different for each
device, is included on each instance statement. Though it is
possible to have several model statements for a particular type
of device, each instance may only reference at most one model.
Not all device types support model statements.

The name in the model statement becomes the type in the
instance statement. The type field is the ADS Simulator-defined
model name. Any parameter value not supplied will be set to
the model’s default value.

Most models, such as the diode or bjt models, can be
instantiated with an instance statement. There are exceptions.
For instance, the Substrate model cannot be instantiated. Its
name, though, can be used as a parameter value for the Subst
parameter of certain transmission line devices.
367

7 ADS Simulator
Subcircuit Definitions
368

General Form:
define subcircuitName (node1 ... nodeN)

[parameters name1 = [value1] ... name n = [value n]]
 .
.
.

elementStatements
.
.
.

end [subcircuitName]

Examples:
define DoubleTuner (top bottom left right)
parameters vel=0.95 r=1.0 l1=.25 l2=.25
 tline:tuner1 top bottom left left len=l1 vel=vel r=r
 tline:tuner2 top bottom right right len=l2 vel=2*vel r=r
end DoubleTuner
DoubleTuner:InputTuner t1 b2 3 4 l1=0.5

A subcircuit is a named collection of instances connected in a
particular way that can be instantiated as a group any number
of times by subcircuit calls. The subcircuit call is in effect and
form, an instance statement. Subcircuit definitions are simply
circuit macros that can be expanded anywhere in the circuit any
number of times. When an instance in the input file refers to a
subcircuit definition, the instances specified within the
subcircuit are inserted into the circuit. Subcircuits may be
nested. Thus a subcircuit definition may contain other
subcircuits. However, a subcircuit definition cannot contain
another subcircuit definition. All the definitions must occur at
the top level.

An instance statement that instantiates a subcircuit definition
is referred to as a subcircuit call. The node names (or numbers)
specified in the subcircuit call are substituted, in order, for the
node names given in the subcircuit definition. All instances that
refer to a subcircuit definition must have the same number of
nodes as are specified in the subcircuit definition and in the
same order. Node names inside the subcircuit definition are
strictly local unless they are a global ground defined with a
ground statement or global nodes defined with a globalnode
statement. A subcircuit definition with no nodes must still
include the parentheses ().
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

Parameter specification in subcircuit definitions is optional.
Any parameters that are specified are referred to by name
followed by an equals sign and then an optional default value. If,
when making a subcircuit call in your input file, you do not
specify a particular parameter, then this default value is used in
that instance. Subcircuit parameters can be used in expressions
within the subcircuit just as any other variable.

Subcircuits are a flexible and powerful way of developing and
maintaining hierarchical circuits. Parameters can be used to
modify one instance of a subcircuit from another. Names within
a subcircuit can be assigned without worrying about conflicting
with the same name in another subcircuit definition. The full
name for a node or instance include its path name in addition to
its instance name. For example, if the above subcircuit is
included in subckt2 which is itself included in subckt1, then
the full path name of the length of the first transmission line is
subckt1.subckt2.tuner1.len.

Only enough of the path name has to be specified to
unambiguously identify the parameter. For example, an analysis
inside subckt1 can reference the length by
subckt2.tuner1.len since the name search starts from the
current level in the hierarchy. If a reference to a name cannot be
resolved in the local level of hierarchy, then the parent is
searched for the name, and so on until the top level is searched.
In this way, a sibling can either inherit its parent’s attributes or
define its own.
369

7 ADS Simulator
Expression Capability
370

The ADS Simulator has a powerful and flexible symbolic
expression capability, called VarEqn, which allows the user to
define variables, expressions, and functions in the netlist. These
can then be used to define other VarEqn expressions and
functions, to specify device parameters and optimization goals,
etc.

The names for VarEqn variables, expressions, and functions
follow the same hierarchy rules that instance and node names
do. Thus, local variables in a subcircuit definition can assume
values that differ from one instance of the subcircuit to the
next.

Functions and expressions can be defined either globally or
locally anywhere in the hierarchy. All variables are local by
default. Local variables are known in the subcircuit in which
they are defined, and all lower subcircuits; they are not known
at higher levels. Expressions defined at the root (the top level)
are known everywhere within the circuit. To specify an
expression to be global the global keyword must precede the
expression. The global keyword causes the variable to be defined
at the root of the hierarchy tree regardless of the lexical
location.

Examples:
global exp1 = 2.718

The expression capability includes the standard math
operations of + - / * ^ in addition to parenthesis grouping. Scale
factors are also allowed in general expressions and have higher
precedence than any of the math operators (see “Units and
Scale Factors” on page 359).
Constants
An integer constant is represented by a sequence of digits
optionally preceded by a negative sign (e.g, 14, -3).

A real number contains a decimal point and/or an exponential
suffix using the e notation (e.g, 14.0, -13e-10).
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

The only complex constant is the predefined constant j which
is equal to the square root of -1. It can be used to generate
complex constants from real and integer constants (e.g., j*3,
9.1 + j*1.2e-2). The predefined functions complex() and
polar() can also be used to enter complex constants into an
expression.

A string constant is delimited by single quotes
(e.g.,’string’,’this is a string’).

Predefined Constants

Table 71 Predefined Constants

Constant Definition Constant Definition

boltzmann Boltzmann’s constant ln10 2.30...

c0 Speed of light in a
vacuum

j Square root of -1

DF_DefaultInt Reference to default
int value defined in
Data Flow controller

pi 3.14...

DF_ZERO_OHMS Symbol for use as zero
ohms

planck Planck’s constant

e 2.718... qelectron Charge of an electron

e0 Permittivity of a
vacuum

tinyReal Smallest real number

hugeReal Largest real number u0 Permeability of a
vacuum
Variables
General Form:

variableName = constantExpression

Examples:
x1 = 4.3inches + 3mils
syc_a = cos(1.0+sin(pi*3))
Zin = 7.8k - j*3.2k
371

372

7 ADS Simulator

The type of a variable is determined by the type of its value. For
example, x=1 is an integer, x=1+j is complex, and x =
“tuesday” is a string.

Predefined Variables

In addition to the predefined constants, there are several
predefined global variables. Since they are variables, they can
be modified and swept.

__fdd Flag to indicate a new FDD instance

__fdd_v Flag to indicate updated FDD state vars

_ac_state Is analyses in AC state

_c1 to _c30 Symbolic controlling current

_dc_state Is analyses in DC state

_freq1 to _freq12 Fundamental frequency

_harm Harmonic number index for sources and FDD

_hb_state Is analyses in harmonic balance state

_p2dInputPower Port input power for P2D simulation

_sigproc_state Is analyses in signal processing state

_sm_state Is analyses in sm state

_sp_state Is analyses in sparameter analysis state

_tr_state Is analyses in transient state

CostIndex Index for optimization cost plots

DF_Value Reference to corresponding value defined in
Data Flow controller

DefaultValue Signal processing default parameter value

DeviceIndex Device Index used for noise contribution or DC
OP output

dcSourceLevel used for DC source-level sweeping

doeindex Index for Design of Experiment sweeps

freq The frequency in Hertz of the present
simulation

 (1MHz)

logNodesetScale Used for DC nodeset simulation

logRshunt Used for DC Rshunt sweeping
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

The sourcelevel variable is used by the spectral analysis
when it needs to gradually increase source power from 0 to full
scale to obtain convergence. It can be used by the user to sweep
the level of ALL spectral source components, but is not
recommended. The _v and _i variables should only be used in
the context of the sdd device.

mcTrial Trial counter for Monte Carlo based simulations

noisefreq The spectral noise analysis frequency

Nsample Signal processing analysis sample number

optIter Optimization job iteration counter

temp The ambient temperature, in degrees Celsius. (25
degrees)

time The analysis time

timestep The analysis time step

tranorder The transient analysis integration order

ScheduleCycle Signal processing schedule cycle number

sourcelevel The relative attenuation of the spectral sources (1.0)

ssfreq The small-signal mixer analysis frequency

_v1 to _v19 State variable voltages used by the sdd device

_i1 to _i19 State variable currents used by the sdd device

mc_index Index variable used by Monte Carlo controller
Expressions
General Form:

expressionName = nonconstantExpression

Examples:
x1 = 4.3 + freq;
syc_a = cos(1.0+sin(pi*3 + 2.0*x1))
Zin = 7.8 ohm + j*freq * 1.9 ph
y = if (x equals 0) then 1.0e100 else 1/x endif

The main difference between expressions and variables is that a
variable can be directly swept and modified by an analysis but
an expression cannot. Note however, that any instance
373

374

7 ADS Simulator

parameter that depends on an expression is updated whenever
one of the variables that the expression depends upon is
changed (e.g., by a sweep).

Predefined Expressions

gaussian = _gaussian_tol(10.0) default gaussian distribution

nfmin = _nfmin() the minimum noise figure

omega = 2.0*pi*freq the analysis frequency

rn = _rn() the noise resistance

sopt = _sopt the optimum noise match

tempkelvin = temp + 273.15 the analysis temperature

uniform = _uniform_tol(10.0) default uniform distribution
Functions
General Form:

functionName([arg1, ..., argn]) = expression

Examples:
y_srl(freq, r, l) = 1.0/(r + j*freq*l)
expl(a,b) = exp(a)*step(b-a) + exp(b)*(a-b-1)*step(a-b)

In expression, the function’s arguments can be used, as can any
other VarEqn variables, expressions, or functions.

Predefined Functions

_discrete_density(...) user-defined discrete density function

_gaussian([mean, sigma,
lower_n_sigmas,
upper_n_sigmas,
lower_n_sigmas_del,
upper_n_sigmas_del])

gaussian density function
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

_gaussian_tol[percent_tol,
lower_n_sigmas,
upper_n_sigmas,
lower_percent_tol,
upper_percent_tol,
lower_n_sigmas_del,
upper_n_sigmas_del])

gaussian density function (tolerance version)

_get_fnom_freq(...) Get analysis frequency for FDD carrier frequency index
and harmonic

_lfsr(x, y, z) linear feedback shift register (trigger, seed, taps)

_mvgaussian(...) multivariate gaussian density function (correlation
version)

_mvgaussian_cov(...) multivariate gaussian density function (covariance
version)

_n_state(x, y) _n_state(arr, val) array index nearest value

_pwl_density(...) user-defined piecewise-linear density function

_pwl_distribution(...) user-defined piecewise-linear distribution function

_randvar(distribution,
mcindex, [nominal,
tol_percent, x_min,
x_max, lower_tol,
upper_tol, delta_tol,
tol_factor])

random variable function

_shift_reg(x, y, z, t) (trigger, mode(ParIn:MSB1st), length, input)

_uniform([lower_bound,
upper_bound])

uniform density function

_uniform_tol([percent_tol,
lower_tol, upper_tol])

uniform density function (tolerance version)

abs(x) absolute value function

access_all_data(...) datafile indep+dep lookup/interpolation function

access_data(...) datafile dependents’ lookup/interpolation function

arcsinh(x) arcsinh function

arctan(x) arctan function

atan2(y, x) arctangent function (2 real arguments)

awg_dia(x) wire gauge to diameter in meters

bin(x) function convert a binary to integer
375

376

7 ADS Simulator

bitseq(time, [clockfreq,
trise, tfall, vlow, vhigh,
bitseq])

bitsequence function

complex(x, y) real-to-complex conversion function

conj(x) complex-conjugate function

cos(x) cosine function

cos_pulse(time, [low,
high, delay, rise, fall,
width, period])

periodic cosine shaped pulse function

cosh(x) hyperbolic cosine function

cot(x) cotangent function

coth(x) hyperbolic cotangent function

ctof(x) convert Celsius to Fahrenheit

ctok(x) convert Celsius to Kelvin

cxform(x, y, z) transform complex data

damped_sin(time,
[offset, amplitude,
freq, delay, damping,
phase])

damped sin function

db(x) decibel function

dbm(x, y) convert voltage and impedance into dbm

dbmtoa(x, y) convert dbm and impedance into short circuit current

dbmtov(x, y) convert dbm and impedance into open circuit voltage

dbmtow(x) convert dBm to Watts

dbpolar(x, y) (dB,angle)-to-rectangular conversion function

dbwtow(x) convert dBW to Watts

deembed(x) deembedding function

deg(x) radian-to-degree conversion function

dep_data(x, y, [z]) dependent variable value

dphase(x, y) Continuous phase difference (radians) between x and
y

dsexpr(x, y) Evaluate a dataset expression to an hpvar

dstoarray(x, [y]) Convert an hpvar to an array

echo(x) echo-arguments function
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

erf_pulse(time, [low,
high, delay, rise, fall,
width, period])

periodic error function shaped pulse function

eval_poly(x, y, z) polynomial evaluation function

exp(x) exponential function

exp_pulse(time, [low,
high, delay1, tau1,
delay2, tau2])

exponential pulse function

fread(x) raw-file reading function

ftoc(x) convert Fahrenheit to Celsius

ftok(x) convert Fahrenheit to Kelvin

get_array_size(x) Get the size of the array

get_attribute(...) value of attribute of a set of data

get_block(x, y) HPvar tree from block name function

get_fund_freq(x) Get the frequency associated with a specified
fundamental index

get_max_points(x, y) maximum points of independent variable

imag(x) imaginary-part function

index(x, y, [z, t]) get index of name in array

innerprod(...) inner-product function

int(x) convert-to-integer function

itob(x, [y]) convert integer to binary

jn(x, y) bessel function

ktoc(x) convert Kelvin to Celsius

ktof(x) convert Kelvin to Fahrenheit

length(x) returns number of elements in array

limit_warn([x, y, z, t, u]) limit, default and warn function

list(...)

ln(x) natural log function

log(x) log base 10 function

mag(x) magnitude function

makearray(...) (1:real-2:complex-3:string, y, z..) or (array, startIndex,
stopIndex)

max(x, y) maximum function
377

378

7 ADS Simulator

min(x, y) minimum function

multi_freq(time,
amplitude, freq1,
freq2, n, [seed])

multifrequency function

names(x, y) array of names of indepVars and/or depVars in
dataset

norm(x) norm function

phase(x) phase (in degrees) function

phase_noise_pwl(...) piecewise-linear function for computing phase noise

phasedeg(x) phase (in degrees) function

phaserad(x) phase (in radians) function

polar(x, y) polar-to-rectangular conversion function

polarcpx(...) polar to rectangular conversion function

pulse(time, [low,
high, delay, rise, fall,
width, period])

periodic pulse function

pwl(...) piecewise-linear function

pwlr(...) piecewise-linear-repeated function

rad(x) degree-to-radian conversion function

ramp(x) ramp function

read_data(...) read_data("file-dataset", "locName", "fileType")

read_lib(...) read_lib("libName", "item", "fileType")

real(x) real-part function

rect(x, y, z) rectangular pulse function

rem(...) remainder function

ripple(x, y, z, v) ripple(amplitude, intercept, period, variable) sinusoidal
ripple function

rms(...) root-mean-square function

rpsmooth(x) rectangular-to-polar smoothing function

scalearray(x, y) scalar times a vector (array) function

setDT(x) Turns on discrete time transient mode (returns
argument)
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference
sffm(time, [offset,
amplitude, carrier_freq,
mod_index,
signal_freq])

signal frequency FM

sgn(x) signum function

sin(x) sine function

sinc(x) sin(x)/x function

sinh(x) hyperbolic sine function

sprintf(x, y) formatted print utility

sqrt(x) square root function

step(x) step function

tan(x) tangent function

tanh(x) hyperbolic tangent function

vswrpolar(x, y) (VSWR,angle)-to-rectangular conversion function

NOTE The VarEqn trigonometric functions always expect the argument to be
specified in radians. If the user wants to specify the angle in degrees then
the VarEqn function deg() can be used to convert radians to degrees or the
VarEqn function rad() can be used to convert degrees to radians.
Detailed Descriptions of the Predefined Functions

_discrete_density (x1, p1, x2, p2, …) allows the user to
define a discrete density distribution: returns x1 with
probability p1, x2 with probability p2, etc. The xn, pn pairs
needn’t be sorted. The pns will be normalized automatically.

_gaussian([mean, sigma, lower_n_sigmas,
upper_n_sigmas, lower_n_sigmas_del, upper_n_sigmas_del])
returns a value randomly distributed according to the standard
bell-shaped curve. mean defaults to 0. sigma defaults to 1.
lower_n_sigmas, upper_n_sigmas define truncation limits
(default to 3). lower_n_sigmas_del and upper_n_sigmas_del
define a range in which the probability is zero (a bimodal
distribution). _gaussian_tol([percent_tol,
lower_n_sigmas, upper_n_sigmas, lower_percent_tol,
upper_percent_tol, lower_n_sigmas_del, upper_n_sigmas_del]
379

380

7 ADS Simulator

) is similar, but percent_tol defines the percentage tolerance
about the nominal value (which comes from the RANDVAR
expression).

_get_fnom_freq(x) returns the actual analysis frequency
associated with the carrier frequency specified in the
surrounding FDD context. If x is negative, it is the carrier
frequency index. If x is positive, it is the harmonic index.

_mvgaussian(N, mean1, … meanN, sigma1, … sigmaN,
correlation1,2, …, correlation1,N, …, correlationN-1,N)
multivariate gaussian density function (correlation version).
Returns an N dimensional vector. The correlation coefficient
matrix must be positive definite. _mvgaussian_cov(N, mean1, …
meanN, sigma1, … sigmaN, covariance1,2, ..., covariance1,N, ...,
covarianceN-1,N) is similar, but defined in terms of covariance.
The covariance matrix must be positive definite.

_pwl_density(x1, p1, x2, p2, …) returns a value randomly
distributed according to the piecewise-linear density function
with values pn at xn, i.e. it will return xn with probability pn and
return

The xn, pn pairs needn’t be sorted. The pns will be normalized
automatically. _pwl_distribution(x1, p1, x2, p2, …) is similar, but
is defined in terms of the distribution values. It will return a
value less than or equal to xn with probability pn. The xn, pn
pairs will be sorted in increasing xn order. After sorting, the pns
should never decrease. The pns will be normalized so that pN=1.

_randvar(distribution, mcindex, [nominal, tol_percent,
x_min, x_max, lower_tol, upper_tol, delta_tol, tol_factor])
returns a value randomly distributed according to the
distribution. The value will be the same for a given value of
mcindex. The other parameters are interpreted according to
the distribution.

xn ε with probability pn ε
pn 1+ pn–

xn 1+ xn–
---------------------------++
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

_shift_reg(x, y, z, t) implements a z-bit shift register. x
specifies the trigger. y = 0 means LSB First, Serial To Parallel, 1
means MSB First, Serial To Parallel, 2 means LSB First, Parallel
to Serial, 3 means MSB First, Parallel to Serial. t is the input
(output) value.

_uniform([lower_bound, upper_bound]) returns a value
between lower_bound and upper_bound. All such values are
equally probable. _uniform_tol([percent_tol, lower_tol,
upper_tol]) is similar, but tolerance version.

access_all_data(InterpMode, source, indep1, dep1 …)
datafile independent and dependent lookup/interpolation
function.

access_data(InterpMode, nData, source, dep1 …) datafile
dependents’ lookup/interpolation function.

bin(String) calculates the integer value of a sequence of 1’s and
0’s. For example bin(’11001100’) = 204. The argument of the bin
function must be a string denoted by single quotes. The main
use of the bin function is with the System Model Library to
define an integer which corresponds to a digital word.

cxform(x, OutFormat, InFormat) transform complex data x
from format InFormat to format OutFormat. The values for
OutFormat and InFormat are 0: real and imaginary, 1:
magnitude (linear) and phase (degrees), 2: magnitude (linear)
and phase (radians), 3: magnitude (dB) and phase (degrees), 4:
magnitude (dB) and phase (radians), 5: magnitude (SWR) and
phase (degrees), 6: magnitude (SWR) and phase (radians). For
example, to convert linear magnitude and phase in degrees to
real and imaginary parts:
result = cxform(invar, 0, 1)

damped_sin(time, [offset, amplitude, freq, delay, damping,
phase]). See “Transient Source Functions” on page 386.

The function db(x) is a shorthand form for the expression:
20log(mag(x)).

The deembed(x) function takes an array, x, of 4 complex
numbers (the 2-port S-parameter array returned from the
VarEqn interp() function) and returns an array of equivalent
381

382

7 ADS Simulator
de-embedding S-parameters for that network. The array must be
of length 4 (2 x 2--two-port data only), or an error message will
result. The transformation used is:

where det is the determinant of the 2 x 2 array.

S11
1– S11

det
---------=

S21
1– S21

det
---------=

S12
1– S12

det
---------=

S22
1– S22

det
---------=

CAUTION This transformation assumes that the S-parameters are derived from
equal port termination impedances. This transformation does not work
when the port impedances are unequal.
The function deg(x) converts from radians to degrees.

dphase(x, y) Calculates phase difference phase(x)-phase(y) (in
radians).

dsexpr(x, y) Evaluate x, a DDS expression, to an hpvar. y is the
default location data directory.

echo(x) prints argument on terminal and returns it as a value.

erf_pulse(time, [low, high, delay, rise, fall, width, period])
periodic pulse function, edges are error function (integral of
Gaussian) shaped.
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

eval_poly(x, y, z) y is a real number. z is an integer that
describes what to evaluate: -1 means the integral of the
polynomial, 0 means the polynomial itself, +1 means the
derivative of the polynomial. x is a VarEqn array that contains
real numbers. The polynomial is

exp_pulse(time, [low, high, delay1, tau1, delay2, tau2]) See
“Transient Source Functions” on page 386.

get_fund_freq(fund) returns the value of frequency (in
Hertz) of a given fundamental defined by fund.

index(nameArray, "varName", [caseSense, length]) returns
position of "varName" in nameArray, -1 if not found. caseSense
sets case-sensitivity, defaults to yes. length sets how many
characters to check, defaults to 0 (all).

innerprod(x, y) forms the inner product of the vectors x and
y:

j and k are optional integers which specify a range of harmonics
to include in the calculation:

j defaults to 0 and k defaults to infinity.

int(x) Truncates the fractional part of x.

itob(x, [bits]) convert integer x to bits-bit binary string.

The function jn(n, x) is the n-th order bessel function evaluated
at x.

limit_warn([Value, Min, Max, default, Name]) sets Value to
default, if not set. Limits it to Min and Max and generates a
warning if the value is limited.

x0 x1y x2y2 x3y3…+ + +

innerprod x y,() xi
∗ yi

i 0=

n

∑=

innerprod x y j k, , ,() xi
∗ yi

i j=

k

∑=
383

384

7 ADS Simulator

makearray(arg1[,arg2,..] creates an array with elements
defined by arg1 to argN where N can be any number of
arguments. The data type of args must be Integer, Real, or
Complex and the same for all args.
word = bin(’1101’)
fibo = makearray(0,1,1,2,3,5,8,word)
foo = fibo[0]

multi_freq(time, amplitude, freq1, freq2, n, [seed]) seed
defaults to 1. If it is 0, phase is set to 0, otherwise it is used as a
seed for a randomly-generated phase.

norm(x) returns the L-2 norm of the spectrum x:

j and k are optional integers which specify a range of harmonics
to include in the calculation:

j defaults to 0 and k defaults to infinity.

phase(x) is the same as phasedeg(x).

The function phasedeg(x) returns phase in degrees.

The function phaserad(x) returns phase in radians.

The function polarcpx(x[,leave_as_real]) takes a complex
argument, assumes that the real and complex part of the
argument represents mag and phase (in radians) information,
and converts it to real/imaginary. If the argument is real or
integer instead of complex, the imaginary part is assumed to be
zero. However, if the optional leave_as_real variable is
specified, and is the value ‘‘1’’ (note that the legal values are ‘‘0’’
and ‘‘1’’ only), a real argument will be not be converted to a
complex one.

pulse(time, [low, high, delay, rise, fall, width, period]) See
“Transient Source Functions” on page 386.

pwl(...) piecewise-linear function. See “Transient Source
Functions” on page 386.

pwlr(...) piecewise-linear-repeated function.

norm x() innerprod x x,()=

norm x j k, ,() innerprod x x j k, , ,()=
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

The function rect(t, tc, tp) is pulse function of variable t
centered at time tc with duration tp.

The function rad(x) converts from degrees to radians.

ramp(x) 0 for , x for

read_data(source, locName, [fileType]) returns data from a
file or dataset. source = “file” --- “dataset”. locName is the name
of the source. fileType specifies the file type.

read_lib(libName, locName, [fileType]) returns data from a
library. libName is the name of the library. locName is the name
of the source. fileType specifies the file type.
read_lib("libName", "item", "fileType")

rect(x, y, z) Returns:

rem(x, [y]) Returns remainder of dividing x/y. y defaults to 0
(which returns x).

rms(x) returns the RMS value (including DC) of the spectrum x:

j and k are optional integers which specify a range of harmonics
to include in the calculation:

j defaults to 0 and k defaults to infinity.

The function rpsmooth(x) takes a VarEqn pointer (one
returned by readraw()), converts to polar format the
rectangular data given by the VarEqn pointer, and smooths out
‘phase discontinuities’.

z |x - y| < |z| |x - y| > |z|

> 0 1 0

< 0 0 1

x 0< x 0≥

rms x() norm x()
2.0

---------------------=

rms x j k, ,() norm x j k, ,()
2.0

-------------------------------=
385

7 ADS Simulator
CAUTION This function uses an algorithm that assumes that the first point is
correct (i.e., not off by some multiple of) and that the change in
phase between any 2 adjacent points is less than . This interpolation
will not work well with noisy data or with data within roundoff error of
zero. It should be used only with S-parameters in preparation for
interpolation or extrapolation by one of the interpolation functions like
interp1(). Also note that the result is left in a polar ‘mag/phase’ format
stored in a complex number; the real part is magnitude, and the
imaginary part is phase. The polarcpx() function must be used to
convert the result of the rpsmooth() function back into a
real/imaginary format.

2π
π

386

sffm(time, [offset, amplitude, carrier_freq, mod_index,
signal_freq]) See “Transient Source Functions” on page 386.

The sprintf() function is similar to the C function which
takes a format string for argument s and a print argument x (x
must be a string, an integer, or a real number) and returns a
formatted string. This string then may be written to the console
using the system function with an echo command.

Transient Source Functions

There are several built-in functions that mimic Spice transient
sources. They are:

There functions are typically used with the vt parameter of the
voltage source and the it parameter of the current source.

SPICE source ADS Simulator function

exponential exp_pulse(time, low, high, tdelay1, tau1, tdelay2, tau2)

single-frequency FM sffm(time, offset, amplitude, carrier_freq, mod_index,
signal_freq)

damped sine damped_sin(time, offset, amplitude, freq, delay, damping)

pulse pulse(time, low, high, delay, rise, fall, width, period)

piecewise linear pwl(time, t1, x1, ..., tn, xn)
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

exp_pulse

Examples:
ivs:vin n1 0 vt=exp_pulse(time)
ics:iin n1 0 it=exp_pulse(time, -0.5mA, 0.5mA, 10ns, 5ns,
20ns, 8ns)

TSTEP is the output step-time time specified on the TRAN
analysis.

sffm

Examples:
ivs:vin n1 0 vt=sffm(time, , , , 0.5)
ics:iin n1 0 it=sffm(time, 0, 2, 1GHz, 1.2, 99MHz)

TSTOP is the stop time specified on the TRAN analysis.

Arguments for exp_pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

TDELAY1 YES 0

TAU1 YES TSTEP

TDELAY2 YES TDELAY1 + TSTEP

TAU2 YES TSTEP

Arguments for sffm

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

CARRIER_FREQ YES 1/TSTOP

MOD_INDEX YES 0

SIGNAL_FREQ YES 1/TSTOP
387

388

7 ADS Simulator

damped_sin

Examples:
ivs:vin n1 0 vt=damped_sin(time)
ics:iin n1 0 it=damped_sin(time, 0, 5V, 500MHz, 50ns, 200ns)

TSTOP is the stop time specified on the TRAN analysis.

pulse

Examples:
ivs:vin n1 0 vt=pulse(time)
ics:iin n1 0 it=pulse(time, -5V, 5V, 500MHz, 50ns, 200ns)

TSTEP is the output step-time time specified on the TRAN
analysis. TSTOP is the stop time specified on the TRAN
analysis.

Arguments for damped_sin

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

FREQ YES 1/TSTOP

DELAY YES 0

DAMPING YES 1/TSTOP

Arguments for pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

DELAY YES 0

RISE YES TSTEP

FALL YES TSTEP

WIDTH YES TSTOP

PERIOD YES TSTOP
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

pwl

Examples:
ivs:vin n1 0 vt=pulse(time, 0, 0, 1ns, 1, 10ns, 1, 15ns, 0)
ics:iin n1 0 it=pwl(time, 0, 0, 1ns, 1, 5ns, 1, 5ns, 0.5,
10ns,0.5, 15ns, 0)

Arguments for pwl

Name Optional Default

TIME NO

T1 NO

X1 NO

T2 YES NONE

X2 YES NONE

.

.

.

.

.

.

.

.

.

TN YES NONE

XN YES NONE
Conditional Expressions
The ADS Simulator supports simple in-line conditional
expressions:
if boolExpr then expr else expr endif
if boolExpr then expr elseif boolExpr then expr else expr
endif

boolExpr is a boolean expression, that is, an expression that
evaluates to TRUE or FALSE.

expr is any non-boolean expression.

The else is required (because the conditional expression must
always evaluate to some value).

There can be any number of occurrences of elseif expr then
expr.

A conditional expression can legally occur as the right-hand
side of an expression or function definition or, if parenthesized,
anywhere in an expression that a variable can occur.
389

390

7 ADS Simulator

Boolean operators

Boolean expressions

A boolean expression must evaluate to TRUE or FALSE and,
therefore, must contain a relational operator (equals, =,
==, notequals, !=, <, >, <=, or >=).

The only legal place for a boolean expression is directly after an
if or an elseif.

A boolean expression cannot stand alone, that is,
x = a > b

is illegal.

Precedence

Tightest binding: equals, =, ==, notequals, !=, >, <,
>=, <=

 NOT, !

equals logical equals

= logical equals

== logical equals

notequals logical not equals

!= logical not equals

not logical negative

! logical negative

and logical and

&& logical and

or logical or

|| logical or

< less than

> greater than

<= less than or equals

>= greater than or equals
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

 AND,

Loosest binding: OR, ||

All arithmetic operators have tighter binding than the boolean
operators.

Evaluation

Boolean expressions are short-circuit evaluated. For example, if
when evaluating a and b, expression a evaluates to FALSE,
expression b will not be evaluated.

During evaluation of boolean expressions with arithmetic
operands, the operand with the lower type is promoted to the
type of the other operand. For example, in 3 equals x +j*b,
3 is promoted to complex.

A complex number cannot be used with <, >, <=, or >=. Nor can
an array (and remember that strings are arrays). This will cause
an evaluation-time error.

Pointers can be compared only with pointers.

Examples:

Protect against divide by zero:
f(a) = if a equals 0 then 1.0e100 else 1.0/a endif

Nested if’s #1:
f(mode) = if mode equals 0 then 1-a else f2(mode) endif
f2(mode) = if mode equals 1 then log(1-a) else f3(mode) endif
f3(mode) = if mode equals 2 then exp(1-a) else 0.0 endif

Nested if’s #2:
f(mode) = if mode equals 0 then 1-a elseif mode equals 1 then \
log(1-a) elseif mode equals 2 then exp(1-a) else 0.0 endif

Soft exponential:
exp_max = 1.0e16
x_max = ln(exp_max)
exp_soft(x) = if x<x_max then exp(x) else

(x+1-x_max)*exp_max endif
391

7 ADS Simulator
VarEqn Data Types
392

The 4 basic data types that VarEqn supports are integer, real,
complex, and string. There is a fifth data type, pointer, that is
also supported. Pointers are not allowed in an algebraic
expression, except as an argument to a function that is
expecting a pointer. Strings are not allowed in algebraic
expressions either except that addition of strings is equivalent
to catenation of the strings. String catenation is not
commutative, and since VarEqn’s simplification routines can
internally change the order of operands of commutative
operators, this feature should be used cautiously. It will most
likely be replaced by an explicit catenation function.
Type conversion
The data type of a VarEqn expression is determined at the time
the expression is evaluated and depends on the data types of
the terms in the expression. For example, let y=3*x^2. If x is an
integer, then y is integer-valued. If x is real, then y is
real-valued. If x is complex, then y is complex-valued.

As another example, let y=sqrt(2.5*x). If x is a positive
integer, then y evaluates to a real number. If, however, x is a
negative integer, then y evaluates to a complex number.

There are some special cases of type conversion:

• If either operand of a division is integer-valued, it is
promoted to a real before the division occurs. Thus, 2/3
evaluates to 0.6666....

• The built-in trigonometric, hyperbolic, and logarithmic
functions never return an integer, only a real or complex
number.
IC-CAP Reference

ADS Simulator 7
“C-Preprocessor”
IC-CAP Reference
Before being interpreted by the ADS Simulator, all input files
are run through a built-in preprocessor based upon a C
preprocessor. This brings several useful features to the ADS
Simulator, such as the ability to define macro constants and
functions, to include the contents of another file, and to
conditionally remove statements from the input. All C
preprocessor statements begin with # as the first character.

Unfortunately, for reasons of backward compatibility, there is
no way to specify include directories. The standard C
preprocessor “-I” option is not supported; instead, “-I” is used
to specify a file for inclusion into the netlist.
File Inclusion

Any source line of the form
#include "filename"

is replaced by the contents of the file filename. The file must be
specified with an absolute path or must reside in either the
current working directory or in
/$HPEESOF_DIR/circuit/components/.
Library Inclusion
The C preprocessor automatically includes a library file if the
-N command line option is not specified and if such a file exists.
The first file found in the following list is included as the
library:
$HPEESOF_DIR/circuit/components/gemlib
$EESOF_DIR/circuit/components/gemlib
$GEMLIB
.gemlib
~/.gemlib
~/gemini/gemlib

A library file is specified by the user using the -Ifilename
command line option. More than 1 library may be specified.
Specifying a library file prevents the ADS Simulator from
including any of the above library files.
393

7 ADS Simulator
Macro Definitions
394

A macro definition has the form;
#define name replacement-text

It defines a macro substitution of the simplest kind--subsequent
occurrences of the token name are replaced by
replacement-text. The name consists of alphanumeric
characters and underscores, but must not begin with a numeric
character; the replacement text is arbitrary. Normally the
replacement text is the rest of the line, but a long definition may
be continued by placing a “\” at the end of each line to be
continued. Substitutions do not occur within quoted strings.
Names may be undefined with
#undef name

It is also possible to define macros with parameters. For
example,
#define to_celcius(t) (((t)-32)/1.8)

is a macro with the formal parameter t that is replaced with the
corresponding actual parameters when invoked. Thus the line
options temp=to_celcius(77)

is replaced by the line
options temp=(((77)-32)/1.8)

Macro functions may have more than 1 parameter, but the
number of formal and actual parameters must match.

Macros may also be defined using the -D command line option.
Conditional Inclusion
It is possible to conditionally discard portions of the source file.
The #if line evaluates a constant integer expression, and if the
expression is non-zero, subsequent lines are retained until an
#else or #endif line is found. If an #else line is found, any
lines between it and the corresponding #endif are discarded.
If the expression evaluates to zero, lines between the #if and
#else are discarded, while those between the #else and
#endif are retained. The conditional inclusion statements nest
to an arbitrary level of hierarchy. The following operators and
functions can be used in the constant expression;
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference
The #ifdef and #ifndef lines are specialized forms of #if
that test whether a name is defined.

 ! Logical negation.

|| Logical or.

&& Logical and.

 == Equal to.

!= Not equal to.

> Greater than.

< Less than.

 >= Greater than or equal to.

 <= Less than or equal to.

+ Addition.

defined(x) 1 if x defined, 0 otherwise.

CAUTION Execution of preprocessor instructions depend on the order in which
they appear on the netlist. When using preprocessor statements make
sure that they are in the proper order. For example, if an #ifdef
statement is used to conditionally include part of a netlist, the
corresponding #define statement is contained in a separate file and
#include is used to include the content of the file into the netlist, the
#include statement will have to appear before the #ifdef statement for
the expression to evaluate correctly.
395

7 ADS Simulator
Data Access Component
396

The Data Access Component provides a clean, unified way to
access tabular data from within a simulation. The data may
reside in either a text file of a supported, documented format
(e.g. discrete MDIF, model MDIF, Touchstone, CITIfile), or a
dataset. It provides a variety of access methods, including
lookup by index/value, as well as linear, cubic spline and cubic
interpolation modes, with support for derivatives.

The Data Access Component provides a "handle" with which one
may access data from either a text file or dataset for use in a
simulation. The DAC is implemented as a cktlib subcircuit
fragment with internally known expressions names (e.g. _DAC,
_TREE) that are assigned via VarEqn calls such as
read_data() and access_all_data(). The accessed data
can be used by other components (including models, devices,
variables, subcircuit calls and other DAC instances) in the
netlist, either by the specific file syntax or via the VarEqn
function dep_data().

The DAC can also be used to supply parameters to device and
model components from text files and datasets. In this case, the
AllParams device/model parameter is used to refer to a DAC
component. The component’s parameters will then be accessed
from the DAC and supplied to the instance. Care is taken to
ensure that only matching (between parameter names in the
component definition and DAC dependent column names) data
is used. Also, parameter data can be assigned "inline" - as is
usually done - in which case the inline data takes precedence
over the DAC data.

As the DAC component is composed of just a parameterized
subcircuit, it allows alterations (sweep, tune, optimize, yield) of
its parameters. Consequently any component that uses DAC
data via file, dep_data() or AllParams will automatically be
updated when a DAC parameter is altered. A caveat with
sweeping over files using AllParams is that all the files must
contain the same number of dependent columns of data.

Below is an example definition of a simple DAC component that
accesses discrete values from a text file:
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

#uselib "ckt" , "DAC"
DAC:DAC1 File="C:\jeffm\ADS_testing\ADS13_test_prj/
.\data\SweptData.ds"
Type="dataset" Block="S" InterpMode="linear" InterpDom="ri"
iVar1="X" iVal1=X iVar2="freq" iVal2=freq
S_Port:S2P1 _net1 0 _net6 0 S[1,1]=file{DAC1, "S[1,1]"}
S[1,2]=file{DAC1,"S[1,2]"} S[2,1]=1 S[2,2]=0 Recip=no

dindex = 1
DAC:atc1 File="vdcr.mdf" Type="dscr" \
 InterpMode="index_lookup" iVar1=1 iVal1=dindex

And its use to provide the resistance value to a pair of circuit
components:
R:R1 n1 0 R=file{atc1, "R"} kOhm
R:R2 n1 0 R=dep_data(atc1, "R") kOhm
Here, it provides the value to a variable:
V1 = file{atc1, "Vdc"}

V1 could be used elsewhere in the circuit, as expected.

In this example, a scaling factor applied to the result of a DAC
access is shown:
File = "atc.mdf"
Type = "dscr"
Mode="index_lookup"
Cnom = "Cnom"
DAC:atc_s File=File Type=Type InterpMode=Mode iVar1=1
iVal1 = Cs_row
C:Cs n1 n2 C=file{atc_s, Cnom} Pf

In this example, a use of AllParams is shown to enter model
parameters from a text file:
File = "c:\gemini\vdcr.mdf"
Type = "dscr"
Mode="index_lookup"
DAC:dac1 File=File Type=Type InterpMode=Mode iVar1=1
iVal1 = ix
model rm1 R_Model R=0 AllParams = dac1._DAC
rm1:rm1i1 n3 0
397

7 ADS Simulator
Reserved Words
398

The words on the following pages have built-in meaning and
should not be defined or used in a way not consistent with their
pre-defined meaning:

AC CPWCPL4

ACPWDS CPWCTL

ACPWDTL CPWDS

AIRIND1 CPWEF

Alter CPWEGAP

Amplifier CPWG

AmplifierP2D CPWOC

AntLoad CPWSC

BFINL CPWSUB

BFINLT CPWTL

BJT CPWTLFG

BR3CTL CTL

BR4CTL C_Model

BRCTL Chain

BROCTL Chebyshev

Bessel Connector

BudLinearization CostIndex

Butterworth Crossover

C DC

CAPP2 DF

CAPQ DFDevice1

CIND2 DFDevice2

CLIN DF_DefaultInt

CLINP DF_Value

COAX DF_ZERO_OHMS

COAXTL DICAP

CPW DILABMLC
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

CPWCGAP DOE

CPWCPL2 DRC

DefaultValue JFET

DeviceIndex L

Diode LineCalcTest

EE_BJT2 MACLIN

EE_FET3 MACLIN3

EE_HEMT1 MBEND

EE_MOS1 MBEND2

ETAPER MBEND3

Elliptic MBSTUB

FDD MCFIL

FINLINE MCLIN

FSUB MCORN

GCPWTL MCROS

GMSK_Lowpass MCROSO

GaAs MCURVE

Gaussian MCUREVE2

Goal MGAP

HB MICAP1

HP_Diode MICAP2

HP_FET MICAP3

HP_FET2 MICAP4

HP_MOSFET MLANG

Hybrid MLANG6

IFINL MLANG8

IFINLT MLEF

INDQ MLIN

I_Source MLOC

InitCond MLSC

InoiseBD MLYRSUB

MOS9 MSRTL

MOSFET MSSLIT
399

400

7 ADS Simulator

MRIND MSSPLC

MRINDELA MSSPLR

MRINDELM MSSPLS

MRINDNBR MSSTEP

MRINDSBR MSSVIA

MRINDWNR MSTAPER

MRSTUB MSTEE

MS2CTL MSTEP

MS3CTL MSTL

MS4CTL MSUB

MS5CTL MSVIA

MSABND MSWRAP

MSACTL MTAPER

MSAGAP MTEE

MSBEND MTEEO

MSCRNR MTFC

MSCROSS MextramBJT

MSCTL Mixer

MSGAP MixerIMT

MSIDC Multipath

MSIDCF Mutual

MSLANGE NodeSet

MSLIT NoiseCorr2Port

MSOBND Noisey2Port

MSOC Nsample

MSOP OldMonteCarlo

MSRBND OldOpt

OldOptim PC_Corner

OldYield PC_CrossJunction

Optim PC_Crossover

OptimGoal PC_Gap

Options PC_Line

OscPort PC_OpenStub
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

OutSelector PC_Pad

PCBEND PC_Slanted

PCCORN PC_Taper

PCCROS PC_Tee

PCCURVE PC_Via

PCILC PIN

PCLIN1 PIN2

PCLIN10 PLCQ

PCLIN2 ParamSweep

PCLIN3 PinDiode

PCLIN4 PoleZero

PCLIN5 Polynomial

PCLIN6 Port

PCLIN7 PowerBounce

PCLIN8 PowerGroundPlane

PCLIN9 R

PCSTEP RCLIN

PCSUB RIBBON

PCTAPER RIBBON_MDS

PCTEE RIND

PCTRACE RWG

PC_Bend RWGINDF

PC_Clear RWGT

RWGTL SLSTEP

R_Model SLTEE

RaisedCos SLTL

SAGELIN SLUCTL

SAGEPAC SLUTL

SBCLIN SMITER

SBEND SOCLIN

SBEND2 SPIND

SCLIN SS3CTL

SCROS SS4CTL
401

402

7 ADS Simulator

SCURVE SS5CTL

SDD SSACTL

SL3CTL SSCLIN

SL4CTL SSCTL

SL5CTL SSLANGE

SLABND SSLIN

SLCQ SSSPLC

SLCRNR SSSPLR

SLCTL SSSPLS

SLEF SSSUB

SLGAP SSTEP

SLIN SSTFR

SLINO SSTL

SLOBND SSUB

SLOC SSUBO

SLOC_MDS STEE

SLOTTL S_Param

SLRBND S_Port

SLSC ScheduleCycle

Short VBIC

Substrate VIA

SweepPlan VIA2

SwitchV V_Source

SwitchV_Model VnoiseBD

TAPIND1 WIRE

TFC WIRE_MDS

TFC_MDS Y_Port

TFR Yield

TFR_MDS YieldOptim

TL YieldSpec

TLIN YieldSpecOld

TLIN4 Z_Port

TLINP __fdd
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

TLINP4 __fdd_v

TL_New _ac_state

TQAVIA _c1

TQCAP _c10

TQFET _c11

TQFET2 _c12

TQIND _c13

TQRES _c14

TQSVIA _c15

TQSWH _c16

TQTL _c17

Tran _c18

UFINL _c19

UFINLT _c2

Unalter _c20

_c21 _freq6

_c22 _freq7

_c23 _freq8

_c24 _freq9

_c25 _gaussian

_c26 _gaussian_tol

_c27 _get_fnom_freq

_c28 _get_fund_freq_for_fdd

_c29 _harm

_c3 _hb_state

_c30 _i1

_c4 _i10

_c5 _i11

_c6 _i12

_c7 _i13

_c8 _i14

_c9 _i15

_dc_state _i16
403

404

7 ADS Simulator

_default _i17

_discrete_density _i18

_divn _i19

_freq1 _i2

_freq10 _i20

_freq11 _i21

_freq12 _i22

_freq2 _i23

_freq3 _i24

_freq4 _i25

_freq5 _i26

_i27 _sopt

_i28 _sp_state

_i29 _sv

_i3 _sv_bb

_i30 _sv_d

_i4 _sv_e

_i5 _tn

_i6 _to

_i7 _tr_state

_i8 _tt

_i9 _uniform

_lfsr _uniform_tol

_mvgaussian _v1

_mvgaussian_cov _v10

_n_state _v11

_nfmin _v12

_p2dInputPower _v13

_phase_freq _v14

_pwl_density _v15

_pwl_distribution _v16

_randvar _v17

_rn _v18
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

_shift_reg _v19

_si _v2

_si_bb _v20

_si_d _v21

_si_e _v22

_sigproc_state _v23

_sm_state _v24

_v25 conj

_v26 cos

_v27 cos_pulse

_v28 cosh

_v29 cot

_v3 coth

_v30 coupling

_v4 ctof

_v5 ctok

_v6 cxform

_v7 d_atan2

_v8 damped_sin

_v9 db

_xcross dbm

abs dbmtoa

access_all_data dbmtov

access_data dbmtow

aele dbpolar

and dbwtow

arcsinh dcSourceLevel

arctan deembed

atan2 define

awg_dia deg

bin delay

bitseq dep_data

boltzmann deriv
405

406

7 ADS Simulator

by discrete

c0 distcompname

complex doe

doeindex generate_qam16_spectra

dphase generate_qpsk_pulse_spectra

dsexpr get_array_size

dstoarray get_attribute

e get_block

e0 get_fund_freq

echo get_max_points

else global

elseif globalnode

end ground

endif hugereal

equals i

erf_pulse if

eval_poly ilsb

exp imag

exp_pulse index

file innerprod

fread inoise

freq int

freq_mult_coef internal_generate_gmsk_iq_spectra

freq_mult_poly internal_generate_gmsk_pulse_spectra

ftoc internal_generate_piqpsk_spectra

ftok internal_generate_pulse_train_spectra

gauss internal_generate_qam16_spectra

gaussian internal_generate_qpsk_pulse_spectra

generate_gmsk_iq_spectra internal_get_fund_freq

generate_gmsk_pulse_spectra internal_window

generate_piqpsk_spectra interp

generate_pulse_train_spectra interp1

interp2 names
IC-CAP Reference

ADS Simulator 7

IC-CAP Reference

interp3 nested

interp4 nf

iss nfmin

itob no

iusb nodoe

jn noisefreq

ktoc noopt

ktof norm

lbtran nostat

length not

limit_warn notequals

list omega

ln opt

ln10 optIter

local or

log parameters

logNodesetScale phase

logRshunt phase_noise_pwl

log_amp phasedeg

log_amp_cas phaserad

mag planck

makearray polar

max polarcpx

mcTrial ppt

mcindex pulse

min pwl

model pwlr

multi_freq qelectron

qinterp sprintf

rad sqrt

ramp ssfreq

randtime stat

rawtoarray step
407

408

7 ADS Simulator

read_data strcat

read_lib stypexform

readdata sym_set

readlib system

readraw tan

real tanh

rect temp

rem tempkelvin

ripple thd

rms then

rn time

rpsmooth timestep

scalearray tinyreal

sens to

setDT toi

sffm tranorder

sgn transform

sin u0

sinc unconst

sine unicap

sinh uniform

sink v

sopt value

sourceLevel vlsb

vnoise

vss

vswrpolar

vusb

window

yes
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

8
IC-CAP Functions

This chapter describes the IC-CAP functions. They appear in
alphabetical order.

When reviewing the functions, keep in mind the following
points:

• Many functions can be called from within a Program or
Macro. Several examples are provided here; additional
examples can be found in “Calls to the Function Library” on
page 752.

• The list does not represent all the functions available in a
Program or Macro. Additional built-in functions are available
in the Parameter Extraction Language. Refer to “Built-in
Functions” on page 714.

• For consistency, the argument names listed for each
function reflect the descriptive labels these arguments
would get in a standalone Transform editor.

• The Input Arguments referred to as Strings/Pars/Vars can
be any of the following alternatives: string expressions,
Model parameter names, DUT parameter names, or
IC-CAP system variable names.

The tables that follow list the available functions by category,
as they appear in the program.
409Agilent Technologies

410

8 IC-CAP Functions

Table 72 IC-CAP Functions
AHBT

AgilentHBT_ABCX_extract AgilentHBT_calculate_ccb AgilentHBT_calculate_rbb

AgilentHBT_CCMAX_extract AgilentHBT_CEMAX_extract AgilentHBT_CJC_extract

AgilentHBT_CJE_extract AgilentHBT_IS_NF_extract AgilentHBT_ISC_NC_extract

AgilentHBT_ISE_NE_extract AgilentHBT_ISH_NH_extract AgilentHBT_ISR_NR_extract

AgilentHBT_ISRH_NRH_extract AgilentHBT_ITC_ITC2_extract AgilentHBT_Param_Init

AgilentHBT_TFC0_extract AgilentHBT_VJC_extract AgilentHBT_VJE_extract

ATFT (obsolete)

HPTFTCV_model_cgd HPTFTDC_lin HPTFTDC_sat

HPTFTCV_model_cgs HPTFTDC_model_id HPTFT_param

B2200

B2200_bias_card_enable B2200_bias_ch_enable B2200_bias_enable

B2200_bias_init B2200_close_interface B2200_connect

B2200_couple_enable B2200_couple_setup B2200_debug

B2200_disconnect_card B2200_GPIB_handler B2200_ground_card_enable

B2200_ground_enable B2200_ground_init B2200_ground _outch_enable

B2200_ground _unused_inputs B2200_init B2200_open_interface

BJT

BJTAC_high_freq BJTDC_rc BJTCV_stoc

BJTAC_rb_rbm_irb BJTDC_rcfb RBBcalc

BJTDC_fwd_gummel BJTDC_re H11corr

BJTDC_is_nf BJTDC_rev_gummel BJT_dc_model

BJTDC_nr BJTDC_vaf_var HFBJT_linear_ssmod_sim

HFBJT_linear_elem_extr

BPOPAMP

BPOPAMP_macro_model

BSIM1 (obsolete)

BSIM1DC_geom_indep BSIM1DC_sub BSIMCV_total_cap

BSIM1DC_lin_sat

BSIM2 (obsolete)

BSIM2DC_geom_indep BSIM2_save_dev_pars BSIM2_lin_plot

BSIM2DC_lin_sat BSIMCV_total_cap
IC-CAP Reference

IC-CAP Functions 8

BSIM3

BSIM3_set_opt BSIM3DC_sat_narrow BSIM3DC_vth

BSIM3DC_bulk_short BSIM3DC_sat_short BSIM3DC_vth_sim

BSIM3DC_lin_large BSIM3DC_sat_short2 BSIM3DC_vth_versus

BSIM3DC_lin_narrow BSIM3DC_sub_short BSIM3CVmodCBD

BSIM3DC_lin_short BSIM3DC_sub_short2 BSIM3CVmodCBS

BSIM3DC_lin_small BSIM3DC_model BSIM3CV_total_cap

BSIM3_calculate BSIM3_toolkit_vth BSIM3_check_par

BSIM3_DC_vth BSIM3_DC_calculate BSIM3_DC_get_parameter

BSIM3_DC_calc_bin_parameter BSIM3_error

BSIM4

BSIM4_check_par BSIM4_DC_get_parameter BSIM4_error

BSIM4_DC_calculate BSIM4_DC_extr_A0_AGS_KETA BSIM4_set_opt

BSIM430_DC_calculate BSIM4_DC_vth

BSIM450_DC_calculate BSIM430_DC_vth

BSIM4_DC_calc_bin_parameter BSIM450_DC_vth

Data Exchange

ICMSarray ICMSpin SPECSSpin

ICMSchar ICMSreal LINKarray

ICMSint ICMSstr LINKchar

LINKint LINKpin LINKreal

LINKstr

Data Export

icdb_add_comment icdb_close icdb_export_data

icdb_get_sweep_value icdb_open icdb_register_con_sweep

icdb_register_lin_sweep icdb_register_list_sweep icdbf_add_comment

icdbf_close icdbf_export_data icdbf_get_sweep_value

icdbf_open icdbf_register_con_sweep icdbf_register_lin_sweep

icdbf_register_list_sweep icdb_register_lsync_sweep icdbf_register_lsync_sweep

Data Fit

autofit circlefit linfit

fit_line

Table 72 IC-CAP Functions (continued)
IC-CAP Reference 411

8 IC-CAP Functions

Diode

DIODEDCmod_ia

EEBJT

EEbjt2_Is_N EEbjt2_ce_dc_iv EEbjt2_ce_ss_elements

EEbjt2_extrinsic_ckt EEbjt2_mdl HFMOD_get_bias_size

HFMOD_get_freq_index HFMOD_get_freq_value HFMOD_remove_freq_dbl

HFMOD_remove_freq_mat

EEFET

EEfet3_ckt EEfet3_model_name EEfet3_Rs_delta_s

EEfet3_cs_dc_iv EEfet3_package EEfet3_s2ckt

EEfet3_lecp EEfet3_ResCheck EEfet3_spars

EEfet3_mdl EEfet3_Rs_delta_m

EEMOS (obsolete)

EEmos1_ckt EEmos1_mdl EEmos1_ResCheck

EEmos1_cs_dc_iv EEmos1_model_name EEmos1_s2ckt

EEmos1_lecp EEmos1_package EEmos1_spars

Flicker Noise

NOISE_1f_bjt_1Hz NOISE_1f_bjt_calc NOISE_1f_bjt_extract

NOISE_1f_force_bias NOISE_1f_get_Af NOISE_1f_get_Bf

NOISE_1f_get_Ef NOISE_1f_get_Kf NOISE_1f_mos_1Hz

NOISE_1f_set_Af NOISE_1f_set_Bf NOISE_1f_set_Ef

NOISE_1f_set_Kf NOISE_1f_stop_bias

GAAS

GAASAC_cur GAASDC_lev1 GAASmod_cgd

GAASAC_l_and_r GAASDC_lev2 GAASmod_cgs

GAASAC_r_and_c GAASDC_rd GAASmod_id

GAASCV_cgs_cgd GAASDC_rs GAASmod_ig

GAASDC_cur1 GAASAC_calc_rc GAASAC_calc_rl

GAASDC_cur2

General Math

RMSerror conjg log10

TwoPort correlation mean

Table 72 IC-CAP Functions (continued)
412 IC-CAP Reference

IC-CAP Functions 8

TwoPort2 cos random

abs cosh sin

acs derivative sinh

acsh derivative2 smooth3

arg equation sqrt

asn exp tan

asnh log tanh

atn floor variance

atnh integral0 mem_diag

ceil integral3

HF MOS Level3 (obsolete)

HFMOS3_capas HFMOS3_paras HFMOS3_StoC

HFMOS3_lin_large HFMOS3_sat_short HFMOS3_StoZ

HFMOS3_lin_narrow HFMOS3_sub_large HFMOS3_modcap

HFMOS3_lin_short HFMOS3_total_cap

HiSIM2

HiSIM2_DC_vth

HiSIM_HV

HiSIM_HV_DC_vth

HPIB

HPIB_abort HPIB_open HPIB_spoll

HPIB_clear HPIB_read_reals HPIB_srq

HPIB_close HPIB_readnum HPIB_timeout

HPIB_command HPIB_readstr HPIB_write

HPIB_eoi HPIB_fwrite HPIB_read

HPMOS

HPMOSDC_lin_large HPMOSDC_lin_short HPMOS_process_pars

HPMOSDC_lin_narrow HPMOSDC_sat_short

HPRoot Diode

HPdiode_C HPdiode_S11i HPdiode_para_at_f

HPdiode_C2 HPdiode_S11r HPdiode_para_f

HPdiode_I HPdiode_V HPdiode_wr

Table 72 IC-CAP Functions (continued)
IC-CAP Reference 413

8 IC-CAP Functions

HPdiode_Q HPdiode_data_acqu HPRoot_n

HPdiode_R HPdiode_mdl HPdiode_fgrt

HPdiode_fless HPdiode_iextr

HPRoot Fet

HPRoot_data_acqu HPRoot_Qd HPRoot_Y12r

HPRoot_FET HPRoot_Qg HPRoot_Y21i

HPRoot_initial HPRoot_Vd HPRoot_Y21r

HPRoot_parasitic HPRoot_Vg HPRoot_Y22i

HPRoot_Id HPRoot_Y11i HPRoot_Y22r

HPRoot_Idh HPRoot_Y11r HPRoot_FET_t

HPRoot_Ig HPRoot_Y12i HPRoot_fet_acqu

HPRoot_n HPRoot_para_cal HPRoot_wr

HPRoot Mos

HPRoot_Id HPRoot_Vd HPRoot_Y12r

HPRoot_Idh HPRoot_Vg HPRoot_Y21i

HPRoot_Ig HPRoot_Y11i HPRoot_Y21r

HPRoot_Qd HPRoot_Y11r HPRoot_Y22i

HPRoot_Qg HPRoot_Y12i HPRoot_Y22r

HPRoot_MOSFET HPRoot_mos_acqu HPRoot_mos_para

HPRoot_para_cal

JUNCAP

JUNCAP JUNCAP_TR

MEXTRAM

MXT_I0 MEXTRAM_stoc MXT_cbc

MXT_cbe MXT_cj0 MXT_csc

MXT_forward_hfe MXT_forward_ic MXT_forward_vbe

MXT_ft MXT_VEF MXT_ic_vce

MXT_VER MXT_hard_sat_isub MXT_reverse_isub

MXT_jun_cap MXT_reverse_currents MXT_reverse_hfc

MXT_reverse_hfc_sub MXT_veaf_ib MXT_veaf_ic

MXT_vear_ie MXT_show_parms

MEXTRAM 503 (obsolete)

Table 72 IC-CAP Functions (continued)
414 IC-CAP Reference

IC-CAP Functions 8

mxt_smooth mxt3t_cbc mxt3t_cbe

mxt3t_cj0 mxt3t_ft_ic mxt3t_ft_ic_new

mxt3t_fwd_early_ib mxt3t_fwd_early_ic mxt3t_fwd_gummel_hfe

mxt3t_fwd_gummel_ib mxt3t_fwd_gummel_ic mxt3t_fwd_gummel_vbe

mxt3t_i0 mxt3t_linear_range mxt3t_output_ic

mxt3t_output_vbe mxt3t_rev_early_ie mxt3t_rev_early_qb0_guess

mxt3t_rev_gummel_hfc mxt3t_rev_gummel_ib mxt3t_rev_gummel_ie

mxt4t_cbc mxt4t_cbe mxt4t_cj0

mxt4t_csc mxt4t_ft_ic mxt4t_ft_ic_new

mxt4t_fwd_early_ib mxt4t_fwd_early_ic mxt4t_fwd_gummel_hfe

mxt4t_fwd_gummel_ib mxt4t_fwd_gummel_ic mxt4t_fwd_gummel_vbe

mxt4t_i0 mxt4t_linear_range mxt4t_output_ic

mxt4t_output_vbe mxt4t_rev_early_ie mxt4t_rev_early_qb0_guess

mxt4t_rev_gummel_hfc mxt4t_rev_gummel_hfc_sub mxt4t_rev_gummel_ib

mxt4t_rev_gummel_ie mxt4t_rev_gummel_is

MM9

MM9_LIN_EXT MM9_COPY MM9_SAVE_SPARS

MM9_SAT_EXT MM9_DATA MM9_SETUP

MM9_STH_EXT MM9_GEOMPAR MM9_TEMPPAR

MM9_WEAVAL_EXT MM9_GEOMSCAL MM9_TEMPSCAL

MM9 MM9_KEEP

MOS Level1

MOSmodel MOSmodel2

MOS Level2

MOSCV_total_cap MOSDC_lev2_lin_short MOSCVmodCBS

MOSDC_lev2_lin_large MOSDC_lev2_sat_short MOSmodel

MOSDC_lev2_lin_narrow MOSCVmodCBD MOSmodel2

MOS Level3

MOSCV_total_cap MOSDC_lev3_lin_short MOSCVmodCBS

MOSDC_lev3_lin_large MOSDC_lev3_sat_short MOSmodel2

MOSDC_lev3_lin_narrow MOSCVmodCBD

MOS Level6

Table 72 IC-CAP Functions (continued)
IC-CAP Reference 415

8 IC-CAP Functions

MOSCV_total_cap MOSDC_lev6_lin_narrow MOSCVmodCBD

MOSDC_lev6_lin_large MOSDC_lev6_lin_short MOSCVmodCBS

MOS Process

MOS_process_pars

Optimization

Optimize

PEL

Program or Program2

PN Capacitance

PNCAPsimu

PSP

PSP_DC_vth PSP_check_par PSP_DC_calc_bin_parameter

PSP_set_opt

PTFT (obsolete)

PTFTCV_cgd PTFTDC_lin PTFTDC_sat

PTFTCV_cgs

Random Functions

rand_flat rand_gauss rand_seed

Statistical Analysis

icstat_get_column icstat_deactivate icstat_set_text_cell

icstat_set_column icstat_attribute_2_parameter icstat_open

icstat_num_columns icstat_parameter_2_attribute icstat_write_to_status_window

icstat_num_rows icstat_analysis icstat_exit

icstat_get_cell icstat_correlation icstat_open_sdf_file

icstat_set_cell icstat_stat_summary icstat_close_sdf_file

icstat_num_deactivated icstat_factor_analysis icstat_save_sdf_file

icstat_num_filtered icstat_parametric_models icstat_to_partable

icstat_num_attributes icstat_equations icstat_from_partable

icstat_get_deactivated icstat_plot_graph icstat_set_param_column_labels

icstat_get_filtered_rows icstat_set_row iicstat_nonparametric_models

icstat_get_attribute_columns icstat_get_row icstat_clear

icstat_activate icstat_get_text_cell icstat_delete

Table 72 IC-CAP Functions (continued)
416 IC-CAP Reference

IC-CAP Functions 8

icstat_insert

Switching Matrix

Connect SWM_debug Wait

FNPort SWM_init HP5250_bias_card

HP5250_card_config HP5250_bias_channel HP5250_bias_init

HP5250_bias_setmode HP5250_compensate_cap HP5250_connect

HP5250_couple_enable HP5250_couple_setup HP5250_debug

HP5250_disconnect_card HP5250_init HP5250_show

K707_init K708a_init K70X_clear_setup

K70X_close_crosspoints K70X_config_trigger K70X_connect_sequence

K70X_copy_setup K70X_debug K70X_delete_setup

K70X_edit_setup K70X_init_interface K70X_open_crosspoints

K70X_trigger_disable K70X_trigger_enable

Target

TARGET_DC_vth

TRL Calibration

8753_TRL_Cal TRL_Cal

USERC

USERC_init_param USERC_open USERC_sweep_start

USERC_avg_2 USERC_read_reals USERC_sweep_stepsize

USERC_avg_3 USERC_readnum USERC_sweep_stop

USERC_conjg USERC_readstr USERC_system

USERC_transpose USERC_seek USERC_tell

USERC_close USERC_set_param USERC_write

USERC_data_w_check USERC_size USERC_sweep_name

USERC_num_of_points USERC_set_param_quiet USERC_sweep_mode

USERC_get_object_name

User Defined

Holding place for user-defined functions.
For details, refer to “Adding Functions to
the Function Browser" in the User’s
Guide.

Utility

Table 72 IC-CAP Functions (continued)
IC-CAP Reference 417

8 IC-CAP Functions

check_error_log copy2output Package

dataset lookup_par lookup_var

ascii$

VBIC

VBIC_ac_solver VBIC_avc VBIC_cbc

VBIC_cbe VBIC_cj0 VBIC_clean_data

VBIC_csc VBIC_dc_approx VBIC_dci_solver

VBIC_dcv_solver VBIC_fg_currents VBIC_ibci_nci

VBIC_ibei_nei VBIC_ikf VBIC_stoc

VBIC_ikr VBIC_is_nf VBIC_isp_nfp

VBIC_nr VBIC_qcdepl VBIC_rcx

VBIC_rg_currents VBIC_vef_ver

Wafer Prober

Pdown Porig Prober_status

Phome Ppos Pscale

Pimove Prober_debug Pup

Pink Prober_init PB_bindex

Pmove Prober_reset PB_gsite_xy

PB_abort PB_bincode PB_msite_xy

PB_bindex_cr PB_index_cr PBench_CMD

PB_index PB_gindex_cr tis_p_down

tis_p_home tis_p_imove tis_p_ink

tis_p_move tis_p_orig tis_p_pos

tis_p_scale tis_p_up tis_prober_get_ba

tis_prober_get_name tis_prober_init tis_prober_read_sysconfig

tis_prober_reset tis_prober_status

Wire Functions

wirexfX wirexfY wirexfYX

wirexfXY

Table 72 IC-CAP Functions (continued)
418 IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

8753_TRL_Cal Deembed the raw measured data using
measured data of TRL (thru-reflect-line) calibration
standards. The function calculates and downloads the error
coefficients to the 8753. The reference plane is defined at
the middle of the thru standard, or at the interface to the
DUT when it is installed in the compatible carrier.

abs Absolute value function (magnitude when input data is
complex)

Inputs:

Freq Data: Frequency Inputs

Thru: measured S-parameters of the Thru
standard

Short: measured S-parameters of the
Short standard

Line A: measured S-parameters of Line A
standard

Line B: measured S-parameters of Line B
standard

Line C: measured S-parameters of Line C
standard

Freq 1 Trans: transition frequency Line A to Line
B

Freq 1 Trans: transition frequency Line B to Line
C

Outputs: None

Input Arguments:

Data Sets: Input 1

Output: Real number, matrix, real array, or
matrix array (depends on input
argument)

Automatic Invocation: On Data Set Input Change
419

420

8 IC-CAP Functions

acs Inverse cosine in radians.

acsh Inverse hyperbolic cosine.

AgilentHBT_ABCX_extract This function extracts model
parameter ABCX.

AgilentHBT_calculate_ccb This function calculates Cbc in an
alternative method from the specified Z-parameters.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Variables: Emitter Area, Total Area

Parameters: Parameter(ABCX)

Extracts: ABCX

Input Arguments:

Inputs: freq, Z11, Z12, Z21, Z22

Output: Complex data sets.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

AgilentHBT_calculate_rbb This function calculates Rb in an
alternative method from the specified H-parameters.

AgilentHBT_CCMAX_extract This function extracts model
parameter CCMAX.

AgilentHBT_CEMAX_extract This function extracts model
parameter CEMAX.

AgilentHBT_CJC_extract This function extracts model
parameter CJC.

Input Arguments:

Inputs: freq, H11, H12, H21, H22

Variables: Mode (0:ignore RE effect, 1:include
RE effect)

Parameters: Parameter(RE)

Output: Complex data sets

Input Arguments:

Inputs: Vbc (as positive value), Cbc

Parameters: Parameter(CCMAX),
Parameter(VJC)

Extracts: CCMAX

Input Arguments:

Inputs: Vbe, Cbe

Parameters: Parameter(CEMAX),
Parameter(VJE)

Extracts: CEMAX

Input Arguments:

Inputs: Vbc (as positive value), Cbc
421

422

8 IC-CAP Functions

AgilentHBT_CJE_extract This function extracts model
parameter CJE.

AgilentHBT_IS_NF_extract This function extracts model
parameters IS, NF.

AgilentHBT_ISC_NC_extract This function extracts model
parameters ISC, NC.

Parameters: Parameter(CJC), Parameter(CPBC)

Extracts: CJC

Input Arguments:

Inputs: Vbe, Cbe

Parameters: Parameter(CJE), Parameter(CPBE)

Extracts: CJE

Input Arguments:

Inputs: Vbe, Ic

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(IS), Parameter(NF)

Extracts: IS, NF

Input Arguments:

Inputs: Vcb (as positive value), Ib

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(ISC), Parameter(NC)

Extracts: ISC, NC
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

AgilentHBT_ISE_NE_extract This function extracts model
parameters ISE, NE.

AgilentHBT_ISH_NH_extract This function extracts model
parameters ISH, NH.

AgilentHBT_ISR_NR_extract This function extracts model
parameters ISR, NR.

AgilentHBT_ISRH_NRH_extract This function extracts model
parameters ISRH, NRH.

Input Arguments:

Inputs: Vbe, Ib

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(ISE), Parameter(NE)

Extracts: ISE, NE

Input Arguments:

Inputs: Vbe, Ib

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(ISH), Parameter(NH)

Extracts: ISH, NH

Input Arguments:

Inputs: Vcb (as positive value), Ie

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(ISR), Parameter(NR)

Extracts: ISR, NR
423

424

8 IC-CAP Functions

AgilentHBT_ITC_ITC2_extract This function extracts model
parameters ITC, ITC2.

AgilentHBT_Param_Init This function initializes the model
parameters for the extraction.

AgilentHBT_TFC0_extract This function extracts model
parameter TFC0.

Input Arguments:

Inputs: Vcb (as positive value), Ib

Variables: X Low, X High, Y Low, Y High,
TEMP

Parameters: Parameter(ISRH), Parameter(NRH)

Extracts: ISRH, NRH

Input Arguments:

Inputs: Ic, Ft, Vc, Vb

Variables: X Low, X High, Y Low, Y High

Parameters: Parameter(ITC), Parameter(ITC2)

Extracts: ITC, ITC2

Input Arguments:

Variables: Emitter Width (W) [um]
Emitter Length (L) [um]
of Emitter Fingers (NF)
Total Area [um^2]

Parameters: Parameter(hbt.TNOM)

Extracts: All Agilent-HBT model parameters

Input Arguments:

Inputs: Ic or Ic-1, Tau, Vc, Vb
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

AgilentHBT_VJC_extract This function extracts model
parameter VJC.

AgilentHBT_VJE_extract This function extracts model
parameter VJE.

arg Argument (phase angle), in radians, for a complex
number.

Variables: X Low, X High, Y Low, Y High

Parameters: Parameter(TFC0)

Extracts: TFC0

Input Arguments:

Inputs: Vbc (as positive value), Cbc, Cdiff

Parameters: Parameter(VJC), Parameter(CJC),
Parameter(CPBC)

Extracts: VJC

Input Arguments:

Inputs: Vbe, Cbe, Cdiff

Parameters: Parameter(VJE), Parameter(CJE),
Parameter(CPBE)

Extracts: VJE

Input Arguments:

Data Sets: Input 1

Output: Real number, matrix, real array, or
matrix array (depends on input
argument)

Automatic Invocation: On Data Set Input Change
425

426

8 IC-CAP Functions

ascii$ Converts ascii-coded characters into literal
characters as entered into a text box.

If certain characters are entered in a text box, they must be
encoded so they are compatible with the .mdl file format
used in variable tables. These characters include double
quotes (“) and newlines (\n). Such characters may be
entered in a GUI’s edit box and tracked by a variable table
variable. IC-CAP must encode these characters before storing
them in a .mdl file to avoid undesirable effects.

After the characters are encoded, they appear as encoded
characters if you choose to print them from the .mdl file to
an output such as the Status window. To translate the
encoding, call the function ascii$() in PEL and the string
will be output exactly as it was typed into the text box.

asn Inverse sine in radians.

asnh Inverse hyperbolic sine.

atn Inverse tangent in radians.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

atnh Inverse hyperbolic tangent.

autofit Performs an automatic line fit to a set of X and Y
data sets. This function finds the largest region of the line
that fits with less than the specified error from the RMS
limit field. A buffer can be specified that removes a certain
percentage of the data from each end of the curve. This
eliminates data points that may throw off the line fit. The
percentages should be specified out of 1. For example, 0.01 =
1%. If the OVERRIDE_LIMITS variable is TRUE, the limits
can be specified manually with the X_LOW and X_HIGH
variables, which can be set from the Plot menu.

This function should only be used on data with a single
sweep variable. A 3 point data set, containing slope and
intercept data and the regression coefficient, is returned.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Reals or Integers: RMS limit, Buffer
427

428

8 IC-CAP Functions

Example PEL Statement:
fit_data = autofit(-ve,log(ic.m),0.01,0.1)

B2200_bias_card_enable Bias-enables all the output ports of
the specified card. By default, all ports are bias-enabled
after a reset.

Syntax
B2200_bias_card_enable(<addr>, <CardNumber>, <CardState>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<CardState> is the card output port's state (allowed values
are "ENABLE", "DISABLE", "E", or "D").

B2200_bias_ch_enable Bias-enables specific output ports in
the channel list for the specified card. The input ports
specified in the channel list are ignored since the input port
is always the Bias Input Port. By default, all the outputs are
bias-enabled after a reset.

Syntax
B2200_bias_ch_enable(<addr>,<CardNumber>,<State>,
<Channel list>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<State> is the output port's state (allowed values are
"ENABLE", "DISABLE", "E", or "D")

Output: Array of 2 points: slope then
intercept

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

<Channel list> is the list of channels, known as connection
routes. Example channel list: (@10102, 10203,
10305:10307)

B2200_bias_enable Enables the bias mode for the specified
card once Input Bias Port and Enabled Output ports are
specified. When Bias Mode is ON, the Input Bias Port is
connected to all Bias Enabled output ports that are not
connected to any other input ports. Bias Disabled output
ports are never connected to an Input Bias Port when Bias
Mode is ON.

If another input port is disconnected from a bias enabled
output port, this port is automatically connected to the
Input Bias Port.

If another input port is connected to a Bias Enabled output
port, the output port is automatically disconnected from the
Bias Input Port. When Bias Mode is OFF, the Input Bias
Port is the same as the other ports.

Syntax
B2200_bias_enable(<addr>, <CardNumber>, <mode>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<mode> is "On", "Off", "1", or "0".

B2200_bias_init Selects the Input Bias Port for the specified
card. The Input Bias Port is the dedicated bias port.

Syntax
B2200_bias_init(<addr>, <CardNumber>, <InputBiasPort>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.
429

430

8 IC-CAP Functions

<InputBiasPort> is 1 to 14 (numeric input) or −1 to
disable bias port.

B2200_close_interface Closes the current interface, which
was opened by calling B2200_open_interface().

B2200_connect Connects or disconnects specified channels.
Bias Mode and coupling Mode are also taken into account
when a channel is closed or opened.

For example, in the list (@10102, 10203:10205), the following
channels are connected or disconnected on card 1. Input
port 1 to output port 2. Input port 2 to output port 3 and 5.

Syntax
B2200_connect(<addr>,<Connect/Disconnect>,<ChannelList>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<Connect/Disconnect> is C or D.

<ChannelList> is the list of connections to close.

B2200_couple_enable Enables or disables Couple Port mode.
Couple Port mode allows synchronized connection of two
adjacent input ports to two adjacent output ports.

Syntax
B2200_couple_enable(<addr>, <CardNumber>, <Mode>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<mode> is "On", "Off", "1", or "0".

B2200_couple_setup Selects the couple ports for Kelvin
connections. At Reset, no input ports are coupled.

Syntax
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

B2200_couple_setup(<addr>,<CardNumber>,
<ListOfCoupledPorts>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<ListOfCoupledPorts> is the list of odd number input
channels (e.g., "1, 3, 5" means coupled ports are 1-2, 3-4,
5-6).

B2200_debug Prints out all command strings sent to the
instrument when set to 1. This flag is common to all
B2200A’s on the bus, regardless of their GPIB address.

Syntax
B2200_debug(<flag>)

Where

<flag> is "1", "0", "Yes", or "No".

B2200_disconnect_card Opens all relays or channels in the
specified cards.

Syntax
B2200_disconnect_card(<addr>, <CardNumber>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

B2200_GPIB_handler Returns -1 if the interface has not been
initialized (invalid handler). Returns a positive integer
(handler) if the interface has been opened.

Returns the current interface handler. The function is
provided as a utility function, which enables you to write
advanced PEL code to write and read data to the B2200A
using the HPIB_write and HPIB_read functions. Initializing
the handler using B2200_open_interface enables you to use
431

432

8 IC-CAP Functions

B2200A's built-in driver functions as well as writing PEL
code to support other features that are not currently
supported by the built-in functions, all in the same PEL
code.

B2200_ground_card_enable Enables ground-enabling for all
the output ports of the specified card. By default, all ports
are ground-disabled.

Syntax
B2200_ground_card_enable(<addr>,<CardNumber>,<CardState>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<CardState> is the card output port's state (allowed values
are "ENABLE", "DISABLE", "E", or "D").

B2200_ground_enable Enables the bias mode for the
specified card. When Ground Mode is turned ON, the Input
Ground Port (default is 12) is connected to all the Ground
Enabled input/output ports that have not been connected to
any other port. At Reset, Ground Mode is OFF. Ground
Mode cannot be turned ON when Bias Mode is ON.

See the Agilent B2200 User's Guide for additional comments
and restrictions.

Syntax
B2200_ground_enable(<addr>, <CardNumber>, <mode>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, 4.

<mode> is "On", "Off", "1", or "0".
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

B2200_ground_init Selects the input Ground Port for the
specified card. For each card, you can specify the same or a
different Ground Port. By default, the input Ground Port is
port 12. The ground port should be connected to 0 V output
voltage. See the Agilent B2200 User's Guide for details.

Syntax
B2200_ground_init(<addr>,<CardNumber>,<InputGroundPort>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<InputGroundPort> is 1 to 14 (numeric input) or −1 to
disable ground port.

B2200_ground _outch_enable Ground-enables or
ground-disables output ports. When Ground Mode is turned
ON, the ground-enabled output ports that have not been
connected to any other input port are connected to the
input ground port. The input ports specified in channel lists
are ignored since the input port is always the Input Ground
Port. By default, all the outputs are ground-disabled after a
reset.

Syntax
B2200_ground _outch_enable(<addr>,<CardNumber>,<State>,
<Channel list>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, or 4.

<State> is the port's state (allowed values are "ENABLE",
"DISABLE", "E", or "D").

<Channel list> is the list of channels, known as connection
routes. Example channel list: (@10102, 10203,
10305:10307)
433

434

8 IC-CAP Functions

B2200_ground _unused_inputs Specifies the ground-enabled
(or unused) input ports for the specified card. When Ground
Mode is turned ON, the ground-enabled input ports that
have not been connected to any other port are connected to
the input Ground Port. By default, all the inputs are
ground-disabled after a reset.

Syntax
B2200_ground _unused_inputs(<addr>,<CardNumber>,<Input
Channels>)

Where

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<CardNumber> is 0(auto), 1, 2, 3, 4.

<Input Channels> is the list of input channels (e.g., "1, 2,
5"). Only input ports 1 to 8 can be defined as unused
(these are the input Kelvin Ports).

B2200_init Must be run first in the PEL program to
initialize the instrument and set the configuration mode.
When the instrument is in AUTO configuration mode and
multiple plug-in cards are installed in the B2200 slots from
slot 1 continuously, the installed cards are then treated as
one card (numbered 0). This function resets all the settings
to factory default before setting the configuration mode.

This function also sets the default connection rule for the
specified card. When the connection rule is FREE (default
mode), each input port can be connected to multiple output
ports and each output port can be connected to multiple
input ports. When the connection is SINGLE, each input port
can be connected to only one output. Connection sequence
specifies the open/close sequence of the relays when
changing from an existing connection to a new connection.

Syntax
B2200_init(<addr>, <cardNumber>, <config>,
<connectionRule>, <connectionSequence>)

Where
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

<addr> is the GPIB address of the Mainframe (must be a
positive number from 1 to 30).

<cardNumber> is 0(auto), 1, 2, 3, or 4.

<config> is "AUTO" or "NORMAL" (string input).

<connectionRule> is "FREE" or "SINGLE".

<connectionSequence> is "NSEQ", "BBM", or "MBBR".

• NSEQ (No SEQuence): Disconnect old route, connect
new route.

• BBM (Break Before Make): Disconnect old route, wait,
connect new route.

• MBBR (Make Before BReak): Connect new route, wait,
disconnect old route.

B2200_open_interface Opens and initializes the GPIB
interface and must be run first in the PEL program. The
interface handler is saved in a static variable so that the
interface will be shared by all the other B2200's function
calls. You can drive multiple B2200 instruments as long as
they are on the same interface bus (obviously, they must
have different addresses).

Syntax
B2200_open_interface(<Interface Name>)

Where

<Interface Name> is the name of the GPIB interface.

BJT_dc_model Calculates collector current (IC), base current
(IB) or gain (BETA) versus terminal voltages for a bipolar
transistor using the UCB DC bipolar model. Set the Output
field to IC, IB, or BETA. Use this function in place of an
actual simulation for fast optimizations. The source code for
this function is provided as an example in the userc.c file.

Input Arguments:

Data Sets: VC, VB, VE

Strings/Pars/Vars Output
435

436

8 IC-CAP Functions

BJTAC_high_freq Standard extraction for the UCB Bipolar
model. Extracts AC parameters from a common emitter
measurement of H-parameters. Requires the following setup:

H versus Vbe, with Vce = 1V and 3V, and Freq constant.

The frequency value must be past the pole frequency of the
device. Optimization can be used to tune the parameter
values; typically, it should not be required.

BJTAC_rb_rbm_irb Standard extraction for the UCB Bipolar
model. Extracts base resistance parameters from a common
emitter measurement of H11. Requires the following setups:

Ib versus Vbe, with Vce = constant
H11 versus Freq versus Vbe, with Vce = constant

BJTCV_stoc Calculates capacitance data from S-parameter
data using the following equations:

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Input Arguments:

Data Sets: Base Voltage, Frequency, Col
Voltage, Sub Voltage, H-Par Output

Output: None

Extracts: TF, ITF, XTF, VTF, PTF

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: IB Data, RBB Data

Output: None

Extracts: RB, RBM, IRB

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Cbc(Vbc) = − imag(Y12)/(2*pi*freq)

Cbe(Vbe) = imag(Y11)/(2*pi*freq) - Cbc(Vbc)

This allows base-collector and base-emitter capacitance to
be calculated from network analyzer measurements. The
output of this function can be used in place of actual
capacitance data to extract capacitance related parameters.

BJTDC_fwd_gummel Standard extraction for the UCB
Bipolar model. Extracts forward Gummel parameters from
forward Gummel plot measurements. Requires the following
setup:

Ic and Ib versus Vbe, with Vcb = 0V.

The measured data should include high and low current
roll-off effects in the gain. The Vbe lower limit for extraction
is automatically selected. If the OVERRIDE_LIMITS variable
is true, this limit can be specified manually with the X_LOW
variable, which can be set from the Plot menu. Optimization
can be used to tune the parameter values, but should not
typically be required.

Input Arguments:

Data Sets: FREQ data, S data

Strings/Pars/Vars: Node (C/E)

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Fwd VBE, Fwd IC, Fwd IB, Fwd
Beta

Output: None

Extracts: ISE, NE, BF, IKF

Automatic Invocation: By Extract menu function
437

438

8 IC-CAP Functions

BJTDC_is_nf Standard extraction for the UCB Bipolar
model. Extracts saturation current parameters from forward
gummel plot measurements. Requires the following setup:

Ic and Ib versus Vbe, with Vcb = 0V.

The Vbe limits for extraction are automatically selected. If
the OVERRIDE_LIMITS variable is true, these limits can be
specified manually with the X_LOW and X_HIGH variables,
which can be set from the Plot menu. Optimization can be
used to tune the parameter values, but should not typically
be required.

BJTDC_nr Standard extraction for the UCB Bipolar model.
Extracts NR from reverse Gummel Plot measurements.
Requires the following setup:

Ie and Ib versus Vbc, with Veb = 0V.

The Vbc limits for extraction are automatically selected. If
the OVERRIDE_LIMITS variable is true, these limits can be
specified manually with the X_LOW and X_HIGH variables,
which can be set from the Plot menu. Optimization can be
used to tune the parameter value, but should not typically
be required.

Input Arguments:

Data Sets: Fwd VBE, Log10 Fwd IC

Output: None

Extracts: IS, NF

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Rev VBC, Log10 Rev IE

Output: None

Extracts: NR

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BJTDC_rc Standard extraction for the UCB Bipolar model.
Extracts collector resistance in the saturation region.
Requires the following setup:

Ic versus Vce, with Vbe = typical operating value.

Depending on the device, optimization to this and other DC
measurements may be required to tune the parameter value.

BJTDC_rcfb Alternate extraction for the UCB Bipolar model.
Extracts collector resistance using the flyback technique.
Requires the following setup:

Vec versus Ib, with the emitter floating.

Depending on the device, optimization to this and other DC
measurements may be required to tune the parameter value.

BJTDC_re Standard extraction for the UCB Bipolar model.
Extracts emitter resistance using the flyback technique.
Requires the following setup:

Vce versus Ib, with the collector floating.

Depending on the device, optimization to this and other DC
measurements may be required to tune the parameter value.

Input Arguments:

Data Sets: VC Data, IC Data

Output: None

Extracts: RC

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: IB Data, VE Data

Output: None

Extracts: RC

Automatic Invocation: By Extract menu function
439

440

8 IC-CAP Functions

BJTDC_rev_gummel Standard extraction for the UCB Bipolar
model. Extracts reverse Gummel parameters from reverse
Gummel plot measurements. Requires the following setup:

Ie and Ib versus Vbc, with Veb = 0V.

The measured data should include high and low current
roll-off effects in the gain. The Vbc lower limit for extraction
is automatically selected. If the OVERRIDE_LIMITS variable
is true, this limit can be specified manually with the X_LOW
variable, which can be set from the Plot menu. Optimization
can be used to tune the parameter values, but should not
typically be required.

BJTDC_vaf_var Standard extraction for the UCB Bipolar
model. Extracts forward and reverse early voltages from
common emitter and common collector curves. Requires the
following setups:

Ic versus Vce versus Vbe.
Ie versus Vec versus Vbc.

The setups should have the same number of base voltage
steps. The base voltages should be chosen so that current
levels correspond to the peak gain regions of the device. No
more than 20 percent of the data should be in the saturation

Input Arguments:

Data Sets: IB Data, VC Data

Output: None

Extracts: RE

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Rev VBC, Rev IE, Rev IB, Rev Beta

Output: None

Extracts: ISC, NC, BR, IKR

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

region. Optimization can be used to tune the parameter
values, but should not typically be required. Optimization of
these parameters should be performed only after extracting
the complete DC model.

BPOPAMP_macro_model Extraction function for the
Boyle-Pederson- Solomon-Cohn Opamp macromodel written
in C code. (Refer to IEEE JSSC vol. SC-9, no. 6, Dec. 1974.)
Extracts circuit element values for a specified set of opamp
performance measurements. The data set inputs to the
extraction function may be from outputs of Setups that measure
the specific opamp performance or from values known via other
sources such as specifications on a data sheet. The real and
integer inputs are not generally measurable and are taken from
the knowledge of the design of the opamp being modeled. An
expanded description of the inputs is given in parentheses
where applicable.

Input Arguments:

Data Sets: Forward VC, Forward VB, Forward
IC, Reverse VE, Reverse VB,
Reverse IE

Output: None

Extracts: VAF, VAR

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Slew Rate +(V/uS), Slew Rate
-(V/uS), Bias Current(Amps), Bias
Offset(Amps), Volt Offset(Volts),
Av(DM) (gain-no unit), BW(Hz),
Excess Phase(radians), CMRR (dB),
Rout(ohms), Rout-ac(ohms), Isc
+(Amps), Isc -(Amps), Vout_max
+(Volts), Vout_min -(Volts), Power
Diss(Watts), Vcc supply(Volts), Vee
supply(Volts)
441

442

8 IC-CAP Functions

BSIM1DC_geom_indep This function is obsolete.

Generates the BSIM geometry independent parameters (all
parameters scaled to channel length and width) from a
device file generated either by the BSIM extraction routines
in IC-CAP or from a compatible BSIM characterization
system.

Reals or Integers: Nom. Q.IS(nominal input transistor
saturation current), R2(mid-stage
gain setting resistor), Comp.
Cap.(compensation capacitance),
Temp.(C), Inputs PNP?(=1 if input
stage uses pnps), Debug?(=1 print
debug information during
extraction)

Output: None

Extracts: NPN1.BF, NPN1.IS, NPN2.BF,
NPN2.IS, C1, RC1, RC2, RE1, RE2,
RE, CE, RP, GCM, GA, R2, C2, GB,
RO2, RC, RO1, DMOD1.IS,
DMOD2.IS, VC, VE, IEE

Automatic Invocation: By Extract menu function

Input Arguments: None

Output: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM1DC_lin_sat This function is obsolete.

Extracts the linear and saturation region parameters of the
BSIM model using Id versus Vg curves for a single device.

Extracts: VFB, LVFB, WVFB, PHI, LPHI,
WPHI, K1, LK1, WK1, K2, LK2,
WK2, ETA, LETA, WETA, MUZ, U1,
LU1, WU1, DL, DW, X2E, LX2E,
WX2E, X3D, LX3E, WX3E, X2MZ,
LX2MZ, WX2MZ, MUS, LMUS,
WMUS, X2MS, LX2MS, WX2MS,
X3MS, LX3MS, WX3MS, X2U0,
LX2U0, WX2U0, X2U1, LX2U1,
WX2U1, X3U1, LX3U1, WX3U1

If subthreshold parameters are
extracted, the following geometry
independent parameters are also
extracted: N0, LN0, WN0, NB, LNB,
WNB, ND, LND, WND

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: The linear region parameters: VFB,
PHI, K1, K2, U0, X2U0.

The saturation region parameters:
ETA, MUZ, U1, X2MZ, X2E, X3E,
X2U1, MUS, X2MS, X3MS, X3U1.

Automatic Invocation: By Extract menu function
443

444

8 IC-CAP Functions

BSIM1DC_sub This function is obsolete.

Extracts the BSIM subthreshold parameters for a single
device using 4 Id versus Vg curves.

BSIM2_lin_plot This function is obsolete.

Acquires specified parameter value data versus 1/W or 1/L
and displays plot.

BSIM2_save_dev_pars This function is obsolete.

Appends the set of BSIM2 extracted parameters for a single
device to the device file in the user’s home directory.

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I 1,
Drain I 2, Drain I 3, Drain I 4

Output: None

Extracts: N0, NB, ND

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Input an output data set with both
measured and simulated data types
set

Strings/Pars/Vars: Parameter name of parameter to be
plotted against 1/W or 1/L, Sort
Key - W or L

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Input Arguments: None

Output: None

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM2DC_geom_indep This function is obsolete.

Generates the BSIM2 geometry independent parameters (all
parameters scaled to channel length and width) from a
device file generated by the BSIM2 extraction routines in
IC-CAP or from a compatible BSIM2 characterization system.

Input Arguments: None

Output: None

Extracts: VFB, LVFB, WVFB, PHI, LPHI,
WPHI, K1, LK1, WK1, K2, LK2,
WK2, ETA0, LETA0, WETA0, MU0,
DL, DW, UA0, LUA0, WUA0, U10,
LU10, WU10, MU0B, LMU0B,
WMU0B, ETAB, LETAB, WETAB,
UB0, LUB0, WUB0, UAB, LUAB,
WUAB, U1B, LU1B, WU1B, MUS0,
LMUS0, WMUS0, MUSB, LMUSB,
WMUSB, UBB, LUBB, WUBB, U1D,
LU1D, WU1D, N0, LN0, WN0, NB,
LNB, WNB, ND, LND, WND, MU20,
LMU20, WMU20,MU2B, LMU2B,
WMU2B, MU2G, LMU2G, WMU2G,
MU30, LMU30, WMU30, MU3B,
LMU3B, WMU3B, MU3G, LMU3G,
WMU3G, MU40, LMU40, WMU40,
MU4B, LMU4B, WMU4B, MU4G,
LMU4G, WMU4G, VOF0, LVOF0,
WVOF0, VOFB, LVOFB, WVOFB,
VOFD, LVOFD, WVOFD, AI0, LAI0,
WAI0, AIB, LAIB, WAIB, BI0, LBI0,
WBI0, BIB, LBIB, WBIB, VGHIGH,
LVGHIGH, WVGHIGH, VGLOW,
LVGLOW, WVGLOW

Automatic Invocation: By Extract menu function
445

446

8 IC-CAP Functions

BSIM2DC_lin_sat This function is obsolete.

Extracts the linear, saturation, and subthreshold region
parameters of the BSIM2 model using 2 families of Id versus
Vg curves for a single device. Also extracts the output
resistance parameters of the BSIM2 model using 2 families
of Id versus Vd curves for a single device.

BSIM3_calculate Calculates the drain current of the
BSIM3v3.2 model and different internal states of the model
for the given terminal voltages vd, vg, vs, and vb. The type
of internal state, for example, the drain source resistance
rds can be selected by the select output flag. In some cases
it is necessary to use a measured value for the threshold
voltage instead of the calculated. Use the select input flag to
select measured or calculated. If this is not equal to zero,
then the value in value input is used for vth instead of the
calculated one.

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I vs
Vg, Drain I vs Vd

Output: None

Extracts: The linear region parameters: VFB,
PHI, K1, K2, MU0, MU0B, UA0,
UAB, UB0, UBB, VGHIGH, VGLOW.

The saturation region parameters:
MUS0, MUSB, U10, U1B, ETA0,
ETAB, VOF0, VOFD, VOFB.

The subthreshold region
parameters: N0, NB, ND.

The output resistance parameters:
MU20, MU2B, MU2G, MU30, MU3B,
MU3G, MU40, MU4B, MU4G, AI0,
AIB, BI0, BIB, U1D

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Input Arguments:

Variables: vd Drain voltage
vg Gate voltage
vs Source voltage
vb Bulk voltage
Length (L) Gate length
Width (W) Gate width
select input (if 1 use value input
for Vth)
value input (value input for Vth if
select input = 1)

Parameters: None

Output: Value to calculate or failure
indicator
output[0] = lx;
output[1] = wx;
output[2] = vbseff;
output[3] = vt0;
output[4] = nonlat;
output[5] = dvtx;
output[6] = dvtx_w;
output[7] = k3w0;
output[8] = eta_vd;
output[9] = vth;
output[10] = vgsteff;
output[11] = abulk;
output[12] = ueff;
output[13] = rds;
output[14] = vdsat;
output[15] = vdseff;
output[16] = idlin;
output[17] = idr;
output[18] = vasat;
output[19] = vaclm;
output[20] = vadiblc;
output[21] = inv_vascbe;
output[22] = va;
output[23] = idout;

Extracts: Nothing
447

448

8 IC-CAP Functions

BSIM3_check_par Checks whether a model parameter is in
a predefined range. The range information for this parameter
must be given in a variable in the referenced path. The
range information is stored in a string in the following
format:
range_A0
>-1 0 10 -
| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|______________ lower error condition ({operator(>,>=), value}{-)}
Example call in PEL:
check = BSIM3_check_par(prwg,"PRWG",

"/BSIM3_DC_CV/Extraction_configuration/Boundaries")

BSIM3_DC_calc_bin_parameter This function calculates from
the input the 4 binning parameters P0, PL, PW, and PP. If the
calculation is done correctly, outputs[0] will return 0.
Otherwise, outputs[0] will result in a negative number. In such
a case, the error will be printed in detail in the output window.

Input Arguments:

Variables: Actual value of parameter to check

Parameters: Parameter name
Path to parameter range definition

Output: Flag for correct operation:
0: parameter is in specified range
−1: parameter is outside specified

range
−2: error during function execution
(e.g., variable 'range_xx' not found)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
complex l[4]
complex w[4]
:

l[0]= 1u
:
par = BSIM3_DC_get_parameter()
bin_par = BSIM3_DC_calc_bin_parameter(p, l, w, par)

BSIM3_DC_calculate Calculates the drain current of the
BSIM3v3.2 model and different internal states of the model for
the given terminal voltages vd, vg, vs, and vb. The type of
internal state, for example, the drain source resistance rds can
be selected by the select output flag. In some cases, it is
necessary to use a measured value for the threshold voltage
instead of the calculated. Use the select input flag to select
measured or calculated. If this is not equal to zero, then the
value in value input is used for vth instead of the calculated
one.

Input Arguments:

Inputs: Array with 4 parameters P1 .. P4
of the bin corners

Array with 4 gate lengths L1 .. L4
of the bin corners

Array with 4 gate widths W1 .. W4
of the bin corners

Array with 4 values for the number
of gate fingers NF1 .. NF4 of the
bin corners

Parameter set (get with
'BSIM3_DC_get_parameter()')

Output: Array containing error condition
and binning parameters
outputs[0] = error condition

(0=o.k., any other number
indicates an error)

outputs[1] = P0
outputs[2] = PL
outputs[3] = PW
outputs[4] = PP

Extracts: Binning parameters P0, PL, PW, PP
449

450

8 IC-CAP Functions

Input Arguments:

Variables: vd Drain voltage
vg Gate voltage
vs Source voltage
vb Bulk voltage
Length (L) Gate length
Width (W) Gate width
select input (if 1 use value input
for

Vth)
value input (value input for Vth if

select input = 1)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Output: Vector with BSIM4 internal states
for the given DC bias point.
By setting debug = 1, this vector is
printed with explanations:

0. leff
1. weff
2. -
3. -
4. dl
5. dws
6. vtm0
7. eg0
8. ni
9. vbi
10. vbc
11. xdep0
12. xdep
13. cdep
14. cox
15. -
16. -
17. lt0
18. lt
19. ltw
20. phi
21. phis
22. VFB
23. -
451

452

8 IC-CAP Functions

24. vgsteff
25. vbseff
26. vdseff
27. vth0
28. -
29. -
30. pocket implant =nonlat
31. narrow channel effect = k3w0
32. short channel effect = dvtx
33. small channel effect = dvtx_w
34. high vds effect = eta_vd
35. vth
36. -
37. abulk
38. litl
39. ueff
40. esat
41. rds
42. -
43. -
44. vdsat
45. ids0 (without resistance)
46. idsr (with resistance)
47. vasat
48. vaclm
49. va
50. -
51. -
52. vadibl
53. inv_vascbe
54. ids (with output resistance)
55. -
56. n
57. -
58. actual version

Example call in PEL:
erg = BSIM3_DC_calculate(par, point_vd, point_vg, 0,

point_vb, MAIN.L, MAIN.W, 0, 0, TEMP, TYPE, 0)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM3_DC_get_parameter This function loads all BSIM3
model parameters from the actual model parameter set and
checks them for consistency. Without finding errors, the
function gives back an array with model parameters in a
given order.

Output: Array of BSIM3 model parameters
in the following order:

error = outputs[0]; ! in case of an
! error during the parameter

check
! error would be set to 1e-99

LEVEL = outputs[1];
VERSION = outputs[2];
MOBMOD = outputs[3];
TOX = outputs[4]
TOXM = outputs[5]
XJ = outputs[6]
NCH = outputs[7]
NGATE = outputs[8]
RSH = outputs[9]
VTH0 = outputs[10]
K1 = outputs[11]
K2 = outputs[12]
K3 = outputs[13]
K3B = outputs[14]
W0 = outputs[15]
NLX = outputs[16]
VBM = outputs[17]
DVT0 = outputs[18]
DVT1 = outputs[19]
DVT2 = outputs[20]
DVT0W = outputs[21]
DVT1W = outputs[22]
DVT2W = outputs[23]
U0 = outputs[24]
UA = outputs[25]
UB = outputs[26]
UC = outputs[27]
VSAT = outputs[28]
453

454

8 IC-CAP Functions

A0 = outputs[29]
AGS = outputs[30]
B0 = outputs[31]
B1 = outputs[32]
KETA = outputs[33]
A1 = outputs[34]
A2 = outputs[35]
WINT = outputs[36]
LINT = outputs[37]
DWG = outputs[38]
DWB = outputs[39]
VOFF = outputs[40]
NFACTOR = outputs[41]
ETA0 = outputs[42]
ETAB = outputs[43]
DSUB = outputs[44]
CIT = outputs[45]
CDSC = outputs[46]
CDSCB = outputs[47]
CDSCD = outputs[48]
PCLM = outputs[49]
PDIBLC1 = outputs[50]
PDIBLC2 = outputs[51]
PDIBLCB = outputs[52]
DROUT = outputs[53]
PSCBE1 = outputs[54]
PSCBE2 = outputs[55]
PVAG = outputs[56]
DELTA = outputs[57]
RDSW = outputs[58]
PRWG = outputs[59]
PRWB = outputs[60]
WR = outputs[61]
ALPHA0 = outputs[62]
ALPHA1 = outputs[63]
BETA0 = outputs[64]
TNOM = outputs[65]
UTE = outputs[66]
KT1 = outputs[67]
KT1L = outputs[68]
KT2 = outputs[69]
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
par = BSIM3_DC_get_parameter()

BSIM3_DC_vth Picks up 1 single sweep curve of id=f(vg) of
a specified setup and extracts the threshold voltage vth. The
setup is specified by the parameters path to vd, ... etc. This
makes it easier to call the function with variable inputs
inside the PEL programs.

The 'Flag' variable is used to define certain conditions, for
example, the extraction of vth for the large device that does
not need to calculate all the early voltage values.

UA1 = outputs[70]
UB1 = outputs[71]
UC1 = outputs[72]
AT = outputs[73]
PRT = outputs[74]
WL = outputs[75]
WLN = outputs[76]
WW = outputs[77]
WWN = outputs[78]
WWL = outputs[79]
LL = outputs[80]
LLN = outputs[81]
LW = outputs[82]
LWN = outputs[83]
LWL = outputs[84]
WLC = outputs[85]
WWC = outputs[86]
WWLC = outputs[87]
BINUNIT = outputs[88]

Input Arguments:

Input: parameter set (get with
'BSIM3_DC_get_parameter()')
455

456

8 IC-CAP Functions

Example call in PEL:
erg = BSIM3_DC_vth(par, MAIN.L, MAIN.W, flag, i,

TEMP, TYPE, 0, ".", "vd","vg","vb","id","M")

BSIM3_error This function takes a set of measured and
simulated data and calculates the error between simulation
and measurement in the specified range (xmin, xmax, ymin,
ymax). The error is given back as output. In addition, the
maximum error and the root mean square (RMS) error are
given back through an IC-CAP system variable.

Variables: Length (L)
Width (W)
Flag for extraction options

flag:
0 Large device @ low vds
1 Short and small device @ low

vds
2 Short and small device @

high vds
3 A constant reference current

Idref = ID_REF_VTH*W/L is
used where ID_REF_VTH is
a model variable.

of curve
Temperature (Degree C)
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of

the function 0:)

Parameters: path to setup
vd
vg
vb
id
type id

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
error = BSIM3_error(vg,id.m,id.s,0,3,0,1e-6,"MAX_ERROR",
"RMS_ERROR")

BSIM3_set_opt The function accepts a list of model
parameters, separated by blanks (e.g., “A0 AGS KETA”) and
searches the range information for these parameters in the
range_<PARAMETER> variables in the referenced path.

After analyzing the range information for each parameter,
the variables min_<PARAMETER> and max_<PARAMETER>
in the local setup/DUT are set. These variables can be used
as upper/lower limit in an optimizer call.

The range information is stored in a string in the following
format:

Input Arguments:

Inputs: x-coordinate values
measured y-coordinate values
simulated y-coordinate values

Variables: x_min
x_max
y_min
y_max

Parameters: IC-CAP Variable to write
MAX_ERROR

IC-CAP Variable to write
RMS_ERROR

Output: error in the specified range, all
other points of the output = 0
range_A0
>-1 0 10 -

| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|______________ lower error condition ({operator(>,>=), value}{-)}
457

458

8 IC-CAP Functions

Example call in PEL:
erg = BSIM3_set_opt("RDSW PRWG

PRWB","Extraction_configuration/Boundaries")

BSIM3_toolkit_vth Picks up 1 single sweep curve of id=f(vg) of
a specified setup and extracts the threshold voltage vth. The
setup is specified by the parameters path to vd and so on. This
makes it easier to call the function with variable inputs inside
the PEL programs.

The Flag variable is used to define certain conditions. For
example, the extraction of vth for the large device, which does
not need to calculate all the early voltage values.

Input Arguments:

Parameters: Parameter names, separated by
blanks

Path to parameter range definition

Output: Flag for correct operation:
0: everything is ok
-1: error during function

execution (e.g., variable 'range_xx'
not found)

Input arguments

Variables:
Length (L)
Width (W)
Flag for extraction options

flag: 0 Large device q low vds
1 Short and small device

@
 low vds

2 Short and small device
@

high vds
of curve

Parameters: path to setup, vd, vg, vb, id, type
id

Output: Value vth or failure indicator
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM3CV_total_cap Extracts the total PN junction
capacitance parameters from the bottom and sidewall for the
BSIM3 model. Requires C-V measurement on 2 different
geometries. The first measurement should be on a device in
which the bottom capacitance dominates. The second
measurement should be on a device in which the sidewall
capacitance dominates.

BSIM3CVmodCBD BSIM3 Bulk to Drain Capacitance
model. Calculates CBD from the input voltage.

BSIM3CVmodCBS BSIM3 Bulk to Source Capacitance
model. Calculates CBS from the input voltage.

BSIM3DC_bulk_short Standard extraction for the BSIM 3
model. Extracts substrate current parameters using Ib versus
Vg measured on a set of devices with a large and fixed
width and different length.

BSIM3DC_lin_large Standard extraction for the BSIM 3
model. Extracts linear region parameters using Id versus Vg
measured on a large device.

BSIM3DC_lin_narrow Standard extraction for the BSIM 3
model. Extracts width effect parameters using Id versus Vg
measured on a set of devices with a large and fixed length
and different width.

Extracts: Vth (1e99 indicates error)

Extracts: CJ, MJ, CJSW, MJSW, PB

Extracts: ALPHA0, BETA0

Extracts: VTH0, K1, K2, U0, UA, UB, UC,
VOFF
459

460

8 IC-CAP Functions

BSIM3DC_lin_short Standard extraction for the BSIM 3
model. Extracts length effect parameters using Id versus Vg
measured on a set of devices with a large and fixed width
and different length.

BSIM3DC_lin_small Standard extraction for the BSIM 3
model. Extracts small effect parameters using Id versus Vg
measured on a set of devices with a short and fixed length
and different width.

BSIM3DC_model UCB BSIM3 MOS model. Calculates Id, Gd,
Rout, or Ib from voltages.

BSIM3DC_sat_narrow Standard extraction for the BSIM 3
model. Extracts saturation parameters using Id versus Vd
measured on a set of devices with a large and fixed length
and different width.

BSIM3DC_sat_short Standard extraction for the BSIM 3
model. Extracts saturation and output resistance parameters
using Id versus Vd measured on a set of devices with a large
and fixed width and different length.

Extracts: K3, W0, K3B, WINT, DWB

Extracts: DVT0, DVT1, DVT2, LINT, RDSW,
NLX, PRWB

Extracts: WR, DVT0W, DVT1W, DVT2W

Extracts: B0, B1

Extracts: A0, A1, A2, DROUT, VSAT, PCLM,
PDIBLC1, PDIBLC2, PSCBE1,
PSCBE2, PVAG
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM3DC_sat_short2 Standard extraction for the BSIM 3
model. Extracts saturation parameters using Id versus Vd
measured on a set of devices with a large and fixed width
and different length.

BSIM3DC_sub_short Standard extraction for the BSIM 3
model. Extracts subthreshold parameters using Id versus Vg
measured on a set of devices with a large and fixed width
and different length.

BSIM3DC_sub_short2 Standard extraction for the BSIM 3
model. Extracts subthreshold parameters at high drain
voltage using Id versus Vg measured on a set of devices with
a large and fixed width and different length.

BSIM3DC_vth Calculates the threshold voltage from Id
versus Vg measurements.

BSIM3DC_vth_sim Calculates the threshold voltage from the
model parameters.

BSIM3DC_vth_versus Acquires threshold voltage data versus
length or width to display in plot.

Extracts: KETA, PDIBLCB

Extracts: CDSC, CDSCB, NFACTOR

Extracts: ETA0, ETAB, CDSCD
461

462

8 IC-CAP Functions

BSIM4_check_par Checks whether a model parameter is in
a predefined range. The range information for this parameter
must be given in a variable in the referenced path. The
range information is stored in a string in the following
format:
range_A0
>-1 0 10 -
| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|______________ lower error condition ({operator(>,>=), value}{-)}
Example call in PEL:
check = BSIM4_check_par(prwg,"PRWG",

"/BSIM4_DC_CV/Extraction_configuration/Boundaries")

BSIM4_DC_calc_bin_parameter This function calculates from
the input the 4 binning parameters P0, PL, PW, and PP. If the
calculation is done correctly, outputs[0] will return 0.
Otherwise, outputs[0] will result in a negative number. In such
a case, the error will be printed in detail in the output window.

Input Arguments:

Variables: Actual value of parameter to check

Parameters: Parameter name
Path to parameter range definition

Output: Flag for correct operation:
0: parameter is in specified range
−1: parameter is outside specified

range
−2: error during function execution
(e.g. variable 'range_xx' not found)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
complex l[4]
complex w[4]
:
l[0]= 1u
:
par = BSIM4_DC_get_parameter()
bin_par = BSIM4_DC_calc_bin_parameter(p, l, w, nf, par)

Input Arguments:

Inputs: Array with 4 parameters P1 .. P4
of

the bin corners
Array with 4 gate lengths L1 .. L4
of

the bin corners
Array with 4 gate widths W1 .. W4
of

the bin corners
Array with 4 values for the number

of gate fingers NF1 .. NF4 of the
bin

corners
Parameter set (get with

'BSIM4_DC_get_parameter()')

Output: Array containing error condition
and binning parameters
outputs[0] = error condition
(0=o.k.,

any other number indicates an
error)

outputs[1] = P0
outputs[2] = PL
outputs[3] = PW
outputs[4] = PP

Extracts: Binning parameters P0, PL, PW,
PW
463

464

8 IC-CAP Functions

BSIM4_DC_calculate Calculates the drain current of the
BSIM4.2.0 model and different internal states of the model
for the given terminal voltages vd, vg, vs, and vb. The type
of internal state, for example, the drain source resistance
rds can be selected by the select output flag. In some cases,
it is necessary to use a measured value for the threshold
voltage instead of the calculated. Use the select input flag to
select measured or calculated. If this is not equal to zero,
then the value in value input is used for vth instead of the
calculated one.

Input Arguments:

Input: Parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: vd Drain voltage
vg Gate voltage
vs Source voltage
vb Bulk voltage
Length (L) Gate length
Width (W) Gate width
Number fingers (NF) Number of
gate

fingers
select input (if 1 use value input
for

Vth)
value input (value input for Vth if

select input = 1)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Output: Vector with BSIM4 internal states
for the given DC bias point.
By setting debug = 1, this vector is
printed with explanations:

0. leff
1. weff
2. weffs
3. weffcj
4. dl
5. dws
6. vtm0
7. eg0
8. ni
9. vbi
10. vbc
11. xdep0
12. xdep
13. cdep
14. coxe
15. coxp
16. coxeff
17. lt0
18. lt
19. ltw
20. phi
21. phis
22. VFB
23. vgse
24. vgsteff
25. vbseff
26. vdseff
27. vth0
28. bulk effect k1 = term[0]
29. bulk effect k2 = term[1]
30. pocket implant = term[2]
31. narrow channel effect = term[3]
32. short channel effect = term[4]
33. small channel effect = term[5]
34. high vds effect = term[6]
35. vth
465

466

8 IC-CAP Functions

Example call in PEL:
erg = BSIM4_DC_calculate(par, point_vd, point_vg, 0,

point_vb, MAIN.L, MAIN.W, MAIN.NF, 0, 0, TEMP, TYPE, 0)

36. f_doping
37. abulk
38. litl
39. ueff
40. esat
41. rds
42. rd
43. rs
44. vdsat
45. ids0 (without resistance)
46. idsr (with resistance)
47. vasat
48. vaclm
49. va
50. cclm
51. vadits
52. vadibl
53. inv_vascbe
54. ids (with output resistance)
55. vth_dits
56. n
57. vfbsd
58. actual version
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM430_DC_calculate Calculates the drain current of the
BSIM4.3.0 model and different internal states of the model
for the given terminal voltages vd, vg, vs and vb. The type of
internal state, for example, the drain source resistance rds
can be selected by the select output flag. In some cases, it is
necessary to use a measured value for the threshold voltage
instead of the calculated. Use the select input flag to select
measured or calculated. If this is not equal to zero, then the
value in value input is used for vth instead of the calculated
one.

Input arguments:

Input: Parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: vd Drain voltage
vg Gate voltage
vs Source voltage
vb Bulk voltage
Length (L) Gate length
Width (W) Gate width
SA Distance between OD edge to

poly from one side
SB Distance between OD edge to

poly from other side
SD Distance between neighboring

fingers
Number fingers (NF) Number of

gate fingers
select input (if 1 use value input

for Vth)
value input (value input for Vth if

select input = 1)

Parameters: -
467

468

8 IC-CAP Functions

Output: Vector with BSIM4 internal states
for the given DC bias point.
By setting debug = 1, this vector is
printed with explanations:
0. leff
1. weff
2. weffs
3. weffcj
4. dl
5. dws
6. vtm0
7. eg0
8. ni
9. vbi
10. vbc
11. xdep0
12. xdep
13. cdep
14. coxe
15. coxp
16. coxeff
17. lt0
18. lt
19. ltw
20. phi
21. phis
22. VFB
23. vgse
24. vgsteff
25. vbseff
26. vdseff
27. vth0
28. bulk effect k1 = term[0]
29. bulk effect k2 = term[1]
30. pocket implant = term[2]
31. narrow channel effect = term[3]
32. short channel effect = term[4]
33. small channel effect = term[5]
34. high vds effect = term[6]
35. vth
36. f_doping
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
erg = BSIM430_DC_calculate(par, point_vd, point_vg, 0,
point_vb, MAIN.L, MAIN.W, MAIN.NF, MAIN.SA, MAIN.SB,
MAIN.SD, 0, 0, TEMP, TYPE, 0)

BSIM450_DC_calculate Calculates the drain current of the
BSIM4.3.0 model and different internal states of the model
for the given terminal voltages vd, vg, vs and vb. The type of
internal state, e.g. the drain source resistance rds can be
selected by the select output flag. In some cases, it is
necessary to use a measured value for the threshold voltage
instead of the calculated. Use the select input flag to select
measured or calculated. If this is not equal to zero, then the
value in value input is used for vth instead of the calculated
one.

37. abulk
38. litl
39. ueff
40. esat
41. rds
42. rd
43. rs
44. vdsat
45. ids0 (without resistance)
46. idsr (with resistance)
47. vasat
48. vaclm
49. va
50. cclm
51. vadits
52. vadibl
53. inv_vascbe
54. ids (with output resistance)
55 vth_dits
56. n
57. vfbsd
58. actual version
469

470

8 IC-CAP Functions

Input Arguments:

Input: Parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: vd Drain voltage
vg Gate voltage
vs Source voltage
vb Bulk voltage
Length (L) Gate length
Width (W) Gate width
SA Distance between OD edge to
poly from one side
SB Distance between OD edge to
poly from other side
SD Distance between neighboring
fingers
SCA Integral of the first
distribution function for scattered
well dopant
SCB Integral of the second
distribution function for scattered
well dopant
SCC Integral of the third
distribution function for scattered
well dopant
SC Distance to a single well edge
Number fingers (NF) Number of
gate fingers
select input (if 1 use value input
for Vth)
value input (value input for Vth if
select input = 1)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Parameters: -

Output: Vector with BSIM4 internal states
for the given DC bias point.
By setting debug = 1, this vector is
printed with explanations:
0. leff
1. weff
2. weffs
3. weffcj
4. dl
5. dws
6. vtm0
7. eg0
8. ni
9. vbi
10. vbc
11. xdep0
12. xdep
13. cdep
14. coxe
15. coxp
16. coxeff
17. lt0
18. lt
19. ltw
20. phi
21. phis
22. VFB
23. vgse
24. vgsteff
25. vbseff
26. vdseff
27. vth0
28. bulk effect k1 = term[0]
29. bulk effect k2 = term[1]
30. pocket implant = term[2]
31. narrow channel effect = term[3]
32. short channel effect = term[4]
33. small channel effect = term[5]
34. high vds effect = term[6]
471

472

8 IC-CAP Functions

Example call in PEL:
erg = BSIM450_DC_calculate(par, point_vd, point_vg, 0,
point_vb, MAIN.L, MAIN.W, MAIN.NF, MAIN.SA, MAIN.SB,
MAIN.SD, MAIN.SCA, MAIN.SCB, MAIN.SCC, MAIN.SC, 0, 0,
TEMP, TYPE, 0)

BSIM4_DC_extr_A0_AGS_KETA Extract model parameters A0,
AGS, KETA from the measurement:

id = f(Vgs) @ diff. Vbs @ high Vds

from a transistor with large and wide gate length.

35. vth
36. f_doping
37. abulk
38. litl
39. ueff
40. esat
41. rds
42. rd
43. rs
44. vdsat
45. ids0 (without resistance)
46. idsr (with resistance)
47. vasat
48. vaclm
49. va
50. cclm
51. vadits
52. vadibl
53. inv_vascbe
54. ids (with output resistance)
55 vth_dits
56. n
57. vfbsd
58. actual version
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
erg = BSIM4_DC_extr_A0_AGS_KETA(par, MAIN.L, MAIN.W,

MAIN.NF, TEMP, TYPE, 0,".","vd","vg","vb","id")

BSIM4_DC_get_parameter This function loads all BSIM4
model parameters from the actual model parameter set and
checks them for consistency. Without finding errors, the
function gives back an array with model parameters in a
given order.

Input Arguments:

Input: parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: Length (L)
Width (W)
Number fingers (NF)
Temperature (Degree C)
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of
the function 0:)

Parameters: path to setup
vd
vg
vb
id
type id

Output: Value of:
output[0] = a0
output[1] = ags
output[2] = keta

In the case of an error, all 3
outputs are set to 1e99

Extracts: A0, AGS, KETA
473

474

8 IC-CAP Functions

Output: Array of BSIM4 model parameters
in the following order:

error = outputs[0]; ! in case of an
! error during the parameter

check
! error would be set to 1e-99

LEVEL = outputs[1];
VERSION = outputs[2];
MOBMOD = outputs[3];
RDSMOD = outputs[4];
IGCMOD = outputs[5];
IGBMOD = outputs[6];
GEOMOD = outputs[7];
EPSROX = outputs[8];
TOXE = outputs[9];
TOXP = outputs[10];
TOXM = outputs[11];
DTOX = outputs[12];
XJ = outputs[13];
NDEP = outputs[14];
NGATE = outputs[15];
NSD = outputs[16];
XT = outputs[17];
RSH = outputs[18];
RSHG = outputs[19];
VTH0 = outputs[20];
PHIN = outputs[21];
K1 = outputs[22];
K2 = outputs[23];
K3 = outputs[24];
K3B = outputs[25];
W0 = outputs[26];
LPE0 = outputs[27];
LPEB = outputs[28];
VBM = outputs[29];
DVT0 = outputs[30];
DVT1 = outputs[31];
DVT2 = outputs[32];
DVTP0 = outputs[33];
DVTP1 = outputs[34];
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

DVT0W = outputs[35];
DVT1W = outputs[36];
DVT2W = outputs[37];
U0 = outputs[38];
UA = outputs[39];
UB = outputs[40];
UC = outputs[41];
EU = outputs[42];
VSAT = outputs[43];
A0 = outputs[44];
AGS = outputs[45];
B0 = outputs[46];
B1 = outputs[47];
KETA = outputs[48];
A1 = outputs[49];
A2 = outputs[50];
WINT = outputs[51];
LINT = outputs[52];
DWG = outputs[53];
DWB = outputs[54];
VOFF = outputs[55];
VOFFL = outputs[56];
MINV = outputs[57];
NFACTOR = outputs[58];
ETA0 = outputs[59];
ETAB = outputs[60];
DSUB = outputs[61];
CIT = outputs[62];
CDSC = outputs[63];
CDSCB = outputs[64];
CDSCD = outputs[65];
PCLM = outputs[66];
PDIBLC1 = outputs[67];
PDIBLC2 = outputs[68];
PDIBLCB = outputs[69];
DROUT = outputs[70];
PSCBE1 = outputs[71];
PSCBE2 = outputs[72];
PVAG = outputs[73];
DELTA = outputs[74];
FPROUT = outputs[75];
475

476

8 IC-CAP Functions

PDITS = outputs[76];
PDITSL = outputs[77];
PDITSD = outputs[78];
RDSW = outputs[79];
RDSWMIN = outputs[80];
RDW = outputs[81];
RDWMIN = outputs[82];
RSW = outputs[83];
RSWMIN = outputs[84];
PRWG = outputs[85];
PRWB = outputs[86];
WR = outputs[87];
ALPHA0 = outputs[88];
ALPHA1 = outputs[89];
BETA0 = outputs[90];
AGIDL = outputs[91];
BGIDL = outputs[92];
CGIDL = outputs[93];
EGIDL = outputs[94];
AIGBACC = outputs[95];
BIGBACC = outputs[96];
CIGBACC = outputs[97];
NIGBACC = outputs[98];
AIGBINV = outputs[99];
BIGBINV = outputs[100];
CIGBINV = outputs[101];
EIGBINV = outputs[102];
NIGBINV = outputs[103];
AIGC = outputs[104];
BIGC = outputs[105];
CIGC = outputs[106];
AIGSD = outputs[107];
BIGSD = outputs[108];
CIGSD = outputs[109];
DLCIG = outputs[110];
NIGC = outputs[111];
POXEDGE = outputs[112];
PIGCD = outputs[113];
NTOX = outputs[114];
TOXREF = outputs[115];
DWJ = outputs[116];
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

TNOM = outputs[117];
UTE = outputs[118];
KT1 = outputs[119];
KT1L = outputs[120];
KT2 = outputs[121];
UA1 = outputs[122];
UB1 = outputs[123];
UC1 = outputs[124];
AT = outputs[125];
PRT = outputs[126];
WL = outputs[127];
WLN = outputs[128];
WW = outputs[129];
WWN = outputs[130];
WWL = outputs[131];
LL = outputs[132];
LLN = outputs[133];
LW = outputs[134];
LWN = outputs[135];
LWL = outputs[136];
WLC = outputs[137];
WWC = outputs[138];
WWLC = outputs[139];
XL = outputs[140];
XW = outputs[141];
BINUNIT = outputs[142];
LAMBDA = outputs[143];
VTL = outputs[144];
XN = outputs[145];
LC = outputs[146];
SAREF = outputs[147];
SBREF = outputs[148];
WLOD = outputs[149];
KU0 = outputs[150];
KVSAT = outputs[151];
TKU0 = outputs[152];
LKU0 = outputs[153];
WKU0 = outputs[154];
PKU0 = outputs[155];
477

478

8 IC-CAP Functions

Example call in PEL:
par = BSIM4_DC_get_parameter()

BSIM4_DC_vth Picks up 1 single sweep curve of id=f(vg) of
a specified setup and extracts the threshold voltage vth. The
setup is specified by the parameters path to vd, ... etc. This
makes it easier to call the function with variable inputs
inside the PEL programs.

The 'Flag' variable is used to define certain conditions, for
example, the extraction of vth for the large device that does
not need to calculate all the early voltage values.

LLODKU0 = outputs[156];
WLODKU0 = outputs[157];
KVTH0 = outputs[158];
LKVTH0 = outputs[159];
WKVTH0 = outputs[160];
PKVTH0 = outputs[161];
LLODVTH = outputs[162];
WLODVTH = outputs[163];
STK2 = outputs[164];
LODK2 = outputs[165];
STETA0 = outputs[166];
LODETA0 = outputs[167];
TEMPMOD = outputs[168];
UD = outputs[169];
UP = outputs[170];
LP = outputs[171];
UD1 = outputs[172];
TVFBSDOFF = outputs[173];
TVOFF = outputs[174];
WEB = outputs[175];
WEC = outputs[176];
KVTH0WE = outputs[177];
K2WE = outputs[178];
KU0WE = outputs[179];
SCREF = outputs[180];
WPEMOD = outputs[181];

Input Arguments:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
erg = BSIM4_DC_vth(par, MAIN.L, MAIN.W, flag, i, MAIN.NF,

TEMP, TYPE, 0, ".", "vd","vg","vb","id","M")

BSIM430_DC_vth "Picks up one single sweep curve of
id=f(vg) of a specified setup and extracts the threshold
voltage Vth. The setup is specified by the parameters path to
vd, ... etc. This function should only be used with model
versions BSIM4.3 and higher.

Input: parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: Length (L)
Width (W)
Flag for extraction options

flag: 0 Large device @ low vds
1 Short and small device @

low vds
2 Short and small device @

high vds
3 A constant reference

current Idref =
ID_REF_VTH*W/L is used
where ID_REF_VTH is a
model variable.

of curve
Number fingers (NF)
Temperature (Degree C)
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of

the function 0: nothing)

Parameters: path to setup
vd
vg
vb
id
type id

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)
479

480

8 IC-CAP Functions

Example call in PEL:
erg = BSIM430_DC_vth(par, MAIN.L, MAIN.W, MAIN.NF,
MAIN.SA, MAIN.SB, MAIN.SD, flag, ID_REF_VHT, i, TEMP,
TYPE, 0, ".", "vd","vg","vb","id","M")

Input Arguments:

Input: Parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: Length(L)
Width (W)
Number fingers (NF)
SA
SB
SD
Flag for extraction options

flag: 0 Large device @ low vds
1 Short and small device @

low vds
2 Short and small device @

high vds
3 A constant reference

current
Idref = ID_REF_VTH*W/L is used
Reference current ID_REF_VTH for
extraction options 3
of curve
Temperature (Degree C)
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of
the function 0: nothing)

Parameters: path to setup
vd
vg
vb
id
type id

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

BSIM450_DC_vth Picks up one single sweep curve of
id=f(vg) of a specified setup and extracts the threshold
voltage Vth. The setup is specified by the parameters path to
vd, ... etc. This function should only be used with model
versions BSIM4.5 and higher.

Input Arguments:

Input: Parameter set (get with
'BSIM4_DC_get_parameter()')

Variables: Length(L)
Width (W)
Number fingers (NF)
SA
SB
SD
SCA
SCB
SCC
SC
Flag for extraction options

flag: 0 Large device @ low vds
1 Short and small device @

low vds
2 Short and small device @

high vds
3 A constant reference

current Idref =
ID_REF_VTH*W/L is used

4 A constant reference
current Idref =
ID_REF_VTH*(W-2*Delta
W)/(L-2*Delta L)
481

482

8 IC-CAP Functions

Example call in PEL:
erg = BSIM450_DC_vth(par, MAIN.L, MAIN.W, MAIN.NF,
MAIN.SA, MAIN.SB, MAIN.SD, MAIN.SC, MAIN.SCA, MAIN.SCB,
MAIN.SCC, flag, i, TEMP, TYPE, 0, ".",
"vd","vg","vb","id","M")

BSIM4_error This function takes a set of measured and
simulated data and calculates the error between simulation
and measurement in the specified range (xmin, xmax, ymin,
ymax). The error is given back as output. In addition, the
maximum error and the root mean square (RMS) error are
given back through an IC-CAP system variable.

Reference current ID_REF_VTH for
extraction options 3,4

Delta L (one side) for extraction
options 4

Delta W (one side) for extraction
options 4

of curve
Temperature (Degree C)
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of

the function 0: nothing)

Parameters: path to setup
vd
vg
vb
id
type id

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)

Input Arguments:

Inputs: x-coordinate values
measured y-coordinate values
simulated y-coordinate values
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
error = BSIM4_error(vg,id.m,id.s,0,3,0,1e-6,"MAX_ERROR",
"RMS_ERROR")

BSIM4_set_opt The function accepts a list of model
parameters, separated by blanks (e.g., “A0 AGS KETA”) and
searches the range information for these parameters in the
range_<PARAMETER> variables in the referenced path.

After analyzing the range information for each parameter,
the variables min_<PARAMETER> and max_<PARAMETER>
in the local setup/DUT are set. These variables can be used
as upper/lower limit in an optimizer call.

The range information is stored in a string in the following
format:

Variables: x_min
x_max
y_min
y_max

Parameters: IC-CAP Variable to write
MAX_ERROR

IC-CAP Variable to write
RMS_ERROR

Output: error in the specified range, all
other points of the output = 0
range_A0
>-1 0 10 -

| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|______________ lower error condition ({operator(>,>=), value}{-)}
Input Arguments:

Parameters: Parameter names, separated by
blanks

Path to parameter range definition
483

484

8 IC-CAP Functions

Example call in PEL:
erg = BSIM4_set_opt("RDSW PRWG

PRWB","Extraction_configuration/Boundaries")

BSIMCV_total_cap This function is obsolete.

Extracts the total PN junction capacitance parameters from the
bottom and sidewall for the BSIM1 and BSIM2 models. Requires
C-V measurement on 2 different geometries. The first
measurement should be on a device in which the bottom
capacitance dominates. The second measurement should be on
a device in which the sidewall capacitance dominates.

ceil Returns the smallest integer not less than the given
value.

Output: Flag for correct operation:
0: everything is ok
-1: error during function

execution (e.g., variable 'range_xx'
not found)

Input Arguments:

Data Sets: Cap 1, Cap 2, Junction V

Reals or Integers: Cap 1 Area, Cap 1 Perim, Cap 2
Area, Cap 2 Perim

Output: None

Extracts: CJ, MJ, CJSW, MJSW, PB

Automatic Invocation: By Extract menu function

Input Arguments:

Reals: Number

Output: Single real

Automatic Invocation: On Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

check_error_log Checks the .icerrlog file to see if any
error messages were logged during the execution of the
previous function. The log file can be viewed using any text
editor (or in a terminal window using more .icerrlog). Note:
the .icerrlog file is cleared each time you start IC-CAP.

PEL Example
x = check_error_log()

circlefit Performs a circlefit on a set of complex data
centered on the REAL axis. Returns a 2 point data set
containing the center and radius. If the OVERRIDE_LIMITS
variable is TRUE, the limits can be specified manually with
the X_LOW and X_HIGH variables. These limits will always
apply to the first Sweep in the Setup.

conjg Complex conjugate function.

Input Arguments:

Strings/Pars/Vars: mpme

Output: Returns 0 if no errors; non-zero
if errors are logged.

Automatic Invocation: MANUAL

Input Arguments:

Data Sets: Input

Reals or Integers: Step Number (0 is first)

Output: Array of 2 points: center then
radius

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)
485

486

8 IC-CAP Functions

Connect Switching matrix function. Used to connect or
disconnect the specified port and pin. Initialize the
switching matrix with SWM_init before this function. For
more information regarding this function, refer to “External
Matrix Driver User Functions” on page 168.

copy2output Copies the input data set to a measured or
simulated output data set.

correlation Calculates the correlation coefficient for 1
data set versus another, at a particular curve (step number).
Indicates the degree to which the 2 data sets share a linear
dependence.

cos Cosine of an angle in radians.

Automatic Invocation: On Data Set Input Change

Input Arguments:

Reals or Integers: Port Addr, Pin Number

Output: Single number with exit status.

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1, Input 2

Reals or Integers: Step Number (0 is first)

Output: single value in the interval [-1,1]

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

cosh Hyperbolic cosine.

dataset Enables you to access the dataset referred to by a
string. A second argument may be specified that is a variable to
receive any error string normally going to a red error box.

Example:
x=dataset("/npn/dc/fgummel/vb")
print x[4]
x=dataset("/npn/dc/fgummel/badname",errstr)
if errstr<>"" then print errstr

If you try to run a transform that uses the dataset()
function, a warning message appears in the Status window.
The message appears since you are creating a transform that
depends on data in another output or transform. However,
each time you run the transform, you could depend on a
different set of data because the argument to dataset() is
only known at run-time and could change each time you run
the transform.

IC-CAP can’t track this dependency as it does all other
dependencies. Since it can’t track the dependency, it cannot
automatically execute the transform, and it sends the
warning message to the Status window.

To prevent the error message from appearing, you can set up
a transform that does not require automatic updating when
the argument in dataset() is updated. If automatic updating
is not needed, you can suppress the warning by prepending
the word quiet to the dataset() argument as shown in this
example:

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
487

488

8 IC-CAP Functions

x=dataset("quiet "&mydata)

where mydata is the string containing the name of the data
you want to access.

derivative This function has been deprecated. Use the
derivative2 function instead for calculating derivatives.

Calculates the derivative of data set Y relative to data set X. The
order can be specified. A 3-point numerical derivative formula
is used, except for the endpoints, where a 2-point formula is
used.

derivative2 Calculates the derivative of data set Y relative to
data set X. The order can be specified. The number of points per
sweep can be specified. If number of points per sweep is set to
0, then the data is assumed to be a single curve. If number of
points per sweep is set to -1, then the function will act as the
same derivative function, requiring the local setup to determine
the number of points per curve. If number of points is >=0 then
the function may be called on any arbitrary sets of data of the
same size, even from a macro.

A 3-point numerical derivative formula is used, except for the
endpoints, where a 2-point formula is used.

Input Arguments:

Data Sets: X Data, Y Data

Reals or Integers: Order

Output: Array of real numbers; size
determined by number of points in
setup

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Reals or Integers: Order, Points per sweep
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

DIODEDCmod_ia Given the forward diode voltage, the anode
current is calculated according to the UCB diode model.

EEbjt2_ce_dc_iv Solves for the dependent terminal
characteristic (current or voltage) at the input or output
port given any combination of independent variables.

Example PEL statement:
icf_gummel = EEbjt2_ce_dc_iv(vb, vc, "V", "V", "2")

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Diode V

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Usage: EEbjt2_ce_dc_iv(<Port 1 Input>,
<Port 2 Input>, <Port 1 Mode>,
<Port 2 Mode>, <Output Port>)

Input Arguments:

<Port 1 Input> Current or voltage dataset for port
1

<Port 2 Input> Current or voltage dataset for port
2

<Port 1 Mode> Port 1 mode, “V” for voltage or “I”
for current

<Port 2 Mode> Port 2 mode, “V” for voltage or “I”
for current

<Output Port> Port number for output dataset
(“1” or “2”)
489

490

8 IC-CAP Functions

EEbjt2_ce_ss_elements Computes the intrinsic
conductance, transconductance, capacitance or
transcapacitance at the input or output port of the bjt2
model.

Example PEL statement:
g11 = EEbjt2_ce_ss_elements(ibase, vce, "I", "V", "G11")

EEbjt2_extrinsic_ckt Embeds the effect of the extrinsic
elements onto s-parameter data, or de-embeds the effect of
the extrinsic elements from s-parameter data. Resistances
and inductances are series elements separated by the shunt
capacitances Cxbc, Cxbe and Cxce. If the input s-parameter
dataset is of the same size as the frequency dataset in the
referenced setup, then it is assumed that the s-parameters
vary over the frequencies specified and these frequencies
will be used in the embedding or de-embedding operation.
In this case, the <Frequency> parameter is not used. If
however, the input s-parameter dataset has a size which
differs from that of the frequency dataset in the referenced

Usage: EEbjt2_ce_ss_elements(<Port 1
Input>, <Port 2 Input>, <Port 1
Mode>, <Port 2 Mode>, <Element
Name>)

Input Arguments:

<Port 1 Input> Current or voltage dataset for port
1

<Port 2 Input> Current or voltage dataset for port
2

<Port 1 Mode> Port 1 mode, “V” for voltage or “I”
for current

<Port 2 Mode> Port 2 mode, “V” for voltage or “I”
for current

<Element Name> Desired linear conductance (“G11”,
“G12”, “G21”, “G22”) or capacitance
(“C11”, “C12”, “C21”, “C22”)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

setup, the data points is assumed to be at a single
frequency. This frequency value is specified by the
<Frequency> parameter.

Example PEL statement:
s_mod = EEbjt2_extrinsic_ckt(s_mod_int, "no", FREQ_CAP,

PATH, Lb, Lc, Le, C1, C2, C3, Rb, Rc, Re)

EEbjt2_Is_N Extracts saturation current and ideality
factor for diodes or Gummel-Poon type BJTs. For extraction
of Gummel-Poon collector currents, the value of the early

Usage: EEbjt2_extrinsic_ckt(<S-pars>,
<de-embed ?>, <Frequency>, <Setup
path>, <Lb>, <Lc>, <Le>, <Cxbc>,
<Cxbe>, <Cxce>, <Rb>, <Rc>, <Re>)

Input Arguments:

<S-pars> S-parameter dataset name to be
embedded or de-embedded

<de_embed ?> Controls whether the function
embeds (“no”) or de-embeds (“yes”)

<Frequency> Variable containing the frequency
value of the s-parameter data

<Setup path> Variable containing the setup path
of the frequency dataset

<Lb> Parameter for base inductance

<Lc> Parameter for collector inductance

<Le> Parameter for emitter inductance

<Cxbc> Parameter for base-collector
capacitance

<Cxbe> Parameter for base-emitter
capacitance

<Cxce> Parameter for collector-emitter
capacitance

<Rb> Parameter for base resistance

<Rc> Parameter for collector resistance

<Re> Parameter for emitter resistance
491

492

8 IC-CAP Functions

voltage can be input. For standard diodes or Gummel-Poon
base currents, a large value for <Fwd/Rev Va> should be
used so as to remove this effect from the extraction.

EEbjt2_mdl Saves model parameters to a Series IV formatted
file.

Example PEL statement:
dummy_result = EEbjt2_mdl("generic_bjt.txt")

Usage: EEbjt2_Is_N(<Vj>, <Ij>, <Fwd/Rev
Is>, <Fwd/Rev N>, <Fwd/Rev Va>,
<Vmin>, <Vmax>)

Input Arguments:

<Vj> Input dataset containing voltage
data

<Ij> Input dataset containing current
data

<Fwd/Rev Is> Model parameter to be assigned the
extracted Is value

<Fwd/Rev N> Model parameter to be assigned the
extracted N value

<Fwd/Rev Va> Parameter or variable that contains
the early voltage value

<Vmin> Variable that contains the minimum
voltage value of data to be used in
the extraction

<Vmax> Variable that contains the maximum
voltage value of data to be used in
the extraction

Usage: EEbjt2_mdl(<Mdl File Name>)

Input Arguments:

<Mdl File Name> The file name that will contain the
“MDIF” formatted data
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

EEfet3_ckt Returns the value of the selected linear
equivalent circuit element.

Usage: EEfet3_ckt(Vg, Vd, <ckt_par_name>)

Vg and Vd are data sets that contain the bias conditions
where the linear equivalent circuit is computed. The desired
equivalent circuit element name is supplied in the third
parameter as a text string. Equivalent circuit element names
are: cgs, cgd, cds, ris, rid, gm and gds. The conductances
gma and gds are AC values and should be compared with
those extracted from S-parameter data.

PEL example that returns the computed requested element
value.
Cgs_data = EEfet3_ckt(Vg, Vd, “cgs”)
Cgd_data = EEfet3_ckt(Vg, Vd, “cgd”)
Cds_data = EEfet3_ckt(Vg, Vd, “cds”)
Ris_data = EEfet3_ckt(Vg, Vd, “ris”)
Rid_data = EEfet3_ckt(Vg, Vd, “rid”)
Gm_data = EEfet3_ckt(Vg, Vd, “gm”)
Tau_data = EEfet3_ckt(Vg, Vd, “tau”)
Gds_data = EEfet3_ckt(Vg, Vd, “gds”)

EEfet3_cs_dc_iv Computes the model’s common source bias
response.

This function returns a data set containing the bias response
at the port specified by the fifth parameter (response_port).
The first 2 parameters are data sets that contain the bias
conditions forced at the respective ports. The next 2
parameters are strings that indicate whether current “I” or
voltage “V” is being forced. The fifth parameter is an index
that specifies which port’s (1 or 2) bias response will be
contained in the data set returned.

PEL Example:
Ids = EEfet3_cs_dc_iv(Vg, Vd, “V”, “V”, 2)
Igs = EEfet3_cs_dc_iv(Vg, Vd, “V”, “V”, 1)
Vds = EEfet3_cs_dc_iv(Vg, Id, “V”, “I”, 2)
Vgs = EEfet3_cs_dc_iv(Ig, Vd, “I”, “V”, 1)

Usage: EEfet3_cs_dc_iv (Data_port_1, Data_port_2,
Mode_port_1, Mode_port_2, response_port)
493

494

8 IC-CAP Functions

EEfet3_lecp Returns the requested linear equivalent circuit
parameter value extracted from measured S-parameter data.

Usage: EEfet3_lecp (Vg, Vd, <ckt_par_name>)

This function is used in conjunction with EEfet3_s2ckt() to
extract and display linear equivalent circuit parameters from
measured S-parameter data. EEfet3_s2ckt does the
extraction of linear equivalent circuit parameters from
measured S-parameters and stores them internally to ICCAP.
EEfet3_lecp retrieves the linear equivalent circuit parameter
values. The specific element returned is requested by the
string in the third field of the function call. Valid equivalent
circuit element names are cgs, cdg, cds, ris, rid, gm, and gds.
An error condition will be flagged if a bias condition is
specified in EEfet3_lecp that was not in the data stored by a
previous call to EEfet3_s2ckt.

PEL example that returns the computed requested element
value.
Cgs_data = EEfet3_lecp(Vg, Vd, “cgs”)
Cgd_data = EEfet3_lecp(Vg, Vd, “cgd”)
Cds_data = EEfet3_lecp(Vg, Vd, “cds”)
Ris_data = EEfet3_lecp(Vg, Vd, “ris”)
Rid_data = EEfet3_lecp(Vg, Vd, “rid”)
Gm_data = EEfet3_lecp(Vg, Vd, “gm”)
Tau_data = EEfet3_lecp(Vg, Vd, “tau”)
Gds_data = EEfet3_lecp(Vg, Vd, “gds”)

EEfet3_mdl Saves model parameters to a Series IV formatted
file.

Usage: EEfet3_mdl(“file_name.txt”)

This function returns no data or result code. Upon
execution, an “MDIF” formatted data file containing the
existing set of model parameters is written to the current
working directory.

PEL example that saves a data file that can be read by
Series IV simulators.
dummy_result = EEfet3_mdl(“MRF_901.par”)

EEfet3_model_name A utility function that copies the model
name into the variable passed in as the argument.

Usage: EEfet3_model_name(variable):
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Since PEL only has direct access to the relative path name
of local transforms and variables, this function parses out
the model’s “root” name and copies it as a string to the
variable specified as the argument. After execution, the
argument variable will contain a string containing the model
name.

Note: This function can be used with any model file; it is not
restricted to EEfet3.

PEL example that copies the model name into the variable
“MyName.”
dummy_result = EEfet3_modle_name(MyName)

EEfet3_package A utility function that can either “embed or
de-embed” the effects of a package from S-parameter data
provided as input. The resultant set of S-parameters is
returned as a data set with the same frequency and bias
conditions as the input S-parameter data set.

This function either embeds or de-embeds the S-parameters
provided as input. The package topology used here is a very
simple series shunt representation of a component’s package.
The elements represented in the argument list work from the
intrinsic device to the outside wall of the package. The bond
wire and contact resistances are represented by the
arguments: Rg, Rd, Rs, Lg, Ld, Ls. The arguments Rg and Lg
are the input port’s (gate) series inductance and resistance.
Rs and Ls are the common lead’s inductance and resistance.
Rd and Ld are the output lead’s contact resistance and bond
inductance.

Usage: Efet3_package(S_parameter_data_set,
embed/deembed_flag, Rg, Rd, Rs, Lg, Ld,
Ls, Cxgs, Cxds, Cxgd, Z0_gate, length,
effective_velocity, Z0_drain, length,
effective_velocity, Z0_source, length,
effective_velocity)
495

496

8 IC-CAP Functions

Three shunt capacitances are next and represent stray
capacitance of the package. Cxgs is connected from the
outside of the series impedances from gate-to-source nodes
just described. Cxgd is connected from the outside of the
series impedance from the gate to drain nodes just
described. Cxds is connected from the outside of the series
impedance from drain to source as just described.

The final series elements of the package model are
transmission lines. Z0_gate, length and effective velocity
describe the input transmission line connected at the gate
terminal of the package to the modified gate node just
outlined above. Z0_drain, length and effective velocity
describe the output transmission line connected at the drain
terminal of the package to the modified drain node just
outlined above. There is no common lead transmission line
in this package model.

Because you must use the same values for each of these
arguments in many places in the IC-CAP model file, this
function is constructed to use model variables as arguments.
First: create 1 variable, in the model variable table, for each
of the function arguments (thus making it global to the
entire model in use). Then use the variables each time the
function is used. In this manner you can ensure that the
same values are being used to embed the model as were
extracted from measurements.

The first argument is the data set upon which the function
will operate. The second argument is a text string or
variable containing a text string “embed” or “deembed.” The
function will operate on the input data set as indicated by
the second argument.

PEL example that de-embeds a package from a
measurement:
s_intrinsic = EEfet3_package(measured_s, “deembed”, Rin,
Rout, Rcommon, Lin, Lout, Lcommon, Cx_InToCommon, CxInToOut,
CxOutToCommon, Z0_in, L_in, Evel, Z0_out, L_out, Evel)

EEfet3_ResCheck Verifies and adjusts variables that are used
to control swept measurements.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Each argument of EEfet3_ResCheck is a model variable.
These variables are used in DUT/Setups to control
measurements. Each type of measurement equipment has
resolution limitations. Start, stop, and step size must be
within the equipment’s resolution before a measurement can
be successful. For example, the HP/Agilent 4142 cannot
resolve voltages with greater accuracy than 1 millivolt. There
are several conditions that must be accounted for to
guarantee proper control of the measurement equipment in
use.

The following sequence of steps should be followed to ensure
that equipment limitations are not violated. First, the start
value is rounded to a “resolvable” measurement value as
specified by the argument “resolution.” The end point is then
rounded. The step size is then calculated [step = (stop-start)
/ points] and rounded to the proper resolution. The end
point is then re-computed and adjusted to exactly fit the
number of steps requested [stop = start + step * points].
Because of this adjustment, you may see the “stop” point
change after this function is called. The last case is where
the step size is below the minimum resolution. In this case,
the step size is set to the minimum resolution and the
starting point is placed that number of points away and the
number of points is adjusted. The “resolution” argument is
the only value that will not change upon execution of this
function.

PEL Example:
dummy_result = EEfet3ResCheck(Vstart, Vstop, NumPoints,

v_res)

EEfet3_Rs_delta_m Returns a data set that contains the
change in measured Vgs when very specific bias currents are
forced at the gate and drain terminals.*

Usage: EEfet3_Rs_delta_m (Ig, Id, Vg, Vd)

Usage: EEfet3_ResCheck(Start, Stop,
Number_of_Points, resolution)
497

498

8 IC-CAP Functions

Vgs is measured at 2 values of Ids while Igs is swept. Ids is
chosen such that Vds is on the order of 2 tenths of a volt
(the FET must be in the region of linear operation). Igs is
fifty to one hundred times smaller than Ids. The change in
Vgs is then proportional to Rs.

The expressions for the change in Vgs are a complicated
function of Rs. Since these expressions cannot be solved for
Rs directly, optimization is used to find a value of Rs that
makes measured and simulated values of delta Vgs match.

PEL Example:
Delta_Vgs = EEfet3_Rs_delta_m(Ig,Id,Vg,Vd)

*This method of extracting Rs is based on: “New Method to
Measure the Source and Drain Resistance of the GaAs
MESFET” Long Yang and Steven Long, IEEE Electron Device
Letters Vol EDL-7 No. 2, February 1986.

EEfet3_Rs_delta_s Returns a data set that contains the
change in simulated Vgs given the same bias conditions
specified when EEfet3_Rs_delta_m was extracted.*

Usage: EEfet3_Rs_delta_s (Ig, Id, Vg, Vd)

This simulation function for delta Vgs uses EEfet3 model
parameters Rs and N, the gate diode's emission coefficient.
Since these expressions cannot be solved for Rs directly,
optimization is used to find a value of Rs that makes
measured and simulated values of delta Vgs match. Note that
N must be accurately determined before this method of
extracting Rs can be successful.

PEL Example:
Delta_Vgs_Simulated = EEfet3_Rs_delta_s(Ig,Id,Vg,Vd)

*This method of extracting Rs is based on: “New Method to
Measure the Source and Drain Resistance of the GaAs
MESFET” Long Yang and Steven Long, IEEE Electron Device
Letters Vol EDL-7 No. 2, February 1986.

EEfet3_s2ckt Converts S-parameters to a table of linear
equivalent circuit element values.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

This function returns a data set containing S-parameters
computed from a linear equivalent circuit model. Element
values for the linear equivalent circuit model are extracted
from the input S-parameter data set. The table of element
values for the linear equivalent circuit model are stored
internally to IC-CAP and can be accessed using
EEfet3_lecp(). In this manner, you can both examine how
well the linear equivalent circuit model fits measured
S-parameter data over frequency and see how the element
values behave over bias.

The reason for this 2-step process is that each IC-CAP
function can only return a data set of the same type and
dimension as the input data set. In the first step
(EEfet3_s2ckt) S-parameters are input (over frequency and
bias) and a computed set of S-parameters is returned (over
frequency and bias). The values of the linear equivalent
circuit model extracted are saved in a special internal
structure. The second step is to create a DUT/Setup that
only sweeps bias, not frequency. The function EEfet3_lecp is
then used to access the internal data structure and return
the linear equivalent circuit element value requested. The
output is then of the same type and array size as the bias
range. Element values can then be plotted against bias.

PEL Example:
computed_s_parameters = EEfet3_s2ckt(s_data, freq, Vg, Vd,

FG, FC, Ftau)

and in another DUT/Setup the next function recalls Cgs
saved
Cgs_data = EEfet3_lecp(Vg, Vd, “cgs”)

EEfet3_spars Computes modeled S-parameters based on the
current set of model parameters.

Usage: EEfet3_ s2ckt (S_parameter, Frequency, Vg,
Vd, Conductance_Frequency,
Capacitance_Frequency, Delay_Frequency)
499

500

8 IC-CAP Functions

Computes the bias-dependent model's intrinsic S-parameters
at each bias and frequency specified. The S-parameter data
set used as an input is only for the purpose of defining the
type and quantity of data this function will supply as an
output. Typical use would be comparing the computed set of
S-parameters to a set of measured data and using that
measured data as the S-parameter data set supplied as
input to this function

PEL Example:
computed_s_parameters = EEfet3_spars(s_data, freq, Vg, Vd)

EEmos1_ckt This function is obsolete.

Returns the value of the selected linear equivalent circuit
element

Usage: EEmos1_ckt(Vg, Vd, <ckt_par_name>)

Vg and Vd are data sets that contain the bias conditions
where the linear equivalent circuit is computed. The desired
equivalent circuit element name is supplied in the third
parameter as a text string. Equivalent circuit element names
are: cgs, cgd, cds, ris, rid, gm and gds. The conductances
gma and gds are AC values and should be compared with
those extracted from S-parameter data.

PEL example that returns the computed requested element
value.
Cgs_data = EEmos1_ckt(Vg, Vd, “cgs”)
Cgd_data = EEmos1_ckt(Vg, Vd, “cgd”)
Cds_data = EEmos1_ckt(Vg, Vd, “cds”)
Ris_data = EEmos1_ckt(Vg, Vd, “ris”)
Rid_data = EEmos1_ckt(Vg, Vd, “rid”)
Gm_data = EEmos1_ckt(Vg, Vd, “gm”)
Tau_data = EEmos1_ckt(Vg, Vd, “tau”)
Gds_data = EEmos1_ckt(Vg, Vd, “gds”)

EEmos1_cs_dc_iv This function is obsolete.

Computes the model’s common source bias response.

Usage: EEfet3_ spars
(measured_S_parameter_data_set,
Frequency, Vg, Vd)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

This function returns a data set containing the bias response
at the port specified by the fifth parameter (response_port).
The first 2 parameters are data sets that contain the bias
conditions forced at the respective ports. The next 2
parameters are strings that indicate whether current “I” or
voltage “V” is being forced. The fifth parameter is an index
that specifies which port’s (1 or 2) bias response will be
contained in the data set returned.

PEL Example:
Ids = EEmos1_cs_dc_iv(Vg, Vd, “V”, “V”, 2)
Igs = EEmos1_cs_dc_iv(Vg, Vd, “V”, “V”, 1)
Vds = EEmos1_cs_dc_iv(Vg, Id, “V”, “I”, 2)
Vgs = EEmos1_cs_dc_iv(Ig, Vd, “I”, “V”, 1)

EEmos1_lecp This function is obsolete.

Returns the requested linear equivalent circuit parameter
value extracted from measured S-parameter data.

Usage: EEmos1_lecp (Vg, Vd, <ckt_par_name>)

This function is used in conjunction with EEmos1_s2ckt() to
extract and display linear equivalent circuit parameters from
measured S-parameter data. EEmos1_s2ckt does the
extraction of linear equivalent circuit parameters from
measured S-parameters and stores them internally to ICCAP.
EEmos1_lecp retrieves the linear equivalent circuit
parameter values. The specific element returned is requested
by the string in the third field of the function call. Valid
equivalent circuit element names are cgs, cdg, cds, ris, rid,
gm, and gds. An error condition will be flagged if a bias
condition is specified in EEmos1_lecp that was not in the
data stored by a previous call to EEmos1_s2ckt.

PEL example that returns the computed requested element
value.
Cgs_data = EEmos1_lecp(Vg, Vd, “cgs”)
Cgd_data = EEmos1_lecp(Vg, Vd, “cgd”)
Cds_data = EEmos1_lecp(Vg, Vd, “cds”)

Usage: EEmos1_cs_dc_iv (Data_port_1,
Data_port_2, Mode_port_1, Mode_port_2,
response_port)
501

502

8 IC-CAP Functions

Ris_data = EEmos1_lecp(Vg, Vd, “ris”)
Rid_data = EEmos1_lecp(Vg, Vd, “rid”)
Gm_data = EEmos1_lecp(Vg, Vd, “gm”)
Tau_data = EEmos1_lecp(Vg, Vd, “tau”)
Gds_data = EEmos1_lecp(Vg, Vd, “gds”)

EEmos1_mdl This function is obsolete.

Saves model parameters to a Series IV formatted file.

Usage: EEmos1_mdl(“file_name.txt”)

This function returns no data or result code. Upon
execution, an “MDIF” formatted data file containing the
existing set of model parameters is written to the current
working directory.

PEL example that saves a data file that can be read by
Series IV simulators.
dummy_result = EEmos1_mdl(“MRF_901.par”)

EEmos1_model_name This function is obsolete.

A utility function that copies the model name into the
variable passed in as the argument.

Usage: EEmos1_model_name(variable):

Since PEL only has direct access to the relative path name
of local transforms and variables, this function parses out
the model’s “root” name and copies it as a string to the
variable specified as the argument. After execution, the
argument variable will contain a string containing the model
name.

Note: This function can be used with any model file; it is not
restricted to EEmos1.

PEL example that copies the model name into the variable
“MyName.”
dummy_result = EEmos1_modle_name(MyName)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

EEmos1_package This function is obsolete.

A utility function that can either “embed or de-embed” the
effects of a package from S-parameter data provided as
input. The resultant set of S-parameters is returned as a
data set with the same frequency and bias conditions as the
input S-parameter data set.

This function either embeds or de-embeds the S-parameters
provided as input. The package topology used here is a very
simple series shunt representation of a component’s package.
The elements represented in the argument list work from the
intrinsic device to the outside wall of the package. The bond
wire and contact resistances are represented by the
arguments: Rg, Rd, Rs, Lg, Ld, Ls. The arguments Rg and Lg
are the input port’s (gate) series inductance and resistance.
Rs and Ls are the common lead’s inductance and resistance.
Rd and Ld are the output lead’s contact resistance and bond
inductance.

Three shunt capacitances are next and represent stray
capacitance of the package. Cxgs is connected from the
outside of the series impedances from gate-to-source nodes
just described. Cxgd is connected from the outside of the
series impedance from the gate to drain nodes just
described. Cxds is connected from the outside of the series
impedance from drain to source as just described.

The final series elements of the package model are
transmission lines. Z0_gate, length and effective velocity
describe the input transmission line connected at the gate
terminal of the package to the modified gate node just
outlined above. Z0_drain, length and effective velocity
describe the output transmission line connected at the drain

Usage: Efet3_package(S_parameter_data_set,
embed/deembed_flag, Rg, Rd, Rs, Lg, Ld,
Ls, Cxgs, Cxds, Cxgd, Z0_gate, length,
effective_velocity, Z0_drain, length,
effective_velocity)
503

504

8 IC-CAP Functions

terminal of the package to the modified drain node just
outlined above. There is no common lead transmission line
in this package model.

Because you must use the same values for each of these
arguments in many places in the IC-CAP model file, this
function is constructed to use model variables as arguments.
First: create 1 variable, in the model variable table, for each
of the function arguments (thus making it global to the
entire model in use). Then use the variables each time the
function is used. In this manner you can ensure that the
same values are being used to embed the model as were
extracted from measurements.

The first argument is the data set upon which the function
will operate. The second argument is a text string or
variable containing a text string “embed” or “deembed.” The
function will operate on the input data set as indicated by
the second argument.

PEL example that de-embeds a package from a
measurement:
s_intrinsic = EEmos1_package(measured_s, “deembed”, Rin,
Rout, Rcommon, Lin, Lout, Lcommon, Cx_InToCommon, CxInToOut,
CxOutToCommon, Z0_in, L_in, Evel, Z0_out, L_out, Evel)

EEmos1_ResCheck This function is obsolete.

Verifies and adjusts variables that are used to control swept
measurements.

Each argument of EEmos1_ResCheck is a model variable.
These variables are used in DUT/Setups to control
measurements. Each type of measurement equipment has
resolution limitations. Start, stop, and step size must be
within the equipment’s resolution before a measurement can
be successful. For example, the HP/Agilent 4142 cannot
resolve voltages with greater accuracy than 1 millivolt. There

Usage: EEmos1_ResCheck(Start, Stop,
Number_of_Points, resolution)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

are several conditions that must be accounted for to
guarantee proper control of the measurement equipment in
use.

The following sequence of steps should be followed to ensure
that equipment limitations are not violated. First, the start
value is rounded to a “resolvable” measurement value as
specified by the argument “resolution.” The end point is then
rounded. The step size is then calculated [step = (stop-start)
/ points] and rounded to the proper resolution. The end
point is then re-computed and adjusted to exactly fit the
number of steps requested [stop = start + step * points].
Because of this adjustment, you may see the “stop” point
change after this function is called. The last case is where
the step size is below the minimum resolution. In this case,
the step size is set to the minimum resolution and the
starting point is placed that number of points away and the
number of points is adjusted. The “resolution” argument is
the only value that will not change upon execution of this
function.

PEL Example:
dummy_result = EEmos1ResCheck(Vstart, Vstop, NumPoints,

v_res)
505

506

8 IC-CAP Functions

EEmos1_s2ckt This function is obsolete.

Converts S-parameters to a table of linear equivalent circuit
element values.

This function returns a data set containing S-parameters
computed from a linear equivalent circuit model. Element
values for the linear equivalent circuit model are extracted
from the input S-parameter data set. The table of element
values for the linear equivalent circuit model are stored
internally to IC-CAP and can be accessed using
EEmos1_lecp(). In this manner, you can both examine how
well the linear equivalent circuit model fits measured
S-parameter data over frequency and see how the element
values behave over bias.

The reason for this 2-step process is that each IC-CAP
function can only return a data set of the same type and
dimension as the input data set. In the first step
(EEmos1_s2ckt) S-parameters are input (over frequency and
bias) and a computed set of S-parameters is returned (over
frequency and bias). The values of the linear equivalent
circuit model extracted are saved in a special internal
structure. The second step is to create a DUT/Setup that
only sweeps bias, not frequency. The function EEmos1_lecp
is then used to access the internal data structure and return
the linear equivalent circuit element value requested. The
output is then of the same type and array size as the bias
range. Element values can then be plotted against bias.

PEL Example:
computed_s_parameters = EEmos1_s2ckt(s_data, freq, Vg, Vd,

FG, FC, Ftau)

and in another DUT/Setup the next function recalls Cgs
saved
Cgs_data = EEmos1_lecp(Vg, Vd, “cgs”)

Usage: EEmos1_ s2ckt (S_parameter, Frequency,
Vg, Vd, Conductance_Frequency,
Capacitance_Frequency, Delay_Frequency)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

EEmos1_spars This function is obsolete.

Computes modeled S-parameters based on the current set of
model parameters.

Computes the bias-dependent model's intrinsic S-parameters
at each bias and frequency specified. The S-parameter data
set used as an input is only for the purpose of defining the
type and quantity of data this function will supply as an
output. Typical use would be comparing the computed set of
S-parameters to a set of measured data and using that
measured data as the S-parameter data set supplied as
input to this function

PEL Example:
computed_s_parameters = EEmos1_spars(s_data, freq, Vg, Vd)

equation Uses the Parameter Extraction Language
interpreter to evaluate an expression and produce a data
set. This function is rarely needed, since arithmetic
expressions are directly accepted in plot definitions and in
the input fields to all of the other functions listed here.

Usage: EEmos1_ spars
(measured_S_parameter_data_set,
Frequency, Vg, Vd)

Input Arguments:

Data Sets: Input (must be IC-CAP recognized
data names and not strings in
quote marks)

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
507

508

8 IC-CAP Functions

exp The arithmetic exponential function; the inverse of the
function log.

fit_line Calculates and returns a least-squares fitted line.
Accepts an X data set followed by a Y data set. If the Y data
has multiple curves (steps), fit_line yields multiple fitted
lines, 1 for each curve. Use linfit for the slope and intercept,
rather than a plottable data set. If the OVERRIDE_LIMITS
variable is TRUE, the limits can be specified manually with
the X_LOW and X_HIGH variables, which can be set from
the Plot menu. Note: the imaginary part of the input data
sets is disregarded.

floor Returns the largest integer not greater than the given
value.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Reals: Number

Output: Single real

Automatic Invocation: On Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

FNPort Switching matrix function. Returns the port address
for the specified port number. The port address is used by
the Connect function. For more information regarding this
function, refer to “External Matrix Driver User Functions” on
page 168 for more information.

GAASAC_calc_rc Calculates capacitance and AC parameters
from S-parameter measurements. Requires the following
setup:

S versus Freq, with Vds and Vgs = typical operating values

If S-parameter data from the parasitic_r_l setup is supplied
as an input, this data is converted to Z-parameters and
subtracted before calculating the intrinsic values for Zds.
This function can be used to plot the data that is used for
extraction in the GAASAC_r_and_c function. Output is a
complex array that is controlled by the Mode input. Valid
modes are:

GS - RGS in real array, CGS in complex array
GD - RGD, CGD
DS - RDS, CDS
A5 - TAU, A5
G0 - CGS0, CGD0
GM - YGM

Input Arguments:

Reals or Integers: Port Number

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Data Sets: F Swp, S Parameters, VG, VD, S
Pars RL

Strings/Pars/Vars: Mode

Output: Array of complex numbers; size
determined by inputs
509

510

8 IC-CAP Functions

GAASAC_calc_rl Calculates inductances and resistances
from an S-parameter measurement made at a single bias.
Requires the following setup:

S versus Freq, with high Vgs and Vds = 0

Determine the bias point by measuring the device with the
gate strongly forward biased. Typically, Vd = Vs = 0 with Vg
positive. Ig should be more than 100 mA/mm, with Id
approximately equal to Ig/2 at a typical operating frequency.
This function can be used to plot the resistance and
inductance data that is used for extraction in the
GAASAC_l_and_r function. Output is in the form of Z data
for the G, D, or S Node. If IG is specified as an input, the
dynamic resistance is subtracted during the calculation of
RG. If Deembed is TRUE, the bond inductance and pad
capacitance are used in the calculation of resistance and
inductance.

GAASAC_cur Standard extraction for the Curtice GaAs
model. Extracts the capacitance and AC parameters from
S-parameter measurements. Requires the following setup:

S versus Freq, with Vds and Vgs = typical operating values

If the variables LINEAR_CGS, LINEAR_CGD, or
CONSTANT_TAU are true, CGS, CGD, or TAU are extracted,
respectively. Depending on the device, optimization may be
required to tune the parameter values.

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: F Swp, S Parameters, IG

Strings/Pars/Vars: Deembed, Node

Output: Array of complex numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

GAASAC_l_and_r Standard extraction for the UCB and
Curtice GaAs models. Extracts inductances and resistances
from an S-parameter measurement made at a single bias.
Requires the following setup:

S versus Freq, with high Vgs and Vds = 0

Determine the bias point by measuring the device with the
gate strongly forward biased. Typically, Vd = Vs = 0 with Vg
positive. Ig should be more than 100 mA/mm, with Id
approximately equal to Ig/2 at a typical operating frequency.
The frequency can be either constant or swept. The
extracted parameter values are averaged over a frequency
range specified by the X_LOW and X_HIGH variables, which
can be set from the Plot menu. If these variables are not set,
the entire frequency range is used. If IG is specified as an
input, the dynamic resistance is subtracted during the
calculation of RG. If Deembed is true, the bond inductance
and pad capacitance are used in the calculation of resistance
and inductance. Optimization can be used to tune the
parameter values, but should not typically be required.

Input Arguments:

Data Sets: Frequency, Gate V, Drain V, S Par
Output

Output: None

Extracts: LD, LG, LS, RD, RG, RS

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Const F Swp, S Parameters, IG

Strings/Pars/Vars: Deembed

Output: None

Extracts: LD, LG, LS, RD, RG, RS

Automatic Invocation: By Extract menu function
511

512

8 IC-CAP Functions

GAASAC_r_and_c Alternate AC extraction for the UCB and
Curtice GaAs models. Extracts the capacitance and AC
parameters from S-parameter measurements. Requires the
following Setup:

S versus Freq, with Vds and Vgs = typical operating
values.

The extracted parameter values are averaged over a
frequency range specified by the X_LOW and X_HIGH
variables, which can be set from the Plot menu. If these
variables are not set, the entire frequency range is used. For
the Curtice model, if the variables LINEAR_CGS,
LINEAR_CGD, or CONSTANT_TAU are TRUE, CGS, CGD, or
TAU are extracted, respectively. Also for the Curtice Model,
the parameters CGDN, RGDN, and RDS are extracted if they
are defined as either parameters or variables. If CGDN is
defined, then both CGD and CGDO are set to 0. For the UCB
model, CDS is extracted if it is defined as a parameter or
variable. For both models, YGM_MAG and YGM_PHASE are
extracted if they are defined as variables. If S-parameter
data from the parasitic_r_l Setup is supplied as an input,
this data is converted to Z- parameters and subtracted
before calculating the intrinsic values for Zds. Depending on
the device, optimization may be required to tune the
parameter values.

Input Arguments:

Data Sets: F Swp, S Parameters, VG, VD, S
Pars RL

Output: None

Extracts: Curtice:

CGSO, CGDO, CDS, RIN, A5

Optionally - CGS, CGD, TAU,
CGDN, RGDN, RDS, YGM_MAG,
YGM_PHASE UCB: CGS, CGD

Optionally - CDS, YGM_MAG,
YGM_PHASE
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

GAASCV_cgs_cgd Standard extraction for the UCB GaAs
model. Extracts junction capacitances from S-parameter data
measured with VGS and VDS held constant. Requires the
following Setup:

S versus Freq, with Vds and Vgs = typical operating
values.

Optimization can be used to tune the parameter values, but
should not typically be required.

GAASDC_cur1 Standard extraction for the Curtice GaAs
model. Extracts the threshold parameters from DC
measurements. Requires the following Setup:

Id versus Vgs, with high Vds.

Depending on the device, optimization may be required to
tune the parameter values. The optimization should not
include too much of the pinch-off region.

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Freq Sweep, Const Vgs Sw, Const
Vds Sw, S Par Output

Output: None

Extracts: CGD, CGS

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Drain V, Drain I

Output: None

Extracts: Level 1: VTO Level 2: A0, A1, A2,
A3

Automatic Invocation: By Extract menu function
513

514

8 IC-CAP Functions

GAASDC_cur2 Standard extraction for the Curtice GaAs
model. Extracts the linear and saturation parameters from
DC measurements. Requires the following Setup:

Id versus Vds versus Vgs.

Optimization is typically required to tune the parameter
values.

GAASDC_lev1 Standard extraction for the UCB and Curtice
GaAs models. Extracts diode (and optionally resistance)
parameters from DC measurements. Requires the following
Setups:

Ig versus Vg, with Vd = 0 and S floating.

Ig versus Vg, with Vd less than 50 mV.

Ig versus Vg, with Vs = 0 and D floating.

The Vg limits for the diode parameter extraction are
automatically selected. If the OVERRIDE_LIMITS variable is
TRUE, these limits can be specified manually with the
X_LOW and X_HIGH variables, which can be set from the
Plot menu. Omit the resistance extraction (useful if
resistances were extracted using GAASAC_l_and_r) by
specifying only the first Setup of the 3 listed above.
Optimization can be used to tune the parameter values, but
should not typically be required.

Input Arguments:

Data Sets: Drain V, Gate V, Drain I

Output: None

Extracts: Level 1: BETA, LAMBDA, ALPHA
Level 2: BETA, GAMMA

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

GAASDC_lev2 Standard extraction for the UCB GaAs model.
Extracts the drain current parameters from DC
measurements. Requires the following setups:

Id versus Vd versus Vg
Id versus Vg, with Vd = constant

Depending on the device, the following parameters may
require optimization: VTO, BETA, ALPHA, LAMBDA over Id
versus Vd. VTO, BETA, B over Id versus Vg.

GAASDC_rd DC RD extraction for the UCB and Curtice
GaAs models. Requires the following setup:

Vsd versus Ig, with the source floating and the drain
grounded

This extraction can be used to extract RD when AC
measurements are not available, or to verify the value
extracted from the GAASAC_l_and_r function.

Input Arguments:

Data Sets: VG (S Flt), IG (S Flt), VG (low
Vds), VD (low Vds), ID (low Vds),
VG (D Flt), IG (D Flt)

Output: None

Extracts: UCB: PB, IS, XN
Curtice: VBI, IS, N
Optionally: RD, RS

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: IdVg VG, IdVg VD, IdVg ID, IdVg IG,
IdVd VD, IdVd VG, IdVd ID, IdVd
IG

Output: None

Extracts: VTO, BETA, ALPHA, LAMBDA, B

Automatic Invocation: By Extract menu function
515

516

8 IC-CAP Functions

GAASDC_rs DC RS extraction for the UCB and Curtice
GaAs models. Requires the following setup:

Vds versus Ig, with the drain floating and the source
grounded

This extraction can be used to extract RS when AC
measurements are not available, or to verify the value
extracted from the GAASAC_l_and_r function.

GAASmod_cgd Given the drain, gate, and source voltages,
calculates gate-drain capacitance according to the UCB GaAs
model.

GAASmod_cgs Given the drain, gate, and source voltages,
calculates gate-source capacitance according to the UCB
GaAs model.

Input Arguments:

Data Sets: IG, VS

Output: None

Extracts: RD

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: IG, VD

Output: None

Extracts: RS

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

GAASmod_id Given the drain, gate, and source voltages,
calculates drain current according to the UCB GaAs model.

GAASmod_ig Given the drain, gate, and source voltages,
calculates gate current according to the UCB GaAs model.

H11corr Produces an input impedance curve corrected for
the effects of base to collector feedthrough impedance. The
corrected output is used as input to the RBBcalc function
described below.

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: None

Input Arguments:

Data Sets: FREQ, VB, VC, H11

Output: Array of complex numbers; size
determined by inputs
517

518

8 IC-CAP Functions

HFBJT_linear_elem_extr No documentation available at this
time.

HFBJT_linear_ssmod_sim No documentation available at this
time.

HFMOD_get_bias_size Finds the number of bias points in a
data set. For sweeps that don't include a frequency sweep, this
is the same as the total number of points in the dataset.

Usage: HFMOD_get_bias_size(<Dataset name>, <Setup
path>)

Example PEL statement:
data_size = HFMOD_get_bias_size("s", PATH)

HFMOD_get_freq_index Finds the array index of the
frequency point nearest to (>=) the specified frequency value.

Example PEL statement:
index_freq_cap = HFMOD_get_freq_index(PATH, FREQ_CAP)

Automatic Invocation: On Data Set Input Change

Input Arguments:

<Dataset name> Name if dataset to be checked

<Setup path> Variable containing path of dataset

Usage: HFMOD_get_freq_index(<Setup
path>, <Freq value>)

Input Arguments:

<Setup path> Variable containing path of dataset

<Freq value> Variable containing frequency value
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HFMOD_get_freq_value Finds a specific frequency value, given
an index value.

Example PEL statement:
freq_cap = HFMOD_get_freq_value(PATH, index_freq_cap)

HFMOD_remove_freq_dbl Reduces a matrix of bias and
frequency dependent data (type double) down to a bias
dependent matrix only.

HFMOD_remove_freq_mat Reduces a complex matrix of bias
and frequency dependent 2-port parameters down to a bias
dependent matrix only.

Usage: HFMOD_get_freq_value(<Setup
path>, <Freq index>)

Input Arguments:

<Setup path> Variable containing path of dataset

<Freq index> Variable containing frequency index

Usage: HFMOD_remove_freq_dbl(<Input
double>, <Dataset name>, <Setup
path>)

Input Arguments:

<Input double> Dummy input matrix (must be
dimensioned to desired size of
output matrix)

<Dataset name> Name of dataset to be reduced

<Setup path> Variable containing path of dataset
to be reduced

Usage: HFMOD_remove_freq_mat(<Input
matrix>, <Freq Index>, <Dataset
name>, <Setup path>)

Input Arguments:
519

520

8 IC-CAP Functions

Example PEL statement:
s_cond = HFMOD_remove_freq_mat(dummy_mat, INDEX_FREQ_CAP,

"s", PATH)

HFMOS3_capas This function is obsolete.

Extracts the overlap capacitances CGSO and CGDO and the
oxide thickness TOX from the capacitance data.

HFMOS3_lin_large This function is obsolete.

Standard extraction for the HF MOS Level 3 model. Extracts
classical Level 3 parameters, using Id versus Vg data from a
large device.

HFMOS3_lin_narrow This function is obsolete.

Standard extraction for the HF MOS Level 3 model. Extracts
Level 3 width parameters, using Id versus Vg data from a
narrow device.

<Input matrix> Dummy input matrix (must be
dimensioned to desired size of
output matrix)

<Freq Index> Variable containing frequency index
of desired frequency point

<Dataset name> Name of dataset to be reduced

<Setup path> Variable containing path of dataset
to be reduced

Extracts: CGDO, CGSO, TOX

Extracts: VTO, NSUB, UO, THETA, DELTA,
RDS

Extracts: WD, DELTA
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HFMOS3_lin_short This function is obsolete.

Standard extraction for the HF MOS Level 3 model. Extracts
Level 3 length effect parameters, using Id versus Vg data
from a short device.

HFMOS3_modcap This function is obsolete.

Calculates the Gate-Source and Gate-Drain capacitances
according to the Meyer model or Bulk-Drain junction
capacitance according to the UCB MOS model.

HFMOS3_paras This function is obsolete.

Extracts gate, drain and source parasitic resistances and
inductances from the impedance data.

HFMOS3_sat_short This function is obsolete.

Standard extraction for the HF MOS Level 3 model. Extracts
Level 3 saturation parameters, using Id versus Vd data from
a short device.

HFMOS3_StoC This function is obsolete.

This function calculates capacitance data from S-parameter
data, allowing gate-source , gate-drain, and junction
capacitances to be calculated from network analyzer
measurements. The output of this function can be used in
place of actual capacitance data to extract capacitance
related parameters.

Extracts: XJ, LD, RDS

Extracts: RS, RD, RG, LSS, LDD, LGG

Extracts: VMAX, KAPPA
521

522

8 IC-CAP Functions

HFMOS3_StoZ This function is obsolete.

This function calculates impedance data from S-parameter
data, allowing gate, drain, and source impedances to be
calculated from network analyzer measurements. The output
of this function can be used in place of actual impedance
data to extract the parasitics parameters.

HFMOS3_sub_large This function is obsolete.

Standard extraction for the HF MOS Level 3 model. Extracts
Level 3 subthreshold parameters, using Id versus Vg data
from a large device. Initializes ETA for later optimization.

HFMOS3_total_cap This function is obsolete.

Extracts the total PN junction capacitance parameters from
the bottom and sidewall. Requires C-V measurement on 2
different geometries. The first measurement should be on a
device in which the bottom capacitance dominates. The
second measurement should be on a device in which the
sidewall capacitance dominates.

HiSIM2_DC_vth The function picks up one single sweep curve
of id=f(vg) of a specified setup and extracts the threshold
voltage vth. The setup is specified by the parameters path to vd,
... etc. This makes it easier to call the function with variable
inputs inside the PEL programs.

The Flag variable is used to define certain conditions, for
example, the extraction of vth for the large, which does not need
to calculate all the early voltage values.

Extracts: NFS, ETA

Extracts: CJ, MJ, CJSW, MJSW, PB
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HiSIM_HV_DC_vth "The function picks up one single sweep
curve of id=f(vg) of a specified setup and extracts the threshold
voltage vth. The setup is specified by the parameters path to vd,
... etc. This makes it easier to call the function with variable
inputs inside the PEL programs.

The Flag variable is used to define certain conditions, e.g., the
extraction of vth for the large, which does not need to calculate
all the early voltage values.

Input Arguments:

Variables: Length (L)
Total gate width (W)
Number fingers (NF)
Flag for extraction options

flag: 1 Fixed Id(Vth) =Idref*L/W
2 Fixed Id(Vth) =Idref*NF*

((W/NF)-2*Delta_W)/(L-2*Delta_L)
Reference current Idref for
extraction options
Delta L (one side)
Delta W (one side)
of curve
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of the
function 0: nothing)

Parameters: path to setup
vd
vg
vb
id
type id (M,S)
version

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)
523

524

8 IC-CAP Functions

HP5250_bias_card HP 5250A Switching Matrix function.
Bias-enables all the output ports for the specified card.

Syntax
HP5250_bias_card(CardNumber, “CardState”)

Where

CardNumber specifies the card (allowed values 0-4, 0 = auto
configuration mode)

“CardState” is the card's state (allowed values are
ENABLE/DISABLE or E/D)

Input Arguments:

Variables: Length (L)
Total gate width (W)
Number fingers (NF)
Flag for extraction options

flag: 1 Fixed Id(Vth) =Idref*L/W
2 Fixed Id(Vth) =Idref*NF*

((W/NF)-2*Delta_W)/(L-2*Delta_L)
Reference current Idref for
extraction options
Delta L (one side)
Delta W (one side)
of curve
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of the
function 0: nothing)

Parameters: path to setup
vd
vg
vb
id
type id (M,S)
version

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HP5250_bias_channel HP 5250A Switching Matrix function.
Bias-enables the specified output ports in the channel list.
Note that the input ports are ignored since the input port is
always the Bias Input Port.

Syntax
HP5250_bias_channel (“State”, “Channel list”)

Where

“State” is the output port's state (allowed values are
ENABLE/DISABLE or E/D)

“Channel list” is the list of channels, known as connection
routes. Example channel list: (@10102, 10203,
10305:10307)

HP5250_bias_init HP 5250A Switching Matrix function.
Selects the bias port. When using the HP E5255A card, the
Input Bias Port is the dedicated bias port; however, for the
HP E5252A the Input Bias Port must be selected using this
function.

Syntax
HP5250_bias_init(CardNumber, InputBiasPort)

Where

Card Number specifies the card (allowed values 0-4, 0 =
auto configuration mode)

InputBiasPort specifies the input bias port number
(allowed values are 1-10)

HP5250_bias_setmode HP 5250A Switching Matrix function.
Enables the bias mode for the specified card once Input Bias
Port and Enabled Output ports have been specified.

Syntax
HP5250_bias_setmode (CardNumber, “BiasMode”)

Where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)
525

526

8 IC-CAP Functions

“BiasMode” sets the bias mode on or off (allowed values
are ON/OFF or 1/0)

When Bias Mode is ON, the Input Bias Port is connected to
all the Bias Enabled output ports that are not connected to
any other input ports. Bias Disabled output ports are never
connected to an Input Bias Port when Bias Mode is ON.

• If another input port is disconnected from a bias enabled
output port, this port is automatically connected to the
Input Bias Port.

• If another input port is connected to a Bias Enabled
output port, the output port is automatically disconnected
from the Bias Input port.

When Bias Mode is OFF, the Input Bias Port is the same as
the other ports.

HP5250_card_config HP 5250A Switching Matrix function.
Changes the default configuration for the specified card.
When the connection rule is FREE (default mode), each
input port can be connected to multiple output ports and
each output port can be connected to multiple input ports.
When the connection is SINGLE, each input port can be
connected to only 1 output. Connection sequence specifies
the open/close sequence of the relays when changing from
an existing connection to a new connection.

Syntax
HP5250_card_config (CardNumber, “ConnRule”,

“ConnSequence”)

Where

CardNumber specifies the card (0 for AUTO configuration
mode)

“ConnRule” is FREE/SINGLE (default is FREE)

“ConnSequence” is NSEQ/BBM/MBBR (default is BBM)
NSEQ (No SEQuence): Disconnect old route, connect new
route.
BBM (Break Before Make): Disconnect old route, wait,
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

connect new route.
MBBR (Make Before BReak): Connect new route, wait,
disconnect old route.

HP5250_compensate_cap HP 5250A Switching Matrix
function. Equivalent to IC-CAP C routine for the HP BASIC
capacitance compensation routine called Ccompen_5250
supplied with the HP 5250A. It returns a 2 by 1 matrix (2
rows, 1 column) defined as follows:

output.11 represents compensated capacitance data [F].

output.21 represents compensated conductance data [S].

Syntax
HP5250_compensate_cap (RawCap, RawCond, Freq,

HPTriaxLength, UserTriaxLengthHigh,
UserTriaxLengthLow,
UserCoaxLengthHigh,
UserCoaxLengthLow)

Where

RawCap is Input Dataset containing raw capacitance data
[F]

RawCond is the Input Dataset containing raw conductance
data [S]

Freq is the measured frequency [Hz]

HPTriaxLength is the Triax Cable Length [m]

UserTriaxLengthHigh is the user Triax Cable Length
(High) [m]

UserTriaxLengthLow is the user Triax Cable Length (Low)
[m]

UserCoaxLengthHigh is the user Coax Cable Length (High)
[m]

UserCoaxLengthLow is the user Coax Cable Length (Low)
[m]
527

528

8 IC-CAP Functions

HP5250_connect HP 5250A Switching Matrix function.
Connects or disconnects specified channels. Note that Bias
Mode and/or coupling Mode are also taken into account
when a channel is closed or opened.

Syntax
HP5250_connect (“Action”, “Channel list”)

Where

“Action” connects or disconnects channels (allowed values
are C and D)

“Channel list” is the list of connection routes to be
switched Example: In the list (@10102, 10203:10205), the
following channels are connected or disconnected on card
1:

• Input port 1 to output port 2.

• Input port 2 to output port 3, 4, and 5.

HP5250_couple_enable HP 5250A Switching Matrix function.
Enables couple port mode. Couple port allows synchronized
connection of 2 adjacent input ports to 2 adjacent output
ports.

Syntax
HP5250_couple_enable (CardNumber, “CoupleState”)

Where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

“CoupleState” is the coupled state (allowed values are
ON/OFF or 1/0)

HP5250_couple_setup HP 5250A Switching Matrix function.
Sets up couple ports for making kelvin connections.

Syntax
HP5250_couple_setup (CardNumber, “InputPorts”)

Where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

“InputPorts” is the list of coupled ports Example: In the
list “1,3,5,7,9” the coupled ports are 1-2, 3-4, 5-6, 7-8,
9-10

HP5250_debug HP 5250A Switching Matrix function. Used
only for debugging. When the debug flag is set to 1, all the
functions print out all the command strings that are sent to
the instruments. Set flag using the values 1 or 0, or use YES
or NO.

Syntax
HP5250_debug(<flag>)

HP5250_disconnect_card HP 5250A Switching Matrix
function. Opens all relays or channels in the specified cards.

Syntax
HP5250_disconnect_card (CardNumber)

Where

CardNumber specifies the card (allowed values 0-4, 0 =
auto configuration mode)

HP5250_init HP 5250A Switching Matrix function. Must be
run first to initialize the instrument with the address and
interface. Using this transform the configuration mode can
be set to AUTO. When the instrument is in AUTO
configuration mode the same type of card must be installed
in the HP 5250 slots from slot 1 continuously. The installed
cards are then treated as 1 card (numbered 0).

Syntax
HP5250_init (BusAddress, “Interface”, “Configuration”)

Where

BusAddress is interface bus address (default is 22)

“Interface” is interface name (default is hpib)

“Configuration” is AUTO/NORMAL A/N (default is
NORMAL)
529

530

8 IC-CAP Functions

HP5250_show HP 5250A Switching Matrix function. Has no
inputs. Returns to the standard output (screen or file) the
following data about the instrument status:

Instrument Name

Instrument Configuration (AUTO/NORMAL).

The following information is output for each card installed in
the instrument (card 0 if the instrument is in auto
configuration mode):

Connection mode

Connection sequence

Input Bias Port

Enabled Output Bias Ports

Bias Sate (ON/OFF)

Coupled Input Ports (only lower number is listed, e.g.,
“3,5” means ports 3 and 4 are coupled)

Couple Port Mode (ON/OFF)

Connection Matrix Inputs(10)xOutputs(12,24,36, or48).

HPdiode_C Produces an array of data that contains the
high-frequency intrinsic capacitance at measured bias points
for the Agilent Root Diode model.

HPdiode_C2 Produces an array of data that contains the
high-frequency intrinsic capacitance at measured bias points
for the Agilent Root Diode model.

Output Array of real numbers; size determined by the
setup

Output: Array of real numbers; size
determined by the setup

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPdiode_I Produces an array of data that contains the
current values at measured bias points for the Agilent Root
Diode model.

Output Array of real numbers; size determined by the
setup

HPdiode_Q Produces an array of data that contains the
charge values at measured bias points for the Agilent Root
Diode model.

Output Array of real numbers; size determined by the
setup

HPdiode_R Produces an array of data that contains the
intrinsic resistance at measured bias points for the
Agilent Root Diode model.

Output Array of real numbers; size determined by the
setup

HPdiode_S11i Produces an array of data that contains the
imaginary part of S11 at measured bias points for the
Agilent Root Diode model.

Output Array of real numbers; size determined by the
setup

HPdiode_S11r Produces an array of data that contains the
real part of S11 at measured bias points for the Agilent Root
Diode model.

Output Array of real numbers, size determined by the
setup

HPdiode_V Produces an array of data that contains the
voltage values at measured bias points for the Agilent Root
Diode model.

HPdiode_data_acqu Extraction function for acquiring data
for the Agilent Root Diode model. Adaptively takes data
throughout the safe operating range of the device.
531

532

8 IC-CAP Functions

HPdiode_fgrt No documentation available at this time

HPdiode_fless No documentation available at this time

HPdiode_iextr No documentation available at this time

HPdiode_mdl Extraction function for generating the
Agilent Root Diode model.

HPdiode_para_at_f Calculates parasitics at the specified
frequency for the Agilent Root Diode model.

HPdiode_para_f Extracts parasitic elements and writes them
to the Para.data file.

Input Arguments:

Reals or Integers: Vmax, Vmin, Max step, Min step,
Noise level, Eps

Automatic Invocation: By Extract menu function

Input Arguments:

Reals or Integers: LowBound V, HighBound V,
Extraction f

Extracts: Generates the model function and
look-up table

Automatic Invocation: By Extract menu function

Input Arguments:

Reals or Integers: Extraction f

Extracts: cac, cag, ccg, R, L_tot

Input Arguments:

Data Sets: Freq, S param, I

Reals or Integers: Ideality
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPdiode_wr Writes the inputs to the Measured.data file.

HPIB_abort Breaks GPIB communication and resets the bus.

Example PEL Statement:
x = HPIB_abort(file_num)

HPIB_clear Sends a Device Clear command to an
instrument.

Example PEL Statement:
x = HPIB_clear(file_num, 16)

HPIB_close Terminates GPIB communication and releases
resources.

Output: None

Input Arguments:

Data Sets: Freq, S param, I, V

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open()

Output: 0 for success, -1 for error.

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address.

Output: 0 for success, -1 for error.

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open().
533

534

8 IC-CAP Functions

Example PEL Statement:
x = HPIB_close(file_num)

HPIB_command Sends a single GPIB command byte on the
bus.

Example PEL Statement:
x = HPIB_command(file_num, 20) ! DCL

HPIB_eoi Enables or disables if eoi is sent with last byte
transmitted.

HPIB_fwrite Formatted write to GPIB. Writes a variety of
formats to the designated instrument.

Output: 0 for success, -1 for error.

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), command byte.

Output: 0 for success, −1 for error.

Automatic Invocation: None

Usage: HPIB_eio(EID,eoiFlag)

Input Arguments:

EID Specifies the descriptor returned
from HPIB_open()

eoiFlag 0 for disable, 1 for enable

Output: 0 for success, −1 for error

Usage: HPIB_fwrite(EID,Address,numBytes,
numericalData,convertChar)

Input Arguments:

EID Specifies the descriptor returned
from HPIB_open()
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPIB_open Initiates GPIB communication and reserves
resources. Instrument control through GPIB should use this
function family to be portable across platforms. Defined in
userc_io.c.

Example PEL Statement:
file_num = HPIB_open("hpib") ! for s700
file_num = HPIB_open("/dev/gpib0") ! for Sun

Address Specifies the address of the
instrument

numBytes Specifies how many bytes to read
from the bus

numericalData Specifies the number to be written
out

convertChar Specifies how to interpret the bytes
as follows:

“F” Must request numBytes=4 or
numBytes=8
Numerical data will be converted
to a single or double precision
number and sent across the bus.

“I” Must request numBytes=2 or
numBytes=4
Numerical data will be converted
to a 2’s complement number of the
specified size and sent across the
bus.

Output: 0 for success, −1 for error

Input Arguments:

Reals or Integers: Interface file name. Refer to
Measurement chapter.

Output: File descriptor.

Automatic Invocation: None
535

536

8 IC-CAP Functions

HPIB_read Reads a variety of formats from the designated
instrument.

Usage: HPIB_read(EID,Address,numBytes,F
ormat,Variable)

Input Arguments:

EID Specifies the descriptor returned
from HPIB_open()

Address Specifies the address of the
instrument

numBytes Specifies how many bytes to read
from the bus

Format Specifies how to interpret the bytes
as follows:

“A” Return an ASCII string less
than or equal to numBytes in
length (depending on EOI and Null
characters read.) Allow for a
terminator in your numBytes
length, but this terminator will be
stripped from the return.

“F” Must request numBytes=4 or
numBytes=8 Result will be these
bytes interpreted as a normal
ordered single or double precision
number.

“I” Must request numBytes=2 or
numBytes=4 Result will be these
bytes interpreted as a normal
ordered 2’s complement integer.

“C” Must request numBytes=1.
Result will be this byte interpreted
as a normal ordered unsigned
integer.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPIB_read_reals This function was obsoleted and replaced
by “HPIB_read” on page 536.

Reads multiple real numbers from a designated instrument.

Example PEL Statement:
x = HPIB_read_reals(file_num, 16, "%lf\n")

“H” Interprets a string of
characters as a hexadecimal
number and outputs the decimal
equivalent. NumBytes may be any
length. Hexadecimal interpretation
will continue until a non
hexadecimal character or NULL
byte is encountered. hexadecimal
character set [0-9, a-f, A-F].

“O” Interprets a string of
characters as an octal number and
outputs the decimal equivalent.
NumBytes may be any length. Octal
interpretation will continue until a
non-octal character or NULL byte
is encountered. octal character set
[0-7].

Variable Specifies the name of a variable in
a variable table will receive the read
data.

Output: 0 for success, −1 for error

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address,
an optional scanf() format to pick
up a real number. If the format is
blank, “%lf” is used.

Output: Array of real numbers.

Automatic Invocation: None
537

538

8 IC-CAP Functions

HPIB_readnum This function was obsoleted and replaced by
“HPIB_read” on page 536.

Reads a single real number from a designated instrument.

Example PEL Statement:
data = HPIB_readnum(file_num, 16, "")

HPIB_readstr This function was obsoleted and replaced by
“HPIB_read” on page 536.

Reads a single character string from a designated
instrument.

Example PEL Statement:
x = HPIB_readstr(file_num, 16, "%s\n", "IC-CAP_variable")

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address,
an optional scanf() format to pick
up a real number. If the format is
blank, “%lf” is used.

Output: a real number (the value
9.99998E+37 means an error
occurred).

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address,
an optional scanf() format to pick
up a real number, a variable name
that receives the character string.
If the format is blank, “%[^\r\n]*”
is used to exclude CR/LF.

Output: 0 for success, -1 for error.

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPIB_spoll Reads a status byte from a designated
instrument.

Example PEL Statement:
status = HPIB_spoll(file_num, 16)

HPIB_srq Tests if SRQ line of the bus is True or False.

Example PEL Statement:
srq = HPIB_srq(file_num)

HPIB_timeout Sets the GPIB timeout.

Example PEL Statement:
x = HPIB_timeout(file_num, 10) ! timeout on 10 sec

HPIB_write This function was obsoleted and replaced by
“HPIB_fwrite” on page 534.

Sends a character string to a designated instrument.

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address.

Output: status byte (real number)

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open().

Output: 1 for True, 0 for False, −1 for error

Automatic Invocation: None

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), timeout in seconds.

Output: 0 for success, −1 for error

Automatic Invocation: None
539

540

8 IC-CAP Functions

Example PEL Statement:
x = HPIB_write(file_num, 16, "*IDN?\n")

HPMOS_process_pars Allows specification of initial values
for the Agilent MOS process related parameters LD, RS,
RSH, TOX, WD, and XJ. The drain resistance RD is set equal
to the specified value of RS.

HPMOSDC_lin_large Standard extraction for the Agilent
MOS model. Extracts classical parameters using Id versus Vg
measured on a large device.

Input Arguments:

Reals or Integers: File descriptor returned from
HPIB_open(), target GPIB address,
a character string to be sent that
allows normal C escapes.

Output: 0 for success, −1 for error

Automatic Invocation: None

Input Arguments:

Data Sets: Lateral Diffusion, Source
Resistance, Sheet Resistance, Oxide
Thickness, Width Reduction

Output: None

Extracts: (not applicable)

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: VTO, NSUB, UO, VNORM

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPMOSDC_lin_narrow Standard extraction for the Agilent
MOS model. Extracts width effect parameters using Id versus
Vg measured on a narrow device.

HPMOSDC_lin_short Standard extraction for the Agilent MOS
model. Extracts length effect parameters using Id versus Vg
measured on a short device.

HPMOSDC_sat_short Standard extraction for the Agilent
MOS model. Extracts saturation parameters using Id versus
Vd measured on a short device.

HPRoot_data_acqu Extraction function for acquiring data for
the Agilent Root model. Adaptively takes data throughout
the safe operating range of the device.

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: WD, VWFF, WFF

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: LD, VDFF, LFF

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: ETRA, ECRIT, DESAT

Automatic Invocation: By Extract menu function
541

542

8 IC-CAP Functions

HPRoot_FET Extraction function for generating the
Agilent Root FET model.

HPRoot_fet_acqu Extraction function for acquiring data for
the Agilent Root FET model. Adaptively takes data
throughout the safe operating range of the device.

HPRoot_FET_t Extraction function for generating the
Agilent Root FET model.

Input Arguments: None

Output: None

Automatic Invocation: By Extract menu function

Input Arguments: None

Output: None

Extracts: Generates the model functions and
look-up table.

Automatic Invocation: By Extract menu function

Input Arguments:

Reals or Integers: Power level, I_Brk, I_Fwd, Min Vd,
Max Vd, Min Vg, Max Vg, Min step,
Max step, Vp, Delta, Vdiode. Eps,
Noise thresh, SMU Compl

Output: None

Automatic Invocation: By Extract menu function

Input Arguments:

Reals or Integers: vd_start, vg_start, t_dispersion

Extracts: Generates the model function and
look-up table

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPRoot_Id Produces array of data that contains the drain
current values at measured bias points for Agilent Root FET
model.

HPRoot_Idh Produces array of data that contains the high
frequency current values at measured bias points for
Agilent Root FET model.

HPRoot_Ig Produces array of data that contains the gate
current values at measured bias points for Agilent Root FET
model.

HPRoot_initial Initializes plots displayed with the
Agilent Root FET model.

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: None

Automatic Invocation: By Extract menu function
543

544

8 IC-CAP Functions

HPRoot_mos_acqu Extraction function for acquiring data for
the Agilent Root MOSFET model. Adaptively takes data
throughout the safe operating range of the device.

HPRoot_mos_para Calculates Z matrix from S parameter
input and extracts the parasitic elements for the
Agilent Root MOS model.

HPRoot_MOSFET Extraction function for generating the
Agilent Root FET model.

HPRoot_n Extracts the ideality parameter for the
Agilent Root FET and Agilent Root Diode models.

Input Arguments:

Reals or Integers: Power level, I Breakdown, Min Vd,
Max Vd, Min Vg, Max Vg, Min step,
Max step, Vth, Delta, Eps, Noise
thresh, SMU Compl

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: S param, Freq

Strings/Pars/Vars: Mode (Z / EXTR)

Output: Matrix array, size determined by
inputs

Input Arguments:

Reals or Integers: vd_start, vg_start, t_dispersion

Extracts: Generates the model function and
look-up table

Automatic Invocation: By Extract menu function

Input Arguments:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPRoot_parasitic Measures the parasitic elements of a
device for the Agilent Root FET model.

HPRoot_para_cal Calculates the parasitic elements of a device
for the Agilent Root FET and Agilent Root MOS models.

HPRoot_Qd Produces array of data that contains the drain
charge values at measured bias points for Agilent Root FET
model.

Data Sets: V, N array

Reals or Integers: LowBound V, HighBound V, Max

Output: None

Extracts: N

Automatic Invocation: None

Input Arguments: None

Output: None

Extracts: The parasitic resistors Rs, Rd, and
Rg, and the parasitic inductors
Ls_tot, Ld_tot, and Lg_tot.

Automatic Invocation: By Extract menu function

Input Arguments:

Strings/Pars/Vars: Mode (Mesfet / Mosfet)

Extracts: Rg, Rs, Rd, Lg_tot, Ls_tot, Ld_tot

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None
545

546

8 IC-CAP Functions

HPRoot_Qg Produces array of data that contains the gate
charge values at measured bias points for Agilent Root FET
model.

HPRoot_Vd Produces array of data that contains the drain
voltage values of the bias distribution of the whole operating
range of the device for Agilent Root FET model.

HPRoot_Vg Produces array of data that contains the gate
voltage values of the bias distribution of the whole operating
range of the device for Agilent Root FET model.

HPRoot_wr Reads measured parasitic data and extracted
frequency and calculates parasitic resistances, inductances
and computes the intrinsic matrix Zp and Yp for linear AC
de-embedding.

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments:

Data Sets: Freq, S param, IG, ID, VG, VD
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPRoot_Y11i Produces array of data that contains the
imaginary part of Y11 at measured bias points for
Agilent Root FET model.

HPRoot_Y11r Produces array of data that contains the real
part of Y11 at measured bias points for Agilent Root FET
model.

HPRoot_Y12i Produces array of data that contains the
imaginary part of Y12 at measured bias points for
Agilent Root FET model.

HPRoot_Y12r Produces array of data that contains the real
part of Y12 at measured bias points for Agilent Root FET
model.

trings/Pars/Vars: S Mode (s / p)

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None
547

548

8 IC-CAP Functions

HPRoot_Y21i Produces array of data that contains the
imaginary part of Y21 at measured bias points for
Agilent Root FET model.

HPRoot_Y21r Produces array of data that contains the real
part of Y21 at measured bias points for Agilent Root FET
model.

HPRoot_Y22i Produces array of data that contains the
imaginary part of Y22 at measured bias points for
Agilent Root FET model.

HPRoot_Y22r Produces array of data that contains the real
part of Y22 at measured bias points for Agilent Root FET
model.

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

HPTFT_param This function is obsolete.

The dielectric constant of oxide film in the Agilent A-Si:H
TFT model is calculated.

HPTFTCV_model_cgd This function is obsolete.

Agilent A-Si:H TFT Gate to Drain Capacitance model.
Calculates Cgd from voltages.

HPTFTCV_model_cgs This function is obsolete.

Agilent A-Si:H TFT Gate to Source Capacitance model.
Calculates Cgs from voltages.

Input Arguments: None

Output: Array of real numbers; size
determined by setup

Automatic Invocation: None

Input Arguments:

Data Sets: EPSFM

Output: The value of EPSFM

Automatic Invocation: None

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Gate to Drain C

Automatic Invocation: None

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Gate to Source C

Automatic Invocation: None
549

550

8 IC-CAP Functions

HPTFTDC_model_id This function is obsolete.

Agilent A-Si:H TFT DC model. Calculates Id from voltages.

HPTFTDC_lin This function is obsolete.

Standard extraction for the Agilent a-Si TFT model. Extracts
linear region parameters using Id versus Vg measured on a-Si
TFT device.

HPTFTDC_sat This function is obsolete.

Standard extraction for the Agilent A-Si:H TFT model. Extracts
saturation region parameters using Id versus Vd measured on
a-Si:H TFT device.

icdb_add_comment Writes an arbitrary comment string to the
opened file.

Input Arguments:

Data Sets: Drain V, Gate V, Source V

Output: Drain I

Automatic Invocation: None

Input Arguments:

Data Sets: Drain V, Gate V, Source V, Drain I

Output: None

Extracts: VTO, UO, PHI, THETA, NFS, GO

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Drain V, Gate V, Source V, Drain I

Output: None

Extracts: VMAX, ETA

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
Syntax
x=icdb_add_comment(strVal)

Where
strVal is an arbitrary string.

The return value (x) is undefined.

icdb_close Closes a file that has been opened with icdb_open.

Syntax
x=icdb_close()

Where

The return value (x) is not defined.

icdb_export_data Exports the measured or simulated data
from the specified setup to the opened file. Header information
containing current information about the values of the
registered sweep parameters is automatically appended to the
file.

Syntax
x=icdb_export_data(setupName,dataType)

Where
setupName is a string giving a proper path to the
setup that contains data to export.

dataType exports simulated data if dataType is "S".
Exports measured data for any other
value, but "M" recommended.
The return value (x) is undefined.

icdb_get_sweep_value Returns the current value of the
specified user sweep at any point in the export loop.

Syntax
curVal=icdb_get_sweep_value(index,swpName)

Where
551

8 IC-CAP Functions
index is the point number requested

swpName is the name of the registered sweep
552

icdb_open Opens a file for exporting measured data in
IC-CAP's data management file format (.mdm).

Syntax
x=icdb_open(filename)

Where
filename is a string pointing at the MDM file to be
opened.
The return value (x) is not defined.

icdb_register_con_sweep Creates a CON type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdb_register_con_sweep(conValue,swpName)

Where
conValue is the constant value to use for this con
sweep

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in
icdb_register_lin_sweep Creates a LIN type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
numPts=icdb_register_lin_sweep(swpOrder,start,stop,
numSwpPts,swpName)

Where
swpOrder is the sweep order for the registered
sweep

start is the start value for the linear sweep

stop is the stopping value for the linear sweep

numSwpPts is the number of points for this sweep

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in

icdb_register_list_sweep Creates a LIST type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdb_register_list_sweep(swpOrder,swpName,
arrayName)

Where
swpOrder is the sweep order for the registered
sweep

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in

arrayName is a string naming a variable in a Variable
table that has been set to an
ICCAP_ARRAY[]. This array declares the
points that will be used for the list sweep.
553

554

8 IC-CAP Functions
icdb_register_lsync_sweep Creates an LSYNC type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all
registered sweeps.

Syntax
numPts=icdb_register_lsync_sweep(swpName,masterSweepName,
arrayName)

Where

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back
in.

masterSweepName is the name of a previously registered
sweep to which this sweep will be
synchronized.

arrayName is a string naming a variable in a Variable
table that has been set to an
ICCAP_ARRAY[]. This array declares the
points that will be used for the list sweep.
This array should have the same number
of points as the already registered Master
Sweep.
icdbf_add_comment Writes an arbitrary comment string to the
opened file.

Syntax
x=icdbf_add_comment(fNum,strVal)

Where
fNum is the number returned from an
icdbf_open() call.

strVal is an arbitrary string.
The return value (x) is undefined.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
icdbf_close Closes a file that has been opened with icdbf_open.

Syntax
x=icdbf_close(fNum)

Where
fNum is the number returned from an
icdbf_open() call.

The return value (x) is not defined.

icdbf_export_data Exports the measured or simulated data
from the specified setup to the opened file. Header information
containing current information about the values of the
registered sweep parameters is automatically appended to the
file.

Syntax
x=icdbf_export_data(fNum,setupName,dataType)

Where
fNum is the number returned from an
icdbf_open() call.

setupName is a string giving a proper path to the
setup that contains data to export.

dataType exports simulated data if dataType is "S".
Exports measured data for any other
value, but "M" recommended.
The return value (x) is undefined.

icdbf_get_sweep_value Returns the current value of the
specified user sweep at any point in the export loop.

Syntax
curVal=icdbf_get_sweep_value(fNum,index,swpName)

Where
555

8 IC-CAP Functions
fNum is the number returned from an
icdbf_open() call.

index is the point number requested

swpName is the name of the registered sweep
556

icdbf_open Opens a file for exporting measured data in
IC-CAP's data management file format (.mdm).

Syntax
fNum=icdbf_open(filename)

Where

The return value (fNum) is a unique number associated with
this file. This number is valid during the current run of PEL
or until icdbf_close is called.

icdbf_register_con_sweep Creates a CON type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdbf_register_lin_sweep(fNum,conValue,swpName)

Where

filename is a string pointing at the MDM file to be
opened.
fNum is the number returned from an
icdbf_open() call.

conValue is the constant value to use for this con
sweep

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
icdbf_register_lin_sweep Creates a LIN type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdbf_register_lin_sweep(fNum,swpOrder,start,stop,
numSwpPts,swpName)

Where

fNum is the number returned from an
icdbf_open() call.

swpOrder is the sweep order for the registered
sweep

start is the start value for the linear sweep

stop is the stopping value for the linear sweep

numSwpPts is the number of points for this sweep

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in
icdbf_register_list_sweep Creates a LIST type sweep of an
arbitrary parameter in the exported file. Intended primarily to
create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdbf_register_list_sweep(fNum,swpOrder,swpName,ar
rayName)

Where
fNum is the number returned from an
icdbf_open() call.

swpOrder is the sweep order for the registered
sweep
557

8 IC-CAP Functions
swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back in

arrayName is a string naming a variable in a Variable
table that has been set to an
ICCAP_ARRAY[]. This array declares the
points that will be used for the list sweep.
558

icdbf_register_lsync_sweep Creates an LSYNC type sweep of
an arbitrary parameter in the exported file. Intended primarily
to create sweeps of parameters that cannot be swept during a
measurement. Returns the total number of points in all the
registered sweeps.

Syntax
numPts=icdbf_register_lsync_sweep(fNum,swpName,
masterSweepName,arrayName)

Where

fNum is the number returned from an
icdbf_open() call.

swpName is the name of the 'User Input' as it will
appear in the MDM file, or how it will be
referenced when reading the MDM back
in.

masterSweepName is the name of a previously registered
sweep to which this sweep will be
synchronized.

arrayName is a string naming a variable in a
Variable table that has been set to an
ICCAP_ARRAY[]. This array declares
the points that will be used for the list
sweep. This array should have the same
number of points as the already
registered Master Sweep.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

ICMSarray Returns an array result from an IC-CAP Macro
algorithm to the IC-MS result array during test execution. This
function is used internally by IC-MS and should never be called
directly by the user.

ICMSchar Returns a single character result from an IC-CAP
Macro algorithm to the IC-MS result array during test execution.
This function is used internally by IC-MS and should never be
called directly by the user.

ICMSint Returns an integer result from an IC-CAP Macro
algorithm to the IC-MS result array during test execution. This
function is used internally by IC-MS and should never be called
directly by the user.

Input Arguments:

Data Sets: Array Result

Reals or Integers: Array Size, Result Data Index

Output: None

Automatic Invocation: None

Input Arguments:

Reals or Integers: Result Data Index

Strings/Pars/Vars: Character Result

Output: None

Automatic Invocation: None

Input Arguments:

Reals or Integers: Integer Result, Result Data Index

Output: None

Automatic Invocation: None
559

560

8 IC-CAP Functions

ICMSpin Used in an IC-CAP Macro to determine the matrix
connections of the device under test. ICMSpin returns the
matrix pin number that corresponds to a specified terminal
index on the device. This function only returns valid data when
IC-MS test execution is running. Refer to the IC-MS User’s
Manual for more information on using ICMSpin.

Example PEL Statement:
pin_num = ICMSpin(1)

ICMSreal Returns a floating point result from an IC-CAP
Macro algorithm to the IC-MS result array during test execution.
This function is used internally by IC-MS and should never be
called directly by the user.

ICMSstr Returns a character string result from an IC-CAP
Macro algorithm to the IC-MS result array during test execution.
This function is used internally by IC-MS and should never be
called directly by the user.

Input Arguments:

Reals or Integers: Terminal Index

Output: Matrix pin number corresponding
to the specified device terminal
index

Automatic Invocation: None

Input Arguments:

Reals or Integers: Real Result, Result Data Index

Output: None

Automatic Invocation: None

Input Arguments:

Result Data Index: String Result

Output: None

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_activate Activates a deactivated row or column in the
PARAMETERS spreadsheet.

Example:
retVal = icstat_activate(4, "ROW")
return

icstat_analysis Emulates the Analysis command on the
Analysis menu. This function generates the “active data” that
is, data devoid of the attribute, deactivated, filtered and
constant values column. Displays the results in the
ANALYSIS spreadsheet.

Example:
retVal = icstat_analysis()
return

icstat_attribute_2_parameter Changes the Attribute column to
a Parameters column in the PARAMETERS spreadsheet.

Example:
retVal = icstat_attribute_2_parameter(4)
return

icstat_clear Clears rows or columns in the PARAMETERS
spreadsheet.

Synopsis: icstat_activate(<Number>, <Mode>)

Arguments:

Number: Row or column number to be
activated

Mode: “ROW” or “COLUMN”

Synopsis: icstat_analysis()

Arguments: NONE

Synopsis: icstat_attribute_2_parameter
(<Number>)

Arguments: Number: attribute column number
to be changed to parameter type
561

562

8 IC-CAP Functions

Example (clears 4 rows from the 4th row onward):
retVal = icstat_clear(4, 4, "ROW")
return

icstat_close_sdf_file Closes the SDF file.

Example:
retVal = icstat_close_sdf_file
("/tmp/examples/icstat/bsim3.sdf")
return

icstat_correlation Emulates the Correlation command on the
Analysis menu. This function generates the correlation
matrix from the data in the PARAMETERS spreadsheet.
Displays the results in the CORRELATION spreadsheet.

Example:
retVal = icstat_correlation()
return

icstat_deactivate Deactivates an activated row or column in
the PARAMETERS spreadsheet.

Synopsis: icstat_clear(<Start>,
<Number>, <Mode>)

Arguments:

Start Row/Column number Row or column from which
to clear

Number of rows/columns Number of rows/columns to
be cleared

Mode: “ROW” or “COLUMN”

Synopsis: icstat_close_sdf_file(<Filename>)

Arguments:

Filename: Name of the SDF file to close.

Synopsis: icstat_correlation()

Argument: NONE
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example:
retVal = icstat_deactivate(4, "ROW")
return

icstat_delete Deletes rows or columns in the PARAMETERS
spreadsheet.

Example (deletes 4 rows from the 4th row onward):
retVal = icstat_delete(4, 4, "ROW")
return

icstat_equations Emulates the Equations command on the
Analysis menu. This function either generates the equations
from the factors or the parameters. The results are displayed
in the respective spreadsheets: FACTOR EQUATIONS or
PARAMETER EQUATIONS.

Example:
retVal = icstat_equations("FACTORS")
return

Synopsis: icstat_deactivate(<Number>,
<Mode>)

Input Arguments:

Number: Row or column number to be
deactivated

Mode: “ROW” or “COLUMN”

Synopsis: icstat_delete(<Start>,
<Number>, <Mode>)

Arguments:

Start Row/Column number Row or column from which
to delete

Number of rows/columns Number of rows/columns to
be deleted

Mode: “ROW” or “COLUMN”

Synopsis: icstat_equations(<Type>)

Arguments:

Type: Either FACTORS or DOMINANT
563

564

8 IC-CAP Functions

icstat_exit Exits the Statistical Analysis program.

Example:
retVal = icstat_exit()
return

icstat_factor_analysis Emulates the Factor Analysis
command on the Analysis menu. This function performs the
factor analysis. The results are displayed in the FACTOR
LOADINGS and PARAMETER VARIANCE spreadsheets.

Synopsis: icstat_exit()

Arguments: None

Synopsis: icstat_factor_analysis(<Number-of-f
actors>, <Method-index>,
<Rotation-Index>, <Maximum
Iterations>, <Maximum Steps>,
<Convergence Iteration>,
<Convergence - 2nd derivative>

Arguments:

Number of factors: Number of factors

Method Index: 0 = Principal Component
1 = Principal Factor
2 = Unweighted Least Squares

Rotation Index: 0 = Varimax
1 = Quartimax
2 = Equamax
3 = None

Maximum Iterations: Maximum number of iterations
(default = 30)

Maximum Steps: Maximum number of steps
(default = 8)

Convergence Iteration: Convergence criterion iterations
(default = 0.0001)

Convergence
2nd derivative Convergence criterion

2nd derivative (default = 0.1)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example:
retVal = icstat_factor_analysis(8, 0, 0, 30, 8, 0.0001,

0.1)
return

icstat_from_partable Updates the PARAMETERS spreadsheet
with values from the Parameters table. If a particular
spreadsheet parameter is not found in the Parameters table
or the Parameters table parameter is not found in the
spreadsheet, then the value is not updated.

Example:
retVal = icstat_from_partable(2, "/CGaas1", "MODEL

PARAMETERS")
return

icstat_get_attribute_columns Returns an array of attribute
column numbers in the PARAMETERS spreadsheet.

Synopsis: icstat_from_partable(<Number>,
<Path>, <From Parameter Table>)

Arguments:

Row Number: Row number to get the data from

Path: The name of the model or DUT
from which you want to get
parameters. Specify
<“model_name”> to get parameters
from the Model Parameters table;
specify <“model_name/DUT_name”>
to get parameters from the DUT
Parameters table.
(To specify the current DUT, “.” is
sufficient.)

From: Specify 1 of the following
parameter tables from which to get
the data: “MODEL PARAMETERS”,
“DUT PARAMETERS“
If left blank, “MODEL
PARAMETERS” is used.
565

566

8 IC-CAP Functions

Example:
arrSize = icstat_num_attributes()

complex colArr[arrSize]
retArr = icstat_get_attribute_columns(colArr)
PRINT retArr

icstat_get_cell Returns the values in the cell. If the cell
contains text, a 0 is returned. Note: To get cells with text,
use the icstat_get_text_cell function. To get values from a
large number of cells, use icstat_get_column or
icstat_get_row.

Example:
rCell = icstat_get_cell(8, 8, "PARAMETERS")
PRINT rCell
return

Synopsis: icstat_get_attribute_columns(<input
-array>)

Arguments:

Input: Array containing the values to be
returned

Synopsis: icstat_get_cell(<row-number>,
<column-number>,
<Spreadsheet-name>)

Arguments:

Row Number: Integer

Column Number: Integer

Spreadsheet Name: One of the Spreadsheet Names

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_get_column Returns the values in the column. If the
cell contains text, a 0 is returned. Typically the first column
for any spreadsheet is of string type. For the PARAMETERS
spreadsheet, the values returned include the deactivated and
filtered cells.

Example:
arrSize = icstat_num_rows("PARAMETERS")

complex colArr[arrSize]
retArr = icstat_get_column(colArr, 7, "PARAMETERS")
PRINT retArr

icstat_get_deactivated Returns an array of deactivated rows
or columns in the PARAMETERS spreadsheet.

Example:
arrSize = icstat_num_deactivated("ROW")

complex rowArr[arrSize]
retArr = icstat_get_deactivated(rowArr, "ROW")
PRINT retArr

Synopsis: icstat_get_column(<Input-array>,
<Column number>, <Spreadsheet
Name>)

Arguments:

Input: Array for the returned value

Column Number: Integer

Spreadsheet Name: One of the Spreadsheet Names

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC

Synopsis: icstat_get_deactivated(<input-array>
, <Mode>)

Arguments:

Input: Array containing the values to be
returned

Mode: “ROW” or “COLUMN”
567

568

8 IC-CAP Functions

icstat_get_filtered_rows Returns an array of filtered rows in
the PARAMETERS spreadsheet.

Example:
arrSize = icstat_num_filtered()

complex rowArr[arrSize]
retArr = icstat_get_filtered_rows(rowArr)
PRINT retArr

icstat_get_row Returns the values in the row. If any cells
contain text, a 0 is returned. Typically the first column for
any spreadsheet contain labels, that is, text. For the
PARAMETERS spreadsheet, the first several columns could
be attribute parameters that is, text. The function excludes
the cells in these columns, and returns only real values.

Example:
iNumAttribs = icstat_num_attributes()
iNumCols = icstat_num_columns("PARAMETERS")
iNumCells = iNumCols - iNumAttribs

complex rowArr[iNumCells]
retArr = icstat_get_row(rowArr, 4, "PARAMETERS")
PRINT retArr

Synopsis: icstat_get_filtered_rows
(<input-array>)

Arguments:

Input: Array containing the values to be
returned

Synopsis: icstat_get_row(<Input-array>,
<Number>, <Spreadsheet Name>)

Arguments:

Input: Array for the returned value

Row Number Integer

Spreadsheet Name: One of the Spreadsheet Names

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_get_text_cell Gets the text in the specified cell and
sets the referenced variable with the text.

Example:
sString = "Hi, I am a string"
dummy = icstat_set_text_cell(2, 1, sString)
dummy = icstat_get_text_cell(2, 2, "PARAMETERS",
"CELLVAL")
PRINT CELLVAL
return

icstat_insert Insert rows or columns in the PARAMETERS
spreadsheet.

Synopsis: icstat_get_text_cell(<Row-Number>,
<Column-Number>, <Spreadsheet
Name>, <Variable Name>)

Arguments:

Row Number Integer

Column Number: Integer

Spreadsheet Name: One of the Spreadsheet Names

Variable Name: Variable name from the variable
table

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC

Synopsis: icstat_insert(<Start>,
<Number>, <Mode>)

Arguments:

Start Row/Column number Row or column from which
to insert

Number of rows/columns Number of rows/columns to
be inserted

Mode “ROW” or “COLUMN”
569

570

8 IC-CAP Functions

Example (inserts 4 rows from the 4th row onward):
retVal = icstat_insert(4, 4, "ROW")
return

icstat_nonparametric_models Emulates the non-parametric
analysis function.

Example:
retVal = icstat_open()
retVal = icstat_open_sdf_file

("/tmp/examples/icstat/bsim3.sdf")
retVal = icstat_nonparametric_models(8, 80, 2, 98,
"EUCLIDEAN")
return

icstat_num_attributes Returns the number of attribute
columns in the PARAMETERS spreadsheet.

Example:
iNumAttrCols = icstat_num_attributes()
PRINT iNumAttrCols

Synopsis: icstat_nonparametric_models(<B
oundary Points>, <% Enclosed>,
<Diversity Oversampling>,
<Density Estimator %>,
<Distance Metric>)

Arguments:

Number of Boundary
Points:

Number of boundary models
(integer)

Percent Enclosed: Integer

Diversity
Oversampling:

Real number

Density Estimator %: Integer

Distance Metric: “EUCLIDEAN” or “L_1” or
“L_INFINITY”

Synopsis: icstat_num_attributes()

Argument: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_num_columns Returns the number of columns in the
spreadsheet. For the PARAMETERS spreadsheet, that
includes the attribute and deactivated columns.

Example:
iNumCols = icstat_num_columns("PARAMETERS")
PRINT iNumCols

icstat_num_deactivated Returns the number of deactivated
rows or columns in the PARAMETERS spreadsheet.

Example:
iNumDeactRows = icstat_num_deactivated("ROW")
PRINT iNumDeactRows

icstat_num_filtered Returns the number of filtered rows in the
PARAMETERS spreadsheet.

Example:
iNumFilteredRows = icstat_num_filtered()
PRINT iNumFilteredRows

Synopsis: icstat_num_columns(<Spreadsheet
-name>)

Argument:

Spreadsheet Name: One of the Spreadsheet Names

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC

Synopsis: icstat_num_deactivated(<mode>)

Argument:

Mode: “ROW” or “COLUMN”

Synopsis: icstat_num_filtered(<mode>)

Argument: None
571

572

8 IC-CAP Functions

icstat_num_rows Returns the number of rows in the
spreadsheet, excluding the Label row (which is usually R1).
For the PARAMETERS spreadsheet, it includes the filtered
and deactivated rows.

Example:
iNumRows = icstat_num_rows("PARAMETERS")
PRINT iNumRows

icstat_open Opens the Statistical Analysis window.

Example:
retVal = icstat_open()
return

icstat_open_sdf_file Opens the SDF file.

Example:
retVal = icstat_open_sdf_file

("/tmp/examples/icstat/bsim3.sdf")
return

Synopsis: icstat_num_rows(<Spreadsheet
-name>)

Argument:

Spreadsheet Name: One of the Spreadsheet Names

Spreadsheet Names: PARAMETERS, ANALYSIS,
STATSUMM, CORRELATION,
FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS,
PARAMETER EQUATIONS,
PARAMETRIC, NON PARAMETRIC

Synopsis: icstat_open()

Argument: None

Synopsis: icstat_open_sdf_file(<Filename>)

Arguments:

Filename: name of the SDF file to open.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_parameter_2_attribute Changes the Parameters column
to an Attribute column in the PARAMETERS spreadsheet.

Example:
retVal = icstat_parameter_2_attribute(4)
return

icstat_parametric_models Emulates the Parametric Models
command on the Analysis menu. This function either
performs the Monte Carlo, corner or boundary modeling
analysis. The results are displayed in the PARAMETRIC
spreadsheet.

Example:
retVal = icstat_parametric_models(200, "MONTE CARLO")
return

icstat_plot_graph Emulates the Plot Graph command on the
Graph menu. For the HISTOGRAM or CDF, multiple graphs
can be plotted with a single call. For the scatter plot, only 1
graph can be plotted. The scatter plot requires the column
numbers of 2 parameters that are to be plotted.

Synopsis: icstat_parameter_2_attribute
(<Number>)

Argument: parameters column number to
be changed to attribute type

Synopsis: icstat_parametric_models(<Number
Models/Sigma>, <Type>)

Arguments:

Models/Sigma: If Monte Carlo analysis, the value
represents the number of Models.
If CORNER or BOUNDARY, the
value is the +/-sigma.

Type: One of MONTE CARLO, CORNER
or BOUNDARY

Synopsis: icstat_plot_graph
573

574

8 IC-CAP Functions

Example:
complex colArr[2]
colArr[0] = 7
colArr[1] = 9
retVal = icstat_plot_graph(colArr, "PARAMETERS",

"SCATTER")
retVal = icstat_plot_graph(colArr, "PARAMETERS",

"HISTOGRAM")
retVal = icstat_plot_graph(colArr, "PARAMETERS", "CDF")
return

icstat_save_sdf_file Saves the data in the PARAMETERS,
CORRELATION, FACTOR LOADINGS, PARAMETER
VARIANCE, FACTOR EQUATIONS and PARAMETER
EQUATIONS analysis spreadsheets to the named SDF file.

Example:
retVal = icstat_open()
sFileName = "/tmp/examples/icstat/bsim3.sdf"
retVal = icstat_open_sdf_file(sFileName)
retVal = icstat_save_sdf_file(sFileName, "TRUE, FALSE,

FALSE, FALSE, FALSE, FALSE")
retVal = icstat_close()
return

icstat_set_cell Sets the value of the particular cell in the
PARAMETERS spreadsheet. Note: To set values in a large
number of cells, use icstat_set_column or icstat_set_row.

Arguments:

Input: Array of column numbers to plot

Spreadsheet Name: One of the Spreadsheet Names

Plot Type: HISTOGRAM, CDF or SCATTER

Spreadsheet Names: PARAMETERS, PARAMETRIC

Synopsis: icstat_save_sdf_file(<Filename>,
<Options>)

Arguments:

Filename: Name of the SDF file to save the
data.

Options: comma separated value
TRUE|FALSE for the spreadsheets.
For example: TRUE, TRUE, FALSE,
FALSE, FALSE, FALSE
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example:
rVal = 0.6
dummy = icstat_set_cell(rVal, 8, 8)
return

icstat_set_column Updates the real values in the particular
column of the PARAMETERS spreadsheet with new values.
The first row (R1), which is usually the label row, is not
updated.

Example:
arrSize = icstat_num_rows("PARAMETERS")

complex colArr[arrSize]
retArr = icstat_get_column(colArr, 9, "PARAMETERS")
dummy = icstat_set_column(retArr, 8, "OVERWRITE")
return

icstat_set_param_column_labels Updates the PARAMETERS
spreadsheet column labels with parameter names from the
Parameters table.

Synopsis: icstat_set_cell(<number>,
<row-number>, <column-number>)

Arguments:

Input: Value to set

Row Number: Integer

Column Number: Integer

Synopsis: icstat_set_column(<Input-array>,
<Column number>, <Mode>)

Arguments:

Input: Array containing the values to be
set

Column Number: Integer

Mode: Mode for updating the spreadsheet
column
“INSERT” inserts a new column
“OVERWRITE” overwrites the
existing values
575

576

8 IC-CAP Functions

Example:

retVal = icstat_set_param_column_labels("/CGaas1", "MODEL
PARAMETERS")

return

icstat_set_row Updates the real values in the specified row
of the PARAMETERS spreadsheet with new values. The cells
in the attribute columns (the first several columns), which
typically contain text, are not updated. To update the cells
in the attribute columns, use the icstat_set_text_cell
function.

Synopsis: icstat_set_param_column_labels(
<Path>, <From Parameter Table>)

Arguments:

Path: The name of the model or DUT
from which you want to get
parameter names. Specify
<“model_name”> to get parameters
from the Model Parameters table;
specify <“model_name/DUT_name”>
to get parameters from the DUT
Parameters table.
(To specify the current DUT, “.” is
sufficient.)

From: Specify 1 of the following
parameter tables from which to get
the data: “MODEL PARAMETERS”,
“DUT PARAMETERS“. If left blank,
“MODEL PARAMETERS” is used.

Synopsis: icstat_set_row(<Input-array>,
<Number>, <Mode>)

Arguments:

Input: Array containing the values to be
set

Row Number: Integer
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example:
iNumAttribs = icstat_num_attributes()
iNumCols = icstat_num_columns("PARAMETERS")
iNumCells = iNumCols - iNumAttribs

complex rowArr[iNumCells]
retArr = icstat_get_row(rowArr, 4, "PARAMETERS")
PRINT retArr
! set the 5th row
dummy = icstat_set_row(retArr, 4, "INSERT")
return

icstat_set_text_cell Sets the particular cell in the
PARAMETERS spreadsheet with the text in the
PARAMETERS spreadsheet.

Example:
sString = "Hi, I am a string"
retVal = icstat_set_text_cell(2, 1, sString)
retVal = icstat_get_text_cell(2, 2, "PARAMETERS",

"CELLVAL")
PRINT CELLVAL
return

icstat_stat_summary Emulates the Statistical Summary
command on the Analysis menu. This function generates the
statistical summary from the data in the PARAMETERS
spreadsheet. Displays the results in the STATSUMM
spreadsheet.

Mode: Mode for updating the spreadsheet
row
“INSERT” inserts a new row
“OVERWRITE” overwrites the
existing values

Synopsis: icstat_set_text_cell(<Row-Number>,
<Column-Number>, <Text>)

Arguments:

Row Number: Integer

Column Number: Integer

Text: Value to be set in the cell

Synopsis: icstat_stat_summary()
577

578

8 IC-CAP Functions

Example:
retVal = icstat_stat_summary()
return

icstat_to_partable Updates the Parameters table with the
corresponding parameter value from the spreadsheet. If a
particular spreadsheet parameter is not found in the
Parameters table or the Parameters table parameter is not
found in the spreadsheet, then the value is not updated.

Example:
retVal = icstat_to_partable(4, "/CGaas1", "PARAMETERS",

"MODEL PARAMETERS")
return

Argument: None

Synopsis: icstat_to_partable(<Row_Number>,
<Path>, <From Spreadsheet Name>,
<To Parameter Table>)

Arguments:

Row Number: Row number to get the data from

Path: The name of the model or DUT you
want to update. Specify
<“model_name”> to update the
Model Parameters table; specify
<“model_name/DUT_name”> to
update the DUT Parameters table.
(To specify the current DUT, “.” is
sufficient.)

From: Specify 1 of the following
parameter tables from which to get
the data: PARAMETERS,
ANALYSIS, PARAMETRIC, NON
PARAMETRIC

To: Specify 1 of the following
parameter tables to update:
“MODEL PARAMETERS”, “DUT
PARAMETERS”
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

icstat_write_to_status_window Writes the input message to
the Statistical Analysis Status window.

Example:
sString = "Setting row number 1"
retVal = icstat_write_to_status_window(sString)
return

integral0 Returns an integral of the given Y data set against
the X data set using a simple trapezoid algorithm. The Y
data set should not cross the zero point. If the Y data set
has multiple curves, use integral3. Defined in userc.c.

integral3 Returns an integral of the given Y data set against
the X data set using a simple trapezoid algorithm. Each
curve is reported separately in the Output array. A zero
cross is allowed by interpolation. Defined in userc.c.

JUNCAP Philips JUNCAP (Junction Capacitance) Model.
Calculates the currents and capacitances from voltages.

Synopsis: icstat_write_to_status_window
(<Text>)

Arguments:

Message Text: Text to write to the Statistical
Analysis Status window.

Input Arguments:

Data Sets: X Data, Y Data

Output: Single real

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Output: Real array

Automatic Invocation: On Data Set Input Change
579

580

8 IC-CAP Functions

JUNCAP_TR Allows the reference temperature of the model
TR in the JUNCAP model to be modified.

K707_init Keithley 707 Switch Matrix function. Initialize the
707 matrix. Do not use this function with the 708a matrix.

Syntax
int ret = K707_init(MatrixGPIBAddr)

Where

MatrixGPIBAddr is the GPIB address of the matrix

Examples:

ret = K707_init(6) // Init matrix at address 6

K708a_init Keithley 708a Switch Matrix function. Initialize
the 708a matrix. Do not use this function with the 707
matrix.

Syntax
int ret = K708a_init(MatrixGPIBAddr)

Where

MatrixGPIBAddr is the GPIB address of the matrix

Examples:

ret = K708a_init(6) // Init matrix at address 6

K70X_clear_setup Keithley 707 Switch Matrix function.
Clears setup (opens all relays).

Input Arguments:

Data Sets: Anode V, Cathode V

Strings/Pars/Vars: Output (I / IB / IS / IG / C / CB
/ CS / CG / Q / QB / QS / QG)

Output: Array of complex, size determined
by inputs

Extracts: N/A
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Syntax
int ret = K70X_clear_setup(MatrixGPIBAddr, Setup)

Where

MatrixGPIBAddr is the GPIB address of the matrix

Setup: setup to be cleared (all crosspoints are opened)
SetUp can be a memory setup or the actual relays
configuration 0 <= SetUp < 100.

Examples:

ret = K70X_clear_setup(6, 0) open all relays in the actual
matrix configuration

ret = K70X_clear_setup(6, 1) open all relays in the
memory setup number 2

K70X_close_crosspoints Keithley 707 Switch Matrix function.
Closes crosspoints in the matrix.

Syntax
int ret = K70X_close_crosspoints(MatrixGPIBAddr,

CrosspointList)

Where

MatrixGPIBAddr is the GPIB address of the matrix

CrosspointList: List of the crosspoint to be close (string).

Example:

ret = K70X_close_crosspoints(6, “A1,C12”) opens the
crosspoints specified in the list in the current edited
setup specified by the K70X_edit_setup function.

K70X_config_trigger Keithley 707 Switch Matrix function.
Configures trigger.

Syntax
int ret = K70X_config_trigger(MatrixGPIBAddr,

TriggerEdge, TriggerSource)

Where

MatrixGPIBAddr is the GPIB address of the matrix.
581

582

8 IC-CAP Functions

TriggerEdge: “+” or “-”

TriggerSource: Possible configurations: “TALK” “GET” “X”
“EXT” “MAN”

Example:

ret = K70X_config_trigger(6, “+”, “EXT”) sets the switch
matrix to execute when receiving a positive edge from an
external trigger. See 70X manual for a more detailed
explanation about triggering the matrix.

K70X_connect_sequence Keithley 707 Switch Matrix function.
Sets the connection rule and the row connection sequence.

Syntax
int ret = K70X_connect_sequence(MatrixGPIBAddr,

ConnectionRule,
RowConnectionSequence)

Where

MatrixGPIBAddr is the GPIB address of the matrix

ConnectionRule: Break before Make “BM” or “MB”

RowConnectionSequence: byte row enable. Ex.: “11110011”

Example:

ret = K70X_connect_sequence(6,“BM”,“11110011”)

K70X_copy_setup Keithley 707 Switch Matrix function. Copy
setup into a new memory or actual location.

Syntax
int ret = K70X_copy_setup(MatrixGPIBAddr, Source,

Destination)

Where

MatrixGPIBAddr is the GPIB address of the matrix

Source: Setup to be copied from.

Destination: Setup to be copied to.

Example:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

ret = K70X_copy_setup(6, 3, 0) copies the memory setup 3
into the setup 0 (actual matrix configuration). In other
words, it executes setup 3.

K70X_debug Keithley 707 Switch Matrix function. Sets
debug flag on or off. When the debug mode is on, the
functions will print debug information in the Warning/Error
window

Syntax
int ret = K70X_debug(Debugflag)

Where

DebugFlag: 1/0 (Default is 0)

K70X_delete_setup Keithley 707 Switch Matrix function.
Deletes setup from memory.

Syntax
int ret = K70X_delete_setup(MatrixGPIBAddr, MemSetup)

Where

MatrixGPIBAddr is the GPIB address of the matrix

MemSetup: memory setup to be deleted. 1< MemSetup <
100

Example:

ret = K70X_delete_setup(6, 3) deletes memory setup
number 3.

K70X_edit_setup Keithley 707 Switch Matrix function. Sets
the setup number to be edited with the following close and
open commands. Note that setup number 0 represents the
matrix actual configuration while Setup 1 to 100 represents
memory setups.

Syntax
int ret = K70X_edit_setup(MatrixGPIBAddr, SetUp)

Where

MatrixGPIBAddr is the GPIB address of the matrix
583

584

8 IC-CAP Functions

SetUp: Number of the setup to edit with the next close
and open commands.

Example:

ret = K70X_edit_setup(6, 1) sets to edit the memory setup
number 1.

K70X_init_interface Keithley 708a and 707 Switch Matrix
function. Initialize the interface card or lan. It must be
executed prior to any other Keithley transform.

Syntax
int ret = K70X_init_interface(InterfaceName)

Where

InterfaceName is the hardware interface.

Examples:

ret = K70X_init_interface(“hpib”)

ret = K70X_init_interface(“gpib0”)

ret = K70X_init_interface(“lan[xx.xx.xx.xx]:hpib”)

K70X_open_crosspoints Keithley 707 Switch Matrix function.
Opens crosspoints in the matrix.

Syntax
int ret = K70X_open_crosspoints(MatrixGPIBAddr,

CrosspointList)

Where

MatrixGPIBAddr is the GPIB address of the matrix

CrosspointList: List of the crosspoint to be open (string).

Example:

ret = K70X_open_crosspoints(6, “A1,C12,D1”) opens the
crosspoints specified in the list in the current edited
setup specified by the K70X_edit_setup function.

K70X_trigger_disable Keithley 707 Switch Matrix function.
Disables trigger.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Syntax
int ret = K70X_trigger_disable(MatrixGPIBAddr)

Where

MatrixGPIBAddr is the GPIB address of the matrix.

Example:

ret = K70X_trigger_disable(6)

K70X_trigger_enable Keithley 707 Switch Matrix function.
Enables trigger.

Syntax
int ret = K70X_trigger_enable(MatrixGPIBAddr)

Where

MatrixGPIBAddr is the GPIB address of the matrix.

Example:

ret = K70X_trigger_enable(6)

linfit Fits a line to a specified curve (step) in a data set (X
versus Y). Returns a 3 point data set that defines slope,
intercept and regression coefficient. The index of steps
starts at 0. If the OVERRIDE_LIMITS variable is TRUE, the
limits can be specified manually with the X_LOW and
X_HIGH variables, which can be set from the Plot menu.
(Use the fit_line function to enable plotting of the data set,
rather than the slope and intercept.)

Example PEL Statement:
fit_data = linfit(vc,ic.m,0)

Input Arguments:

Data Sets: X Data, Y Data

Reals or Integers: Step Number (0 is first)

Output: Array of 2 points: slope then
intercept

Automatic Invocation: None
585

586

8 IC-CAP Functions

LINKarray Returns an array result from an IC-CAP Macro
algorithm to an IPC Link program during linked mode
execution. This function is used internally by IPC Link
programs and should never be called directly when using
IC-CAP interactively.

LINKchar Returns a single character result from an IC-CAP
Macro algorithm to an IPC Link program during linked mode
execution. This function is used internally by IPC Link
programs and should never be called directly when using
IC-CAP interactively.

LINKint Returns an integer result from an IC-CAP Macro
algorithm to an IPC Link program during linked mode
execution. This function is used internally by IPC Link
programs and should never be called directly when using
IC-CAP interactively.

Input Arguments:

Data Sets: Array Result

Reals or Integers: Array Size, Result Data Index

Output: None

Automatic Invocation: None

Input Arguments:

Reals or Integers: Result Data Index

Strings/Pars/Vars: Character Result

Output: None

Automatic Invocation: None

Input Arguments:

Reals or Integers: Integer Result, Result Data Index

Output: None

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

LINKpin Used in an IC-CAP Macro to determine the matrix
connections of the device under test. LINKpin returns the
matrix pin number that corresponds to a specified terminal
index on the device. This function only returns valid data
when an IPC Link program has provided a pin mapping.

Example PEL Statement:
pin_num = LINKpin(1)

LINKreal Returns a floating point result from an IC-CAP
Macro algorithm to an IPC Link program during linked mode
execution. This function is used internally by IPC Link
programs and should never be called directly when using
IC-CAP interactively.

LINKstr Used to return a character string result from an
IC-CAP Macro algorithm to an IPC Link program during
linked mode execution. This function is used internally by
IPC Link programs and should never be called directly when
using IC-CAP interactively.

Input Arguments:

Reals or Integers: Terminal Index

Output: Matrix pin number corresponding
to the specified device terminal
index

Automatic Invocation: None

Input Arguments:

Reals or Integers: Real Result, Result Data Index

Output: None

Automatic Invocation: None

Input Arguments:

Result Data Index: String Result

Output: None
587

588

8 IC-CAP Functions

log Natural logarithm.

log10 Base 10 logarithm.

lookup_par Enables you to access the value of a parameter
referenced by a string. A second argument may be specified that
is a variable to receive any error string normally going to a red
error box.

Example — looking up value for model parameter:
x=lookup_par("/npn.IS")

Example — looking up value for DUT parameter:
x=lookup_par(“/NPN/dc.rgate”)

Example — checking existence of parameter:
x=lookup_par("nonexistantparam",errstr)
if errstr<>"" then print errstr

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

lookup_var Enables you to access the value of a variable
referenced by a string. A second argument may be specified that
is a variable to receive any error string normally going to a red
error box.

Example — looking up value for model variable:
x=lookup_var("/npn/SIMULATOR")

Example — looking up value for DUT variable:
x=lookup_var(“/NPN/dc/TEMP”)

Example — looking up value for Setup variable:
x=lookup_var(“/NPN/dc/fgummel/Vdmax”)

Example — checking existence of variable:
x=lookup_var("nonexistantvar",errstr)
if errstr<>"" then print errstr

mean Calculates the arithmetic mean of a data set. Returns
a single value. Adequate for a real or complex data set, but
if a data set of matrices is received, only the 1,1 data is
considered. A data set specification like S.21 is adequate,
since this is a data set of complex numbers.

mem_diag This function is reserved for factory use; it is
used in memory utilization regression tests, as part of the
IC-CAP quality assurance process.

MEXTRAM_stoc Mextram model version: 504

Input Arguments:

Data Sets: Input 1

Output: Single real or complex number

Automatic Invocation: On Data Set Input Change

Output: A 12-point data set containing
memory utilization statistics

Automatic Invocation: None
589

590

8 IC-CAP Functions

This function calculates capacitance data from S-parameter
data, allowing base-collector and base-emitter capacitance to
be calculated from network analyzer measurements. The
output of this function can be used in place of actual
capacitance data to extract capacitance-related parameters.

MM9 Calculates Id, Is or Ib from voltages.

MM9_COPY Copies an input array to a measured or
simulated output dataset.

Input Arguments:

FREQ data Frequency

S data s-parameter data (de-embedded)

Node (C/E/S) Code to indicate type of extraction:
E base-emitter capacitance
C base-collector capacitance
S substrate-collector capacitance

Output: Capacitance versus frequency data

Extracts: Nothing

Input Arguments:

Data Sets: Drain V, Gate V, Bulk V, Source V

Strings/Pars/Vars: Output (D / S / B)

Output: Drain I / Source I / Bulk I - array
of complex, size determined by
inputs

Extracts: None

Input Arguments:

Data Sets: Copy from (Dataset Name)

Strings/Pars/Vars: Copy to (Dataset Name) M or S

Output: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

MM9_DATA Enables printing of the data measured for quick
extraction.

Example:
x = MM9_DATA(““)
or
x = MM9_DATA(“mm9_print“)

If no argument is supplied, the data will be printed to the
Status window; if a filename is supplied, the data will be
appended to that file.

MM9_GEOMPAR Updates the simulated values of the
miniset parameters in the setups extract/par_vs_L,
extract/par_vs_W and extract/par_vs_R in the MOS Model 9.

MM9_GEOMSCAL Determines a first guess for the maxiset
parameters of a MOS Model 9 by regression.

MM9_KEEP Accepts an input array and copies it directly to
the transform output.

MM9_LIN_EXT Extracts the linear region parameters for the
MOS Model 9.

MM9_SAT_EXT Extracts the saturation region parameters
for the MOS Model 9.

Input Arguments: “” or “<filename>”

Input Arguments:

Data Sets: Keep array (Dataset name)

Output: Array of complex, size determined
by inputs

Input Arguments: None

Extracts: VTO, KO, K, VSBX, BET, THE1,
THE2
591

592

8 IC-CAP Functions

MM9_SAVE_SPARS Saves the MOS Model 9 parameters of a
single device (miniset) to a file.

MM9_SETUP Allows you to specify the setups for the MOS
Model 9 parameter extraction.

MM9_STH_EXT Extracts the subthreshold region parameters
for the MOS Model 9.

MM9_TEMPPAR Updates the simulated values of the miniset
parameters in the setups extract/par_vs_T in the MOS Model
9.

MM9_TEMPSCAL Determines a first guess for the maxiset
temperature parameters of a MOS Model 9 by regression.

MM9_WEAVAL_EXT Extracts the weak avalanche region
(substrate current) parameters for the MOS Model 9.

MOS_process_pars Allows you to specify initial values for
the MOS process related parameters LD, RS, RSH, TOX, WD,
and XJ. The drain resistance RD is set equal to the specified
value of RS.

Input Arguments: None

Extracts: THE3, GAM1, ETADS, ALP, VP

Input Arguments: None

Extracts: GAMOO, MO, ZET1, VSBT

Input Arguments: None

Extracts: A1, A2, A3

Input Arguments:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

MOSCV_total_cap Extracts the total PN junction capacitance
parameters from the bottom and sidewall. Requires C-V
measurement on 2 different geometries. The first
measurement should be on a device in which the bottom
capacitance dominates. The second measurement should be
on a device in which the sidewall capacitance dominates.

MOSCVmodCBD Calculates the Bulk-Drain junction
capacitance according to the UCB MOS model.

MOSCVmodCBS Calculates the Bulk-Source junction
capacitance according to the UCB MOS model.

Data Sets: Lateral Diffusion, Source
Resistance, Sheet Resistance, Oxide
Thickness, Width Reduction,
Junction Depth

Output: None

Extracts: (not applicable)

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Cap 1, Cap 2, Junction V

Reals or Integers: Cap 1 Area, Cap 1 Perim, Cap 2
Area, Cap 2 Perim

Output: None

Extracts: CJ, MJ, CJSW, MJSW, PB

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Junction V

Output: Array of complex; size determined
by inputs

Automatic Invocation: None
593

594

8 IC-CAP Functions

MOSDC_lev2_lin_large Standard extraction for the UCB MOS
model. Extracts classical Level 2 parameters, using Id versus
Vg data from a large device. Initializes the parameter NFS
for later optimization.

MOSDC_lev2_lin_narrow Standard extraction for the UCB
MOS model. Extracts Level 2 width parameters, using Id
versus Vg data from a narrow device.

MOSDC_lev2_lin_short Standard extraction for the UCB MOS
model. Extracts Level 2 length effect parameters, using Id
versus Vg data from a short-channel device.

Input Arguments:

Data Sets: Junction V

Output: Array of complex; size determined
by inputs

Automatic Invocation: None

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: VTO, NSUB, UO, UEXP, VMAX

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: WD, DELTA

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

MOSDC_lev2_sat_short Standard extraction for the UCB
MOS model. Extracts Level 2 saturation parameters, using Id
versus Vd data from a short-channel device.

MOSDC_lev3_lin_large Standard extraction for the UCB MOS
Level 3 model. Extracts classical Level 3 parameters, using Id
versus Vg data from a large device. Initializes the parameter
NFS for later optimization.

MOSDC_lev3_lin_narrow Standard extraction for the UCB
MOS Level 3 model. Extracts Level 3 width parameters,
using Id versus Vg data from a narrow device.

Output: None

Extracts: XJ, LD

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: VMAX, NEFF

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: VTO, NSUB, UO, THETA, VMAX

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None
595

596

8 IC-CAP Functions

MOSDC_lev3_lin_short Standard extraction for the UCB MOS
Level 3 model. Extracts Level 3 length effect parameters,
using Id versus Vg data from a short device.

MOSDC_lev3_sat_short Standard extraction for the UCB
MOS Level 3 model. Extracts Level 3 saturation parameters,
using Id versus Vd data from a short device.

MOSDC_lev6_lin_large Standard extraction for the HSPICE
MOS Level 6 model. Extracts classical Level 6 parameters,
using Id versus Vg data from a large device. Initializes the
parameter NFS for later optimization.

Extracts: WD, DELTA

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: RS, RD, LD, XJ

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: VMAX, KAPPA, ETA

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: PHI, VT, LGAMMA, GAMMA, VBO,
LAMBDA, UB, NFS
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

MOSDC_lev6_lin_narrow Standard extraction for the HSPICE
MOS Level 6 model. Extracts Level 6 width parameters,
using Id versus Vg data from a narrow device.

MOSDC_lev6_lin_short Standard extraction for the HSPICE
MOS Level 6 model. Extracts Level 6 length effect
parameters, using Id versus Vg data from a short device.

MOSmodel Simple, level 1 UCB MOS model. Calculates Id
from voltages.

MOSmodel2 Complete UCB MOS model, containing levels 1,
2, and 3. Calculates Id from voltages.

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: NWM, WDEL, DELTA

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate V, Bulk V, Drain V, Drain I

Output: None

Extracts: SCM, XJ, LDEL

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Drain V, Gate V, Bulk V, Source V

Output: Array of complex; size determined
by inputs

Automatic Invocation: None
597

598

8 IC-CAP Functions

MXT_cbc Mextram model version: 504

This function calculates the total base-collector depletion
capacitance Cbc vs. bias given vbc.

See Philips Report NL-UR 2001/801, section 2.5.2 for more
details.

MXT_cbe Mextram model version: 504

This function calculates the total base-emitter depletion
capacitance Cbe vs. bias given vbe.

See Philips Report NL-UR 2001/801, section 2.5.1 for more
details.

MXT_cj0 Mextram model version: 504

Input Arguments:

Data Sets: Drain V, Gate V, Bulk V, Source V

Output: Array of complex; size determined
by inputs

Automatic Invocation: None

Inputs:

VBC: base-collector voltage

Output: calculated total base-collector
capacitance.

Inputs:

VBE: base-emitter voltage

Output: calculated total base-emitter
depletion capacitance.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

This function extracts the zero-bias junction capacitance,
Cje0, Cjc0 or Cjs0 depending on which Output mode is
selected: E/C/S. The total bias range needs to include V = 0
V, but it is not necessary that one of the Vj value is indeed
zero.

See Philips Report NL-UR 2001/801, sections 2.5.1-2.5.3 for
more details.

MXT_csc Mextram model version: 504

This function calculates the total substrate-collector
depletion capacitance Csc vs. bias given vsc.

See Philips Report NL-UR 2001/801, section 2.5.3 for more
details.

MXT_forward_hfe Mextram model version: 504

This function calculates hfe given veb,vcb and ic.m. When
the MODEL variable MXT_AUTO_RANGE is set to the value
1.0 the transform will use the measured collector current to
determine the upper limit for extracting the parameters: BF,
IBF and MLF. This limit is determined by the onset of
high-injection. The function is used in the
dc_gummel/Forward setup to extract the non ideal base
current parameters IBF, MLF and the forward current gain
BF.

Inputs:

VSC: substrate-collector voltage

Output: calculated total substrate-collector
depletion capacitance.

Inputs:

VEB: emitter-base voltage.

VCB: collector-base voltage (it should be
constant)

IC: measured collector current
599

600

8 IC-CAP Functions

See Philips Report NL-UR 2001/801, section 2.5.8 for more
details.

MXT_forward_ic Mextram model version: 504

This function calculates ic given veb and vcb. When the
MODEL variable MXT_AUTO_RANGE is set to the value 1.0
this transform will also require ic.m as an input. The
transform uses the measured collector current to determine
the upper limit for extracting the parameter: IS. This limit is
set by the onset of high-injection. The function is used to
extract IS in the setup dc_gummel/Forward.

See Philips Report NL-UR 2001/801, section 2.5.7 for more
details.

MXT_forward_vbe Mextram model version: 504

This function calculates vbe given vcb, ic.m and ib.m. When
the MODEL variable MXT_AUTO_RANGE is set to the value
1.0, the transform will also require veb (ve-vb) as an input.
The transform is used to optimize RE in the setup
dc_gummel/Forward.

Output: forward current gain Ic//Ib

Inputs:

VEB: emitter-base voltage.

VCB: collector-base voltage (this should
be constant in a forward gummel
plot)

IC: measured collector current (used
for auto-ranging)

Output: calculated ideal forward collector
current (DO NOT include series
resistances, high injection,
quasi-sat etc.)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

See Philips Report NL-UR 2001/801, section 2.5.9 for more
details.

MXT_ft Mextram model version: 504

This function calculates the cut-off frequency fT as a
function of Ic, Vbe and Vce. The function is used to extract
the transit time parameters as well as several other high
current parameters.

See Philips Report NL-UR 2001/801, section 2.6 for more
details.

MXT_hard_sat_isub Mextram model version: 504

This function calculates the substrate current in hard
saturation. It is used in the dedicated setup
dc_paras/Rc_active to extract the parameter RCC.

Inputs:

IC: measured collector current.

IB: measured base current.

VEB: external measured Veb (used for
auto-ranging only)

Output: external voltage Vbe.

Inputs:

IC: measured collector current.

VBE: base-emitter voltage.

VCE: collector-emitter voltage.

Output: calculated fT.

Inputs:

VBC: base-collector voltage.

IC: measured collector current.
601

602

8 IC-CAP Functions
See Philips Report NL-UR 2001/801, section 2.5.10 for more
details.

MXT_ic_vce Mextram model version: 504

This function calculates the collector current or the base
emitter voltage (depending on the selected Output) as
function of the voltage difference Vce and the base current
Ib. Ic is used to correct for series resistances. Vbe and Is are
used for setting initial values in the calculation and for
auto-ranging.

IB: measured base current.

Output: calculated substrate current in
hard saturation.

NOTE Auto-ranging is always ON for this function, regardless of the value of the
variable MXT_AUTO_RANGE.
The function is used to extract the model variable RTH (thermal
resistance) and several other parameters in combination with
the MXT_ft transform. RTH along with Ic and Vce are used to
calculate a new simulation temperature. To remove RTH’s
influence on the simulation temperature, set RTH to zero.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

See Philips Report NL-UR 2001/801, section 2.6 for more
details.

MXT_I0 Mextram model version: 504

This function extracts either IE0, IC0, or IB0 depending on
which Output mode is selected: E/C/B. The function requires a
terminal current as input. This transform uses the array of
current data Idata and takes the first value at index 0. The I0
value can be used in the forward-Early and reverse-Early
measurements to get a first estimate of the current offset. The
subsequent optimizations, which require either IE0, IB0 or IC0,
provide more robust results. Sometimes the optimizer will have
trouble converging to a proper solution if these currents are too
far from their final values.

Inputs:

VCE: collector-emitter voltage.

IB: measured base current.

IC: measured collector current.

VBE: base-emitter voltage.

ISUB: measured substrate current.

Output [i/v]: choice of collector current (i) or
base-emitter voltage (v)

Avalanche [y/n]: Yes/No flag.

Output: calculated collector current or
base-emitter voltage.

Inputs:

Idata: dataset with current data

Choice of outputs: E/C/B

Output: Sets the value of the model
variables IE0,IC0 or IB0
603

604

8 IC-CAP Functions

See Philips Report NL-UR 2001/801, section 2.5.4-2.5.6 for more
details.

MXT_jun_cap Mextram model version: 504

This function calculates Cbe, Cbc, or Csc vs junction voltage
given vbe, vbc, or vsc. This function combines the
functionalities of the 3 functions: MXT_cbe, MXT_cbc, MXT_csc.

MXT_reverse_currents Mextram model version: 504

Selecting Output=B calculates ib given vbc, vbe and ie. When the
MODEL variable MXT_AUTO_RANGE is set to the value 1.0, the
transform will use the measured emitter current to determine
the lower limit for extracting the parameters: XEXT and IKS.
This limit is set by the onset of high-injection.

Selecting Output=S calculates is given vbc, vbe and ie. When the
MODEL variable MXT_AUTO_RANGE is set to the value 1.0, the
transform will use the measured emitter current to determine
the lower limit for extracting the parameters: XEXT and IKS.
This limit is set by the onset of high-injection.

Selecting Output=E calculates ie given vbc, vbe and ie. When the
MODEL variable MXT_AUTO_RANGE is set to the value 1.0, the
transform will use the measured emitter current to determine
the lower limit for extracting the parameters: XEXT and IKS.
This limit is set by the onset of high-injection.

Input Arguments:

VJUN junction voltage: vbe, vbc, or vsc

OUTPUT: E/C/S Code to indicate which junction to
calculate
E (default) Cbe: requires vbe as
VJUN input
C Cbc: requires vbc as VJUN input
S Csc: requires vsc as VJUN input

Output: junction capacitance vs junction
voltage data
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

See Philips Report NL-UR 2001/801, section 2.6.7 for more
details.

MXT_reverse_hfc Mextram model version: 504

This function calculates HFC (ie/ib) given veb, vcb and ie.m.
When the MODEL variable MXT_AUTO_RANGE is set to the
value 1.0, the transform uses the measured emitter current
to determine the upper limit for extracting the parameter
BR, IBR, VLR. This limit is set by the onset of high-injection.
This transform has an additional input: substrate (y/n). This
is used to calculate the reverse beta with or without the
addition of the substrate current.

Inputs:

VBC: base-collector voltage.

VBE: base-emitter voltage.

IE: measured emitter current (for
auto-ranging only)

Output [E/B/S]: select:
E for emitter current
B for base current
S for substrate current

Output: calculated reverse current
(emitter/base or substrate).

Inputs:

VCB: collector-base voltage.

VEB: emitter-base voltage.

IE: measured emitter current (for
auto-ranging only)

I Substrate [Y/N]: yes or no field.

Output: calculated reverse current gain
Hfc= Ie//Ib = Ie/(Iex+Ib3+Isub)
605

606

8 IC-CAP Functions

See Philips Report NL-UR 2001/801, section 2.5.12 for more
details.

MXT_reverse_hfc_sub Mextram model version: 504

This function calculates the substrate to emitter current
gain: HFCsub (-ie/is) given veb and vcb. The function is used
in the setup dc_gummel/Reverse to extract the parameter
ISS. When the MODEL variable MXT_AUTO_RANGE is set to
the value 1.0, the transform will require 2 additional inputs:
emitter and substrate currents (ie) & (is). The transform
uses the measured emitter & substrate currents to determine
the upper limit for extracting the parameter ISS. This limit
is set by the onset of high-injection in both the emitter and
substrate currents.

See Philips Report NL-UR 2001/801, section 2.5.11 for more
details.

MXT_reverse_isub Mextram model version: 504

This function calculates the substrate current for low reverse
conditions. It can be used to extract the parameter ISS,
however Philips recommends another method (see section
2.5.11).

Inputs:

VEB: emitter-base voltage.

VCB: collector-base voltage.

IE: measured emitter current

IS: measured substrate current.

Output: calculated substrate to emitter
current gain Ie//Isub

Inputs:

VBC: base-collector voltage (positive as
transistor reverse biased)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

See Philips Report NL-UR 2001/801, section 2.5.11 for more
details.

MXT_show_parms Mextram model version: 504

This function prints all the Mextram parameters at the
actual ambient temperature set by the variable TEMP. The
functions will use these parameters in their calculations.

See Philips Report NL-UR 2001/801, section 5.1.1 for more
details.

mxt_smooth This function is obsolete.

This function performs a smoothing function on the data.

IS: measured Is (used for auto-ranging
only)

Output: calculated substrate current Isub =
ISS*(exp(Bbc/VT)-1) where VT is
the thermal voltage.

Input Arguments:

Y Data unitless

Smooth Points number of points on either side of
data point to be use for smoothing.
0 = disable

Smooth Iter number of iterations that
smoothing algorithm is performed
on data.
0 = disable

Output: Smoothed data.
607

608

8 IC-CAP Functions

MXT_veaf_ib Mextram model version: 504

This function calculates the base current in a forward early
measurement. It is used in the setup dc_early_avl/Fwd_early
to extract the avalanche parameters VAVL and WAVL.

See Philips Report NL-UR 2001/801, section 2.5.4 for more
details.

MXT_veaf_ic Mextram model version: 504

This function calculates forward current ic given vcb, veb
and the model variable IC0. When the MODEL variable
MXT_AUTO_RANGE is set to the value 1.0, the transform
will require one additional input: base current ib. The
transform uses the measured base current to determine the
onset of weak avalanche breakdown. This sets the upper
limit of the optimization, opt_Veaf.

Inputs:

VCB: collector-base voltage.

IC: measured collector current.

the function uses the model variable IB0

Output: calculated base current

Inputs:

VCB: collector-base voltage.

VEB: emitter-base voltage (this should be
constant).

IB: measured base current, used for
autorange only.

the function uses the model variable IC0

Output: calculated collector current Ic
(transistor forward bias)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

See Philips Report NL-UR 2001/801, section 2.5.6 for more
details.

MXT_vear_ie Mextram model version: 504

This function calculates ie when the base emitter junction is
reversed biased, and the base collector junction is forward
biased. Vcb is assumed to be constant. The function is used
in the setup dc_early_avl/Rev_early to extract the parameter
VER.

See Philips Report NL-UR 2001/801, section 2.5.5 for more
details.

MXT_VEF Mextram model version: 504

This function calculates a starting value for the parameter
VEF. The Model Parameter list is updated and the extracted
value is printed in the status window. To extract VEF, run
this transform first and then optimization opt_VEF in the
setup dc_early_avl/Fwd_early.

See Philips Report NL-UR 2001/801, section 2.5.6 for more
details.

Inputs:

VEB: emitter-base voltage.

VCB: collector-base voltage (it should be
constant and > 0).

the function uses the model variable IE0.

Output: emitter current Ie (transistor
reverse biased)

Input Argument:

VCB: collector-base voltage.

IC: measured collector current
609

610

8 IC-CAP Functions

MXT_VER Mextram model version: 504

This function calculates a starting value for the parameter
VER. The Model Parameter list is updated and the extracted
value is printed in the status window. To extract VER, run
this transform first and then optimization opt_VER in the
setup dc_early_avl/Rev_early.

See Philips Report NL-UR 2001/801, section 2.5.5 for more
details.

mxt3t_cbc This function is obsolete.

This function calculates Cbc verses base collector junction
voltage.

mxt3t_cbe This function is obsolete.

This function calculates Cbe verses base emitter junction
voltage.

Input Argument:

VCB: collector-base voltage.

IC: measured collector current

Input Arguments:

Vbc Vbc Voltage (V)

Output: Cbc

Input Arguments:

Vbe Vbe Voltage (V)

Output: Cbe
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
mxt3t_cj0 This function is obsolete.

This function extracts the zero-bias junction capacitance,
Cje0, or Cjc0 depending on which Output mode is selected:
E/C/S.

mxt3t_ft_ic This function is obsolete.

This function calculates FT given Ic, Vbe, and Vce.

Input Arguments:

Junction Voltage V

Junction Capacitance C

Junction: E, C

Output: Cje or Cjc depending on Junction
argument

This function does not describe Ft when quasi saturation

NOTE kicks in. Use mxt3t_ft_ic_new instead.
mxt3t_ft_ic_new This function is obsolete.

This function calculates FT given Ic, Vbe, and Vce.

Input Arguments:

Ic Collector Current (A)

Vbe Base Emitter Voltage (V)

Vce Vce Voltage (V)

Output: Ft
NOTE This new function now includes quasi but not heavy
saturation.
611

612

8 IC-CAP Functions

mxt3t_fwd_early_ib This function is obsolete.

This function calculates the fwd early base current for a 3
terminal device given Vcb and Ic.

mxt3t_fwd_early_ic This function is obsolete.

This function calculates the fwd early collector current for a 3
terminal device given Vbe and Vbc.

mxt3t_fwd_gummel_hfe This function is obsolete.

This function calculates forward gummel HFE for a 3 terminal
device given Vbe, Vbc, and Ic. The HFE limit input limits HFE to
the value entered. This is used to limit HFE in the region
outside of the function's applicable range.

Input Arguments:

Ic Collector Current (A)

Vbe Base Emitter Voltage (V)

Vce Vce Voltage (V)

Output: Ft

Input Arguments:

Vcb Vcb Voltage (V)

ic Ic current (A)

Output: Forward Early base current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Forward Early collector current.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt3t_fwd_gummel_ib This function is obsolete.

This function calculates the forward gummel base current for a
3 terminal device given Vbe, Vbc, and Ic.

mxt3t_fwd_gummel_ic This function is obsolete.

This function calculates forward gummel collector current for a
3 terminal device given Vbe, Vbc.

mxt3t_fwd_gummel_vbe This function is obsolete.

This function calculates forward gummel base-emitter voltage
for a 3 terminal device given Ib and Ic.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ic Collector Current (A)

HFE Limit Maximum
HFE to be displayed.

Output: Forward Gummel HFE

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ic Collector Current (A)

Output: Forward Gummel Base current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Forward Gummel Collector current.
613

614

8 IC-CAP Functions

mxt3t_i0 This function is obsolete.

This function extracts either IE0, IC0 or IB0 depending on
which Output mode is selected: E/C/B. The function requires a
terminal current as input. This transform was written to make
the subsequent optimizations, which require either IE0, IB0 or
IC0, more robust. Sometimes the optimizer would have trouble
converging to a proper solution if these currents were too far
from their final values.

mxt3t_linear_range This function is obsolete.

This function calculates the 2nd derivative of a dataset. It
enables the user to see where the data is linear. This is
useful in determining the valid range of mextram functions.

Input Arguments:

ib Base current (A)

Ic Collector Current (A)

Output: Forward Gummel Vbe.

Input Arguments:

I Data (A)

Output: E, C, B

Output: IE0, IC0, IB0 depending on Output
Argument

Input Arguments:

Y Data unitless

X Data unitless (must be uniform steps)

Smooth Points number of points on either side of
data point to be use for smoothing.
0 = disable
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt3t_output_ic This function is obsolete.

This function calculates collector current output
characteristics given Vce, Ic, Ib, and Vb. It is intended to
model the quasi-saturation region of the transistor.

mxt3t_output_vbe This function is obsolete.

This function calculates base-emitter voltage Vce, Ic, Ib, and
Vb. It is used to estimate the thermal resistance of the
device.

Smooth Iter number of iterations that
smoothing algorithm is performed
on data.
0 = disable

Log Data ? Log the data before the smoothing
or derivative functions are applied

Output: 2nd derivative of the Y Data.

Input Arguments:

Vce Vce Voltage (V)

Ic Collector Current (A)

Ib Base Current (A)

Vb Base Voltage (V)

Output: Collector Current

Input Arguments:

Vce Vce Voltage (V)

Ic Collector Current (A)

Ib Base Current (A)

Vb Base Voltage (V)

Output: Base Emitter Voltage
615

616

8 IC-CAP Functions

mxt3t_rev_early_ie This function is obsolete.

This function calculates the reverse early emitter current for
a 3 terminal device given Vbe and Vbc.

mxt3t_rev_early_qb0_guess This function is obsolete.

This function calculates QBO based on the following formula:

QBO = IE0*(1-XCJE)*CJE*(dvbe/die @ vbe=0)

The function requires ie and vbe as inputs and the model
parameters mex.CJE, mex.XCJE and the model variable IE0.

This transform was written for 2 reasons: (1) the
optimization used to determine its final value can get lost if
the initial value is way off; (2) The value of QBO is used to
determine the initial values of other parameters. Therefore,
the more accurate the value of QBO the more accurate these
other parameters will be.

mxt3t_rev_gummel_hfc This function is obsolete.

This function calculates the reverse gummel HFC for a 3
terminal device given Vbe, Vbc, and Ie.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Reverse Early emitter current.

Input Arguments:

Vbe Vbe Voltage (V)

Ie Emitter Current (A)

Output: QB0
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt3t_rev_gummel_ib This function is obsolete.

This function calculates the reverse gummel base current for
a 3 terminal device given Vbe, Vbc, and Ie.

mxt3t_rev_gummel_ie This function is obsolete.

This function calculates the reverse gummel emitter current
for a 3 terminal device given Vbe, Vbc, and Ie.

mxt4t_cbc This function is obsolete.

This function calculates Cbc verses base collector junction
voltage.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel HFC.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel Base current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel Emitter current.
617

618

8 IC-CAP Functions

mxt4t_cbe This function is obsolete.

This function calculates Cbe verses base emitter junction
voltage.

mxt4t_cj0 This function is obsolete.

This function extracts the zero-bias junction capacitance,
Cje0, Cjc0 or Cjs0 depending on which Output mode is
selected: E/C/S.

mxt4t_csc This function is obsolete.

This function calculates Csc verses collector junction voltage.

Input Arguments:

Vbc Vbc Voltage (V)

Output: Cbc

Input Arguments:

Vbe Vbe Voltage (V)

Output: Cbe

Input Arguments:

Junction Voltage V

Junction Capacitance C

Junction: E, C, S

Output: Cje, Cjc, or Cjs depending on
Junction argument

Input Arguments:

Vsc Vsc Voltage (V)

Output: Csc
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
mxt4t_ft_ic This function is obsolete.

This function calculates FT given Ic, Vbe, and Vce.
NOTE This function does not describe Ft when quasi saturation
kicks in. Use mxt4t_ft_ic_new instead.
mxt4t_ft_ic_new This function is obsolete.

This function calculates FT given Ic, Vbe, and Vce.

Input Arguments:

Ic Collector Current (A)

Vbe Base Emitter Voltage (V)

Vce Vce Voltage (V)

Output: Ft

NOTE This new function now includes quasi but not heavy
saturation.
mxt4t_fwd_early_ib This function is obsolete.

This function calculates the fwd early base current for a 4
terminal device given Vcb and Ic.

Input Arguments:

Ic Collector Current (A)

Vbe Base Emitter Voltage (V)

Vce Vce Voltage (V)

Output: Ft
619

620

8 IC-CAP Functions

mxt4t_fwd_early_ic This function is obsolete.

This function calculates the fwd early collector current for a 4
terminal device given Vbe and Vbc.

mxt4t_fwd_gummel_hfe This function is obsolete.

This function calculates forward gummel HFE for a 4 terminal
device given Vbe, Vbc, and Ic. The HFE limit input limits HFE to
the value entered. This is used to limit HFE in the region
outside of the function's applicable range.

mxt4t_fwd_gummel_ib This function is obsolete.

This function calculates the forward gummel base current for a
4 terminal device given Vbe, Vbc, and Ic.

Input Arguments:

Vcb Vcb Voltage (V)

ic Ic current (A)

Output: Forward Early base current.

Input Arguments:

Vbe Vbe Voltage (V

Vbc Vbc Voltage (V)

Output: Forward Early collector current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ic Collector Current (A)

HFE Limit Maximum HFE to be displayed.

Output: Forward Gummel HFE
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt4t_fwd_gummel_ic This function is obsolete.

This function calculates forward gummel collector current for a
4 terminal device given Vbe and Vbc.

mxt4t_fwd_gummel_vbe This function is obsolete.

This function calculates forward gummel base-emitter voltage
for a 4 terminal device given Ib and Ic.

mxt4t_i0 This function is obsolete.

This function extracts either IE0, IC0 or IB0 depending on
which Output mode is selected: E/C/B. The function requires a
terminal current as input. This transform was written to make
the subsequent optimizations, which require either IE0, IB0 or
IC0, more robust. Sometimes the optimizer would have trouble
converging to a proper solution if these currents were too far
from their final values.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ic Collector Current (A)

Output: Forward Gummel Base current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Forward Gummel Collector current.

Input Arguments:

ib Base current (A)

Ic Collector Current (A)

Output: Forward Gummel Vbe.
621

622

8 IC-CAP Functions

mxt4t_linear_range This function is obsolete.

This function calculates the 2nd derivative of a dataset. It
enables the user to see where the data is linear. This is
useful in determining the valid range of mextram functions.

mxt4t_output_ic This function is obsolete.

This function calculates collector current output
characteristics given Vce, Ic, Ib, and Vb. It is intended to
model the quasi-saturation region of the transistor.

Input Arguments:

I Data (A)

Output: E, C, B

Output: IE0, IC0, IB0 depending on Output
Argument

Input Arguments:

Y Data unitless

X Data unitless (must be uniform steps)

Smooth Points number of points on either side of
data point to be use for smoothing.
0 = disable

Smooth Iter number of iterations that
smoothing algorithm is performed
on data.
0 = disable

Log Data ? Log the data before the smoothing
or derivative functions are applied

Output: 2nd derivative of the Y Data.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt4t_output_vbe This function is obsolete.

This function calculates base-emitter voltage Vce, Ic, Ib, and
Vb. It is used to estimate the thermal resistance of the
device.

mxt4t_rev_early_ie This function is obsolete.

This function calculates the reverse early emitter current for
a 4 terminal device given Vbe and Vbc.

mxt4t_rev_early_qb0_guess This function is obsolete.

This function calculates QBO based on the following formula:

QBO = IE0*(1-XCJE)*CJE*(dvbe/die @ vbe=0)

Input Arguments:

Vce Vce Voltage (V)

Ic Collector Current (A)

Ib Base Current (A)

Vb Base Voltage (V)

Output: Collector Current

Input Arguments:

Vce Vce Voltage (V)

Ic Collector Current (A)

Ib Base Current (A)

Vb Base Voltage (V)

Output: Base Emitter Voltage

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Reverse Early emitter current.
623

624

8 IC-CAP Functions

The function requires ie and vbe as inputs and the model
parameters mex.CJE, mex.XCJE and the model variable IE0.

This transform was written for 2 reasons: (1) the
optimization used to determine its final value can get lost if
the initial value is way off; (2) The value of QBO is used to
determine the initial values of other parameters. Therefore,
the more accurate the value of QBO the more accurate these
other parameters will be.

mxt4t_rev_gummel_hfc This function is obsolete.

This function calculates the reverse gummel HFC for a 4
terminal device given Vbe, Vbc, and Ie.

mxt4t_rev_gummel_hfc_sub This function is obsolete.

This function calculates the HFC of the parasitic substrate
transistor for a 4 terminal device given Vbe and Vbc.

Input Arguments:

Vbe Vbe Voltage (V)

Ie Emitter Current (A)

Output: QB0

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ic Emitter Current (A)

Substrate (Y/N) Y -> Includes ibSub when
Calculating hfc.
N -> Excludes ibSub when
Calculating hfc.

Output: Reverse Gummel HFC.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

mxt4t_rev_gummel_ib This function is obsolete.

This function calculates the reverse gummel base current for
a 4 terminal device given Vbe, Vbc, and Ie.

mxt4t_rev_gummel_ie This function is obsolete.

This function calculates the reverse gummel emitter current
for a 4 terminal device given Vbe, Vbc, and Ie.

mxt4t_rev_gummel_is This function is obsolete.

This function calculates the reverse gummel substrate
current for a 4 terminal device given Vbe, Vbc, and Ie.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Output: Reverse Gummel substrate HFC.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel Base current.

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel Emitter current.
625

626

8 IC-CAP Functions

NOISE_1f_bjt_1Hz For each noise trace this function
calculates the 1 Hz intercept point by calculating the average
noise in the specified frequency range. The frequency range
can be specified by using the variables X_LOW and X_HIGH.
If N is the number of noise traces, the function returns an
output dataset of size N filled with the N intercept points
(one for each trace).

Examples:

This transform is used during 1/f noise parameters
extraction for bipolar devices. See model file
examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl
The transform is used in the setup modeling/extract

NOISE_1f_bjt_calc This function calculates the current noise
density at the device output (collector) given the frequency
range, the device current gain Beta, the base current and the
parameters Af and Kf listed in the Parameters table. The
Noise is calculated as follows:

<Sic>= Kf * (ib^Af)/f * Beta^2

Input Arguments:

Vbe Vbe Voltage (V)

Vbc Vbc Voltage (V)

Ie Emitter Current (A)

Output: Reverse Gummel substrate current.

Inputs:

Frequency: Frequency point dataset.
Size: N*freqpoints.

Noise at constant Vc: dataset containing the noise for the
N traces.
Size: N*freqpoints

Output: Dataset filled with the N 1Hz
interception points.
Size: N.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

If N is the number of traces (number of DC bias points) the
inputs are defined as follows:

Examples:

This transform is used during 1/f noise parameters
extraction for bipolar devices. See model file
examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl
The transform is used in the setup modeling/extract

NOISE_1f_bjt_extract This function extracts the parameters
Af and Kf. If N is the number of noise traces at a given Vc,
inputs and output are as follows:

Examples:

Inputs:

Beta: Dc current gain dataset. Size: N

frequency: Frequency point dataset.
Size: N*freqpoints.

Base Current: Base current dataset.
Size: N.

Output: Dataset filled with the calculated
noise.
Size: N*freqpoints.

Inputs:

Beta: Dc current gain dataset. Size: N.

Ic noise 1 Hz: 1 Hz intercept dataset. Size: N.

Base Current: base current at each bias point.
Size: N.

Output: Return a dataset of size N with the
calculated 1 Hz values using the
extracted Af and Kf.

Extracts: Af, Kf
627

628

8 IC-CAP Functions

This transform is used during 1/f noise parameters
extraction for bipolar devices. See model file
examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl
The transform is used in the setup modeling/extract

NOISE_1f_force_bias This function forces a current or a
voltage from the specified unit of a 4142B or 4156B/C.
NOTE The instrument will continue to force the bias until the
function NOISE_1f_stop_bias is called.
Examples:

ret = NOISE_1f_force_bias(29, 2, 25e-6, “4142”, “hpib”, “2”,
“I”) this forces 25 µA of current from unit source on slot 2 of
the 4142 at address 29. The interface name is “hpib” and the
voltage compliance is 2 V.

This transform is used during 1/f noise parameters
extraction for bipolar and MOS devices. See model file
examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl

Variables:

GPIB Address: instrument address.

Compliance: voltage or current compliance.

Value: voltage or current value to be
forced.

Parameters:

Bias source: specify DC Bias Source Type
(4142/4156).

GPIB Interface: interface name.

Unit Slot (4142) or
SMU (4156)

Force Current (I) or
Voltage (V).
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

The transform is used in the setup measure/Noise. It is called
by the GUI interface function btMeasure located in the setup
GuiDriver/MeasureNoise.

NOISE_1f_get_Af This function returns the value of the
parameter Af/AF/af stored in the parameter list.

Syntax
x = NOISE_1f_get_Af()

NOISE_1f_get_Bf This function returns the value of the
parameter Bf/BF/bf stored in the parameter list.

Syntax
x = NOISE_1f_get_Bf()

NOISE_1f_get_Kf This function returns the value of the
parameter Kf/KF/kf stored in the parameter list.

Syntax
x = NOISE_1f_get_Kf()

NOISE_1f_get_Ef This function returns the value of the
parameter Ef/EF/Ef stored in the parameter list.

Syntax
x = NOISE_1f_get_Ef()

NOISE_1f_mos_1Hz For each noise trace this function
calculates the 1 Hz intercept point by calculating the average
noise in the specified frequency range. The frequency range can
be specified by using the variables X_LOW and X_HIGH. If N is
the number of noise traces, the function returns an output
dataset of size N filled with the N intercept points (one for each
trace).

Inputs:

Frequency: Frequency point dataset.
Size: N*freqpoints.

Noise at constant
Vd:

dataset containing the noise for the
N traces.
Size: N*freqpoints
629

630

8 IC-CAP Functions

Examples:

This transform is used during 1/f noise parameters
extraction for MOS devices. See model file
examples/model_files/noise/1_f_toolkit/mos_1f_noise.mdl
The transform is used in the setup modeling/extract

NOISE_1f_set_Af This function sets the value of the parameter
Af/AF/af in the parameter list.

Syntax
NOISE_1f_set_Af(value)

NOISE_1f_set_Bf This function sets the value of the parameter
Bf/BF/bf in the parameter list.

Syntax
NOISE_1f_set_Bf(value)

NOISE_1f_set_Ef This function sets the value of the parameter
Ef/EF/ef in the parameter list.

Syntax
NOISE_1f_set_Ef(value)

NOISE_1f_set_Kf This function sets the value of the parameter
Kf/KF/kf in the parameter list.

Syntax
NOISE_1f_set_Kf(value)

NOISE_1f_stop_bias This function stops the bias from the
specified DC source. It is used in conjunction with the
NOISE_1f_force_bias.

Output: Dataset filled with the N 1Hz
interception points.
Size: N.

Variables:

GPIB Address: instrument address.

Parameters:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Examples:

ret = NOISE_1f_force_bias(29, “4142”, “hpib”, “2”) the SMU
unit at slot 2 of the 4142 at address 29 will stop any voltage
or current bias.

This transform is used during 1/f noise parameters
extraction for bipolar and MOS devices. See model file
examples/model_files/noise/1_f_toolkit/bjt_1f_noise.mdl
The transform is used in the setup measure/Noise. It is called
by the GUI interface function btMeasure located in the setup
GuiDriver/MeasureNoise.

Optimize The IC-CAP general purpose optimizer. Performs
Levenberg-Marquardt optimization, random optimization,
hybrid optimization, and sensitivity analysis. The optimizer
is described in Chapter 7, “Optimizing,” in the User’s Guide.

Bias source: specify DC Bias Source Type
(4142/4156).

GPIB Interface: interface name.

Unit Slot (4142) or
SMU (4156).

Input Arguments: None

Output: Levenberg-Marquardt: array of real,
length 2 (RMS error, max error)

Random or Hybrid: Array of real, length 1 (RMS error)

Sensitivity: Nx1 matrix of real numbers; size
determined by inputs.

Automatic Invocation: By Optimize menu function (or
Extract menu function when the
Extract Flag option is set to Yes)
631

632

8 IC-CAP Functions

Package A utility function that can either “embed or
de-embed” the effects of a package from S-parameter data
provided as input. The resultant set of S-parameters is
returned as a data set with the same frequency and bias
conditions as the input S-parameter data set.

:

The package topology used here is a very simple series
shunt representation of a component’s package. This package
is more general purpose than EEfet3_package,
EEbjt2_package, or EEmos1_package. Each port of this
package has a transmission line that represents the package
lead frame. Then a “T” network is defined on the input and
output (port 1 and 2) that represents bond wires and can be
used to model simple matching networks used in some
pre-matched devices. This network is not included on the
common lead. So working from the outside edge of the
package’s input port (port 1) there is an ideal transmission
line (Z1, D1), followed by the bonding/matching network.

L1a + L1b represent the bond inductance of the input port.
The inductance is split into 2 parts. In a pre-matched device
L1a is the bond inductance from the lead frame of port 1 to
the shunt matching capacitor (modeled by L1m, C1m). L1b
would be the bond wire from the top of the matching
capacitor to the gate/base of the transistor. C1, C12, and C2
are fringing capacitors that encircle the intrinsic device
(usually small values 20-30ff).

In the case of a transistor with no pre-matching, L1m, C1m
and L1b would be set to zero. The “common” node of the
input matching capacitor C1m and the output matching
capacitor C2m is where transmission line and bond
inductance of the common lead join.The intrinsic
S-parameters used as input/output are connected at the
“internal” side of L1b, L2b and L3.The output port (port 2)

Usage Package(S_parameter_data_set,
embed/dEEmbed_flag, Z1, D1, L1a,
L1b, L1m, C1m, C1, C12, Z3, D3,
L3, Z2, D2, L2a, L2b, L2m, C2m,
C2)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

is an exact duplication of the input port. The transmission
line (Z2, D2) represents the lead frame. The output
matching/ bonding network is modeled with L2a, L2b and
L2m, C2m.

All 3 of the transmission lines are ideal lines modeled with
a characteristic impedance and length. The length is in units
of meters.

Because you must use the same values for each of these
arguments in many places in the IC-CAP model file, this
function is constructed to use model variables as arguments.
First: create 1 variable, in the model variable table, for each
of the function arguments (thus making it global to the
entire model in use). Then use the variables each time the
function is used. In this manner you can ensure that the
same values are being used to embed the model as were
extracted from measurements.

The first argument is the data set upon which the function
will operate. The second argument is a text string or
variable containing a text string “embed” or “de-embed.” The
function will operate on the input data set as indicated by
the second argument.

PEL example that de-embeds a package from a measurement
(based on first defining the following variables in the system
variable table):

s_intrinsic = Package(meas_spars, flag, Z1, D1, L1a, L1b,
L1m, C1m, C1, C12, Z3, D3, L3, Z2, D2, L2a, L2b, L2m, C2m,)

PB_abort Karl Suss Prober function. Returns prober to local
mode.

flag = “deembed” Z1 = 50 D1 = 250e-6

L1a = 0.9e-9 L1b = 0 L1m = 0

C1m = 0 C1 = 20e-15 C12 = 20e-15

Z3 = 50 D3 = 0 L3 = 0.15e-9

Z2 = 25 D2 = 500e-6 L2a = 0.33e-9

L2b = 0 L2m = 0 C2m = 0
633

634

8 IC-CAP Functions

PB_bincode Karl Suss Prober function. Sets the Bincode of
the current die location.

Example:
result=PB_bincode(binvalue)

PB_bindex Karl Suss Prober function. Sets the Bincode of
the current die location, then steps (index) to the next
testable die location (as defined by the pbench wafer map).

Example:

Input Arguments: None

Output: Array of 3 values:
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Column of current die
location, else returns -999.999
output[2]= Row of current die
location, else returns -999.999

Example:
result = PB_abort()

Input Arguments:

Reals or Integers: binvalue

Output: Single value
output[0]= 0 if command
succeeded, else returns error code.

Input Arguments:

Reals or Integers: bin value

Output: Array of 3 values
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Column of new die
location, else returns -999.999
output[2]= Row of new die
location, else returns -999.999
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

result=PB_bindex(binvalue)

PB_bindex_cr Karl Suss Prober function. Sets the Bincode
of the current die location, then moves the prober to the
absolute column and row location specified.

Example:
result=PB_bindex_cr(binvalue,column,row)

PB_gindex_cr Karl Suss Prober function. Return the current
die index location from the wafer map.

PB_gsite_xy Karl Suss Prober function. Return the x and y
location (in tenths of microns) of the current subsite.

Input Arguments:

Reals or Integers: bin value, column value, row value

Output: Array of 3 values
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Column of new die
location, else returns -999.999
output[2]= Row of new die
location, else returns -999.999

Input Arguments: None

Output: Array of 4 values
output[0]= column (die) if
command succeeded, else returns
error code.
output[1]= row (die)
output[2]= X location (from home,
absolute)
output[3]= Y location (from home,
absolute)

Example:
result=PB_gindex_cr()
635

636

8 IC-CAP Functions

PB_index Karl Suss Prober function. Steps (index) to the
next testable die location (as defined by the pbench wafer
map).

PB_index_cr Karl Suss Prober function. Moves the prober to
the absolute column and row location specified.

Example:
result=PB_index_cr(column,row)

Input Arguments: None

Output: Array of 2 values
output[0]= Subsite x value
output[1]= Subsite y value

Example:
result=PB_gindex_xy()

Input Arguments: None

Output: Array of 3 values
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Column of new die
location, else returns -999.999
output[2]= Row of new die
location, else returns -999.999

Example:
result = PB_index()

Input Arguments:

Reals or Integer: Column value, Row value

Output: Array of 3 values
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Column of new die
location, else returns -999.999
output[2]= Row of new die
location, else returns -999.999
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

PB_msite_xy Karl Suss Prober function. Moves the prober to
subsite location x, y (in tenths of microns).

Example:
result=PB_msite_xy(x,y)

PBench_CMD Karl Suss Prober function. Sends a
user-specified command to the prober.

Example:
result=PBench_CMD("Myfunction", "StepNextDie")

Pdown Wafer prober function. Lowers the chuck of the
wafer prober. For more information regarding this function,
refer to “External Prober User Functions” on page 157.

Input Arguments:

Reals or Integer: x value, y value

Output: Output: Array of 3 values
output[0]= 0 if command
succeeded, else returns error code.
output[1]= Subsite x coordinate,
else returns -999.999
output[2]= Subsite y coordinate,
else returns -999.999

Input Arguments:

String: Arbitrary string name to identify
calling function Suss Prober
command

Output: output[0]= 0 if command
succeeded, else returns error code.

Input Arguments: None

Output: Single number with exit status

Automatic Invocation: None
637

638

8 IC-CAP Functions

Phome Wafer prober function. Used for loading a wafer
onto the chuck and moving it to the home position. For
more information regarding this function, refer to “External
Prober User Functions” on page 157.

Pimove Wafer prober function. Moves the chuck a relative
increment from its current position. For more information
regarding this function, refer to “External Prober User
Functions” on page 157.

Pink Wafer prober function. Calls the inker function of the
prober if it is supported. For more information regarding
this function, refer to “External Prober User Functions” on
page 157.

Pmove Wafer prober function. Moves the chuck to an
absolute position. For more information regarding this
function, refer to “External Prober User Functions” on
page 157.

Input Arguments: None

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Reals or Integers: X Delta, Y Delta

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Reals or Integers: Inker Num

Output: Single number with exit status

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

PNCAPsimu

Calculates P-N Junction capacitance versus voltage. Can be
used as a quick simulation. The proper parameter names
must be specified as inputs.

Porig Wafer prober function. Defines the current X & Y
position of the chuck. Must be called before calling the
Pmove or Pimove functions. For more information regarding
this function, refer to “External Prober User Functions” on
page 157.

Ppos Wafer prober function. Returns the current X & Y
position of the chuck. For more information regarding this
function, refer to “External Prober User Functions” on
page 157.

Input Arguments:

Reals or Integers: X Position, Y Position

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Data Sets: Junction V

Reals or Integers: CJ Param, VJ Param, MJ Param

Output: Array of real numbers; size
determined by inputs

Input Arguments:

Reals or Integers: X Origin, Y Origin

Output: Single number with exit status

Automatic Invocation: None

Input Arguments: None
639

640

8 IC-CAP Functions

Prober_debug Wafer prober function. Used to turn the debug
and macro stop (on error) flags on and off. For more
information regarding this function, refer to “External Prober
User Functions” on page 157.

Prober_init Wafer prober function. Initializes the prober for
use. This function must be called before any other prober
functions are used in the Macro. For more information
regarding this function, refer to “External Prober User
Functions” on page 157.

Prober_reset Wafer prober function. Sends a device clear
command to the prober. For more information regarding this
function, refer to “External Prober User Functions” on
page 157.

Output: Array of 2 points: x and y

Automatic Invocation: None

Input Arguments:

Reals or Integers: Debug Flag, Stop Flag

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Reals or Integers Bus Address, Orientation

Strings/Pars/Vars Prober Type, Device File

Output: Single number with exit status

Automatic Invocation: None

Input Arguments: None

Output: Single number with exit status

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Prober_status Wafer prober function. Sends a query to the
prober to obtain the Remote/Local control state and the
edge sensor contact state. The prober should be initialized
with Prober_init before this function. For more information
regarding this function, refer to “External Prober User
Functions” on page 157.

Program or Program2 The Program2 function is the
recommended way to define a program in IC-CAP's Parameter
Extraction Language over the older Program function.
Program2 provides improved function argument/parameter
management and improves access to IC-CAP variables.

Both Program and Program2 functions provide a text editor in
which a program can be written in IC-CAP’s Parameter
Extraction Language to carry out simple or complicated
computations. When a RETURN statement is used, the
computed results are available for use in Plots, other
Transforms, and table elements throughout IC-CAP. Both
functions can also execute most IC-CAP menu functions using
an iccap_func call. Both functions also provides features
enabling users to write custom extraction routines and assign
new Model parameter values.

Refer to Chapter 9, “Parameter Extraction Language,” in this
manual, and to Chapter 9, “Using Transforms and Functions” in
the User’s Guide, for more information.

If GET_INT, GET_REAL, GET_STRING or LINPUT is used in a
Program or Macro to pass parameters, all GET_INT statements
should be located immediately at the start of the Program or
Macro along with any other GET_INT, GET_REAL, GET_STRING
or LINPUT statements. Once any other ICCAP_FUNC statement
is invoked, the list of anticipated arguments is reset, thereby

Input Arguments: None

Output: Array of 3 points: x and y and z

Automatic Invocation: None
641

642

8 IC-CAP Functions

removing all the extra arguments from the calling ICCAP_FUNC
statement. The Program2 function does not have these
limitations.

The statement GET_DATASET can be used to redirect passed
Program2 function parameter dataset arguments to local
variables of a Program2 function. GET_DATASET is not
supported with Program or Macro functions—it is only currently
supported with the Program2 function.

If GET_INT, GET_REAL, GET_STRING or LINPUT statements
are used in a Program or Macro to pass parameters, those input
statements search the passed parameter list until they find a
valid passed parameter argument of the expected type. In the
Program2 function, the GET_DATASET, GET_INT, GET_REAL,
GET_STRING or LINPUT statements will only try to evaluate
the next available passed function parameter as a value of the
expected type, and will error out if the next passed function
parameter is not able to be evaluated as a value of the expected
type.

In the Program2 function, all variables are automatically
treated as local variables unless those variables are first
explicitly declared as global variables using the GLOBAL_VAR
statement. Before using a variable from a variable table in
Program2, you should declare the variable as global with the
GLOBAL_VAR statement. In Program and Macro functions, all
variables can be resolved globally or locally without needing to
explicitly specify which variables are global using the
GLOBAL_VAR statement.

Input Arguments: None (input statements and data
are supplied interactively into a
dedicated text editor)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

• If a program uses the RETURN statement to generate a
data set, and 1 of the data sets used within the program
changes (due to a simulation, for example), then the
program is automatically invoked, so that its returned
data set is refreshed.

• If a program assigns new values to Model or DUT
parameters, then the program is considered an extraction
function, and Automatic Invocation occurs when the
Extract command is issued for the associated Setup or
DUT.

These rules are mutually exclusive, and the second one
takes higher precedence. When neither rule is satisfied, no
Automatic Invocation occurs. Some statements allow
direct control over these rules, for example,
UPDATE_MANUAL. For more information, refer to
“Automatic Transform Execution" in the User’s Guide.

Pscale Wafer prober function. Defines the X & Y stepping
dimensions used by the Pmove and Pimove functions. For
more information regarding this function, refer to “External
Prober User Functions” on page 157.

Output: Complex array or matrix array. Size
and type depends on the arguments
to a RETURN statement in program
text. The size will be 1 if return data
is returned by a RETURN_VALUE
statement. In the absence of an
appropriate RETURN statement
there is no output data set.

Extracts: Both functions permit the extraction
of any combination of Model
parameters, DUT parameters, and
IC-CAP system variables.

Automatic Invocation: For both functions, several
possibilities exist

Input Arguments:
643

644

8 IC-CAP Functions

PSP_DC_vth Picks up one single sweep curve of id=f(vg) of
a specified setup and extracts the threshold voltage vth. The
setup is specified by the parameters path to vd, ... etc. This
makes it easier to call the function with variable inputs
inside the PEL programs.

The 'Flag' variable is used to define certain conditions, for
example, the extraction of vth for the large device that does not
need to calculate all the early voltage values.

Reals or Integers: X Size [um], Y Size [um]

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Variables: Length (L)
Total gate width (W)
Number fingers (NF)
Flag for extraction options

flag:
1 Fixed Id(Vth) = Idref*L/W
2 Fixed Id(Vth) = Idref*NF*

((W/NF)-2*Delta_W)/
(L-2*Delta_L)

Reference current Idref for
extraction options

Delta L (one side)
Delta W (one side)
of curve
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states

of the function 0: nothing)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference
PSP_check_par Checks whether a model parameter is in a
predefined range. The range information for this parameters
must be given in a variable in the referenced path. The range
information is stored in a string in the following format:

Parameters: path to setup
vd
vg
vb
id
type id (M,S)
version

Output: Value vth or failure indicator

Extracts: Vth (1e99 indicates error)

 10 -

range_A0 >-1 0
| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|_______________ lower error condition ({operator(>,>=), value}{-)}

Input Arguments:

Variables: Actual value of parameter to check

Parameters: Parameter name
Path to parameter range definition

Output: Flag for correct operation:
0: parameter is in specified range
−1: parameter is outside specified

range
−2: error during function execution
(e.g., variable 'range_xx' not found)
PSP_DC_calc_bin_parameter Calculates from the input the four
binning parameters P0, PL, PW and PP. If the calculation is
done correctly, outputs[0] will return 0. Otherwise, outputs[0]
will result in a negative number. In such a case, the error will be
printed in detail in the output window.
645

646

8 IC-CAP Functions

PSP_set_opt Accepts a list of model parameters, separated by
blanks and searches the range information for these parameters
in the range_<PARAMETER> variables in the referenced path.

After analyzing the range information for each parameter, the
variables min_<PARAMETER> and max_<PARAMETER> in the
local setup/DUT are set. These variables can be used as
upper/lower limit in an optimizer call.

The range information is stored in a string in the following
format:

Input Arguments:

Inputs: Array with 4 parameters P1 .. P4
of the bin corners

Array with 4 gate lengths L1 .. L4
of the bin corners

Array with 4 gate widths W1 .. W4
of the bin corners

Variables: PSP binning type

Output: Array containing error condition
and binning parameters
outputs[0] = error condition

(0=o.k., any other number
indicates an error)

outputs[1] = P0<par>, e.g. POVFB
outputs[2] = PL<par>, e.g. PLVFB
outputs[3] = PW<par>, e.g. PWVFB
outputs[4] = PLW<par>, e.g.

PLWVFB

Extracts: Binning parameters P0<par>,
PL<par>, PW<par>, PLW<par>

 >-1 0 10 -
range_A0
| | | |___ upper error condition ({operator(<,<=), value}{-)}
| | |______ upper optimization boundary
| |___________ lower optimization boundary
|_______________ lower error condition ({operator(>,>=), value}{-)}
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example call in PEL:
erg = PSP_set_opt("RDSW PRWG

PRWB","Extraction_configuration/Boundaries")

PTFTCV_cgd This function is obsolete.

Standard extraction for the UCB p-Si TFT model. Extracts p-Si
TFT gate-to-drain overlap capacitance and a transition
parameter.

PTFTCV_cgs This function is obsolete.

Standard extraction for the UCB p-Si TFT model. Extracts p-Si
TFT gate-to-source overlap capacitance and transition
parameters.

Input Arguments:

Parameters: Parameter names, separated by
blanks

Path to parameter range definition

Output: Flag for correct operation:
0: everything is ok
-1: error during function

execution (e.g., variable 'range_xx'
not found)

Input Arguments:

Data Sets: Gate-Drain V, Source-Drain V,
Gate-Drain C

Output: None

Extracts: CGDO, ACGD

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Gate-Source V, Drain-Source V,
Gate-Source C

Output: None
647

648

8 IC-CAP Functions

PTFTDC_lin This function is obsolete.

Standard extraction for the p-Si TFT model. Extracts linear
region parameters using Id versus Vg data measured on a p-Si
TFT device.

PTFTDC_sat This function is obsolete.

Standard extraction for the p-Si TFT model. Extracts saturation
region parameters using Id versus Vd data measured on a p-Si
TFT device.

Pup Wafer prober function. Moves up the chuck of the wafer
prober. For more information regarding this function, refer to
“External Prober User Functions” on page 157.

Extracts: CGSO, ACGS, VGTRANLC,
VGTRANHC

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Drain V, Gate V, Source V, Drain I

Output: None

Extracts: VTO, U0, U1, U2, U3, U4,
SUBSLOPE, VOFF, THERMALI,
VGTRANL, VGTRANH, GIDLA,
GIDLB

Automatic Invocation: By Extract menu function

Input Arguments:

Data Sets: Drain V, Gate V, Source V, Drain I

Output: None

Extracts: VMAX, L2, PHITA, S1, S2

Automatic Invocation: By Extract menu function
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

rand_flat Returns a single random number generated for each
call between 0.0 and 1.0 inclusive. Use rand_seed() to set a seed
value. This is a 32-bit random number generator of Park and
Miller with Bays-Durham shuffle to exclude serial correlations.
The period is larger than 1E08.

Example:

• Example PEL code:
! create 100 random numbers between
! lower bound and upper bound
! ex. 100 random real numbers from 1.0 to 10.0

complex num[100]
! sets a varying random seed for all successive calls
! to rand_flat()
x=rand_seed(val(system$("date +%s")))

lowerbound=1.0
upperbound=10.0
i=0
while i<100

num[i]=rand_flat()*(upperbound-lowerbound)+lowerbound
i=i+1

endwhile

• To view an example of the random functions used in a setup
to generate random numbers, view the
random_example.mdl example discussed in the User's
Guide, Chapter 12, “Creating Graphic User Interfaces”,
“Random Numbers (Example),” section.

rand_gauss Returns a random number generated for each call
that follows a normal distribution with the given mean and
sigma values. Use rand_seed() to set a seed value. This is a

Input Arguments: None

Output: Single number with exit status

Automatic Invocation: None

Input Arguments: None

Output: Single real number

Automatic Invocation: None
649

650

8 IC-CAP Functions

32-bit random number generator of Park and Miller with
Bays-Durham shuffle to exclude serial correlations. The period
is larger than 1E08.

Example:

• Example PEL code:
! Creates 100 random numbers within a
! gaussian distribution with a mean of
! approximately 5 and a standard deviation
! of approximately 1

complex num[100]
! sets a varying random seed for all successive calls
! to rand_gauss(…)
x=rand_seed(val(system$("date +%s")))

i=0
while i<100

num[i]=rand_gauss(5,1)
i=i+1

endwhile

• To view an example of the random functions used in a setup
to generate random numbers, view the
random_example.mdl example discussed in the User's
Guide, Chapter 12, “Creating Graphic User Interfaces”,
“Random Numbers (Example),” section.

rand_seed Sets a seed for the internal random number
generator that has the initial seed of 3300. The rand_seed(seed)
function should be used to set the seed for the internal random
number generator for all successive calls to the rand_flat() or
rand_gauss() functions. This is a 32-bit random number
generator of Park and Miller with Bays-Durham shuffle to
exclude serial correlations. The period is larger than 1E08.

Input Arguments:

Reals or Integers: Mean, Sigma

Output: Single real number

Automatic Invocation: None

Input Arguments:

Reals or Integers: Seed (must not be zero)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example:

• Using a specific/fixed seed value with rand_flat() or
rand_gauss().

You can input a fixed seed value for the rand_seed(seed)
function.

For example:
x=rand_seed(42)
y1=rand_flat() or y1=rand_gauss(gaussMean, gaussSigma)
y2=rand_flat() or y2=rand_gauss(gaussMean, gaussSigma)

where y1 will equal a first random number and y2 will equal
a second random number and y1 may not necessarily equal
y2.

If you set the same fixed seed value again and call
rand_flat() or rand_gauss(gaussMean, gaussSigma) again.

For example:
x= rand_seed(42)
y1=rand_flat() or y1=rand_gauss(gaussMean, gaussSigma)
x= rand_seed(42)
y2=rand_flat() or y2=rand_gauss(gaussMean, gaussSigma)

where y1 == y2 since the seed was set to the same fixed seed
before each call.

Since rand_flat() or rand_gauss() return a single random
number, each time you call rand_seed(42) beforehand you
will get the same single random number.

• Generating a varying seed value based on the current time
with random().

Instead of using the same fixed seed number each time to
generate a random number, another approach would be to
create a varying real number seed out of the current time.

For example:
x = rand_seed(val(system$("date + %s")))
y1 = rand_flat() or y1 = rand_gauss(gaussMean, gaussSigma)
y2 = rand_flat() or y2 = rand_gauss(gaussMean, gaussSigma)

Output: None

Automatic Invocation: None
651

652

8 IC-CAP Functions

where y1 will equal a first random number and y2 will equal
a second random number and y1 may not necessarily equal
y2.

If you were to call rand_seed(val(system$("date + %s"))) again
later before another call to rand_flat() or rand_gauss(…) the
random seed value would have been set differently each time
so the calls to rand_flat() or rand_gauss() would still return
different random values.
x= rand_seed(val(system$("date + %s")))
y1=rand_flat() or y1=rand_gauss(gaussMean, gaussSigma)
x= rand_seed(val(system$("date + %s")))
y2=rand_flat() or y2=rand_gauss(gaussMean, gaussSigma)

where y1 will equal a first random number and y2 will equal
a second random number and y1 may not necessarily equal
y2.

• To view an example of the random functions being used in a
Setup to generate random numbers, view the
random_example.mdl example discussed in the User's
Guide, Chapter 12, “Creating Graphic User Interfaces”,
“Random Numbers (Example),” section.

random Creates a data set of random numbers with values
between 0 and 1. This function is based on the underlying C
code for srand48 and rand48. This function will return a
dataset of 'N' numbers where N is the size defined by the
current Setup's input sweeps. This function is referred to data
in an IC-CAP DUT Setup that includes a defined input set that
evaluates to a specific number of points.

Example:

• Using a specific/fixed seed value with random(seed).

Input Arguments:

Reals or Integers: Seed

Output: Array of real numbers; size
determined by setup

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

You can call the random(seed) function with a specific seed
value.

For example:
random(49)

Also, say that the IC-CAP DUT Setup in which you are calling
the IC-CAP "random" function (transform is defined in your
DUT Setup's "Extract / Optimize" tab) has 100 points in your
DUT Setup's "Measure / Simulate" tab, then the result of
running the random(seed) function will also evaluate to 100
numbers in the resulting random number dataset. However,
each time you call the random(49) function, you'll get the
same 100 random numbers because they're all starting with
the same seed number (example random(49) has seed = 49).

• Generating a varying seed value based on the current time
with random(seed).

Instead of using the same seed number all the time to
generate a random number, another approach would be to
create a varying real number seed out of the current time.

For example:
random(val(system$("date +%s")))

• To view an example of the random functions being used in a
Setup to generate random numbers, view the
random_example.mdl example discussed in the User's
Guide, Chapter 12, “Creating Graphic User Interfaces”,
“Random Numbers (Example),” section.

RBBcalc Used in extraction of base resistance parameters for
the UCB Bipolar model. Calculates RBB from corrected H11
measurements generated with the H11corr function described
above. A circle fit is performed on the complex data to
extrapolate the high frequency real axis intercepts.

Input Arguments:

Data Sets: H11

Output: Array of complex numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change
653

654

8 IC-CAP Functions

Example PEL Statement:
rbbcalc_data = RBBcalc(H11)

RMSerror Calculates the RMS error between 2 data sets. The
error of the second input is calculated with respect to the first
input. Returns the error in percent or magnitude. Three
formulations are available depending on the value of the third
argument labeled % Err Flag.

Example PEL Statement:
percent_error = RMSerror(ic.m,ic.s,1)

If 0 is passed as the third argument, the absolute value of the
difference between the two datasets is returned.

If 1 or 2 is passed as the third argument, a relative (or percent)
error is calculated. For a value of 1, the error of the second
input is calculated with respect to the first input for each point.
If any values in the first dataset are 0, the function returns an
error.

Input Arguments:

Data Sets: Input 1, Input 2

Reals or Integers: % Err Flag

Output: Single real number

Automatic Invocation: On Data Set Input Change

simi measi–()2[]

i 1=

N

∑ N⁄

simi measi–() measi⁄[] 2

i 1=

N

∑ N⁄
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

For a value of 2, the same formulation used by the
Levenberg-Marquardt optimizer is used. This is also a relative
(or percent) error calculation, but the formulation takes the
error relative to the larger of the two data set values on a point
by point basis. This formulation always returns a value.

Where

simi = the ith simulated data point

measi = the ith measured data point

N = the total number of data points

sin Sine of an angle in radians.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex array, or
matrix array (depends on input argument)

Automatic Invocation: On Data Set Input Change

sinh Hyperbolic sine.

smooth3 Returns 3-point running average of the Input data
set. End points of each curve are not affected. Defined in
userc.c.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

simi measi–() max measi simi,()⁄()2)[]

i 1=

N

∑ N⁄
655

656

8 IC-CAP Functions

SPECSSpin Used in an IC-CAP Macro to determine the
matrix connections of the device under test. ICMSpin
returns the matrix pin number that corresponds to a
specified terminal index on the device. This function only
returns valid data when IC-MS test execution is running.
Refer to the IC-MS User’s Manual for more information on
using ICMSpin.

Example PEL Statement:
pin_num = ICMSpin(1)

sqrt Square root function. Note that sqrt(-1) correctly
produces an imaginary result.

Input Arguments:

Data Sets: Input

Output: Complex array or matrix array
(depends on input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Reals or Integers: Terminal Index

Output: Matrix pin number corresponding
to the specified device terminal
index

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

SWM_debug Switching matrix function. Turns the debug
flag on and off. For more information regarding this
function, refer to “External Matrix Driver User Functions” on
page 168.

SWM_init Switching matrix function. Initializes the
switching matrix and clears all port and pin connections.
This must be called before any other switching matrix
functions are used in the Macro. For more information
regarding this function, refer to “External Matrix Driver User
Functions” on page 168.

tan Tangent of an angle in radians.

tanh Hyperbolic tangent.

Input Arguments:

Reals or Integers: Debug Flag

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Reals or Integers: Block 1 Addr, Block 2 Addr

Strings/Pars/Vars: Matrix Type, Device File

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change
657

658

8 IC-CAP Functions

TARGET_DC_vth Picks up one single sweep curve of id=f(vg) of
a specified setup and extracts the threshold voltage vth. The
setup is specified by the parameters path to vd, and so on. This
makes it easier to call the function with variable inputs inside
the PEL programs.

The Flag variable defines certain conditions, for example, the
extraction of vth for the large, which does not need to calculate
all the early voltages.

Input Arguments:

Data Sets: Input 1

Output: Complex number, matrix, complex
array, or matrix array (depends on
input argument)

Automatic Invocation: On Data Set Input Change

Input Arguments:

Variable Length (L)
Total gate width (W)
Number fingers (NF)
Flag for extraction options

flag: 1 Fixed Id(Vth) = Idref*L/W
2 Fixed Id(Vth) = Idref*NF*

 ((W/NF)-2*Delta_W)/
(L-2*Delta_L)

Reference current Idref for
extraction options

Delta L (one side)
Delta W (one side)
of curve
Type (1=NMOS, -1=PMOS)
Debug (1: show internal states of

the function 0: nothing)
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

tis_p_down HP 4071A wafer prober function. Lowers the
chuck of the wafer prober.

tis_p_home HP 4071A wafer prober function. Used for
loading a wafer onto the chuck and moving it to the home
position.

tis_p_imove HP 4071A wafer prober function. Moves the
chuck a relative increment from its current position.

tis_p_ink HP 4071A wafer prober function. Calls the inker
function of the prober if it is supported.

tis_p_move HP 4071A wafer prober function. Moves the
chuck to an absolute position.

tis_p_orig HP 4071A wafer prober function. Defines the
current X & Y position of the chuck. Must be called before
calling the tis_p_move or tis_p_imove functions.

tis_p_pos HP 4071A wafer prober function. Returns the
current X & Y position of the chuck.

tis_p_scale HP 4071A wafer prober function. Defines the X
and Y stepping dimensions that are used by the tis_p_move
and tis_p_imove functions.

tis_p_up HP 4071A wafer prober function. Moves up the
chuck of the wafer prober.

Parameters: path to setup
vd
vg
vb
id
type id (M,S)
version

Output: Value vth or failure indicator

Automatic Invocation: Vth (1e99 indicates error)
659

660

8 IC-CAP Functions

tis_prober_get_ba HP 4071A wafer prober function. No Help
Available.

tis_prober_get_name HP 4071A wafer prober function. No
Help Available.

tis_prober_init HP 4071A wafer prober function. Initializes
the prober for use. This function must be called before any
other prober functions are used in the Macro.

tis_prober_read_sysconfig HP 4071A wafer prober function.
No Help Available.

tis_prober_reset HP 4071A wafer prober function. Sends a
device clear command to the prober.

tis_prober_status HP 4071A wafer prober function. Sends a
query to the prober to obtain the Remote/Local control state
and the edge sensor contact state. The prober should be
initialized with tis_prober_init before this function.

TRL_Cal Deembed the raw measured data using measured
data of TRL (thru-reflect-line) calibration standards. The
function calculates the error coefficients and returns the
corrected S-parameters data. The reference plane is defined
at the middle of the thru standard, or at the interface to the
DUT when it is installed in the compatible carrier.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

TwoPort Converts the data in a data set from one 2-port
parameter type
(S, Y, H, Z, K, A) to another. Enter the name of the data set
that is to be converted, the old 2-port type, and the new
2-port type. Use K for Cascaded Scattering Matrix and A
for ABCD Matrix. Note: TWOPORT does not read
TWOPORT_Z0 at execution time, only at measurement and
simulation time.

Example PEL Statement:
h_dataset = TwoPort(s_dataset,"S","H")

Inputs:

Freq Data:
S data:
Thru:

Short:

Line A:

Line B:

Line C:

Freq 1 Trans:
Freq 2 Trans:

Frequency Inputs
Raw (uncalibrated) S-parameters
measured S-parameters of the Thru
standard
measured S-parameters of the
Short standard
measured S-parameters of Line A
standard
measured S-parameters of Line B
standard
measured S-parameters of Line C
standard
transition frequency Line A to Line
B
transition frequency Line B to Line
C

Output: Corrected (calibrated)
S-parameters data

Input Arguments:

Data Sets: Input

Strings/Pars/Vars: From [SYHZKA], To [SYHZKA]

Output: Matrix array; size determined by
inputs

Automatic Invocation: On Data Set Input Change
661

662

8 IC-CAP Functions

TwoPort2 Same as TwoPort function except the
characteristic impedance, Z0, is an input parameter. This
allows execution-time conversion of 2-port data to a new Z0.

Example PEL Statement:
h_dataset = TwoPort2(s_dataset,75,"S","H")

USERC_avg_2 Averages 2 DC data sets, point-by-point.
Provided as an example of a math function implemented in
User C code. The source code is in
$ICCAP_ROOT/src/userc.c.

USERC_avg_3 Averages 3 DC data sets, point-by-point.
Provided as an example of a math function implemented in
User C code. The source code is in
$ICCAP_ROOT/src/userc.c.

Input Arguments:

Data Sets: Input

Reals or Integers: Z0

Strings/Pars/Vars: From (SYHZKA) To (SYHZKA)

Output: Matrix array; size determined by
inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Data 1, Data 2

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: Data 1, Data 2, Data 3

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

USERC_close Closes an open file. See USERC_open for
essential additional information about this function.

USERC_conjg Produces the conjugate of the input data set.
This function is similar to the function named conjg, but is
provided as an example of a User C math function
manipulating complex numbers. The source code is in
$ICCAP_ROOT/src/userc.c.

USERC_data_w_check Returns a complex number designated
by a name, row, and column. Example of C library function
data_w_check() in userc.c.

Input Arguments:

Reals or Integers: File Descriptor (generated by
earlier USERC_open call)

Output: 0 or -1 (-1 indicates an error)

Automatic Invocation: None

Input Arguments:

Data Sets: Cplx DS

Output: Complex number or array of
complex numbers; size determined
by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Reals or Integers: Row, Col, Index, Data Set name,
Type

Output: A single complex number.

Automatic Invocation: None
663

664

8 IC-CAP Functions

USERC_get_object_name If the variable name exists, returns
the name of the calling Transform or Macro. Note that the
leading / in the name is not returned.

Syntax
USERC_get_object_name(<varname>)

Where

<varname> is a string naming a variable in the variable
table within the scope of the caller. This variable returns
the names of the calling Transform or Macro.

Examples:

If macro /npn/tester contains the following line:
x=USERC_get_object_name("objname")

And if objname is in the Model Variables or system
variables, then it returns npn/tester.

If Transform /npn/dc/fgummel/tester contains the following
line:

x=USERC_get_object_name("xformName")

And if xformName exists in the Setup Variables, DUT
Variables, Model Variables, or System Variables, then it
returns npn/dc/fgummel/tester.

USERC_init_param Demonstrates in C code how to assign a
value to a model parameter, a DUT parameter, or an IC-CAP
system variable. Demonstrates use of the User C utility
function named set_par_or_var(). The source code is in the
set_param function in $ICCAP_ROOT/src/userc.c.

Input Arguments:

Reals or Integers: New Value

Strings/Pars/Vars: Parameter to set (this should be
the name of a model parameter, a
DUT parameter, or an IC-CAP
system variable)

Output: None

Extracts: N/A
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

USERC_num_of_points Returns the number of points for a
given sweep. Example of C library function
get_num_of_points() in userc.c.

Example PEL Statement:
nop = USERC_num_of_points(1, "")
! A blank path is current Setup

USERC_open Accesses a disk file for reading, writing or
both. For instrument control, use HPIB_open() and related
HPIB functions. This function can be used in conjunction
with USERC_readnum, USERC_readstr, USERC_read_reals,
USERC_seek, USERC_tell, USERC_write, and USERC_close to
perform I/O operations. A more complete description of
these functions and examples of their use in performing I/O
operations with disk files are available in Appendix H, “User
C Functions.” The source code for these functions is
provided in $ICCAP_ROOT/src/userc_io.c.

Example PEL Statement:
file_num = USERC_open("datafile","r") ! read access

Automatic Invocation: By Extract menu function

Input Arguments:

Reals or Integers: Sweep order, Sweep path

Output: A positive real number, or -1 for
error.

Automatic Invocation: None

Input Arguments:

Strings/Pars/Vars: Filename, Access Mode

Output: -1 on failure, or else a positive
integer file designator that you
should save to use with the other
User C I/O functions mentioned in
the description.

Automatic Invocation: None
665

666

8 IC-CAP Functions

USERC_read_reals Opens a file, reads and returns an array
of real numbers, and closes the file. For additional
information about this function, see Appendix H, “User C
Functions.”

Example PEL Statement:
data_array = USERC_read_reals("datafile")

USERC_readnum Reads 1 real number from an open file,
1.0E6, for example. See USERC_open for essential additional
information about this function.

Example PEL Statement:
VTO = USERC_readnum(file_num,0,"VTO = %lf")

USERC_readstr Reads a string from an open file and sets
the specified IC-CAP variable equal to it. See USERC_open
for essential additional information about this function.

Input Arguments:

Strings/Pars/Vars: Filename

Output: Array of real numbers, with size
determined by the Setup

Automatic Invocation: None

Input Arguments:

Reals or Integers: File Descriptor (generated by
earlier USERC_open call), Device
File Flag

Strings/Pars/Vars: Scanf Format

Output: a real number (the value
9.99998E+37 means an error
occurred)

Automatic Invocation: None

Input Arguments:
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Example PEL Statement:
! read and set SIMULATOR name from a file
read_result = USERC_readstr(file_num,0,"%s",

IC-CAP_variable)

USERC_seek Goes to a particular byte offset in an open file.
See USERC_open for essential additional information about
this function.

USERC_set_param Sets the parameter specified by the
second argument to the value of the first argument.

Example PEL Statement:

Reals or Integers: File Descriptor (generated by
earlier USERC_open call), Device
File Flag (use 1 if reading from an
instrument driver device file, 0 if
reading from an ASCII file)

Strings/Pars/Vars: Scanf Format, Var Name

Output: 0 on success, or -1 on failure

Automatic Invocation: None

Input Arguments:

Reals or Integers: File Descriptor (generated by
earlier USERC_open call), Offset
Value, Offset Type

Output: 0 on success, or -1 on failure

Automatic Invocation: None

Input Arguments:

Data Sets: None

Reals or Integers: Value of the parameter

Strings/Pars/Vars: Name of the parameter to set

Output: None

Automatic Invocation: MANUAL
667

668

8 IC-CAP Functions

x = USERC_set_param(100,NPN,BF)

USERC_set_param_quiet set the value of a parameter or
variable referenced by a string. Unlike USERC_set_param(),
this version makes no output to the status window.

Example PEL Statement:
x=USERC_set_param_quiet(1e-15,"/npn/IS")

USERC_size Returns the array size of the data set whose
name is given by a string.

Example PEL Statement:
data_size = USERC_size("id")

USERC_sweep_mode Returns the sweep mode for the input
with sweep order N.

Input Arguments:

Strings/Pars/Vars: Data Set name

Output: A positive real number.

Automatic Invocation: None

Usage: x=USERC_sweep_mode(N, <path>)

Returns: 0 for V
1 for I
2 for T
3 for F
4 for P
5 for U
6 for W

Extracts: Example C library function of
get_sweep_mode() in userc.c. Use
USERC_num_of_points() to check
the existence of a sweep.
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

USERC_sweep_name Returns a sweep name through a
variable. Example C library function of get_sweep_name() in
userc.c. Use USERC_num_of_points() to check the existence
of a sweep.

Example PEL Statement:
x = USERC_sweep_name(1, "/npn/dc/fearly", "first_sweep")

USERC_sweep_start Returns a sweep start value. Example C
library function of get_sweep_start() in userc.c. Use
USERC_num_of_points() to check the existence of a sweep.

Example PEL Statement:
x = USERC_sweep_start(1, "/npn/dc/fearly")

USERC_sweep_stepsize Returns a (LIN) sweep step value.
Example C library function of get_sweep_stepsize() in
userc.c. Use USERC_num_of_points() to check the existence
of a sweep.

Example PEL Statement:
x = USERC_sweep_stepsize(1, "/npn/dc/fearly")

Input Arguments:

Strings/Pars/Vars: Sweep order, Sweep path, Variable
name

Output: 0 for success, -1 for error

Automatic Invocation: None

Input Arguments:

Strings/Pars/Vars: Sweep order, Sweep path

Output: 0 for error

Automatic Invocation: None

Input Arguments:

Strings/Pars/Vars: Sweep order, Sweep path

Output: 0 for error

Automatic Invocation: None
669

670

8 IC-CAP Functions

USERC_sweep_stop Returns a sweep stop value. Example C
library function of get_sweep_stop() in userc.c. Use
USERC_num_of_points() to check the existence of a sweep.

Example PEL Statement:
x = USERC_sweep_stop(1, "") ! within current Setup

USERC_system Demonstrates the invocation of an operating
system command from User C code.

USERC_tell Tells current byte offset in an open file. See
USERC_open for essential additional information about this
function.

Input Arguments:

Strings/Pars/Vars: Sweep order, Sweep path

Output: 0 for error.

Automatic Invocation: None

Input Arguments:

Strings/Pars/Vars: operating system command

Output: Single number with exit status of
the operating system command

Automatic Invocation: None

Input Arguments:

Reals or Integers: File Descriptor (generated by
earlier USERC_open call)

Output: −1 on error, or else current byte
offset into file

Automatic Invocation: None
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

USERC_transpose Returns a data set of matrices, in which
each of the input data set’s matrices has been transposed.
Provided as an example of a matrix math function
implemented in User C code. The source code is in
$ICCAP_ROOT/src/userc.c.

USERC_write Prints any string expression into an open file,
in ASCII. (To convert a number to a string expression, refer
to the VAL$ function described in the “Built-in Functions” on
page 714. Refer to USERC_open for additional essential
information about this function.)

Example PEL Statement:
write_result = USERC_write(file_num,0,"VTO="&VAL$(VTO))

variance Calculates the statistical variance of a data set.
Adequate for a real or complex data set, but if a data set of
matrices is received, only the 1,1 data is considered. A data
set specification like S.21 is adequate, since this is a data
set of complex numbers.

Input Arguments:

Data Sets: Matrix DS

Output: Matrix or matrix array; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Reals or Integers: File Descriptor (generated by
USERC_open call), Device File Flag

Strings/Pars/Vars: String to Write

Output: 0 or −1 (−1 indicates an error)

Automatic Invocation: None

Input Arguments:

Data Sets: Input 1
671

672

8 IC-CAP Functions

VBIC_ac_solver Given the 4 terminal voltages, solves for
2-port network parameters. VE and VS are assumed to be 0.

VBIC_avc Calculates avalanche collector voltage (AVC1)
based on the model parameter PC.

Where

For an NPN, a = 7.05E05 cm-1 and b = 1.23E06 V/cm

For a PNP, a = 1.58E06 cm-1 and b = 2.04E06 V/cm

PC = b-c grading coefficient

Output: Single real or complex number

Automatic Invocation: On Data Set Input Change

Input Arguments:

VC (Collector Voltage)

VB (Base Voltage)

FREQ (Cut-off Frequency])

Output
{FT|BETA|Y|H|Z|S}

Output code specifying current gain,
or parameters. This code should be
placed in the Output field.

Outputs: The output depends on the code set
in the Output field:

Code Output

FT Current gain cutoff frequency

BETA Current gain

Y The 2-port network y-parameters

H The 2-port network h-parameters

Z The 2-port network z-parameters

S The 2-port network s-parameters

AVC1
a

b 1 PC–()
-------------------------=
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

VBIC_cbc Calculates the depletion capacitance versus bias.

VBIC_cbe Calculates the depletion capacitance versus bias.

VBIC_cj0 Calculates (extracts) the junction zero-bias
capacitance.

Input Arguments: None

Output: Model parameter AVC1

Input Arguments:

VBC Base-Collector Voltage

Output: Depletion base-collector
capacitance based on the VBIC
formulation: SPICE model for AJC
≤ 0 and single-piece smooth model
for AJC > 0.

Input Arguments:

VBE Base-Emitter Voltage

Output: Depletion base-emitter capacitance
based on the VBIC formulation:
SPICE model for AJC ≤ 0 and
single-piece smooth model for AJC
> 0.

Input Arguments:

VJ Junction voltage

CJ Capacitance

Output: E/C/S Junction {E|C|S} for CJE,
CJC, or CJCP

Output: The zero-bias junction capacitance
stored in CJE, CJC, or CJCP.
673

674

8 IC-CAP Functions

VBIC_clean_data This routine looks at each data point and
scans ahead by the number of points specified by the input
argument IN A ROW. If the data does not monotonically
increase for the number of data points specified by IN A
ROW, then zero is written to the output array. If the data
does monotonically increase for the number of data points
specified by IN A ROW, then from that data point onward,
the INPUT DATA is written directly to the output (result)
array.

VBIC_csc Calculates the depletion capacitance versus bias.

VBIC_dc_approx This function calculates Ic, Ib, beta,
intrinsic and extrinsic base-emitter voltage, and base charge
for a bipolar transistor, using the terminal voltages Ve, Vb,
and Vc as inputs. Vs is assumed to be 0. The first parameter
should be set to the output of interest, which defaults to Ic.
This approximate solution does not take quasi-saturation
effects into account.

Input Arguments:

INPUT DATA

IN A ROW

Output: Either the INPUT DATA or zero
values.

Input Arguments:

VSC (Substrate-Collector Voltage)

Output: Depletion collector-substrate
capacitance based on the VBIC
formulation: SPICE model for AJC
≤ 0 and single-piece smooth model
for AJC>0.

Input Arguments:

VC Collector Voltage
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

VBIC_dci_solver This function calculates Ic, Vb, Ie, Is, or
beta for a bipolar transistor, using the terminal voltages Ve,
Vc, and Vs and Ib as inputs. The first parameter should be
set to the output of interest, which defaults to Ic.

VB Base Voltage

VE Emitter Voltage

Output:IC|IB|BETA|
VBEI|VBEX|QB

Set this field to the output of
interest

Output: The output depends on the setting
of the Output field.

Code Output

IC Collector current

IB Base current

BETA Current gain

VBEI Intrinsic base-emitter voltage

VBEX Extrinsic base-emitter voltage

QB Base charge

Input Arguments:

VC Collector Voltage

IB Base Current

VE Emitter Voltage

VS Substrate Voltage

Output:
IC|VB|IE|IS|BETA

Set this field to the output of
interest.

Output: The output depends on the code
set in the Output field.

Code Output
675

676

8 IC-CAP Functions

VBIC_dcv_solver This function calculates Ic, Ib, Ie, Is, or
beta for a bipolar transistor, using the terminal voltages Ve,
Vb, Vc, and Vs as inputs. The first parameter should be set
to the output of interest, which defaults to Ic.

VBIC_fg_currents Given the 4 terminal voltages, calculates
parameters related to forward current.

IC Collector current

VB Base voltage

IE Emitter current

IS Substrate current

BETA Current gain

Input Arguments:

VC Collector Voltage

VB Base Voltage

VE Emitter Voltage

VS Substrate Voltage

Output:
IC|IB|IE|IS|BETA

Set this field to the output of
interest.

Output: The output depends on the code
set in the Output field:

Code Output

IC Collector current

VB Base voltage

IE Emitter current

IS Substrate current

BETA Current gain
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

Input Arguments:

Data Sets: VC Collector Voltage
VB Base Voltage
VE Emitter Voltage
VS Substrate Voltage
IC Collector Current
IB Base Current

Parameters: The parameter indicates the region
where the transform will limit its
simulated output.
VBIC_AUTO_RANGE must be set to
1.

IS|NF Calculate over the region
dominated by NF

IBEI|NEI Calculate over the region
dominated by NEI

IBEN|NEN Calculate over the region
dominated by NEN

IKF Calculate over the region
dominated by IKF

Output:
{IB|B|IC|C|IE|E|IS|S
}

Code to indicate which current to
output.

Output: A subset of the current where
zeros replace any range where data
was not extracted (based on the
auto-ranging algorithm). The
output depends on the code set in
the Output field:

Code Output

IB|B Base current

IC|C Collector current

IE|E Emitter current

IS|S Substrate current
677

678

8 IC-CAP Functions

VBIC_ibci_nci Calculates the parameters IBCI and NCI.

VBIC_ibei_nei Calculates the parameters IBEI and NEI.

VBIC_ikf Calculates the parameter IKF.

Extracts: Nothing

Input Arguments:

VB Base Voltage

VC Collector Voltage

IB Base Current

Output: NCI at each bias point
(unaveraged).

Extracts: IBCI, NCI

Input Arguments:

VB Base Voltage

VE Emitter Voltage

IB Base Current

Output: NEI at each bias point
(unaveraged).

Extracts: IBEI, NEI

Input Arguments:

VB Base Voltage

VE Emitter Voltage

IC Collector Current

IB Base Current

Output: IKF at each bias point
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

VBIC_ikr Calculates the parameter IKR.

VBIC_is_nf Calculates the parameters IS and NF.

VBIC_isp_nfp Calculates the parameters ISP and NFP.

Extracts: IKF (maximum value in range, 0.1
indicates failed extraction).

Input Arguments:

VB Base Voltage

VC Collector Voltage

IE Emitter Current

IB Base Current

Output: Reverse beta versus bias.

Extracts: IKR (maximum value in range, 0.1
indicates failed extraction).

Input Arguments:

VB Base Voltage

VE Emitter Voltage

IC Collector Current

Output: NF versus bias with 0’s where out
of auto-range.

Extracts: IS, NF (average values in range).

Input Arguments:

VB Base Voltage

VC Collector Voltage

IS Substrate Current

Output: NFP versus bias with 0’s where out
of auto-range.
679

680

8 IC-CAP Functions

VBIC_nr Calculates the parameter NR.

VBIC_qcdepl Calculates depletion charge or capacitance
based on VBIC formulation using SPICE model for A ≤ 0 and
single-piece, smooth model for A > 0.

VBIC_rcx Calculates RCX.

Extracts: ISP, NFP (average values in range).

Input Arguments:

VB Base Voltage

VC Collector Voltage

IE Emitter Current

Output: NR versus bias with 0’s where out
of auto-range.

Extracts: NR (average value in range).

Input Arguments:

Junction V Junction voltage

P Param Built-in potential

M Param Grading coefficient

F Param Fwd bias depletion capacitance
limit

A Param Smoothing factor

Mode : {Q|C} Charge or capacitance

Output: Charge or capacitance versus bias.

Extracts: Nothing

Input Arguments:

VB Base Voltage

VE Emitter Voltage
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

VBIC_rg_currents Given the 4 terminal voltages, calculates
reverse currents.

IC Collector Current

IS Substrate Current

IB Base Current

Output: RCX versus bias with 0’s where out
of auto-range.

Extracts: RCX (maximum value in
auto-range, if failed, value of 60
set).

Input Arguments:

VC Collector Voltage

VB Base Voltage

VE Emitter Voltage

VS Substrate Voltage

IE Emitter Current

IB Base Current

IS Substrate Current

Parameters The parameter indicates the region
where the transform will limit its
simulated output.
VBIC_AUTO_RANGE must be set to
1.

IS|NR Calculate over the region
dominated by NR

IBCI|NCI Calculate over the region
dominated by NCI

IBCN|NCN Calculate over the region
dominated by NCN

IKR Calculate over the region
dominated by IKR
681

682

8 IC-CAP Functions

VBIC_stoc This function calculates capacitance data from
S-parameter data, allowing base-collector and base-emitter
capacitance to be calculated from network analyzer
measurements. The output of this function can be used in
place of actual capacitance data to extract
capacitance-related parameters.

ISP|NFP Calculate over the region
dominated by NFP

IKP Calculate over the region
dominated by IKP

Output:
{IB|B|IC|C|IE|E|IS|S
}

Code to indicate which current to
output.

Output: A subset of the current where
zeros replace any range where data
was not extracted (based on the
auto-ranging algorithm).

The output depends on the code set in the Output field:

Code Output

IB|B Base current

IC|C Collector current

IE|E Emitter current

IS|S Substrate current

Extracts: Nothing.

Input Arguments:

FREQ data Frequency

S data S-parameter data (de-embedded)

Node (C/E/S) Code to indicate type of extraction:
E base-emitter capacitance
C base-collector capacitance
S substrate-collector capacitance
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

VBIC_vef_ver Calculates the forward and reverse early
voltages given the collector, base, and emitter voltages in the
forward and reverse modes, as well as the collector current in
the forward mode and the emitter current in the reverse mode.
The algorithm is based on the method described in “SPICE
Early Modeling” by C. McAndrew & L. Nagel, BCTM 94, p. 144.

Wait Switching matrix function. Used to pause for a specified
number of seconds to accomplish dry switching. Refer to
Chapter 2, “MOSFET Characterization,” in the IC-CAP
Nonlinear Device Models, Volume 1 manual for more
information.

Output: Capacitance versus frequency data

Extracts: Nothing

Input Arguments:

Forward VC Collector Voltage

Forward VB Base Voltage

Forward VE Emitter Voltage

Forward IC Collector Current

Reverse VE Emitter Voltage

Reverse VB Base Voltage

Reverse VC Collector Voltage

Reverse IE Emitter Current

Forward IB Base Current

Output: VEF versus bias with 0’s where out
of auto-range.

Extracts: VEF, VER (average values in
auto-range).

Input Arguments:

Reals or Integers: Period [sec]
683

684

8 IC-CAP Functions

wirexfX A wire function. Wire functions permit optimization
of time-domain measurements in the X and Y dimensions.
Time-domain measurements involve effects specifically related
to the Y axis (voltage or current level) or the X axis (when a
pulse occurs).

Because X-axis data is typically the forced data set, it cannot
normally be optimized. This makes it very difficult to optimize
measured and simulated pulses that do not start with some
amount of overlap in time. To solve this problem, the data can
be transformed to create an independent X data set that can be
optimized together with the Y data set. There are 2 ways of
doing this.

• Generate the set of X values that would result if the Y values
were evenly spaced. The wirexfX provides this data. The
complementary wirexfY function provides the set of Y values
that would result from evenly spaced X values, which is the
default case.

• Generate the sets of X and Y values that would result if the X
and Y axes are normalized and the curve is divided into
segments of equal length. The wirexfXY and wirexfYX
functions provide this data. This function calculates variably
spaced X values for evenly spaced Y values.

wirexfXY One of the wire functions that permit optimization
of time domain measurements in the X and Y dimensions; for
more details, refer to the wirexfX function. This function
calculates the X data set produced when the X and Y axes are

Output: Single number with exit status

Automatic Invocation: None

Input Arguments:

Data Sets: X Data, Y Data

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

IC-CAP Functions 8

IC-CAP Reference

normalized and the curve is divided into segments of equal
length. This function should be used in conjunction with
wirexfYX during an optimization.

wirexfY One of the wire functions that permit optimization of
time domain measurements in the X and Y dimensions; for more
details, refer to the wirexfX function. This function calculates
the Y data set when X values are evenly spaced. This function is
supplied for completeness because Y data sets are normally
collected in this manner.

wirexfYX One of the wire functions that permit optimization
of time domain measurements in the X and Y dimensions; for
more details, refer to the wirexfX function. This function
calculates the Y data set produced when the X and Y axes are
normalized and the curve is divided into segments of equal
length. This function should be used in conjunction with
wirexfXY during an optimization.

Input Arguments:

Data Sets: X Data, Y Data

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Output: Array of real numbers; size
determined by inputs

Automatic Invocation: On Data Set Input Change

Input Arguments:

Data Sets: X Data, Y Data

Output: Array of real numbers; size
determined by inputs
685

686

8 IC-CAP Functions

Automatic Invocation: On Data Set Input Change
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

9
Parameter Extraction Language

Fundamental Concepts 688

Expressions 748

IC-CAP’s Parameter Extraction Language can be used to
create new functions. This language is modeled on Rocky
Mountain BASIC (rmb), the name adopted for HP BASIC or
Workstation BASIC when HP introduced it on HP-UX.
IC-CAP implements a subset that can aid in controlling the
system and performing computations.

This chapter describes the syntax and operation of this
interpreter. It is responsible for several IC-CAP system
features:

• Numerical expressions in most editors in the system

• Transforms using the Program2 or Program function

• Macros that a Model can use
687Agilent Technologies

9 Parameter Extraction Language
Fundamental Concepts
688

The interpreter within IC-CAP can execute programs made
up of statements that consist of keywords and expressions.
Expressions are constructed from functions, identifiers, and
operators. You enter these statements in the text editor that
appears when you select Program2 or Program as the function
name in the Extract/Optimize folder, or when you open the
Macros folder (refer to Chapter 11, “Creating and Running
Macros,” in the IC-CAP User’s Guide). The same interpreter is
used to evaluate the expressions entered in various tables
providing a consistent syntax throughout the system. Strictly
speaking, the expressions appearing in tables are not
statements.
Keywords
Keywords are reserved by the Parameter Extraction
Language. A keyword can be one of the reserved words
required for a statement, such as PRINT.

It can also be a built-in function or a built-in constant. For
keyword descriptions, refer to “Built-in Functions” on page 714
and “Built-In Constants” on page 747.

Keywords are entered in all uppercase or all lowercase, but
not upper and lower case. For example, to call the built-in
function MAX:
MAX(ic) or
max(ic)

Although the functions in IC-CAP’s Function List can be
invoked, those functions, such as RMSerror, are not language
keywords. To be used in a Program, expression, or Macro,
these functions must be spelled exactly as shown in the
Function List.
Identifiers
Identifiers are Parameter Extraction Language variable
names; they have the following properties:

• Identifiers can be of mixed case.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

• An identifier can be any length.

• An identifier starts with an alphabetic character or an
underscore character
(_). It can include alphanumeric characters and
underscore characters thereafter. Four notable exceptions
to this are:

• A subcircuit parameter, like npn.BF, is a legitimate
identifier; a period (.) is allowed in this case.

• A data set, like npn/dc/fgummel/ic is a legitimate
identifier; a slash (/) is allowed in this case.

• The notations ../ and ../.. are allowed to indicate
relative paths in the currently executing macro or
transform for dataset access.

• In Programs and Macros, local variable names
(identifiers) can end with a trailing dollar sign ($).
Included for the convenience of BASIC programmers
when using string variables, the only effect is that the
program is easier to read. An example is: Hi$="hello
world"
Numeric Precision
You can control numeric precision by setting the variables
WORKING_PRECISION and/or PARAMETER_PRECISION or
by using the PEL function val$().

• PARAMETER_PRECISION

This variable controls the precision of parameters stored
in the Model or DUT Parameters table, as well as the
precision of parameters passed to a simulator.

• WORKING_PRECISION

This variable controls the precision of numeric values
when converted to text, but affects only those parts of a
model for which the variable is defined. Depending on
when and where the conversion occurs, precision can be
actually lost or simply hidden. This conversion occurs in
the following situations: any time the function val$() is
called; the PRINT statement is used; a numeric value is
689

690

9 Parameter Extraction Language

assigned to a variable in the IC-CAP Variable Table; a
number is displayed to the screen (e.g., in an
input/output/plot definition or tabular data) or saved to a
file. (Because all variables in the IC-CAP Variable Table
are text by definition, assigning a numeric value to such a
variable will implicitly call the val$() function.)

Although the numbers are truncated for display purposes
according to the WORKING_PRECISION variable, IC-CAP
uses the untruncated numbers for calculations until the
file is saved. After the truncated numbers are saved in a
file then reread, the truncated numbers are used in
calculations. For example, if you type 1.23456 into an
input field, 1.235 is displayed. However, 1.23456 is used
for calculation. After the file is saved and reread, 1.235 is
not only displayed but also used for calculations.

When you change the WORKING_PRECISION variable, the
change is only apparent with subsequently edited or
redisplayed fields.

The value of the WORKING_PRECISION variable applies to
the precision of the Start/Stop/Stepsize fields of inputs,
though not all instrumentation can support such
resolution. Using higher precision involving these fields
should be done with caution.

The range of values is 6 through 17. The default is 6.

Controlling precision through val$() calls

The function val$() has an optional second argument that
can be used to control numeric precision. For example, the
statement y=val$(x,12) will convert the number x to a
string using up to 12 significant digits if required. Use this
form of val$() when the current value of
WORKING_PRECISION is acceptable for most of the work at
hand, but greater control is required for isolated instances.
In those instances, the second argument of val$() can be
used to override the current working precision.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference
The examples that follow show how the output varies based
on whether or not the WORKING_PRECISION variable is
defined, and how the WORKING_PRECISION variable, when
defined, is overridden by using val$().
NOTE When doing comparisons on real numbers, you may see unexpected
results (PEL printouts are rounded, although full precision is used
internally). Using the new WORKING_PRECISION variable or the
val$(xxx,y) function, you can verify the actual value.

For example, consider the following PEL clause:
x=0.39999999999
IF x < 0.4 THEN

PRINT x;“is less than 0.4”
END IF

Since x=0.39999999999, the IF clause will be entered but it
will print 0.4 is less than 0.4. To verify the actual value,
change the x in the print statement to val$(x,15) . The
output will then show 0.39999999999 is less than 0.4.
PRINT val$(x,15);“is less than 0.4

Example, Scenario 1

This scenario shows the usefulness of the new argument
in the val$() function.

Conditions: No WORKING_PRECISION variable is declared
within current scope; var1, and var2 are variables in the
Variable table within the current scope.

PEL
x=0.1234567890123 ! implicit val$() used behind the scenes uses
var1=x ! default working precision (6 digits)
var2=val$(x,9) ! explicit val$() specifying 9 digits of precision
y=0+var1 ! implicit val() used on var1 to make numeric again
z=0+var2 ! implicit val() used on var1 to make numeric again
print “Default precision x=”,x ! default working precision used
print “Default precision y=”,y ! default working precision used
print “Default precision z=”,z ! default working precision used
print “var1=”,var1 ! no conversion--var1 already text
print “var2=”,var2 ! no conversion--var2 already text
print “High precision x=”,val$(x,9) ! explicit working precision
print “High precision y=”,val$(y,9) ! explicit working precision
print “High precision z=”,val$(z,9) ! explicit working precision
691

692

9 Parameter Extraction Language

Output
Default precision x= 0.1235
Default precision y= 0.1235
Default precision z= 0.1235
var1= 0.1235
var2= 0.123456789
High precision x= 0.123456789
High precision y= 0.1235
High precision z= 0.123456789

Notice that y lost precision because var1 lost precision,
however it is clear from the High precision lines that
more information is available for x and z even though
printing at the default precision did not reveal it.

Example, Scenario 2

This Scenario uses the same code as Scenario 1, except
that the default working precision has been increased via
the WORKING_PRECISION variable.

Conditions: WORKING_PRECISION variable in the current
scope is set to 12; var1 and var2 are variables in the
Variable Table within the current scope.

PEL
x=0.1234567890123 ! implicit val$() used behind the scenes uses
var1=x ! current working precision (12 digits)
var2=val$(x,9) ! explicit val$() specifying 9 digits of precision
y=0+var1 ! implicit val() used on var1 to make numeric again
z=0+var2 ! implicit val() used on var1 to make numeric again

print “Default precision x=”,x ! current working precision used
print “Default precision y=”,y ! current working precision used
print “Default precision z=”,z ! current working precision used
print “var1=”,var1 ! no conversion--var1 already text
print “var2=”,var2 ! no conversion--var2 already text
print “High precision x=”,val$(x,9) ! explicit working precision
print “High precision y=”,val$(y,9) ! explicit working precision
print “High precision z=”,val$(z,9) ! explicit working precision
Output
Default precision x= 0.123456789012
Default precision y= 0.123456789012
Default precision z= 0.123456789
var1= 0.123456789012
var2= 0.123456789
High precision x= 0.123456789
High precision y= 0.123456789
High precision z= 0.123456789
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference
In this case, notice that the overriding val$() assignments
actually lower the default precision since the default has
been set to 12 digits via the WORKING_PRECISION
variable.
Statements

This section describes how to write statements that make up
Programs and Macros. The information in this section is not
required to use expressions in the editor tables within
IC-CAP.

Rules for Constructing Statements

As in BASIC, statements are generally contained in a single
line of input. On the other hand, a quoted string can be as
many lines long as needed and can contain CR-LFs (carriage
return-line feeds).

Statements can be arbitrarily complex, and can use
parentheses and white space to clarify precedence and
improve readability.

Keywords must be all uppercase or all lowercase characters.
Calls to functions in IC-CAP’s Function List must be spelled
exactly as they are in the Function List.

Use an exclamation mark (!) to comment out a line or any
part of a line.

Available Statements and Commands

The following statements are taken from HP BASIC. They are
sensitive to the use of CR-LF, and must be written as
shown. For example, the ELSE keyword should be followed
by nothing on the same line, although a comment (starting
with !) could follow it. In this section, the abbreviation expr
denotes an expression. Expressions are described in
“Expressions” on page 748. The abbreviation boolean_expr
denotes a boolean expression, generally 0 or 1 (1, as well as any
non-zero value, is considered TRUE). For more information,
refer to “Boolean Expressions” on page 750.
693

694

9 Parameter Extraction Language

IF THEN with a single statement
IF boolean_expr THEN statement

IF THEN with multiple statements
IF boolean_expr THEN
statement1
.
.
.
statementN
END IF

IF THEN ELSE statement
IF boolean_expr THEN
statement1
.
.
.
statementN
ELSE
statement1
.
.
.
statementN
END IF

WHILE statement
WHILE boolean_expr
statement1
.
.
.
statementN
END WHILE

GET_DATASET statement
GET_DATASET prompt_string, variable_name
GET_DATASET prompt_string, default_string, variable_name

GET_DATASET is currently only supported by the Program2
function. An error occurs if used with a Program function or
Macro. GET_DATASET can redirect a Program2 dataset or
array parameter argument into a named variable. The
prompt_string and optional default_string parameters are
currently unused and ignored. The variable_name argument
is a variable that receives the redirected Program2 parameter
argument. The named variable can be a variable local to the
Program2 function. After the GET_DATASET statement
finishes, it returns a dataset to the named variable. Currently
the named variable can not represent a global variable or
variable from an IC-CAP variable table.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

Example Program2 function transform using GET_DATASET:
sub_prog
{

PRINT "enter sub_prog"

! re-direct a dataset parameter argument passed into
this

! function into local variable loc_x
GET_DATASET "", loc_x

PRINT "loc_x == "
PRINT loc_x

PRINT "leave sub_prog"
RETURN

}

Example:
! create a small dataset x
COMPLEX x[5]
i = 0
WHILE i < sizeof(x)

x[i] = i+2 + j*(i+1)
i=i+1

ENDWHILE

! pass a small dataset x to the Program2 function sub_prog
iccap_func("sub_prog", "Execute", x)

Output:
enter sub_prog
loc_x ==
Point Index R:measured I:measured

0 (1,1) 2.000000E+000 1.000000E+000
1 (1,1) 3.000000E+000 2.000000E+000
2 (1,1) 4.000000E+000 3.000000E+000
3 (1,1) 5.000000E+000 4.000000E+000
4 (1,1) 6.000000E+000 5.000000E+000

Point Index R:simulated I:simulated
0 (1,1) 2.000000E+000 1.000000E+000
1 (1,1) 3.000000E+000 2.000000E+000
2 (1,1) 4.000000E+000 3.000000E+000
3 (1,1) 5.000000E+000 4.000000E+000
4 (1,1) 6.000000E+000 5.000000E+000

leave sub_prog

GET_INT statement
GET_INT prompt_string, variable_name
GET_INT prompt_string, default_string, variable_name

Uses a dialog box to request an integer input from the user,
prompting with prompt_string, which should be a quoted
string, an identifier, or an expression treated as an integer.
Where applicable, default_string provides the user with a
default answer, enabling the user to simply select OK and
avoid typing any data. The prompt_string can be any valid
695

696

9 Parameter Extraction Language

string expression. The default_string can be any valid string
expression representing an integer. The variable_name
argument is a variable that receives the user's response. The
variable can be an IC-CAP system variable, or a variable local
to Program, Program2, or Macro. After the GET_INT
statement finishes, it returns an integer value to the named
variable. If the named variable is a global variable, the
integer value will be stored in the variable table.

The GET_INT dialog box contains 2 buttons: CANCEL and
OK. Choose CANCEL to terminate Program, Program2, or
Macro immediately.

If GET_INT is used in a Program or Macro to pass
parameters, all GET_INT statements should be located
immediately at the start of the Program or Macro along with
any other GET_INT, GET_REAL, GET_STRING or LINPUT
statements. Once any other ICCAP_FUNC statement is
invoked, the list of arguments is reset, thereby removing all
the extra arguments from the calling ICCAP_FUNC
statement. Program2 does not have this limitation.

If GET_INT is used in a Program or Macro to pass
parameters, the GET_INT statement searches the passed
parameter list until it finds a valid passed integer parameter
argument. In the Program2 function, the GET_INT statement
will only try to evaluate the next available passed function
parameter as an integer value, and will error out if the next
passed function parameter can not be evaluated as an integer
value.

GET_REAL statement
GET_REAL prompt_string, variable_name
GET_REAL prompt_string, default_string, variable_name

Uses a dialog box to request a real input from the user,
prompting with prompt_string, which should be a quoted
string, an identifier, or an expression treated as a real value.
Where applicable, default_string provides the user with a
default answer, enabling the user to simply select OK and
avoid typing any data. The prompt_string can be any valid
string expression. The default_string can be any valid string
expression representing a real value. The variable_name
argument is a variable that receives the user's response. The
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

variable can be an IC-CAP system variable, or a variable local
to Program, Program2, or Macro. After the GET_REAL
statement finishes, it returns a real value to the named
variable. If the named variable is a global variable, the string
value will be stored in the variable table.

The GET_REAL dialog box contains 2 buttons: CANCEL and
OK. Choose CANCEL to terminate Program, Program2, or
Macro immediately.

If GET_REAL is used in a Program or Macro to pass
parameters, all GET_REAL statements should be located
immediately at the start of the Program or Macro along with
any other GET_INT, GET_REAL, GET_STRING or LINPUT
statements. Once any other ICCAP_FUNC statement is
invoked, the list of arguments is reset, thereby removing all
the extra arguments from the calling ICCAP_FUNC
statement. Program2 does not have this limitation.

If GET_REAL is used in a Program or Macro to pass
parameters, the GET_REAL statement searches the passed
parameter list until it finds a valid passed real parameter
argument. In the Program2 function, the GET_REAL
statement will only try to evaluate the next available passed
function parameter as a real value, and will error out if the
next passed function parameter can not be evaluated as a
real value.

GET_STRING statement:

See “LINPUT or GET_STRING statement” on page 699.
GET_STRING is simply an alternate name for the LINPUT
command. The new name is consistent with GET_INT,
GET_REAL, and GET_DATASET.

GLOBAL_VAR statement
GLOBAL_VAR <variable_name>

Declares a variable as a global variable in a program. This
statement is most useful for the Program2 function, because
the Program2 function treats all variables as local variables
unless those variables are first explicitly declared as global
variables using the GLOBAL_VAR statement. In the Program
697

698

9 Parameter Extraction Language

function, all variables can be resolved globally or locally
without needing to explicitly specify which variables are
global using the GLOBAL_VAR statement.

The variable_name should refer to an IC-CAP variable in a
variable table. Before using a variable from a variable table in
Program2, you should declare the variable as global with
GLOBAL_VAR. An error will occur if an IC-CAP variable
could not be found.

GLOBAL_VAR varX
y=varX
RETURN y

ICCAP_FIND_CHILDREN statement
ICCAP_FIND_CHILDREN “/”,“Model”,loadedModels

Sets a variable to be the list of names of a particular child
type of an IC-CAP object. This turns the variable
loadedModels from a variable table into an ICCAP_ARRAY
containing elements that are the names of the currently
loaded models. Use the sizef() command to determine the
size of the array.

Refer to the following table for valid names for the second
argument given the type of the first argument.

First Argument References Second Argument may be

/ Model

any GUI Item Table or any GUI Item GUI Item

any model DUT

any DUT Setup

Any Setup Input, Output, Transform, or Plot
NOTE You should use sizeof() instead of size() because if no objects of the
requested type are found, a null string ("") is returned instead of an
ICCAP_ARRAY[0]. Since size() returns 1 for a null string, you would first
test the result to make sure it is not a null string before using the size()
command to determine the number of entries. The sizeof() function
returns 0 for a variable that is not an ICCAP_ARRAY[].
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference
ICCAP_FUNC statement
ICCAP_FUNC (object_name, menu_function_name, dialog_answer1, ...)

Used primarily in macros for automating the operation of
IC-CAP.
NOTE The ICCAP_FUNC statement replaced the MENU_FUNC statement in
release 5.0. For backward compatibility, macros containing the
MENU_FUNC statement will still work, but new macros should be written
using the ICCAP_FUNC statement.

For an example on using the ICCAP_FUNC statement, refer
to Chapter 11, “Creating and Running Macros,” in the IC-CAP
User’s Guide.

LINPUT or GET_STRING statement
LINPUT prompt_string, variable_name
LINPUT prompt_string, default_string, variable_name
GET_STRING prompt_string, variable_name
GET_STRING prompt_string, default_string, variable_name

Uses a dialog box to request a string input from the user,
prompting with prompt_string, which should be a quoted
string, an identifier, or an expression treated as a string.
Where applicable, default_string provides the user with a
default answer, enabling the user to simply select OK and
avoid typing any data. Like prompt_string, the
default_string can be any valid string expression. The
variable_name argument is a variable that receives the
user’s response. The variable can be an IC-CAP system
variable, or a variable local to the Program, Program2, or
Macro. After the LINPUT or GET_STRING statement finishes,
it returns a string to the named variable. This will either be
the null string (""), or a string defining the text that would be
typed in the LINPUT or GET_STRING dialog box. If the
named variable is a global variable, the string value will be
stored in the variable table. To interpret the results as a
number, you must use val().

The LINPUT or GET_STRING dialog box contains 2 buttons:
CANCEL and OK. Choose CANCEL to terminate Program,
Program2, or Macro immediately.
699

700

9 Parameter Extraction Language

If LINPUT or GET_STRING is used in a Program or Macro to
pass parameters, all LINPUT or GET_STRING statements
should be located immediately at the start of the Program or
Macro along with any other GET_INT, GET_REAL,
GET_STRING or LINPUT statements. Once any other
ICCAP_FUNC statement is invoked, the list of arguments is
reset, thereby removing all the extra arguments from the
calling ICCAP_FUNC statement. Program2 does not have this
limitation.

PRINT statement
PRINT expr

Writes an ASCII printout of the given expression to the
Status window or location specified by a preceding PRINTER
IS statement. As in HP BASIC, several arguments can be
used, and these can be separated by a semicolon (;),
comma (,), or a period (.). The semicolon separator results
in no spacing between printed arguments, while the comma
separator results in a tab character. When printing multiple
arguments, the ampersand (&) operator and the VAL$
function may be useful. Refer to “Built-in Functions” on
page 714 and “Expressions” on page 748.

PRINTER IS statement
PRINTER IS <string>

Specifies where subsequent PRINT statements write. String
specifies a path and filename for subsequent PRINT
statements. A special token CRT specifies that subsequent
PRINT statements write to the Status window. For example:

PRINTER IS “/tmp/tmpfile”
PRINT “This text is going to tmpfile”
PRINTER IS CRT
PRINT "This text is going to the status window”

RETURN statement
RETURN [expr]

Copies a data set expression into the local storage of the
Transform, making the data available to Plots or other
Transforms that may reference it. In both Program and
Program2, it can be used to store data by including the
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

optional argument. In a Macro, no argument can be present.
In both cases, Program, Program2, or Macro terminates after
this statement is executed. For example:

Id = IS * exp(vd / NF / vt)
RETURN Id

RETURN_VALUE statement
RETURN_VALUE expr

Interprets expr as a single real value. If expr is a dataset, the
first value will be returned. If expr is a variable, it will
interpret the value as a real value. If the variable is an
ICCAP_ARRAY, it will interpret the string as a number,
returning the dimension of the ICCAP_ARRAY, not the first
value of the array. RETURN_VALUE copies a real value from
an expression into the local storage of the Transform, making
the data available to Plots or other Transforms that may
reference it. Both Program and Program2 terminates after
this statement is executed. Use RETURN_VALUE when only a
single return value is required. This will avoid IC-CAP
increasing the size of the return value to the size of the setup.
The RETURN_VALUE statement's returned dataset will be
size 1, whereas the RETURN statement's return dataset size
will be determined by the size of the setup. RETURN_VALUE
is unsupported with Macros.

For example:
Id = 23.44
RETURN_VALUE Id

TUNER statement
TUNER pname, min, initValue, max, linLogScale, cbStyle,
cbName

where:

pname: is a string (or variable array, refer to the
section “Using Variable arrays”) containing
the name of the variable or parameter you
want automatically adjusted each time the
tuner is adjusted.
701

702

9 Parameter Extraction Language

SLIDER statement
SLIDER pname, min, initValue, max, OKFlag, retVal

where:

min: is a number (or variable array, refer to the
section “Using Variable arrays”) that
specifies the minimum end of the tuner
scale.

initValue: initValue is a number (or variable array,
refer to the section “Using Variable
arrays”) that specifies the initial position
of the slider.

max: is a number (or variable array, refer to the
section “Using Variable arrays”) that
specifies the maximum end of the tuner
scale

linLogScale: is a number (or variable array, refer to the
section “Using Variable arrays”) that
specifies whether the tuner will have a log
scale or not.

cbStyle: is a number (1 or 0) that specifies whether
or not the callback is called continuously
as the slider moves (while the user has the
mouse button pressed) or only when the
slider motion is complete (when the user
releases the mouse button). 1 Specifies
continuous callbacks; 0 specifies endpoint
callbacks.

cbName: is a string that specifies a Macro or
Transform in the same manner you would
refer to a macro or transform using a
ICCAP_FUNC statement. This Function will
be called as indicated by cbStyle. For
example, you may have a macro named cb
in model m1 and you could specify this
macro absolutely with “/m1/cb” or
relatively by “cb” from any macro within
m1.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

Using Variable Arrays

To specify multiple parameters or variables for tuning, you can
use variable arrays. The arguments pname, min, initValue, and
max must all be variable arrays of the same dimension. (A
variable array is defined by setting the value of any variable in a
variable table to ICCAP_ARRAY[dim] where dim is the
dimension of the array.) For example, if names, mins, maxs,
and currs were all variable arrays of dimension 4, and names
was an array of param names and mins was an array of min
values, etc, the statement

pname: is a string (or variable array, refer to the
section “Using Variable arrays”) containing
the name of the variable or parameter you
want automatically adjusted each time the
tuner is adjusted.

min: is a number (or variable array, refer to the
section “Using Variable arrays”) that
specifies the minimum end of the tuner
scale.

initValue: initValue is a number (or variable array,
refer to the section “Using Variable
arrays”) that specifies the initial position
of the slider.

max: is a number (or variable array, refer to the
section “Using Variable arrays”) that
specifies the maximum end of the tuner
scale

okFlag is an expression. 0 means return as soon
as the slider is adjusted; nonzero means
return only when user clicks OK.

retVal If more than one slider is specified, using
arrays, retVal returns the index of the
modified slider and the new value is
automatically updated to the initValue
array. If only one slider is specified via
means other than variable arrays, retVal
returns the new value of the slider.
703

704

9 Parameter Extraction Language

TUNER names,mins,currs,maxs,0,1,"mycallback"

would invoke a TUNER with 4 sliders on it, one for each
parameter in the names array.
NOTE Clicking OK on the tuner returns control to the Macro; clicking CANCEL on
the tuner aborts the macro currently running.
You can set and access n-dimensional variable arrays. If you set
the arrays
a=ICCAP_ARRAY[2]
a[0]=ICCAP_ARRAY[2]

you can then access and set a[0][1] in PEL.

UPDATE_EXPLICIT,

UPDATE_MANUAL,

UPDATE_AUTO,

UPDATE_EXTRACT, and

UPDATE_OPTIMIZE statements

Tell IC-CAP when to automatically run a Program. These
statements do not affect the Program, as can be seen in the
following examples:

UPDATE_EXPLICIT !suppress all auto-execution of the
!transform

UPDATE_MANUAL !suppress all auto-execution of the
!transform except during an optimization

UPDATE_AUTO !auto-execute the transform if a data set
!input changes

UPDATE_OPTIMIZE !auto-execute upon selection of the
!Optimize menu function

UPDATE_EXTRACT !auto-execute upon selection of the
!Extract menu function
NOTE UPDATE_MANUAL will auto-execute a transform during an optimization
only if it is a dependency on the simulated target of the optimization.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

Use only 1 statement per Program and place the statement
first in the Program. They have no effect in a macro because
macros are never automatically executed by IC-CAP. For
more information about the automatic execution of
Programs, refer to “Automatic Transform Execution” in the
User’s Guide.

COMPLEX statement
COMPLEX <array_name>.<type>.<matrix_dimensions>[size_expr]

Declares a temporary variable as an array. The individual
points of such an array can be manipulated, after which the
RETURN statement can be used to save the contents. The
array_name and size_expr arguments must be provided.
The type specifier and matrix_dimensions specifier are
optional. The matrix_dimensions can be either literal or an
expression in () up to 9999. Only a square matrix is currently
supported.

The following examples demonstrate the various forms that
the COMPLEX statement can take. For information on
understanding the use of the M, S, and B specifiers, refer to
“Measured, Simulated, and Common Data” in the IC-CAP
User’s Guide. (These specifiers identify whether space is
allocated for measured, simulated, both measured and
simulated, or for data to be considered common.) “Data
Types” on page 710 explains the M, S, and B specifiers. The
matrix dimensions specifier should be equal to 22 for 2-port
data. For DC data sets it is simplest to omit it; this results in
a default value of 11 (1x1 data) suitable for DC, CV, TDR and
other non-2-port data sets.

COMPLEX tmp_array[30+5] ! Common data; 35 complex points;
!indexed 0 to 34

COMPLEX tmp_array.M[35] ! Measured data
COMPLEX tmp_array.S[35] ! Simulated data
COMPLEX tmp_array.B[35] ! Both measured and simulated data

! is allocated
COMPLEX t_arr.22[30+5] ! Common data; 35 2x2 (i.e. 2-port)

!points
COMPLEX t_arr.M.22[35] ! Measured data; 35 2x2 points
COMPLEX t_arr.S.22[35] ! Simulated data; 35 2x2 points
COMPLEX t_arr.B.22[35] ! Both measured and simulated data is

! allocated
COMPLEX t_arr.B.1212[35] ! 12x12 matrix
COMPLEX t_arr.B.(r*10+c)[35] ! r, c up to 9x9
COMPLEX t_arr.B.(r*100+c)[35] ! r, c up to 99x99
705

706

9 Parameter Extraction Language

After an array is declared using COMPLEX, all elements have
a value of 0. Refer to “Assignment” on page 706 for a
description of how to modify elements within the array.
Examples of data set access are provided in “Data Types” on
page 710. Those examples also apply to accessing the
temporary arrays declared by COMPLEX and the points
within them.

The COMPLEX statement is not always necessary when
working with arrays. In many cases, assignment and other
operations can be done implicitly on an array-wide basis. For
example, the following statements produce the average of two
2-port S-parameter data sets:

x = (S1+S2) / 2
RETURN x
! or, simply,
RETURN (S1+S2) / 2

When individual points in the array require differing and
non-trivial manipulations (thus making it necessary to assign
to them on a point-wise basis), use the COMPLEX statement.
Typical applications are filtering noise from data or
producing a new data set that contains only a subset of
another data set.

Assignment

Assignment is an important statement for complicated
computations that require temporary variables or perform
extractions. An assignment statement consists of a simple
identifier on the left, an = sign, and any allowed expression to
the right. It is possible to declare temporary arrays (using
COMPLEX) and to assign values to individual points within
these arrays.
NOTE A single equal sign (=) is used to indicate assignment; a double equal
sign (==) is used to test for equality. HP BASIC uses = for both.
The valid forms for assignment are as follows:
tempvar = <any expression>
<Model parameter> = <REAL expression>
<DUT parameter> = <REAL expression>
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

<IC-CAP system variable> = <REAL expression>
<tmp_array>.<type>.<row_and_column>[index_expr] = <REAL or
COMPLEX expression>

In the last case, some fields are optional. The following
examples show every legitimate case and demonstrate all valid
forms of assignment.

BF = ic[0]//ib[0] Assigns the bjt Model parameter
BF to the ratio of 2 points (ic[0]
and ib[0]).

AREA = 1.2 Assigns (in a bjt Model) a value to
the DUT parameter AREA.

npn2.BF = 100 Assigns a value to the Model
parameter npn2.BF, if the current
Model possesses such a parameter.
Failing that, it assigns a value to a
BF parameter in another Model
named npn2.

npn2/dc.AREA = 100 Assigns a value to the DUT
parameter AREA, within the DC
DUT of a Model named npn2.

TNOM = 25 TNOM is generally defined as an
IC-CAP system variable. Here it is
assigned a value of 25.

x = 4 Declares x a temporary variable
and assigns an integer.
Recommended for loop counters.
The maximum integer that you can
set is 2147483647 (MAXINT). If you
attempt to assign an integer in
excess of MAXINT, unreported
overflow errors will occur and the
actual integer assigned will not be
the value you attempted to assign.
If you wish to use numbers larger
than MAXINT, specify using a .0 at
the end of the number (see x =
4.0) or use engineering notation.
707

708

9 Parameter Extraction Language

x = 4.0 Declares x a temporary variable
and assigns a double precision
floating point number. Not
recommended for loop counters
due to roundoff errors.

x = ic//ib Declares x a temporary variable
and assigns it to the ratio of the 2
data sets (ic and ib). Refer to
“Expressions” on page 748 for an
explanation of the double slash (//).

x = S.21 Declares x a temporary variable
and assigns to it all the 21
(forward transmission) data within
a 2-port data set named S.

x = S.M.21 Declares x a temporary variable
and assigns to it all the measured
21 (forward transmission) data
within a 2-port data set named S.

x = ic or
x = ic.m or
x = ic.s

Declares x a temporary variable
and assigns to it the data within
an Output named ic. If ic only has
measured data, only measured data
is assigned to x. If ic only has
simulated data, only simulated data
is assigned to x. If ic has both
measured and simulated data, both
are assigned to x. If x is not the
correct size for the requested data,
x resizes to accommodate the data
on the right side.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

x.m = ic or
x.m = ic.s or
x.m = ic.m

If x has never been assigned or
was assigned some value other
than a temporary dataset, adding
.m to left side has no effect. See
x=ic, x=ic.s, x=ic.m. If x was
previously defined as a temporary
dataset, assigns to its measured
array the data within an output
named ic. If ic contains just
simulated data or if the right side
is ic.s, x receives just the
simulated data in its measured
array. If ic contains common or
measured data or if the right side
is ic.m, x receives that data in its
measured array. If x contains
preexisting simulated data, that
simulated data is not changed. If x
is not the correct size for the
requested data, an error occurs.

x.s = ic or
x.s = ic.s or
x.s = ic.m

If x has never been assigned or
was assigned some value other
than a temporary dataset, adding .s
to left side has no effect. See x=ic,
x=ic.s, x=ic.m. If x was previously
defined as a temporary dataset,
assigns to its simulated array the
data within an output named ic. If
ic contains just simulated data or
if the right side is ic.s, x receives
just the simulated data in its
simulated array. If ic contains
common or measured data or if the
right side is ic.m, x receives that
data in its simulated array. If x
contains preexisting measured
data, that measured data is not
changed. If x is not the correct size
for the requested data, an error
occurs.
709

710

9 Parameter Extraction Language

The following statements demonstrate assignment to points in
temporary arrays. They require prior use of the COMPLEX
statement to declare the temporary array appearing to the left
of the equal sign (=). An array index i is assumed in each case to
be an integer or integer expression. It should have a value
between 0 and size-1, where size was established in a COMPLEX
statement.
tmp_array.M[i] = 2+2 ! Measured data point assigned value of

! 4
tmp_array.S[i] = 2+2 ! Simulated data point assigned value

! of 4
tmp_array.B[i] = 2+2 ! Measured and simulated data points

! are BOTH assigned
tmp_array_x[i] = 2+2 ! Common or measured data point

! assigned value of 4
tmparr.M.21[i] = 2+j5 ! Measured ’21’ data point receives

! complex
tmparr.S.21[i] = 7+20 ! Simulated ’21’ data point receives

! real
tmparr.B.21[i] = 2+j5 ! Measured and simulated ’21’ data

! points are BOTH assigned
tmparr_x.21[i] = 2+j5 ! Common or measured ’21’ data point

! receives complex

The following assignment statements are not valid:
COMPLEX x.m[size(beta.m)]
x.m = beta.m ! left-side expression must be simple

! identifier, or individual point
S = S + S

where S is an existing IC-CAP data set. You cannot overwrite
an existing data set in this manner. (However, you could
establish an IC-CAP data set with identical data using
RETURN S+S .)

tmp_array[i] = S[i] ! not valid if S[i] is non-scalar (for
! example, 2-port data)
Data Types
This section describes the primitive data types supported in
expressions, Programs, and Macros. These types of data
represent the simplest possible expressions.

Because IC-CAP automatically assigns data types, it is not
necessary to declare a data type for a variable. Thus, to declare
and initialize a temporary variable in a Program Transform or
Macro, assign a value to it. For example, entering tempvarx =
S.m.21[3] automatically makes tempvarx a complex entity (S is
assumed to be 2-port data). The variable tempvarx is known
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

only to the Transform program being defined and is discarded
when the program finishes. IC-CAP recognizes and operates on
the following data types:

real (or double) For example:
2.0, 2e-6, and 2.0k.

complex Engineering and scientific notation are accepted in
any mix. For example:
2+j2, 2+j*2, and 2.05meg-j1.0e6.

pure imaginary j*2, j2, j, and j*1meg.

matrix The expression S.M[0] is a matrix example if S is
2-port data.

Model and DUT Parameters These are scalar real numbers.
When IC-CAP encounters such an identifier (BF for example), it
searches for a match in the following order until one is found:

1 DUT level parameter

2 Model level parameter

3 Setup level parameter

4 DUT level variable

5 Model level variable

6 System level variable

7 Datasets

Model parameters can be used in, or assigned to, expressions.

For example:
BF = 100
x = 2 * BF
npn1.BF = 100 !BF in another Model
npn1/dc.AREA=1 !AREA in another DUT

IC-CAP variables Refer to Model Parameters for a description
of how IC-CAP resolves the meaning of symbol names. Like
Model Parameters, system variables can be used in, or assigned
to, expressions. They have one enhanced capability not shared
by the parameters—a string can be assigned to them. For
example,
EXTR_MODEL="opamp"
711

712

9 Parameter Extraction Language

Do not attempt to enter an expression when editing an
IC-CAP system variable table. This will not be evaluated
when you later reference the variable. If the system variable
is used in a numeric expression, it is safest to enter only a
single number in the system variable table. To obtain the text
contents of a system variable, use the following:

VAL$(EXTR_MODEL)

where EXTR_MODEL is a system variable.

data set Arrays of matrices of complex numbers. In the most
complex case (2-port S-parameter measured and simulated
data), data sets hold an array of measured matrices and an
array of simulated matrices. (Refer to “Measured, Simulated,
and Common Data" in the IC-CAP User’s Guide.) IC-CAP
entities considered to be data sets are Inputs, Outputs, and
Transforms. The syntax for accessing all or part of a data set is
described in the following paragraphs. Temporary arrays, such
as those declared by the COMPLEX statement, can also be
accessed using the syntax in the examples.

In the following examples of data set access, S denotes an
existing data set of 2-port data; IC denotes an existing DC data
set. Both data sets are type B (both)—they contain measured
and simulated data.
NOTE These examples are valid for reading data in a temporary array in a
Program or Macro, and for reading data in an IC-CAP data set. However,
choices are more limited when assigning to (writing to) temporary arrays;
also, no assignment can be done directly into IC-CAP data sets (outside of
the RETURN statement). For details regarding assignment statement, refer
to “Assignment” on page 706.
IC.M Produces a data set containing only
measured data.

IC.S Produces a data set containing only
simulated data. M (measured), S
(simulated), and B(both) act as keywords
and can be specified in either uppercase
or lowercase.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

IC.B or IC Produces a data set containing both
measured and simulated data.

S[2] or S.M[2] Produces a matrix of measured data. It is
the third matrix in S.M, the first being
S[0]. An expression can be substituted for
2. In the first case, the system selects
measured data by default. Since 2 selects
the third matrix, 0 would select the first
matrix. This is consistent with HP BASIC,
in which OPTION BASE 0 is the default
when accessing array elements. The last
matrix in S.M can be accessed with the
built-in function SIZE: S[size(S)-1]. Results
are undefined if you attempt to use indices
that are negative or are beyond the end of
the data set.

IC[0] or
IC.M[0]

Produces a real number that is the first
point in IC’s measured data. An expression
can be substituted for 0. Note: Omitting
the .M extension (IC[0]) defaults to
measured data only, NOT both measured
and simulated data.

S.s[2] Produces a matrix of simulated data that
is the third point (the first is S.s[0]). An
expression can be substituted for 2.

S.21 S.0201 S.9181 S.(row*10+column) S.(row*100+column)

Produces a measured and simulated data
set with complex data. The term .21
specifies that the data at row 2, column 1
is to be extracted from data set S (this
would be the data corresponding to the
forward transfer coefficient). The term .21
can be expressed either literally or by an
expression in parentheses () up to 9999.
(Note that S.21 and S.0201 are equivalent.)
For data sets with more than 9 rows or
columns, use the 4-digit row-column
specification, for example, S.9902 (row 99,
column 2).
713

714

9 Parameter Extraction Language

IC-CAP also has some limited string manipulation capabilities.
The following are examples of the string type (note the 2
alternatives for including quotation marks in a string):
"hello world"
"IC-CAP says ’hello world’ "
’IC-CAP says "hello world" ’

The following is an example of a string used in a statement:
PRINT "hello world"

Assign to x as follows:
x = "hello"

and x will be of type string.

S.21[0] Produces a complex number. M (measured)
is assumed by default. The result is the
data for row 2, column 1 of S’s first
measured data matrix. An expression can
be substituted for 0.

S.S.21[2] Produces the same result as above, but for
simulated rather than measured data.
Built-in Functions
The functions described in this section are built into the
Parameter Extraction Language. They can be entered in all
uppercase or all lowercase, as in HP BASIC.

Some are duplicated in the IC-CAP Function List, like log. Some
functions were built in for efficiency with scalar data (the
Function List has functions designed to operate best on data
sets). Other built-in functions are for programming
convenience, such as size and system$.
NOTE A function applied to a data set, unless otherwise noted, generates a new
data set in which the specified function has been applied to every point.
However, the functions max, min, and size each return single numbers
only.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

abs

Absolute value of a single real number or magnitude of a
complex number.

array_copy(x,yout)

Returns 0 if the ICCAP_ARRAY x is copied successfully to the
ICCAP_ARRAY yout. For example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

fgh="ICCAP_ARRAY[1]"
fgh[0]="hello"

! fgh = {"hello"}
print array_equal_str(abc, fgh)

print array_copy(abc, fgh)

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}
! fgh = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_equal_str(abc, fgh)

Output:
0
0
1

Example:
fgh="ICCAP_ARRAY[2]"
fgh[0]="ICCAP_ARRAY[3]"
fgh[0][0]="foo"
fgh[0][1]=1.235
fgh[0][2]=2.33
fgh[1]="ICCAP_ARRAY[2]"
fgh[1][0]=0
fgh[1][1]= "ICCAP_ARRAY[4]"
fgh[1][1][0]="fee"
fgh[1][1][1]=-10.23919
fgh[1][1][2]=3
fgh[1][1][3]="foo"

array_copy(abc, fgh)

Result:
abc="ICCAP_ARRAY[2]"
abc[0]="ICCAP_ARRAY[3]"
715

716

9 Parameter Extraction Language

abc[0][0]="foo"
abc[0][1]=1.235
abc[0][2]=2.33
abc[1]="ICCAP_ARRAY[2]"
abc[1][0]=0
abc[1][1]= "ICCAP_ARRAY[4]"
abc[1][1][0]="fee"
abc[1][1][1]=-10.23919
abc[1][1][2]=3
abc[1][1][3]="foo"

Example:
array_copy(abc[1], fgh)

Result:
fgh="ICCAP_ARRAY[2]"
fgh[0]=0
fgh[1]= "ICCAP_ARRAY[4]"
fgh[1][0]="fee"
fgh[1][1]=-10.23919
fgh[1][2]=3
fgh[1][3]="foo"

Example:
array_copy(abc[0], fgh[1][3])

Result:
fgh="ICCAP_ARRAY[2]"
fgh[0]=0
fgh[1]= "ICCAP_ARRAY[4]"
fgh[1][0]="fee"
fgh[1][1]=-10.23919
fgh[1][2]=3
fgh[1][3]="ICCAP_ARRAY[3]"
abc[1][3][0]="foo"
abc[1][3][1]=1.235
abc[1][3][2]=2.33

array_equal_num(x,y[,prec])

Returns 1 if the ICCAP_ARRAY x elements have the same
double values as the corresponding elements of ICCAP_ARRAY
y. Returns 0 if the ICCAP_ARRAY x and ICCAP_ARRAY y are
not equivalent. The 3rd optional argument prec can be used to
specify the double precision to compare the input arrays x and
y with when determining their equivalency. For example:
abc="ICCAP_ARRAY[4]"
abc[0]=-4.23321
abc[1]=1.235
abc[2]=21
abc[3]=-10.23919

! abc = {-4.23321, 1.235, 21, -10.23919}

abc2="ICCAP_ARRAY[5]"
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

abc2[0]=-4.23321
abc2[1]=1.235
abc2[2]=21
abc2[3]=-10.23919
abc2[4]=0.3422

! abc = {-4.23321, 1.235, 21, -10.23919, 0.3422}

abc3="ICCAP_ARRAY[4]"
abc3[0]=-4.23321
abc3[1]=1.235
abc3[2]=21
abc3[3]=-10.24

! abc3 = {-4.23321, 1.235, 21, -10.24}

print array_equal_num(abc, abc2, 3)
print array_equal_num(abc, abc3, 2)
print array_equal_num(abc, abc3, 5)
print array_equal_num(abc2, abc3, 3)

Output:
0
1
0
0

array_equal_str(x,y)

Returns 1 if the ICCAP_ARRAY x elements have the same string
values as the corresponding elements of ICCAP_ARRAY y.
Returns 0 if the ICCAP_ARRAY x and ICCAP_ARRAY y are not
equivalent. For example:
abc="ICCAP_ARRAY[4]"
abc[0]="foo"
abc[1]=1.235
abc[2]="foo2"
abc[3]=-10.23919

! abc = {"foo", 1.235, "foo2", -10.23919}

abc2="ICCAP_ARRAY[5]"
abc2[0]="foo"
abc2[1]=1.235
abc2[2]="foo2"
abc2[3]=-10.23919
abc2[4]="foo3"

! abc2 = {"foo", 1.235, "foo2", -10.23919, "foo3"}

abc3="ICCAP_ARRAY[4]"
abc3[0]="foo"
abc3[1]=1.235
abc3[2]="foo2"
abc3[3]=-10.23919

! abc3 = {"foo", 1.235, "foo2", -10.23919}
717

718

9 Parameter Extraction Language

print array_equal_str(abc, abc2)
print array_equal_str(abc, abc3)
print array_equal_str(abc2, abc3)

Output:
0
1
0

array_insert_at(x,y [,pos])

Returns 0 if successful and ICCAP_ARRAY x will be modified to
include the data y inserted into the data array at the optional
3rd argument integer index pos. If the 3rd argument pos is not
specified, the data y will be appended to the end of the
ICCAP_ARRAY data array x. For example:
abc="ICCAP_ARRAY[5]"
abc[0]=1
abc[1]=2
abc[2]=3
abc[3]=3
abc[4]=12

print array_insert_at(abc,55,6)
! abc = {1,2,3,3,12}
print array_insert_at(abc,43,5)
! abc = {1,2,3,3,12,43}
print array_insert_at(abc,23.33,0)
! abc = {23.33,1,2,3,3,12,43}
print array_insert_at(abc,-55.34)
! abc = {23.33,1,2,3,3,12,43, -55.34}
print array_insert_at(abc,"foo",2)
! abc = {23.33,1,"foo",2,3,3,12, 43,-55.34}

Output:
-1
0
0
0
0

array_remove_all(x,y[,prec])

Returns 0 if the value y is found and removed in the array x.
Returns -1 if unsuccessful. The ICCAP_ARRAY x will be
updated to no longer contain all elements found in the array
with the value y. If value y is a double value, then the optional
3rd argument prec can be used to set what precision the
function will use to search for the double value y in the array x.
For example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_all(abc, "unknown")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_all(abc, "5")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_all(abc, "3")
! abc = {"foo", 1.235, 2.33, "foo", -10.23919}

print array_remove_all(abc, 2.33)
! abc = {"foo", 1.235, "foo", -10.23919}

print array_remove_all(abc, -10.239, 3)
! abc = {"foo", 1.235, "foo"}

print array_remove_all(abc, "foo")
! abc = {1.235}

Output:
-1
-1
0
0
0
0

array_remove_at(x,pos)

Returns 0 if successful and the dataset, complex 1x1 array, or
ICCAP_ARRAY x with the data removed from the data array at
argument integer index pos. For example:
abc="ICCAP_ARRAY[4]"
abc[0]=1
abc[1]=2
abc[2]="foo"
abc[3]=3
! abc = {1, 2, foo, 3}

print array_remove_at(abc, 2)
! abc = {1, 2, 3}

print array_remove_at(abc, 1)
! abc = {1, 3}

print array_remove_at(abc, 0)
! abc = {3}

print array_remove_at(abc, 0)
! abc = ""
! abc is no longer an ICCAP_ARRAY
719

720

9 Parameter Extraction Language

Output:
0
0
0
0

array_remove_first(x,y[,prec])

Returns the integer position of the first occurrence of value y
that is found in the array x and removed, or returns -1 if
unsuccessful. The ICCAP_ARRAY x will be updated to no longer
contain the first element found in the array to contain the value
y on return. If value y is a double value, then the optional 3rd
argument prec can be used to set what precision the function
will use to search for the double value y in the array x for
removal. For example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_first(abc, "unknown")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_first(abc, "5")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_first(abc, "3")
! abc = {"foo", 1.235, 2.33, "foo", -10.23919}

print array_remove_first(abc, 2.33)
! abc = {"foo", 1.235, "foo", -10.23919}

print array_remove_first(abc, -10.239, 3)
! abc = {"foo", 1.235, "foo"}

print array_remove_first(abc, "foo")
! abc = {1.235, "foo"}

Output:
-1
-1
4
2
3
0

IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

array_remove_last(x,y[,prec])

Returns the integer position of the last occurrence of value y
that is found in the array x and removed, or returns -1 if
unsuccessful. The ICCAP_ARRAY x will be updated to no longer
contain the last element found in the array to contain the value
y on return. If value y is a double value, then the optional 3rd
argument prec can be used to set what precision the function
will use to search for the double value y in the array x for
removal. For example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_last(abc, "unknown")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_last(abc, "5")
! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print array_remove_last(abc, "3")
! abc = {"foo", 1.235, 2.33, "foo", -10.23919}

print array_remove_last(abc, 2.33)
! abc = {"foo", 1.235, "foo", -10.23919}

print array_remove_last(abc, -10.239, 3)
! abc = {"foo", 1.235, "foo"}

print array_remove_last(abc, "foo")
! abc = {"foo", 1.235}

Output:
-1
-1
4
2
3
2

array_reorder (x,idxarr)

Given an ICCAP_ARRAY x of values and an ICCAP_ARRAY
idxarr of indices, this function reorders the elements of the
ICCAP_ARRAY x using the array of indices idxarr. Returns 0 if
array was successfully reordered. For example:
721

722

9 Parameter Extraction Language

abc="ICCAP_ARRAY[4]"
abc[0]=-4.23321
abc[1]=1.235
abc[2]=21
abc[3]=-10.23919

! abc = {-4.23321, 1.235, 21, -10.23919}

idxabc="ICCAP_ARRAY[4]"
idxabc[0]=2
idxabc[1]=3
idxabc[2]=0
idxabc[3]=1

print array_reorder(abc, idxabc)

! abc = {21, -10.23919, -4.23321, 1.235}

Output:
0

array_rsort_num (x, prec[, idxArr])

Given an ICCAP_ARRAY x and no 3rd optional argument
idxArr, this function will sort the ICCAP_ARRAY x in
descending order using the given double precision, specified by
the 2nd argument prec. The precision will be used to compare
the array elements' double values during the sorting operation.
If the 3rd optional argument idxArr is specified, then the
ICCAP_ARRAY x will not be sorted but instead the function will
return idxArr as an ICCAP_ARRAY with an array of sorted
indices. Returns 0 if successful. For example:
abc="ICCAP_ARRAY[4]"
abc[0]=-4.23321
abc[1]=1.235
abc[2]=21
abc[3]=-10.23919

! abc = {-4.23321, 1.235, 21, -10.23919}

print array_rsort_num(abc, 5)

! abc = {21, 1.2345, -4.23321, -10.23919}

abc2="ICCAP_ARRAY[4]"
abc2[0]=-4.23321
abc2[1]=1.235
abc2[2]=21
abc2[3]=-10.23919

! abc2 = {-4.23321, 1.235, 21, -10.23919}

idxabc2=""
! idxabc2 =
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

print array_rsort_num(abc2, 5, idxabc2)

! abc2 = {-4.23321, 1.235, 21, -10.23919}
! idxabc2 = {2, 1, 0, 3}

Output:
0
0

array_rsort_str (x[, idxArr])

Given an ICCAP_ARRAY x and no 2nd optional argument
idxArr, this function sorts the ICCAP_ARRAY x in descending
order comparing the array elements' string values. If the
optional 2nd argument idxArr is specified, then the
ICCAP_ARRAY x will not be sorted but instead the function
returns idxArr as an ICCAP_ARRAY with an array of sorted
indices. Returns 0 if successful. For example:
abc="ICCAP_ARRAY[4]"
abc[0]="foo"
abc[1]="fee"
abc[2]="foo2"
abc[3]="faa"

! abc = {"foo", "fee", "foo2", "faa"}

print array_rsort_str(abc)

! abc = {"foo2", "foo", "fee", "faa"}

abc2="ICCAP_ARRAY[4]"
abc2[0]="foo"
abc2[1]="fee"
abc2[2]="foo2"
abc2[3]="faa"

! abc2 = {"foo", "fee", "foo2", "faa"}

idxabc2=""
! idxabc2 =

print array_rsort_str(abc2, idxabc2)

! abc2 = {"foo", "fee", "foo2", "faa"}
! idxabc2 = {2, 0, 1, 3}

Output:
0
0

723

724

9 Parameter Extraction Language

array_sort_num (x, prec[, idxArr])

Given an ICCAP_ARRAY x and no 3rd optional argument
idxArr, this function sorts the ICCAP_ARRAY x in ascending
order using the given double precision, specified by the 2nd
argument prec. The precision will be used to compare the array
elements' double values during the sorting operation. If the 3rd
optional argument idxArr is specified, then the ICCAP_ARRAY
x will not be sorted but instead the function returns idxArr as
an ICCAP_ARRAY with an array of sorted indices. Returns 0 if
successful. For example:
abc="ICCAP_ARRAY[4]"
abc[0]=-4.23321
abc[1]=1.235
abc[2]=21
abc[3]=-10.23919

! abc = {-4.23321, 1.235, 21, -10.23919}

print array_sort_num(abc, 5)

! abc = {-10.23919, -4.23321, 1.2345, 21}

abc2="ICCAP_ARRAY[4]"
abc2[0]=-4.23321
abc2[1]=1.235
abc2[2]=21
abc2[3]=-10.23919

! abc2 = {-4.23321, 1.235, 21, -10.23919}

idxabc2=""
! idxabc2 =

print array_sort_num(abc2, 5, idxabc2)

! abc2 = {-4.23321, 1.235, 21, -10.23919}
! idxabc2 = {3, 0, 1, 2}

Output:
0
0

array_sort_str (x[, idxArr])

Given an ICCAP_ARRAY x and no 2nd optional argument
idxArr, this function sorts the ICCAP_ARRAY x in ascending
order comparing the array elements' string values. If the
optional 2nd argument idxArr is specified, then the
ICCAP_ARRAY x will not be sorted but instead the function
returns idxArr as an ICCAP_ARRAY with an array of sorted
indices. Returns 0 if successful. For example:
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

abc="ICCAP_ARRAY[4]"
abc[0]="foo"
abc[1]="fee"
abc[2]="foo2"
abc[3]="faa"

! abc = {"foo", "fee", "foo2", "faa"}

print array_sort_str(abc)

! abc = {"faa", "fee", "foo", "foo2"}

abc2="ICCAP_ARRAY[4]"
abc2[0]="foo"
abc2[1]="fee"
abc2[2]="foo2"
abc2[3]="faa"

! abc2 = {"foo", "fee", "foo2", "faa"}

idxabc2=""
! idxabc2 =

print array_sort_str(abc2, idxabc2)

! abc2 = {"foo", "fee", "foo2", "faa"}
! idxabc2 = {3, 1, 0, 2}

Output:
0
0

ascii$

Converts ascii-coded characters into literal characters as
entered into a text box.

chr$(x)

Converts the integer x to its equivalent ASCII string character.

colsof(x)

Returns an integer number of columns in a matrix, complex
array of matrix data, or a data set x. For example:
complex def[4]
complex ghi.55[4]

print colsof(def)
print colsof(ghi)

Output:
1
5

725

726

9 Parameter Extraction Language

complex_equal(x,y [,prec])

Returns 1 if the complex_array or dataset x elements have the
same complex values as the corresponding elements of complex
array or dataset y. Returns 0 if x and y are not equivalent. Use
the 3rd optional argument prec to specify double precision
when comparing the x and y data arrays. For example:
complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

complex jkl[5]
jkl[0]=-3.23+j*6
jkl[1]=1.000+j*2
jkl[2]=3+j*5
jkl[3]=2.3+j*1
jkl[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 6.000000E+000
! 1 (1,1) 1.000000E+000 2.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

x=complex_copy(def)
print complex_equal(def, x)
print complex_equal(def, jkl)

Output:
1
0

complex_insert_at(x,y [,pos])

Returns a new complex array or dataset with the data y
inserted into a copy of the dataset or complex array x. If pos,
the optional 3rd argument integer position is specified, the data
y will be inserted at the index in the copy of the dataset or
complex array specified by the x that is returned. If the 3rd
argument pos is not specified, the data y will be appended to
the end of the returned copy of the data set or complex array x.
Only 1x1 matrix complex array data or datasets are supported.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

The complex array or dataset x will not be modified by this
function. For example:
complex def[2]
def[0]=1.000
def[1]=2.3+j*1

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 2.300000E+000 1.000000E+000

x=complex_insert_at(def, 3+j*5, 1)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000

y=complex_insert_at(x, 443.55)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 4.435500E+002 0.000000E+000

z=complex_insert_at(y, "-3.23", 0)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 4.435500E+002 0.000000E+000

complex_remove_all(x,y[,prec])

Returns a copy of the dataset or complex array x with all
occurrences of real value y removed, or returns just a copy of
the dataset or complex array x if value y was not found. If value
y is a double value, then the optional 3rd argument prec can be
used to set what precision the function will use to search for the
double value y in the magnitude real data of the complex array
or dataset x. For example:
complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000
727

728

9 Parameter Extraction Language

x=complex_remove_all(def, 3+j*5)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000

y=complex_remove_all(x, -3.23, 3)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 2.300000E+000 1.000000E+000

z=complex_remove_all(y, "2.3")

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000

complex_remove_at(x,pos)

Returns a copy of the dataset or complex array x with the data
removed at position x in the dataset or complex array. Only 1x1
matrix complex array data or datasets are supported. The
complex array or dataset x will not be modified by this function.
For example:
complex def[4]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000

x=complex_remove_at(def, 0)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000

y=complex_remove_at(x, 2)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000

z=complex_remove_at(y, 0)

!Point Index R:common I:common
! 1 (1,1) 3.000000E+000 5.000000E+000
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

complex_remove_first(x,y[,prec])

Returns a copy of the dataset or complex array x with the first
occurrence of real value y removed, or returns just a copy of the
dataset or complex array x if value y was not found. If value y is
a double value, then the optional 3rd argument prec can be used
to set what precision the function will use to search for the
double value y in the magnitude real data of the complex array
or dataset x. For example:
complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

x=complex_remove_first(def, 3+j*5)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 3.000000E+000 5.000000E+000

y=complex_remove_first(x, -3.23, 3)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 2.300000E+000 1.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000

z=complex_remove_first(y, "2.3")

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000

a=complex_remove_first(z, 3)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000

complex_remove_last(x,y[,prec])

Returns a copy of the dataset or complex array x with the last
occurrence of real value y removed, or returns just a copy of the
dataset or complex array x if value y was not found. If value y is
a double value, then the optional 3rd argument prec can be used
729

730

9 Parameter Extraction Language

to set what precision the function will use to search for the
double value y in the magnitude real data of the complex array
or dataset x. For example:
complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

x=complex_remove_last(def, 3+j*5)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000

y=complex_remove_last(x, -3.23, 3)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000

z=complex_remove_last(y, "2.3")

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000

a=complex_remove_last(z, 3)

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000

complex_reorder (x,idxarr)

Given a complex array or dataset x and an ICCAP_ARRAY
idxarr of indices, this function creates a copy of the dataset or
complex array x and reorder the elements of the copied data
array using the array of indices idxarr, and then returns that
reordered copy of the data array x. For example:
complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

idxdef="ICCAP_ARRAY[5]"
idxdef[0]=4
idxdef[1]=3
idxdef[2]=0
idxdef[3]=2
idxdef[4]=1

x=complex_reorder(def, idxdef)

!Point Index R:common I:common
! 0 (1,1) 3.000000E+000 5.000000E+000
! 1 (1,1) 2.300000E+000 1.000000E+000
! 2 (1,1) -3.230000E+000 0.000000E+000
! 3 (1,1) 3.000000E+000 5.000000E+000
! 4 (1,1) 1.000000E+000 0.000000E+000

complex_rsort (x,prec[,idxArr])

Given a complex array or dataset x, this function creates a copy
of the dataset or complex array x, then sorts the elements in
descending order, and then returns the sorted copy. The 2nd
argument prec is used to specify the double precision to use
when comparing elements during the sorting of the data array
elements. The 3rd optional argument idxArr if specified, will be
returned as an ICCAP_ARRAY of sorted integer indices. For
example:
complex def[5]
def[0]=1.000
def[1]=-3.23
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) -3.230000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

x=complex_rsort(def,4)

!Point Index R:common I:common
! 0 (1,1) 3.000000E+000 5.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 1.000000E+000 0.000000E+000
! 4 (1,1) -3.230000E+000 0.000000E+000
731

732

9 Parameter Extraction Language

idxdef=""
y=complex_rsort(def, 4, idxdef)

!Point Index R:common I:common
! 0 (1,1) 3.000000E+000 5.000000E+000
! 1 (1,1) 3.000000E+000 5.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 1.000000E+000 0.000000E+000
! 4 (1,1) -3.230000E+000 0.000000E+000

! idxdef = {2,4,3,0,1}

complex_sort (x,prec[,idxArr])

Given a complex array or dataset x, this function creates a copy
of the dataset or complex array x, and sort the elements in
ascending order, and then returns that sorted copy of the
complex array or dataset x. The 2nd argument prec is used to
specify the double precision to use when comparing elements
during the sorting of the data array elements. The 3rd optional
argument idxArr, if specified, will be returned as an
ICCAP_ARRAY of sorted integer indices. For example:
complex def[5]
def[0]=1.000
def[1]=-3.23
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) 1.000000E+000 0.000000E+000
! 1 (1,1) -3.230000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

x=complex_sort(def,4)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 3.000000E+000 5.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

idxdef=""
y=complex_sort(def, 4, idxdef)

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 2.300000E+000 1.000000E+000
! 3 (1,1) 3.000000E+000 5.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

! idxdef = {1, 0, 3, 2, 4}

cutstr(x,y[,delimiter])

Returns the size of ICCAP_ARRAY y. Divides a string x into
substrings, saving the substrings in ICCAP_ARRAY y, using
either whitespace substrings (tabs, spaces, newlines) or an
explicitly passed 3rd argument as a delimiter. The leading space
will be ignored when using the whitespace as a delimiter.
x="a b c"
print cutstr(x,y)
! y = {"a", "b", "c"}

x="a b c"
print cutstr(x,y)
! y = {"a", "b", "c"}

x="a,b,c"
print cutstr(x,y, ",")
! y = {"a", "b", "c"}

x="a,,b,c"
print cutstr(x,y, ",")
! y = {"a", "", "b", "c"}

x="aspambspamc"
print cutstr(x,y, "spam")
! y = {"a", "b", "c"}

Output :
3
3
3
4
3

dataset

Enables you to access the dataset referred to by a string. A
second argument may be specified which is a variable to receive
any error string normally going to a red error box.

exp

e is raised to the power specified by the argument.

fix_path$

Guarantees a path appropriate for the current architecture.
733

734

9 Parameter Extraction Language

fix_path$(<path>)

Returns a string based on the passed in <path>, which is either
a filename or a directory. The returned string will be the same
filename or directory converted to the local architecture.

On UNIX, this converts Windows directory separators '\' to
UNIX directory separators '/'. On the PC, it does the opposite
and also takes care of any cygwin path dependencies.

Since IC-CAP uses the cygwin shell to execute the PEL system()
and system$() commands, certain calls have cygwin
dependencies. For example,
print system$(“echo $HOME”)

may return something like /cygdrive/d/users/icuser, which does
not have the Windows feel. Therefore, you may want to rewrite
the PEL as follows:
print fix_path$(system$(“echo $HOME”))

which returns d:\users\icuser using the above example.

get_user_region_names(x,y)

Returns the size of ICCAP_ARRAY y. Returns a list of names for
the user defined regions of a plot (and a plot within a
multiplot).
x = get_user_region_names("<Object>", y)

For a multiplot, specify the plot number in brackets after the
object:
x = get_user_region_names("<Object>/Multiplot[1]", y)

imag

Extracts the imaginary part of a data set, matrix, or complex
number.

imaginary

Extracts the imaginary part of a data set, matrix, or complex
number.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

index_of(x,y,pos[,prec])

Returns the integer index of the first element found starting at
position pos that has the same value as y in the ICCAP_ARRAY,
dataset, or complex array x. If no elements are found in the data
array x, then -1 is returned. The 2nd argument y can be a string
or a double value. If value y is a double value, then the optional
4th argument prec can be used to set what precision the
function will use to search for the element with the same double
value y in the ICCAP_ARRAY, dataset, or complex array x. For
example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print "ICCAP_ARRAY output:"
print index_of(abc, "unknown", 0)
print index_of(abc, 3, 0)
print index_of(abc, 3, 5)
print index_of(abc, -10.24, 0, 3)
print index_of(abc, "foo", 0)
print index_of(abc, "foo", 1)

complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

print "Complex array output:"
print index_of(def, "2.3", 4)
print index_of(def, "2.3", 0)
print index_of(def, 3, 0, 4)
print index_of(def, 3, 3, 4)

Output:

ICCAP_ARRAY output:
-1
4
-1
5

735

736

9 Parameter Extraction Language

0
3

Complex array output:
-1
3
2
4

last_index_of(x,y[,prec])

Returns the integer index of the last element that has the same
value as y in the ICCAP_ARRAY, dataset, or complex array x. If
no elements are found in the data array x, then -1 is returned.
The 2nd argument y can be a string or a double value. If value y
is a double value, then the optional 3rd argument prec can be
used to set what precision the function will use to search for the
element with the same double value y in the ICCAP_ARRAY,
dataset, or complex array x. For example:
abc="ICCAP_ARRAY[6]"
abc[0]="foo"
abc[1]=1.235
abc[2]=2.33
abc[3]="foo"
abc[4]=3
abc[5]=-10.23919

! abc = {"foo", 1.235, 2.33, "foo", 3, -10.23919}

print "ICCAP_ARRAY output:"
print last_index_of(abc, "unknown")
print last_index_of(abc, 3)
print last_index_of(abc, -10.24, 3)
print last_index_of(abc, "foo")

complex def[5]
def[0]=-3.23
def[1]=1.000
def[2]=3+j*5
def[3]=2.3+j*1
def[4]=3+j*5

!Point Index R:common I:common
! 0 (1,1) -3.230000E+000 0.000000E+000
! 1 (1,1) 1.000000E+000 0.000000E+000
! 2 (1,1) 3.000000E+000 5.000000E+000
! 3 (1,1) 2.300000E+000 1.000000E+000
! 4 (1,1) 3.000000E+000 5.000000E+000

print "Complex array output:"
print last_index_of(def, 35.355, 4)
print last_index_of(def, "2.3")
print last_index_of(def, 3.0, 4)
print last_index_of(def, "3.00")

Output:
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

ICCAP_ARRAY output:
-1
4
5
3

Complex array output:
-1
3
4
4

log

Computes log base e.

log10 or lgt

Computes log base 10.

lookup_instr_table_val or lookup_instr_table_val_eval

Enables you to access the value of a field in an instrument
options table. The first argument is the path to the table. The
second argument is the field in the table (see “Set Table Field
Value” on page 978 for syntax to specify the field name). An
optional third argument may be specified which is a variable to
receive any error string normally going to a red error box.
lookup_instr_table_val returns NUMPTS if NUMPTS is a
variable in # of Points. lookup_instr_table_val_eval returns 100
(presuming NUMPTS evaluates to 100).

lookup_obj_attribute

Enables you to access the state or attributes of a plot. The first
argument is the object and the second argument is the keyword.
The syntax is:
X=lookup_obj_attribute("<Object>","Keyword")

For a Multiplot, specify the plot number in brackets after the
object:
X=lookup_obj_attribute("<Object>[N]", "Keyword")

For example:
X=lookup_obj_attribute("/my_model/
my_dut/my_setup/my_multiplot/
Multiplot[1],"UserSelectedRegion")
737

738

9 Parameter Extraction Language

This example returns the coordinates of the white box that the
user drew on the second plot (index=1) of the Multiplot
my_multiplot.

The following table lists supported keywords.

Object Keyword Return Value

model POWindowOpen Int flag 0/1

plot POEnable Int flag 0/1

plot ErrorEnable Int flag 0/1

plot IsErrorRelative Int 1 is error is relative, 0 if error is
absolute

plot ErrorRegion Data set array of 5 points
X1,x2,y1,y2, color
Color always returns 3 (green)

plot UserRegion/<Name> Data set array of 5 points
X1,x2,y1,y2, color

plot PORegionNumber Number of Plot Optimizer regions

plot PORegion[N] Dataset array of 4 points
X1,x2,y1,y2

plot UserSelectedRegion
(white box)

Dataset array of 6 points
Returns the coordinate of the white box:
X1,x1,y1,y2,z1,z2
Where z1,z2 are the coordinates with
respect to the Y2 axis

plot UserSelectedPoint Dataset array of 4 points
• selected point in the dataset
• selected trace (0-8 with 8 being the

Y2 trace)
• selected type:

0 (transform)
1(measured)
2 (simulated)

• selected curve
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

lookup_par

Enables you to access the value of a parameter referenced by a
string. A second argument may be specified which is a variable
to receive any error string normally going to a red error box.

lookup_table_val or lookup_table_val_eval

Enables you to access the value of a field in an input, output,
plot, parameter, or optimizer table. The first argument is the
path to the table. The second argument is the field in the table
(see “Set Table Field Value” on page 978 for syntax to specify
the field name). An optional third argument may be specified
which is a variable to receive any error string normally going to

plot NumHighlightedCurves Number of curves that were marked
highlighted via PEL function:
lookup_obj_attribute(plot_str&"/Trace[
i]", "NumHighlightedCurves")
(i is the index of the trace that belong to
the plot “plot_str”)

plot HighlightedCurveIndex The curve index of the highlighted curve
that was marked highlighted via PEL
function:
lookup_obj_attribute(plot_str&"/Trace
[i]/Hicurve[j]",
"HighlightedCurveIndex")
(i is the index of the trace that belong to
the plot plot_str, j is the index of the
highlighted curve that belong to the
trace plot_str&”/Trace[i]”)

plot GraphicMouseState Returns 2 if a white box is selected

plot XAxisDisplayType -1 (Unknown) 0 (Linear), 1(Log) or 2 (dB)

plot YAxisDisplayType -1 (Unknown) 0 (Linear), 1(Log) or 2 (dB)

plot Y2AxisDisplayType -1 (Unknown) 0 (Linear), 1(Log) or 2 (dB)

Multiplot
only

SelectedPlot Returns selected plot

Object Keyword Return Value
739

740

9 Parameter Extraction Language

a red error box. lookup_table_val returns NUMPTS if NUMPTS
is a variable in # of Points. lookup_table_val_eval returns 100
(presuming NUMPTS evaluates to 100).

lookup_var

Enables you to access the value of a variable referenced by a
string. A second argument may be specified which is a variable
to receive any error string normally going to a red error box.

lwc$(x)

Returns the lower case version of the string x. For example:
print lwc$("Hello")

Output:

hello

mag or magnitude

Computes the magnitude for a complex number, or for each
complex number in a matrix, data set, or data set of matrices.

max

Takes any number of arguments, as in HP BASIC. The argument
list can be a mixture of scalars and data sets, and the function
returns the maximum value found in any of them. This always
returns a single real number, and only the real parts are
considered. If matrices are received, only the 1,1 points are
considered.

mdata(expr)

Returns the measured part of the argument expr.

min

Behaves like max, but returns the minimum value.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

ph or phase

Computes the phase angle in radians for a complex number, or
for each complex number in a matrix, data set, or data set of
matrices.

real

Extracts the real part of a data set, matrix, or complex number.

rowsof(x)

Returns an integer number of rows in a matrix, complex array
of matrix data, or a data set x. For example:
complex def[4]
complex ghi.55[4]

print rowsof(def)
print rowsof(ghi)

Output:

1
5

sdata(expr)

Returns the simulated part of the argument expr.

size

Returns the number of points in a data set, which is an integer.

sizeof(x)

Returns an integer number of elements in a variable
ICCAP_ARRAY, or a complex array of data, or a data set.
Returns 0 if x doesn't represent a data array or if the data array
is empty or both. For example:
abc="ICCAP_ARRAY[5]"
abc[0]=1
abc[1]=2
abc[2]=3
abc[3]=3
abc[4]=12

complex def[4]
def[0]=1.000
def[1]=1+j*1
741

742

9 Parameter Extraction Language

def[2]=5
def[3]=6

complex ghi.55[3]

x=1.354529

print sizeof(abc)
print sizeof(def)
print sizeof(ghi)
print sizeof(x)

Output:

5

4
3
0

sqrt

Square root function. Complex and negative quantities produce
correct complex or imaginary results.

strlen(x)

Returns the number of characters in the string x. For example:
print strlen("Hello")

Output:

5

strpos(x,y)

Returns the index of the first occurrence of substring str2 found
in string str1. An optional third argument may be specified
which is an integer starting position that should be greater than
or equal to 1. The starting position can be used to specify the
starting index within the string str1 to start searching for
substring str2. For example:
print strpos("Hello","ell")
print strpos("Hello","He")
print strpos("Hello","dog")
print strpos("Hello","l",1)
print strpos("Hello","l",4)
print strpos("Hello","l",5)

Output:
2
1
0

IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

3
4
0

strrpos(str1,str2 [,endpos])

Returns the index of the last occurrence of substring str2 found
in string str1. An optional third argument may be specified
which is an integer end position that should be greater than or
equal to 1. The end position can be used to specify the last index
within the string str1 to search for the last occurrence of
substring str2, using the search range of index 1 to endpos. For
example:
print strrpos("Hello","ell")
print strrpos("Hello","He")
print strrpos("Hello","dog")
print strrpos("Hello","l",1)
print strrpos("Hello","l",4)
print strrpos("Hello","l",5)

Output:
2
1
0
0
4
4

substr$(x,start,stop)

Extracts the substring from the start index to the stop index
from the string x. The value “1” refers to the first character in
the string. If stop is omitted, substr$ returns the string from
start to the end of the string. For example:
x="Hello"
print substr$(x,4)
print substr$(x,2,4)

Output:
lo
ell

sys_path$

Guarantees a path appropriate for passing to the system$() or
system() command.
743

744

9 Parameter Extraction Language

sys_path$(<path>)

Returns a string based on the passed in <path>, which is either
a filename or a directory. The returned string will be the same
filename or directory converted to the proper format for the
system$() or system() function.

Since IC-CAP uses the cygwin shell to process the PEL system$
and system calls, PC style paths may not work properly when
passed as arguments to system functions.

For example, if the user’s response to
LINPUT “Enter a filename”,path
print system$(“ls -al “ & path)

is:

foobar — the code functions properly.

/tmp/foobar — the code functions properly because IC-CAP
insures /tmp and /var/tmp exist in the system call
environment.

d:foobar — the code does not function properly.

However, the following rewrite
LINPUT “Enter a filename”,path
print system$(“ls -al “ & sys_path$(path))

insures that the system$() call actually sees /cygdrive/d/foobar
even when the user types d:foobar.

system

Accepts a string argument, which is a shell command to invoke.
You can employ all valid shell I/O redirection and other shell
syntax within the string argument. It returns an integer, which
is the exit status of the shell. If the shell command generates
output, it is printed in the terminal window from which the
IC-CAP program was started; refer to system$. On the PC, if a
syntax error appears, turn on screen debug for additional
information.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

system

Accepts a string argument, which is a shell command to invoke.
You can employ all valid shell I/O redirection and other shell
syntax within the string argument. It returns an integer, which
is the exit status of the shell. If the shell command generates
output, it is printed in the terminal window from which the
IC-CAP program was started; refer to system$. On the PC, if a
syntax error appears, turn on screen debug for additional
information.

system$

Similar to system; it captures the command’s output, instead of
letting it go to the terminal window. Instead of returning an
integer, it returns the output that the shell command generated.
For example:
my_date$ = system$("date") ! get date
com$="echo "&my_date$&"|cut -c 5-7"
month$ = system$(com$) ! substring 5-7

On the PC, if a syntax error appears, turn on screen debug for
additional information.

trim$(x,chars)

Where x is a string and chars is a string containing characters
to be trimmed from x. This function trims the unwanted
characters from the beginning and end of the string. The
parameter for chars is optional. If chars is omitted, the default
is to remove spaces from the beginning and end of the string.
For example:
x=" stuff here "
print trim$(x)
y="////stuff here__//__//"
print trim$(y)
print trim$(y,"/_")

Output:
stuff here
////stuff here__//__//
stiff here
745

746

9 Parameter Extraction Language

upc$(x)

Returns the string x with all upper case characters. For
example:
print upc$("Hello")

Output:
HELLO

val

Generates a number, given a string representation of a simple
(not expression) integer, floating point, or complex number. For
example:
linput "give a number",x$
x = val(x$)

val$

Generates a string, given a numeric expression. In conjunction
with the & operator (string concatenation), it can be useful for
formatting. The optional second argument can either be an
integer or a string.

• If no optional argument is given, the conversion uses the %g
printf conversion (see printf() man page for details). The
number is converted with WORKING_PRECISION digits of
precision. If WORKING_PRECISION is not set, 6 digits are
used.

• If the second argument is an integer, then the integer is
interpreted as the number of digits of precision to use in a %g
printf() conversion (see printf() man page for details).

• If the second argument is %nnICFMT where nn are optional
integers, then the number is converted to a string according
to IC-CAP default conversion routine, which uses unit
multipliers (e.g., 1.23e-12 is converted to 1.23p). The optional
nn specifies the number of digits of precision. If nn is less
than 4, it is clamped to 4. If nn is omitted, then
WORKING_PRECISION digits are used, if
WORKING_PRECISION is not defined, 4 digits will be used.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference
• If the second argument is any other string, it should contain
exactly one of %e, %E, %g, %G, or %f. See the printf() man
page for optional modifiers to these formats that specify the
number of digits and spacing.

Examples:
x=1.23456789e-12
print val$(x,"%ICFMT") ! 1.235p (Assuming WORKING_PRECISION
not set)
print val$(x,"%1ICFMT")! 1.235p (clamped to 4)
print val$(x,"%8ICFMT") ! 1.2345679p (8 digits total)
print val$(x,"abc %ICFMT") ! abc ICFMT (‘abc ’ on Linux)
(uses printf syntax)
print val$(x,"%e") ! 1.234568e-012 (printf format ignores
WORKING_PRECISION)
print val$(x,"%.3e") ! 1.235e-012 (specify 3 digits after
decimal)
print val$(x,"The number is %+12.4g.") !The number is
+1.235e-012. (12 positions for entire number and +)
print val$(x) ! 1.23457E-012 (6 digits of precision by
default)
print val$(x,7) ! 1.234568E-012

Built-In Constants

NOTE Real and complex scalars and data sets are accepted by all
functions with the following exceptions: system, system$, and
val expect to receive string data, and val$ expects a scalar
number.
Several constants are recognized. Like statement names and
built-in function names, these are reserved words (for example,
you should not attempt to name a variable pi). The recognized
constants are:
PI or pi
2PI or 2pi
J or j (square root of -1)
747

9 Parameter Extraction Language
Expressions
748

As explained in the Data Types section, each type of data can be
considered a simple expression. The primitive data types can
make up more complex expressions by applying functions (such
as log, or operators such as +). In this section, expr denotes an
expression; string_expr denotes a string expression.

(expr) expr + expr expr - expr expr * expr

Parentheses force precedence and group
expressions.

expr / expr expr//expr

IC-CAP objects, including data sets, can be
named using a slash (/). These same data
sets can be used as arguments in a divide
operation. To ensure the slash is
understood as the divide operator,
surround it with white space, or enter a
double slash (//). If the slash is followed
by a digit, divide is also understood,
because a data set name in IC-CAP cannot
start with a digit. The expression (ic)/(ib)
is an example of another technique.

expr ^ expr expr ** expr

These operators express exponentiation,
and are equivalents.

string_expr & string_expr

As in HP BASIC, this operator performs
string concatenation.

log(expr) Performs a natural log function. For more
information, refer to “Built-in Functions” on
page 714 and “Calls to the Function Library”
on page 752.
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

To complete a computation, most operations make reasonable
attempts to promote certain operands. For example, ib + 2e-6
promotes the scalar number 2e-6 to be a data set that, in turn,
can be added to the data set ib.

For most arithmetic operations performed on a data set, the
function or operator is applied point-by-point, producing a data
set. The behavior of individual functions in this regard is
clarified in their individual descriptions in “Built-in Functions”
on page 714.

There are some limitations in the usage of the 5 basic arithmetic
operators in working with data sets. For example:

• If ic is a data set, re-write 3//ic as 3*ic^ -1.

• The expression ic^ib is not supported when both operands
are data sets.

• None of the binary operators * / + - ^ support an operation
between a matrix and a data set.

The arithmetic in Programs is generally a complex floating
point. Therefore, it is possible to see unexpected residue from
integer or real arithmetic. For example:
print (0+j)^2

may produce
-1+j*1.22461E-16

rather than
-1+j*0

This is due to finite precision in the library function that
handles exponentiation of complex quantities.

Because complex arithmetic is used, success can occur where a
function would be expected to fail in real arithmetic. For
example
acsh(.5)

yields
0+j*1.05

The complex arithmetic provides a wider domain of valid
inputs, but in cases where a real input should produce a real
output, the complex arithmetic is indistinguishable from real
arithmetic.
749

9 Parameter Extraction Language
CAUTION Using the binary operators + and - (which have a higher precedence when
used with the j notation) will produce unexpected results.

-1+j2 == -1-j*2
(-1)+j2 == -1+j*2
750
Boolean Expressions

The expressions in this section can be used in the branching
constructs (IF, IF...ENDIF, and WHILE...ENDWHILE), or can be
used to generate the quantities 0 and 1. The abbreviation
bool_expr denotes a boolean expression.

NOTE There is a distinction between the = operator (used for assignment) and
the == operator. BASIC uses = for both assignment and comparison.

In some circumstances, == may not behave as expected. For example, if
you repeatedly increment the quantity 0.3 by the amount 0.025, the results
may be slightly less (in the 15th decimal place) than the expected
sequence of values: 0.325, 0.350, ... , 0.4. Under these circumstances, ==
may yield FALSE unexpectedly. This is an inherent problem of expressing
decimal numbers in binary floating point format.
expr == expr This operator tests for equality and can be
used with string, integer, double, complex,
and matrix types.

expr <> expr This operator tests for inequality and can
be used with string, integer, double,
complex, and matrix types.

expr > expr expr >= expr expr < expr expr
<= expr
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

Operators Precedence

The following is a list of operators in decreasing order of
precedence. Operators listed on the same line have equal
precedence.

These operators designate the standard
comparison operation found in BASIC
languages and can be used with integers,
doubles, and complex quantities. With
complex quantities, imaginary parts are
discarded. (You can apply the mag
function to each quantity to compare
magnitudes of complex quantities.)

bool_expr AND bool_expr bool_expr OR bool_expr NOT
boolean_expr

Any non-zero integer, double, or complex
number is considered TRUE. For example:
IF 2 THEN PRINT ’hi’ ! this always prints

A string with length >0 is TRUE. For
example:
IF "Hello world" THEN PRINT "HI TO YOU TOO"

prints the second expression in the string
HI TO YOU TOO

() [] Function calls, and array indexing,
respectively

^ ** Exponentiation

+ − & The ampersand (&) is for string
concatenation

== <> < <= > >= Comparison operators

NOT

AND

OR

= Assignment
751

752

9 Parameter Extraction Language

For example, it is TRUE that:
-2^4 == -16

because the precedence of ^ exceeds that of − .
Calls to the Function Library
Any function in IC-CAP’s Function Browser can be called, such
as sin, cos, and RMSerror. This greatly expands the availability
of functions in expressions, Programs, and Macros. Some
examples are:
x = sin(pi/4) ! x takes on the value .707...
x = linfit(ic,vc,0)
! x becomes a temporary data set with 2 points
print x[0] , x[1] ! slope and intercept are printed

To review the arguments used in a function, refer to Chapter 8,
“IC-CAP Functions,” or create a stand-alone transform that uses
the desired function and look at the resulting transform editor.
For details on this procedure, refer to the section “Defining
Transforms” in the User’s Guide. To call the library function in
a Program, Macro, or table element, supply arguments in the
same order shown in the editor.

The functions may expect some data set arguments, some real
number arguments, and some strings or Model or DUT
parameter names. Expressions can be used for the data set
arguments and real number arguments. For the parameter
names, use actual parameter names, IC-CAP system variable
names, or quoted strings, string variables, or string expressions.
If a function requires a string as a flag or switch of some sort,
quote it. Otherwise the system thinks you are referring to an
identifier such as a Model parameter, a system variable, or a
temporary variable in a Program or Macro. The following
example might clarify this point:
! TwoPort requires strings as second and third arguments
! string argument dictates what type conversion to do
x = TwoPort(S_out,"S","Y") ! this is OK
x = TwoPort(S_out,S,Y) ! this is not, although...
S = "S" ! initialize local variables S and Y
Y = "Y"
x = TwoPort(S_out,S,Y) ! now this is OK
IC-CAP Reference

Parameter Extraction Language 9

IC-CAP Reference

This point is mentioned because the quotation marks are not
necessary if you use TwoPort as the function in a simple
stand-alone Transform. The only other function that is like
TwoPort in this regard is USERC_system, which requires a
string to use as an operating system command.

Spell calls to functions contained in IC-CAP’s Function List
must be spelled exactly as in the Function List.

The result from a call to a function in the library is usually a
data set. For example:
x = linfit(vc:log(ic.m),0)
! get slope and intercept for log(ic.m)
print x[0] ! print the slope of log(ic.m)

On the other hand, there are 2 cases in which the result of a
library function is a single number or matrix, and not a data set.
This makes library function calls more convenient, or usable
within expressions in table elements. For example:
x = sin(pi/4) ! x is now .70711 ...
x = mean(ic.s) ! x is the average current value in ic.s

In the first example, sin is a function that can sometimes return
a data set, if a data set is provided. In this example though, the
input is a scalar number. Therefore, the system initializes x with
a scalar number. A number of other functions behave like sin in
this respect. They can be identified in the IC-CAP Functions
List, because the Output of these functions is said to be a single
number or an array, dependent on the Input Arguments.

In the second example, mean receives a data set as input.
However, by definition it always produces a scalar, so x is
initialized as a single number, and not a data set. A call to the
variance, correlation, or RMSerror functions also produces a
single number, and not a data set.

Some library functions, particularly extractions, yield null data
sets; they do not appear to generate data, but they set
parameters to new values.
753

754

9 Parameter Extraction Language

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

10
File Structure and Format

File Structure 756

This chapter describes the format of the IC-CAP .mdl file
and associated files that can be written to and read from the
system. When read into the system, these files restore
IC-CAP to a previously saved state. Knowledge of the design
of these files allows advanced users to perform many
creative modifications to an IC-CAP configuration.
755Agilent Technologies

10 File Structure and Format
File Structure
756

All files used by IC-CAP are stored in an ASCII format that
can be accessed by standard HP-UX tools and editors.
IC-CAP Model files have a user-defined name; the extension
is assigned by the system. The following table lists the file
types and extensions.

The .mdl file is a combination of the file types listed below
it. If all Models currently loaded are saved together, they are
put in a single .mdl file. The complete Model file contains a
circuit description, a model parameter set, Macros, and DUT
descriptions. The DUT description in turn contains a DUT
parameter set, a Test Circuit, and Setups. The Setups
contain Inputs, Outputs, Transforms, and Plots.

The hardware description is global to IC-CAP and is not a
part of a Model file. It can be saved in a .hdw file. It is also
found in the .icconfig file in the user’s home directory. In

Table 73 IC-CAP File Types and Extensions

File Type Extension File Type Extension

Dataset .ds Data management .mdm

Hardware .hdw Setup .set

Model .mdl Input .inp

Circuit .cir Output .out

Model
Parameters

.mps Transform .xfm

Macro .mac Plot .plt

DUT .dut Instrument Options .iot

DUT Parameters .dps Variables Table .vat

Test Circuit .tci Input .inp

Statistical data .sdf
IC-CAP Reference

File Structure and Format 10

IC-CAP Reference

addition to the hardware description, this file contains
values of system variables, and status information for
windows that are directly available from the Main Menu.

The individual major sections of the complete Model file
begin with the word LINK followed by the type (for example,
Model or DUT) and a name. The supporting information
under this defines the appropriate configuration for IC-CAP.
The hierarchy of related items in each file is defined by sets
of
braces { }. A major section title is followed by an open
brace { and continues until the complementary closing
brace }.

Within a section there are several key words that indicate
the function of the associated information. When a single
key word is on a line, the associated information is on the
lines below. For some key words, their associated
information is in fields to the right only, while for others,
associated information is in fields to the right and lines
below. These key words are summarized in the following
table.

When editing an IC-CAP Model file, key words and braces
must be in the correct locations for the file to be correctly
read into IC-CAP. Editing the file with a text editor can be
quite productive in some areas. When developing large
Program Transforms or Macros, you may find it more
convenient to create these with an editor outside of IC-CAP
and read them in. When doing this, begin each line of text
in your Program Transform or Macro with the pound sign
(#).

Table 74 Key words in the IC-CAP File Structures

Key Word Definition

LINK major IC-CAP building block

applic application window that can be opened by IC-CAP

subapp title within an application

TABLE collection of user-modifiable elements
757

758

10 File Structure and Format

element user-programmable field (input box)

HYPTABLE table that is dynamically configured by IC-CAP

BLKEDIT block editor text follows (note: leading space in text)

CNTABLE connection table—not currently used in IC-CAP

PSTABLE parameter set table

param model parameter name and value

data configuration data follows belonging to the LINK item

dataset collection of numerical data

datasize dimensional information for a dataset

type MEASured, SIMUlated, or COMMON data points to follow

point individual data value—index, row, column, real value,
imaginary value

list this item is dependent on the owning LINK item

member the owning LINK item is dependent on this item

Table 74 Key words in the IC-CAP File Structures (continued)

Key Word Definition
Example File
The following truncated Model file illustrates the structure
described. Comments enclosed in angle brackets < >
describe the file contents; they are not part of the actual
IC-CAP file. Variable Tables or lines that start with applic
or subapp are optional. It is not necessary for these lines to
be present for a file to be successfully read by IC-CAP.
IC-CAP Reference

File Structure and Format 10

{ PSTABLE "Parameter Table"
{
}
}
}
Link DAT "idvd" <DAT is internal name for Setup>
{
LINK MODEL "diode" <first line of an IC-CAP .mdl file>
{
applic "Edit" 1 83 194 <main model window is open & at pixels 83,194>
subapp "dset_tile" 1 < DUT-Se tup tile is open>
TABLE "Variable Table" <Variable Table for Model "diode">
{
element 0 "Name" "SIMULATOR"
element 0 "Value" "spice2"
element 1 "Name" ""
element 1 "Value" ""
}
LINK CIRC "Circuit" <circuit description starts here>
{
applic "Edit" 0 12 328
subapp "Circuit" 1
data
{
circuitdeck
{
D1 1 = A 2 = C DIODE <all lines in circuit have a leading space>
.MODEL DIODE D
+ IS = 1E-14
+ N = 1.0
}
}
} <circuit description ends here>
Link PS "Parameter Set"
{
applic "Edit" 0 7 137
subapp "Parameter Table" 1
data
{
PSTABLE "Parameter Table"
{
param IS 10.01f
param N 999.7m
}
}
}
Link DUT "dc"
{
applic "Edit" 0 -1 -1 <DUT editor is closed, has not been opened yet>
applic "Edit Variables" 0 -1 -1
subapp "setup_list" 1
Link TCIRC "Test Circuit"
{
subapp "Test Circuit" 0
data
{
IC-CAP Reference 759

10 File Structure and Format

circuitdeck
{
} <end test circuit deck>
} <end data section>
} <end Test Circuit>
Link DPS "Device Parameter Set"
{
subapp "Parameter Table" 1
data
applic "Edit" 0 382 136 <Setup "idvd" is closed>
applic "Instrument Options" 0 -1 -1 <instrument options table not opened yet>
applic "Edit Variables" 0 -1 -1 <variables editor not opened yet>
subapp "SWEEP" 1
subapp "OUT" 1
subapp "XFORM" 1
subapp "PLOT" 1
subapp "Instrument Table List" 1
subapp "Variable Table" 1
Link SWEEP "va" <Input sweep specification starts here>
{
applic "Display Data" 0 -1 -1
subapp "Edit Sweep Info" 1
subapp "Display Data" 1
data
{
HYPTABLE "Edit Sweep Info" <start of dynamic table definition>
{
element "Mode" "V"
element "Sweep Type" "LIN"
}
HYPTABLE "Edit Sweep Mode Def"
{
element "+ Node" "A"
element "- Node" "GROUND"
element "Unit" "SMU1"
element "Compliance" " 100.0m"
}
HYPTABLE "Edit Sweep Def"
{
element "Sweep Order" "1"
element "Start" " 300.0m"
element "Stop" " 1.000 "
element "# of Points" "29"
element "Step Size" " 25.00m"
}
} <end of dynamic table definition>
list XFORM "extract" <Transform "extract" is dependent on this Input>
list PLOT "i_vs_v" <Plot has similar dependency>
} <Input specification "va" ends here>
<repeat of similar Input not shown>
Link OUT "ia" <Output specification starts here>
{
< file contents here similar to Input case & not shown>
dataset <start of measured and simulated data>
{
datasize BOTH 29 1 1 <key: type #-of-points #-of-rows #-of-columns>
type MEAS <measured data>
<key: index row column real imaginary>
point 0 1 1 1.09023e-09 0 <data point 0 has single value real number>
point 1 1 1 2.86573e-09 0 <note: s-parameters would have 4 values per point>
point 2 1 1 7.53339e-09 0 <corresponding to s11 s12 s21 and s22
760 IC-CAP Reference

File Structure and Format 10

point 3 1 1 1.98044e-08 0 <would be complex (real & imag) values>
point 4 1 1 5.20644e-08 0
<other data points not shown>
type SIMU <simulated data>
point 0 1 1 1.09513e-09 0
point 1 1 1 2.87943e-09 0
<other data points not shown - same number as MEAS>
}
}
list XFORM "optim_is_n" <Transform "optim_is_n" is dependent upon this Output>
list PLOT "i_vs_v" <Plot has similar dependency>
}
Link XFORM "extract" <extraction Transform starts here>
{
data
{
HYPTABLE "Link Transform"
{
element "Function" "Program"
}
BLKEDIT "Program Body" <prog body starts here - note leading space>
{
! Program Transform to extract IS, N, RS
! from forward diode I-V characteristics
!
! Note: print statements go to the
! window used to start IC-CAP

print "Example Program Transform to extract DC Diode Parameters"

index = 0 ! array index
!
! pick 2 low current points for IS & N
! to be extracted from

v1 = va[index] ! 1st voltage step
WHILE v1 < 0.4 ! get first data

index = index + 1 ! point pair
v1 = va[index]

END WHILE
i1 = ia[index]

< more program exists but is not shown>
print "... end of program Transform extraction ..."

}
dataset
{
datasize COMMON 29 1 1 <key: type #-of-points #-of-rows #-of-columns>
type COMMON <COMMON specification means that the same data is >
point 0 1 1 0 0 <used to represent measured & simulated data. >
point 1 1 1 0 0 <However, the data space is not used by this >
point 2 1 1 0 0 <transform, which calculates parameter values only>

<more points not shown>
}
}
member SWEEP "va" <this Transform is dependent on Input "va">
member OUT "ia" <this Transform is dependent on Output "ia">
}
IC-CAP Reference 761

10 File Structure and Format

Link PLOT "i_vs_v" <Plot definition starts here>
{
applic "Display Plot" 0 5 435 <Plot window is closed, but located at pixels 5,435>
applic "Display Data" 0 -1 -1 <data window has never been opened>
subapp "Edit plot Info" 0
subapp "Display Data" 1
data
{
plotsize 11960 8970 <Plot size is 11960x8970 (in 1/100 mm)>
HYPTABLE "Edit plot Info"
{
element "Report Type" "XY GRAPH"
}
HYPTABLE "Edit Plot Def"
{
element "X Data" "va"
element "Y Data 0" "ia"
element "Y Data 1" ""
element "Y Data 2" ""
element "Y Data 3" ""
element "Y Data 4" ""
element "Header" ""
element "Footer" ""
element "X Axis Type" "LINEAR"
element "Y Axis Type" "LINEAR"
element "Y2 Axis Type" "LINEAR"
element "Y2 Data" ""
}
}
member INPUT "va"
member OUT "ia"
}
data <data section for Setup - instrument options table information>
{
TABLE "HP4141.7.23" <HP4141 DC parameter measurement instrument>
{
element 0 "Use User Sweep" "No"
element 0 "Hold Time[0-650s]" " 0.000 "
element 0 "Delay Time[0-6.5s]" " 0.000 "
element 0 "Integ Time" "S"
} TABLE "HP4275.7.10"
{
element 0 "Hold Time[0-650]" " 0.000 "
element 0 "Delay Time[0-650]" " 0.000 "
element 0 "High Res" "No"
element 0 "Meas Freq (KHz)" "10"
}
}
}
}
} <end of complete Model file>
762 IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

11
Variables

Several variable names are reserved by IC-CAP and cannot
be used for user-defined variables. You can assign values to
reserved variables and define your own variables at several
different levels:

• Globally

• Model

• DUT

• Setup

These levels can be viewed as a hierarchy where variables at
lower levels inherit their values from variables at some level
above them.

You define global variables through the IC-CAP/Main
window. These variables apply to all Models, DUTs, and
Setups unless you explicitly set the variables differently at
the Model, DUT, or Setup level.

You define Model, DUT, and Setup variables through the
Model window:

• Model variables apply to all DUTs and Setups of that
Model unless you explicitly set the variables differently for
individual DUTs and/or Setups.

• DUT variables apply to all Setups of that DUT unless you
explicitly set the variables differently for individual
Setups.

• Setup variables apply only to that Setup.
763Agilent Technologies

11 Variables
CAUTION The maximum string length for a variable table is 15 K characters.
Exceeding this limit may cause a core file to be generated when saving
or reading a file.
764

Table 75 Plot Characteristics

Variable Description

ANNOTATE_AUTO Sets a flag to enable or disable automatic annotation update upon data
changes. Default is No.

ANNOTATE_CSET Sets a Starbase character set to be used for annotation texts. Default value is
determined by
/usr/lib/starbase/defaults.

ANNOTATE_FILE Sets a file name from which a plot reads in an annotation text. Default is no file
to read.

ANNOTATE_MACRO Sets a macro name that is executed by a Plot for generating an annotation
text. Default is no macro to execute.

ANNOTATE_PLOTS Obsolete in IC-CAP 2006. Now to enable or disable annotation on a plot, use
the Plot Options dialog box. See “Setting Plot Options” in the User’s Guide.

CDF_ERROR_FIT Can be set to TRUE or FALSE. TRUE will draw the Gaussian curve fitted to the
Cumulative plot. Default is TRUE.

CHECK_PLOT_MATCH Lets IC-CAP check if a given XY pair belongs to the same Setup. If No,
potentially mismatched XY pair can be shown in a tabular format with Display
Data. Default is Yes.

DASH_DOT Sets the number of data points at which a simulated line changes from a
dashed to a dotted line. Used in Plot. Default value is 32.

DYNAMIC_MULTIPLOT_MODE Sets the location where the manual scaling setting is saved for a Multiplot. If
set to FALSE, the manual scaling setting for each subplot in a Multiplot is
saved with the Multiplot, allowing different scaling to be saved for the same
plot if opened as a single plot or on one or more Multiplot. If set to TRUE, the
manual scaling setting for each subplot in a Mulitplot is saved with the
subplot. In this mode, no matter where the plot is opened (as a single plot or
on one or more Multiplots), it will use the same scaling information. However,
if the same subplot appears on multiple Multiplots, or in multiple positions of
the same Multiplot, then the settings for only the last subplot closed is saved.
Default is FALSE.
IC-CAP Reference

Variables 11

FIX_PLOT_SIZE If Yes, Plot windows open using the size specified by GWINDX and GWINDY. If
No, they open using the last displayed size. Default is No.

GWIND_WHITE Obsolete in IC-CAP 2006. Now to set the background color of plots, use the
Plot Options dialog box. See “Setting Plot Options” in the User’s Guide.

GWINDX Sets the initial Plot window horizontal size in 1/100mm. Used in Plot. Default
value is 12500.

GWINDY Sets the initial Plot window vertical size in 1/100mm. Used in Plot. Default
value is 9000.

HISTOGRAM_NUM_BINS Number of bins in the histogram plot. Default is 10.

HISTOGRAM_NORMALIZATION Can be set to either TRUE or FALSE. Setting it to TRUE will normalize the
histogram. Default is TRUE.

HISTOGRAM_GAUSSIAN_FIT Can be set to either TRUE or FALSE. Setting it to TRUE will draw the Gaussian
curve fitted to the histogram. Default is TRUE.

IGNORE_PLOT_LOC If Yes, Plot windows open using the X windows system configuration. If No,
they open using the last displayed location. Default is No.

MINLOG Can be set to a real value. Defines the value to be used in a LOG plot, if data
point value is zero or negative. Default is 10e-18.

OFFSCREEN_PLOT_LINE_WIDTH Same as PLOT_LINE_WIDTH, except has no effect when the plot is drawn to
the screen. It does have effect when plotting to a file or sending to a printer.

OFFSCREEN_PLOT_TRACE_LINE_WIDTH Same as PLOT_TRACE_LINE_WIDTH, except has no effect when the plot is
drawn to the screen. It does have effect when plotting to a file or sending to a
printer.

PLOT_LINE_WIDTH Sets the line thickness used when drawing a plot grid and annotation.
Note: use PLOT_TRACE_LINE_WIDTH to set trace widths on a plot. Default is
1.

PLOT_TRACE_LINE Sets whether trace line is drawn or not. If defined as Yes, the trace lines are
drawn. If defined as No, the trace lines will not be drawn, and instead markers
will be drawn. Default is Yes.

PLOT_TRACE_LINE_WIDTH Sets the line thickness used when drawing the traces of a plot. Note: use
PLOT_TRACE_LINE to set line thickness for grid and annotation. Default is 1.

RETAIN_PLOT When Yes and Auto Scale is off, plot is not erased when updated to allow
overlay of curves if the X server has backing store capability. Default is No.

Table 75 Plot Characteristics (continued)

Variable Description
IC-CAP Reference 765

11 Variables

RI_GRAPH_SYMMETRY When defined as Yes, the plot title is displayed. If defined as No, the plot title is
not displayed. Default is Yes.

SCATTER_CONTOURS Can be set to either TRUE or FALSE. Setting it to TRUE will draw the contours.
Default is TRUE.

SCATTER_NUM_SEGMENTS The number of segments with which to draw the contours. Default is 1500.

SHOW_GRID When No, plot eliminates XY grids and leaves tics. Default is Yes.

SHOW_PLOT_TITLE Obsolete in IC-CAP 2006. Now to show or hide the plot title, use the Plot
Options dialog box. See “Setting Plot Options” in the User’s Guide.

USE_PLOT_LOOKUP Lets IC-CAP perform auto-lookup of X data from each Y data. Another way to
disable auto-lookup is to use an arbitrary expression for an X data. Default is
Yes.

Table 76 Plot Optimizer

Variable Description

AUTOSET_COEFF Sets the coefficient value used to calculate the Plot Optimizer's Min and Max
parameter values. Min and Max parameter values are calculated as follows:
if (value > 0)
 Min = value/coeff
 Max = value × coeff
if (value < 0)
 Min = value × coeff
 Max = value/coeff
if (value ==0)
 Min = -coeff
 Max = +coeff
Default is 5.

OPT_PARTABLE_SHOW_MODEL_ONLY If set to Yes, displays the model parameters in the parameter list shown in the
parameter table tab of Plot Optimizer and normal Optimizer transforms. If set
to No, displays all the model and DUT parameters found in the enable plots
paths. Default is Yes for the Plot Optimizer and No for the Extract/Optimize
folder.

Table 75 Plot Characteristics (continued)

Variable Description
766 IC-CAP Reference

Variables 11

OPT_PARTABLE_SHOW_PARS If set to Yes, displays all parameters, except model parameters, in the
parameter list in the Plot Optimizer and Extract/Optimize folder. If set to No,
hides the parameters. Default is Yes.

OPT_PARTABLE_SHOW_VARS If set to Yes, displays all variables in the parameter list in the Plot Optimizer
and Extract/Optimize folder. If set to No, hides the variables. Default is Yes.

PLOTOPT_USE_YAXES_TYPE Sets whether the Plot Optimizer algorithm can use the LOG10() and DB()
functions to insert the trace equations into the Plot Optimizer.
If defined as Yes (Default), the Plot Optimizer algorithm uses the LOG10()
function when the Y Axis Type is LOG10 and the DB() function when the Y Axis
Type is DB.
If defined as No, the Plot Optimizer algorithm does not use the LOG10() and
DB() functions regardless of the Axis Type.
Default is Yes.

PLOTOPT_AUTOCONFIG_WARNING Sets whether autoconfigure issues a warning to the Status window when one
or more traces could not be autoconfigured.
If defined as Yes (Default), a warning is issued when one or more traces could
not be autoconfigured.
If defined as No, no warning is issued when autoconfigure fails.
Default is Yes.

Table 77 Calibration

Variable Description

CAL_OPEN_C Obsoleted and replaced by CAL_OPEN_C0.

CAL_OPEN_C0
CAL_OPEN_C1
CAL_OPEN_C2

Sets the open capacitance of an Open standard in farads that is used with
Software Calibration. The combined value Copen applies to both port 1 and 2.
A second-order polynomial represents its frequency dependence. Default
value is 0.
Copen = C0 + C1 * F + C2 * F^2

CAL_Z0 Obsoleted and replaced by TWOPORT_Z0.

Table 76 Plot Optimizer (continued)

Variable Description
IC-CAP Reference 767

768

11 Variables

Table 78 UI Options

Variable Description

DUT_TREE_COLS Controls the width of the tree list in the DUTs-Setups folder. The variable
controls the folder in the scope of the variable table where it is defined. The
variable’s value sets the list’s width in number of columns.

MACRO_LIST_COLS Controls the width of the Select Macro list in the Macros folder. The variable
controls the folder in the scope of the variable table where it is defined. The
variable’s value sets the list’s width in number of columns.

MAXIMUM_LIST_LENGTH The maximum number of value fields allowed for an input where LIST is the
Sweep Type and a variable is used to specify ‘# of Values.’ If a constant is
used to specify ‘# of Values,’ MAXIMUM_LIST_LENGTH is ignored.
Default is 15.

MEAS_SIM_LIST_COLS Controls the width of the Input/Output Finder list in the Measure/Simulate
folder. The variable, SHOW_INPUT_OUTPUT_FINDER, must be enabled to
control the list width. The variable controls the folder in the scope of the
variable table where it is defined. The variable’s value sets the list’s width in
number of columns.

PARAMETER_PRECISION Specifies the number of digits used when displaying parameter values in the
Parameters table and when sending the values to a simulator. Default is 4.

PLOT_LIST_COLS Controls the width of the Plot Finder list in the Plots folder. The variable
controls the folder in the scope of the variable table where it is defined. The
variable’s value sets the list’s width in number of columns.

RETAIN_DATA When Yes, data from a Setup is retained if a sweep limit changes but the
number of points remains the same. Default is No, which causes the data to be
zeroed.

RETAIN_SIMU A simulator run in piped mode is normally stopped if a new simulator is
selected. If Yes, the old simulator is kept running, which will speed up
simulations if there is frequent switching between simulators. Default is No.

SHOW_INPUT_OUTPUT_FINDER When Yes, enables the Input/Output Finder list in the Measure/Simulate
folder. If you enable this variable or change its value after viewing the folder,
you must close, then re-open the model for the change to take effect. Default
is No.
IC-CAP Reference

Variables 11

WORKING_PRECISION Controls the precision of numeric values when converted to text. This
precision setting affects only those parts of a model for which the variable is
defined. Although all math in IC-CAP is performed using double precision,
precision may be lost when a number is converted to text. This conversion
occurs in the following situations: any time the function val$() is called; the
PRINT statement is used; a numeric value is assigned to a variable in the
IC-CAP Variable Table. Because all variables in the IC-CAP Variable Table are
text by definition, assigning a numeric value to such a variable will implicitly
call val$().

Range of values: 6 through 29. Default is 6.

Note: While settings above 17 are allowed, they seldom show any affect.

XFORM_LIST_COLS Controls the width of the Select Transform list in the Extract/Optimize folder.
The variable controls the folder in the scope of the variable table where it is
defined. The variable’s value sets the list’s width in number of columns

GUI_PAGE_SUPRESS_SUMMARY Normally, IC-CAP displays a short summary of each GUI Item on the GUI Items
pages.
To suppress this summary and display only the item name (for a cleaner look to
the page), set this variable to anything but 0, F, FALSE, N, NO, or blank.

Table 79 PEL

Variable Description

ICCAP_MAXIMUM_CALL_CHAIN Sets the maximum number of transforms/macros (written in PEL) that can be

called (via iccap_func()) without returning. This limit may be set to protect

automations under development from infinitely recurring by accident. Without

this limit, such infinite recursions will cause IC-CAP to consume all the

memory available in your system and then crash. The default value is 0 which

means to permit any number of calls.

Table 78 UI Options (continued)

Variable Description
IC-CAP Reference 769

11 Variables

Table 80 Measurement Options

Variable Description

8510_MAXFREQ The 8510 driver checks that the maximum frequency of the instrument is not
exceeded. Use this variable to override the built-in value and specify the
desired maximum frequency to be checked.

BYPASS_CV_CAL When set to NO (Default), CV measurements using an HP/Agilent 42XX CV or
LCR Meter will request user to calibrate the instrument. After a successful
calibration, this step is bypassed on all subsequent measurements. If set to
YES, the calibration step is always bypassed.
CAUTION: Setting variable to YES assumes the instrument has already been
calibrated. Use YES for measurement automation.

CV_FREQ Sets the frequency in Hz at which CV simulation is performed. Default value is
1MEG (Hz).

HPIB_READ_STRING Gets the results of a Read String operation in the GPIB Analyzer.

IGNORE_8510_RF_UNLOCK When defined as Yes IC-CAP ignores a temporary and benign RF UNLOCK error
from the 8510.

INST_START_ADDR Specifies the start address for instrument searching during Rebuild (active
list). This value should be an integer between 0 and 31, inclusively. When
there is a printer, plotter, or prober on the same GPIB with measurement
instruments, set INST_START_ADDR greater than any one of those
non-instruments to avoid the identification process. Default is 0.

INST_END_ADDR Specifies the ending address for instrument searching during Rebuild (active
list). This value should be greater than the INST_START_ADDR value and less
than 31.

LCR_RST_MEM
LCR_RST_MEM_<unit>

Sets the reset instrument state for the 4284, 4285, and E4980A instruments. To
specify a particular unit, set LCR_RST_MEM_<unit> (e.g.,
LCR_RST_MEM_CM). IC-CAP drivers reset instruments to known states prior
to configuring them for the current measurement. The 4284, 4284, and E4980
send the *RST command, which resets the instruments to a known factory
state. However, this default state (1V, 1KHz signal) may cause damage to
certain devices between the time the $RST is requested and the time the
requested signal level is set. If LCR_RST_MEM or LCR_RST_MEM_<unit> is
set, the 4284, 4285, and E4980A instruments will use the value of the variable
to set the instrument state. For example, if set to 1, the driver will recall
instrument state 1 instead of *RST. For additional information, see the example
model file in misc/prepare_CV_Meter.mdl.

MAX_SETUP_POINTS Specifies the maximum number of points to be permitted within a setup.
Default value is 50000.
770 IC-CAP Reference

Variables 11

MDS_MEASURE_FAST Flag reserved for use by the HPRoot model extraction in the High-Frequency
IC-CAP software. Default is No.

MEASURE_FAST When Yes, IC-CAP will attempt to minimize instrument re-initialization during
repeated measurements on the same Setup. Refer to Speeding Up Repetitive
Measurements in the Measurement chapter. Default is No.

NO_ZEROING When Yes, IC-CAP will avoid a preliminary step of zeroing DC and other signal
sources at the beginning of measurements. Refer to MEASURE_FAST.
Default is No.

PARALLEL_INPUT_UNITS_OK Overrides a warning when multiple units share a single input node. Default
value is No, to issue a warning.

PRE_5_8510_FIRMWARE For HP 8510B Network Analyzers with firmware revisions prior to
HP8510B.05.00: Dec 5, 1988 only.

Declaring this variable prevents certain commands (DETENORB--set detector
to normal bandwidth, and EXTTOFF--external triggr off) from being sent to the
NWA. These commands are not supported in the above-referenced firmware
and sending such commands causes a measurement failure. Declare this
variable to prevent the failure.

No value assignment required.

8510_MAXFREQ The 8510 driver checks that the maximum frequency of the instrument is not
exceeded. Use this variable to override the built-in value and specify desired
maximum frequency to be checked.

Table 80 Measurement Options (continued)

Variable Description
IC-CAP Reference
ptions
Table 81 HP85124 Measurement O

Variable Description

These variables are used to modify the source tuning process. Source tuning is specified with an entry in the options table.
Source tuning process varies the supply voltage to compensate for I*R drop in getting to the device under test.

p1_step_size Type = REAL, Default = 0.0
This variable sets a fixed step size for newton iterations when tuning the source voltage for
port 1. Default is an auto step size, determined from dvm noise floor.
771

11 Variables

p2_step_size Type = REAL, Default = 0.0
This variable sets a fixed step size for newton iterations when tuning the source voltage for
port 2. Default is an auto step size, determined from dvm noise floor.

p1_step_scale Type = REAL, Default = 1.0
This variable sets a scale factor to modify the auto step size in newton iterations when
tuning the source voltage for port 1. The auto step size is multiplied by this value.

p2_step_scale Type = REAL, Default = 1.0
This variable sets a scale factor to modify the auto step size in newton iterations when
tuning the source voltage for port 2. The auto step size is multiplied by this value.

p1_tune_error Type = REAL, Default = 0.0
This variable sets a fixed error goal for tuning the source voltage for port 1 instead of the
default auto ranged error which is determined from the dvm noise floor.

p2_tune_error Type = REAL, Default = 0.0
This variable sets a fixed error goal for tuning the source voltage for port 2 instead of the
default auto ranged error which is determined from the dvm noise floor.

p1_error_scale Type = REAL, Default = 1.0
This variable sets a scale factor to modify the auto ranged error goal for tuning the source
voltage for port 1 The auto ranged error goal is multiplied by this value.

p2_error_scale Type = REAL, Default = 1.0
This variable sets a scale factor to modify the auto ranged error goal for tuning the source
voltage for port 2 The auto ranged error goal is multiplied by this value.

max_newton_iters Type = INT, Default = 6
This variable sets the maximum number of newton iterations to complete before quitting the
source tuning process.

pulse_rise_time Type = REAL, Default = 0.2E-6
This variable specifies the average rise time for the pulse. This is used in determining if the
measurement delay results in a measurement in the pulse. If the measurement for source
tuning is not in the pulse then the resulting voltage will be very high.

pulse_fall_time Type = REAL, Default = 0.2E-6
This variable specifies the average fall time for the pulse. This is used in determining if the
measurement delay results in a measurement in the pulse. If the measurement for source
tuning is not in the pulse then the resulting voltage will be very high.

These variables can be used to initiate printing of data to the status window. This data is useful in troubleshooting
measurement problems and data accuracy questions.

Table 81 HP85124 Measurement Options

Variable Description
772 IC-CAP Reference

Variables 11

show_tuning Type = INT, Default = 0, Values 0 or 1
When set to 1 measured values, tuning error, and next value to be tries are displayed for the
source tuning process. These values are printed the status window.

show_samples Type = INT, Default = 0, Values 0 or 1
When set to 1 all the dvm or adc measurements are displayed in the status window.

show_stats Type = INT, Default = 0, Values 0 or 1
When set to 1 statistical information about the measured data is displayed. Data includes
mean , min, and max. Data is displayed in the status window.

show_current_range Type = INT, Default = 0, Values 0 or 1
When set to 1 the present current range is displayed to the status window when the
measurement begins and any time the range changes.

show_voltage_range Type = INT, Default = 0, Values 0 or 1
When set to 1 the present voltage range is displayed to the status window when the
measurement begins and any time the range changes.

These variables are used to over-ride the offsets defined in the hp85124.cal file.

p1_meas_offset Type = REAL, Default = value in hp85124.cal
This variable will over-ride the input_measurement_offset variable in the hp85124.cal file.
This variable adjusts the delay for the port 1 voltage measurement.

p2_meas_offset Type = REAL, Default = value in hp85124.cal
This variable will over-ride the output_measurement_offset variable in the hp85124.cal file.
This variable adjusts the delay for the port 2 voltage measurement.

p1_meas_i_offset Type = REAL, Default = value in hp85124.cal
This variable will over-ride the input_current_measurement_offset variable in the
hp85124.cal file. This variable adjusts the delay for the port 1 current measurement. This
offset is relative the voltage measurement.

p2_meas_i_offset Type = REAL, Default = value in hp85124.cal
This variable will over-ride the output_current_measurement_offset variable in the
hp85124.cal file. This variable adjusts the delay for the port 2 current measurement. This
offset is relative the voltage measurement.

These variables are used to over-ride the instrument types specified in the hp85124.cfg file.

p1_v_type Type = STRING, Default = value in hp85124.cfg
This variable over-rides the value of dmm_vin in the hp85124.cfg file. This will also over-ride
the automatic change for risetime mode. The default is to use the hp3458 dvm for slow mode
and the internal adc (K49 only) for fast mode.

Table 81 HP85124 Measurement Options

Variable Description
IC-CAP Reference 773

11 Variables

p1_i_type Type = STRING, Default = value in hp85124.cfg
This variable over-rides the value of dmm_iin in the hp85124.cfg file. This will also over-ride
the automatic change for risetime mode. The default is to use the hp3458 dvm for slow mode
and the internal adc (K49 only) for fast mode.

p2_v_type Type = STRING, Default = value in hp85124.cfg
This variable over-rides the value of dmm_vout in the hp85124.cfg file. This will also
over-ride the automatic change for risetime mode. The default is to use the hp3458 dvm for
slow mode and the internal adc (K49 only) for fast mode.

p2_i_type Type = STRING, Default = value in hp85124.cfg
This variable over-rides the value of dmm_iout in the hp85124.cfg file. This will also over-ride
the automatic change for risetime mode. The default is to use the hp3458 dvm for slow mode
and the internal adc (K49 only) for fast mode.

These variables are used to make changes in the default settings used for the hp3458 dmms

dvm_terminals Type = CHAR, Default = R, Values = R or F
This variable will change which set of terminals the dmm will read. The choice is R for rear
and F for front.

dvm_trigger_mode Type = CHAR, Default = E, Values = E or I
This variable will change the trigger mode of the dmm. E for external and I for internal.

dvm_aperture Type = REAL, Default = 1E-6
This variable changes the value of the aperture for DCV mode of the dmms.

dvm_track_hold Type = INT, Default = 1, Values 0 or 1
This variable sets either track and hold mode (DSDC) or integrated mode (DCV).

dvm_auto_zero Type = STRING, Default = ONCE, Values = OFF, ON, or ONCE
This variable sets the auto zero mode on the dmms.

allow_internal Type = INT , Default = 0, Values = 1/0
This variable allows the dmm to take more samplings within the same pulse during time
domain pulse profile measurements if the time interval is less than 20us.

Table 81 HP85124 Measurement Options

Variable Description
774 IC-CAP Reference

Variables 11

IC-CAP Reference
s

Table 82 General Extraction Option

Variable Description

EXTR_DUT Used internally in extractions. When a circuit or test circuit has been defined,
set this variable to the name of the DUT whose parameters are either
extracted or used by the IC-CAP device extraction functions.

EXTR_MODEL Used internally in extractions. When a circuit has been defined, set this
variable to the name of the model whose parameters are either extracted or
used by the IC-CAP device extraction functions.

POLARITY Specifies the device polarity of the device to be extracted. Allowed values for
bipolar devices are NPN or PNP. Default is NPN for bipolar devices. Allowed
values for MOS devices are NMOS or PMOS. Default is NMOS for MOS
devices.

WORKING_PRECISION Controls the precision of numeric values when converted to text. This
precision setting affects only those parts of a model for which the variable is
defined. (Converting to text is done when: the function val$() is called; the
PRINT statement is used; a numeric value is assigned to a variable in the
IC-CAP Variable Table.) Range of values: 6 and higher. Default is 6.

Note: While settings above 17 are allowed, a double precision number cannot
be expressed to this precision.
s
Table 83 General Simulation Option

Variable Description

DEFAULT_SIMU Sets the default simulator name. Used in Utilities.

MAX_DC_SWEEPS Specifies the maximum number of DC sweeps for a simulation. Default is
simulator-dependent.

MAX_SETUP_POINTS Specifies the maximum number of points to be permitted within a setup.
Default value is 50000.

OPEN_RES Specifies the resistance value that is automatically connected to all floating
nodes in the circuit. This is available for all simulators with links to IC-CAP.
When this variable is not specified, a zero amp current source is connected to
the node.

PARAMETER_PRECISION Specifies the number of digits used when displaying parameter values in the
Parameters table and when sending the values to a simulator. Default is 4.
775

11 Variables

SIMULATOR Specifies the simulator name to be used in all simulations performed under the
level in which this variable is defined. The name must be a valid simulator;
otherwise, the currently selected simulator is used. Default is the currently
selected simulator.

SIM_USE_UPPER_CASE_PARAMS By default parameters are entered into the Parameters table with the same
capitalization as entered in the circuit page. (The hpeesofsim simulator is an
exception.) If set to 'F', 'N', 'FALSE','No' or '0' the default behavior will result.
Any other setting will force the parameters in the Parameters table to be
represented in upper case according to the following rules:
• If the parameter was declared with $dpar, $mpar, or $xpar, capitalization is

not affected.
• If the parameter contains a period, only the part of the parameter after the

last period is upper case.
• If the parameter does not contain a period, the entire parameter is upper

case.
If USE_OLD_CASE_PARM_RULE is set to anything other than 'F', 'N',
'FALSE','No' or '0' (case insensitive), this setting follows different rules. See
USE_OLD_CASE_PARM_RULE.
This setting affects all simulators but may be overridden by
HPEESOFSIM_USE_LOWER_CASE_PARAMS and
HPEESOFSIM_USE_MIXED_CASE_PARAMS for the hpeesofsim simulator.

SIM_USE_LOWER_CASE_PARAMS By default parameters are entered into the Parameters table with the same
capitalization as entered in the circuit page. (The hpeesofsim simulator is an
exception.) If set to 'F', 'N', 'FALSE','No' or '0' the default behavior will result.
Any other setting will force the parameters in the Parameters table to be
represented in lower case according to the following rules:
• If the parameter was declared with $dpar, $mpar, or $xpar, capitalization is

not affected.
• If the parameter contains a period, only the part of the parameter after the

last period is lower case.
• If the parameter does not contain a period, the entire parameter is lower

case.
If USE_OLD_CASE_PARM_RULE is set to anything other than 'F', 'N',
'FALSE','No' or '0' (case insensitive), this setting follows different rules. See
USE_OLD_CASE_PARM_RULE.
This setting affects all simulators but may be overridden by
HPEESOFSIM_USE_LOWER_CASE_PARAMS and
HPEESOFSIM_USE_MIXED_CASE_PARAMS for the hpeesofsim simulator.

Table 83 General Simulation Options (continued)

Variable Description
776 IC-CAP Reference

Variables 11

TEMP Temperature at which simulations are performed. When performing an
optimization to extract model parameters, TEMP and TNOM should be set to
the same value so that simulations during optimization are performed at
TNOM. Default value is simulator-dependent.

TNOM Temperature at which the model parameters are extracted. TNOM must be
defined in order to guarantee consistency between simulation and extraction.
Default value is 27 when performing an extraction, and is simulator dependent
when performing a simulation.

TWOPORT_C Sets a DC decouple capacitance value when a 2-port circuit is generated from
a circuit for 2-port simulation. Default is 100 farad.

TWOPORT_L Sets an AC decouple inductance value when a 2-port circuit is generated from
a circuit for 2-port simulation. Default is 100 henry.

TWOPORT_Z0 Sets a characteristic impedance value for 2-port circuit that is used in AC
extractions, TwoPort function, and Software calibration. Default is 50 ohm.

USE_OLD_CASE_PARM_RULE If set to anything other than 'F', 'N', 'FALSE','No' or '0' (case insensitive), this
setting changes the rules for SIM_USE_UPPER_CASE_PARAMS,
SIM_USE_LOWER_CASE_PARAMS,
HPEESOFSIM_USE_LOWER_CASE_PARAMS, and
HPEESOFSIM_USE_MIXED_CASE_PARAMS to the following:
• If the parameter was declared with $dpar, $mpar, or $xpar, the case is

changed for the entire parameter name according to the case variable.
• If the parameter contains a period, only the part of the parameter after the

last period is changed according to the case variable.
• If the parameter does not contain a period and the parameter is named for

an instance, the case is unchanged.
• If the parameter does not contain a period and the parameter is named for a

parameter on a model, the case is changed according to the case variable.
For example,
rtest 1 2 50
Parameter rtest is named for the instance in SPICE, so case is not changed
according to the case variable.
model x NPN alpha=4
Parameter alpha is named for a model parameter, so case is changed
according to the case variable.

Table 83 General Simulation Options (continued)

Variable Description
IC-CAP Reference 777

11 Variables
NOTE When using the ADS simulator (hpeesofsim), there is no way to set the
temperature just for Noise analysis. Therefore, the analysis will be done at
the circuit temperature.
778

Table 84 hpeesofsim Options

Variable Description

BANDWIDTH Bandwidth for noise analysis.
Default = 1 Hz.

HPEESOFSIM_HB_OPTIONS A string that contains the analysis options used in an ADS Harmonic
Balance simulation. No default.

HPEESOFSIM_OPTIONS A string which contains the analysis options used in an hpeesofsim
simulation. No default.

HPEESOFSIM_TRAN_OPTIONS A string that contains the analysis options used in an ADS Transient
simulation. No default.

HPEESOFSIM_USE_LOWER_CASE_PARAMS This setting affects only the hpeesofsim simulator. By default parameters
are converted to all uppercase. If set to 'F', 'N', 'FALSE','No' or '0' the
default behavior will result. Any other setting will force the parameters in
the Parameters table to be represented in lower case according to the
following rules:
• If the parameter was declared with $dpar, $mpar, or $xpar,

capitalization is not affected.
• If the parameter contains a period, only the part of the parameter after

the last period is lower case.
• If the parameter does not contain a period, the entire parameter is

lower case.
If USE_OLD_CASE_PARM_RULE is set to anything other than 'F', 'N',
'FALSE','No' or '0' (case insensitive), this setting follows different rules.
See USE_OLD_CASE_PARM_RULE.
IC-CAP Reference

Variables 11

HPEESOFSIM_USE_MIXED_CASE_PARAMS This setting affects only the hpeesofsim simulator. By default parameters
are converted to all uppercase. If set to ’F’, ’N’, ’FALSE’,’No’ or ’0’ the
default behavior will result. Any other setting will force the parameters in
the Parameters table to be represented with the same case as they appear
in the Circuit page according to the following rules:
• If the parameter was declared with $dpar, $mpar, or $xpar,

capitalization is not affected.
• If the parameter contains a period, only the part of the parameter after

the last period is the same case as they appear in the Circuit page.
• If the parameter does not contain a period, the entire parameter is the

same case as they appear in the Circuit page.
If USE_OLD_CASE_PARM_RULE is set to anything other than 'F', 'N',
'FALSE','No' or '0' (case insensitive), this setting follows different rules.
See USE_OLD_CASE_PARM_RULE.

INCLUDEPORTNOISE Includes the port noise in noise voltage and currents. Default = Yes.

NOISETEMP Circuit temperature (Kelvin) for noise analysis. Default = 290.

MAX_PARALLEL_SIMULATOR Specifies the maximum number of simultaneous hpeesofsim simulators
that can be run. Default value is 3.

Table 84 hpeesofsim Options

Variable Description
IC-CAP Reference
Table 85 MNS Options

Variable Description

BANDWIDTH Bandwidth for noise analysis. Default = 1 Hz.

INCLUDEPORTNOISE Includes the port noise in noise voltage and currents.
Default = Yes.

MNS_OPTIONS String that contains the analysis options used in an MNS simulation. No default.

MNS_HB_OPTIONS A string that contains the analysis options used in an MNS Harmonic Balance simulation. No
default.

MNS_TRAN_OPTIONS A string that contains the analysis options used in an MNS Transient simulation. No default.

NOISETEMP Circuit temperature (Kelvin) for noise analysis.
Default = 290.
779

780

11 Variables

ns
Table 86 Mextram Extraction Optio

Variable Description

MXT_AUTO_RANGE Type = INT , Default = 0, Values = 1/0
This variable selects auto range capabilities for MEXTRAM parameter extraction. It is usually
defined at model or setup level

MXT_AUTO_SMOOTH Type = INT , Default = 0, Values = 1/0
This variable select smoothing on the measured data before applying the auto range algorithms
during MEXTRAM parameter extraction. It is usually not required unless the data is rather noisy.
It is usually defined at model or setup level.
Table 87 ELDO Options

Variable Description

ELDO_VERSION Specifies the version of ELDO being used in the simulation. This information is necessary
because the syntax used to call ELDO depends on the version number. If this variable is not
specified, IC-CAP will use the version specified in the environment variable eldover, if it exists.
Default is v4.2.1.
Table 88 Saber Options

Variable Description

SABER_ALTER A command string that appears in the Saber command file to modify simulation-related variables
in Saber. Multiple commands are separated by semi-colon.

SABER_DC_OPTIONS String that contains the DC operating point options used in a SABER simulation. Multiple options
are separated by commas.

SABER_OPTIONS String that contains the analysis options used in a SABER simulation. Multiple options are
separated by commas.

USE_ALTER Specifies whether or not the alter command should be used in a SABER simulation. Default is
Yes.

SABER_VERSION Specifies the version of SABER being used in the simulation. This information is needed if you are
using a version earlier than 4.3 (syntax for DC log sweeps is different) or 5.0 (output files have
different names). Default is 5.0.

USE_DCIP_COM Specifies whether or not the dcip and dcep commands should be used in a SABER simulation to
speed up LIST and LOG sweeps. Valid entries are Yes and No. Default is Yes.
IC-CAP Reference

Variables 11
USE_SABER_COM Specifies whether or not the 'saber' command to load a new netlist without restarting the
simulator should be used in a SABER simulation. Valid entries are Yes and No. Default is No.

Table 88 Saber Options

Variable Description
IC-CAP Reference

Table 89 HSPICE Options

Variable Description

HSPICE_NODE_STRLEN When netlisting the sources and analysis statements for HSPICE simulations, node names
are truncated to 3 characters by default. You can control the number of characters for node
names by setting HSPICE_NODE_STRLEN to 3, 4, 5, 6, or 7. If you set the value to less than
3, the minumin value of 3 will be used. If you set the value to larger than 7, the maximum
value of 7 will be used.

HSPICE_VERSION Specifies the version of HSPICE being used in the simulation in the syntax of
<year>.<rel>[-SP<N>] without A- to Z- in front of the date, for example: 2008.03-SP1. If this
variable is not specified, IC-CAP will assume the latest version of HSPICE is being used.

HSPICE_LICENSE_TIMEOUT Setting this variable to a real F will cause IC-CAP to issue the interactive HSPICE command
'timeout F' when simulating to HSPICE with CAN_PIPE mode. It represents the seconds
before the underlying HSPICE process will timeout and release the HSPICE license. If not
set, IC-CAP will not try to issue a timeout command and the default value built into HSPICE
will be used.
Note: HSPICE_LICENSE_TIMEOUT is only valid for HSPICE 2008.03-SP1 or later version.
Table 90 Print/Plot Options

Variable Description

DRIVER Obsolete

DUMP_CMND Sets the graphics dump command to a printer. Used in Plots. Default value on HP is pcltrans -e3 |
lp -oraw, and is xpr -device ps | lpr on Sun.

DUMP_DPI Obsolete

DUMP_WHITE Obsolete

PAPER Sets paper size as either A4 or A3 for graphics output. Used in Plot. Default value is A4, which is
also good for US letter size.

PLOT_CMND Sets the HPGL plotting command. Default value on HP is cat > HPGL, and is not applicable on
Sun.
781

11 Variables
PLOT_SCALE_FACTOR Sets the scale factor used in conjunction with iccap_func Dump Via Server. Default value is 1.0.

PRINT_CMND Sets the text output command to a printer. Used in several windows. Default is lp.

Table 90 Print/Plot Options (continued)

Variable Description
782
Table 91 Factory Diagnostics

Variable Description

IC_DIAG_FLAGS Reserved for factory diagnostics.

Table 92 Curtice Extraction Options

Variable Description

CONSTANT_TAU When Yes, the AC extraction will extract the internal time delay in the Curtice GaAs MESFET
represented by the model parameter TAU. This model parameter forces the model to use a
constant delay time. When not defined the parameter A5 is extracted that represents a variable
time delay as a function of VDS. Default is No.

LINEAR_CGD When Yes, the AC extraction for the Curtice GaAs MESFET will extract a value for a linear
gate-to-drain capacitance represented by the model parameter CGD. When not defined the only
capacitance extracted is the non-linear junction capacitance CGDO.
Default is No.

LINEAR_CGS When Yes, the AC extraction for the Curtice GaAs MESFET will extract a value for a linear
gate-to-source capacitance represented by the model parameter CGS. When not defined the only
capacitance extracted is the non-linear junction capacitance CGSO.
Default is No.
ptions
Table 93 BJT High Freq Extraction O

Variable Description

SCALEITF ITF multiplier for the decoupled extraction in the BJTAC_high_freq extraction function. The
decoupled extraction is called when the coupled extraction fails. Default value is 1.0.

SCALETF TF multiplier for the decoupled extraction in the BJTAC_high_freq extraction function. The
decoupled extraction is called when the coupled extraction fails. Default value is 1.0.
IC-CAP Reference

Variables 11
SCALEVTF VTF multiplier for the decoupled extraction in the BJTAC_high_freq extraction function. The
decoupled extraction is called when the coupled extraction fails. Default value is 1.0.

SCALEXTF XTF multiplier for the decoupled extraction in the BJTAC_high_freq extraction function. The
decoupled extraction is called when the coupled extraction fails. Default value is 1.0.

MAXRB Specifies the maximum value of the RB and RBM parameters for the extraction. Default is 5K.

Table 93 BJT High Freq Extraction Options (continued)

Variable Description
IC-CAP Reference
ns
Table 94 UCB MOS Extraction Optio

Variable Description

WD Used in the UCB MOSFET LEVEL 2 and 3 model characterizations to represent the channel width
reduction parameter. This parameter is not defined in the UCB models but has been added to
many proprietary versions of the models. Default is 0.

Table 95 X_HIGH/Y_HIGH Options

Variable Description

OVERRIDE_LIMITS When Yes, user can manually specify limits for certain bipolar and GaAs extractions with the
X_LOW and X_HIGH variables. Default is No.

X_HIGH, X_LOW Plots can interactively set these values to the X values of a rescale rectangle.

Y_HIGH, Y_LOW Plots can interactively set these values to the Y values of a rescale rectangle.
s
Table 96 Data Management Option

Variable Description

MDM_AUTO_PRECISION This variable is obsolete in version 5.3. See MDM_REL_ERROR and MDM_ZERO_TOL.
783

11 Variables

MDM_EXPORT_COMMENT Specifies the text to be added as comment at the top of the MDM file when exporting
data. The text can include an embedded variable as val$(var-name), pre-defined
program variables DATE, NEWLINE, TAB, MODEL, DUT, SETUP. Some examples are:

MDM_STD_COM - Today’s date : $DATE
MDM_EXPORT_COMMENT - val$(MDM_STD_COM)

MDM_EXPORT_COMMENT - MDM file exported on $DATE

MDM_EXPORT_COMMENT - Date: $DATE $SETUP L=val$(L) W=val$(W) where W
and L are Model, DUT or Setup parameters/variables.

MDM_EXPORT_COMMENT_FILE Specifies the Data Manager comment file to be used when exporting data to an MDM
file. The contents of the comment file are pre-pended to the MDM file

MDM_EXPORT_XFORM_DATA Setting this value to TRUE, will export all the transform(s) data (or those transforms
specified by MDM_XFORM_LIST) in the setup to the MDM data-file. This variable is
automatically set to TRUE when you select the checkbox 'Export Transforms' in the
Export Data dialog.
Default is FALSE. See MDM_XFORM_LIST.

MDM_FILE_PATH Specifies the Data Management file name path.

MDM_FILE_NAME Specifies the Data Management file name.

MDM_HEADER_VERBOSE Specifies if the header of the MDM file includes comments describing each field.
Default is FALSE.

MDM_PRECISION This variable is obsolete in version 5.3. See MDM_REL_ERROR and MDM_ZERO_TOL.

MDM_REL_ERROR When IC-CAP reads values from an MDM file, it tries to match requested input values
with data in the MDM.
If the data does not exist in the MDM file, importing the data is not advised. However,
due to roundoff errors, a tolerance must be assumed.
IC-CAP uses the formula
MDM_REL_ERROR > (req - mdm)/req
as its acceptance test.
Default value is 1E-10
This value should rarely need to be adjusted, and can be adjusted for an individual
Input. By assigning a value to MDM_REL_ERROR_<name> (where <name> is the
name of the Input to which the tolerance is to be applied), specific control is possible.

Table 96 Data Management Options

Variable Description
784 IC-CAP Reference

Variables 11

MDM_VALUES_LIST Specifies a space or comma separated list of Parameter or Variable names. The values
of these Parameters/Variables are written to the MDM file. When an MDM file with
values stored in it is imported or used to auto-create a setup, these
Parameters/Variables are automatically reset to the values stored in the MDM.
However, if a Parameter or Variable no longer exists in the scope of the setup being
imported to, a variable will be created for that value in the Setup Variables Table.

MDM_XFORM_LIST Specifies a comma separated list of transform names that will be exported when this
setup is exported. By using this variable, you may specify a subset of all transforms for
export. In addition you may specify the mode, nodes, and other data. Each transform
entry in the comma separated list will appear in the MDM file as an output. The actual
values of each output type are shown below:

Mode Values
------- ---
V,N,U <Name> <Mode> <+ Node> <- Node> <Unit> <Type>
I <Name> <Mode> <To Node> <From Node> <Unit> <Type>
C,G <Name> <Mode> <High Node> <Low Node> <Unit> <Type>
T <Name> <Mode> <Node> <Pulse Param> <Unit> <Type>
S,H,Z,K,A,Y <Name> <Mode> <Port 1> <Port 2> <AC Ground> <Unit> <Type>

Examples:
MDM_XFORM_LIST = calc_ic I C E, calc_ib I B E SMU2
MDM_XFORM_LIST = Hcalc H, beta

Note, only the transform name is required. You may include as many extra entries per
transform as desired.

This variable is only referenced if MDM_EXPORT_XFORM_DATA is true. See
MDM_EXPORT_XFORM_DATA.

MDM_ZERO_TOL When IC-CAP reads values from an MDM file, it tries to match requested Input values
with data in the MDM.
If the data does not exist in the MDM file, importing the data is not advised. However,
due to roundoff errors, a tolerance must be assumed.
IC-CAP uses the formula
MDM_ZERO_TOL > (req - mdm) | req == 0 or mdm == 0
as its acceptance test.
Default value is 1E-30.
This value should rarely need to be adjusted, and can be adjusted for an individual
Inputs. By assigning a value to MDM_ZERO_TOL_<name> (where <name> is the
name of the Input to which the tolerance is to be applied), specific control is possible.

Table 96 Data Management Options

Variable Description
IC-CAP Reference 785

11 Variables

786 IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

12
GPIB Analyzer

Menu Commands 788

Macro Files 788

The GPIB analyzer offers basic capabilities for
communicating with instruments via the GPIB. It can be
used to debug an instrument driver or to manually set an
instrument to a certain state not supported by IC-CAP. The
analyzer commands are found on the Tools menu in the
Hardware Setup window; the output is displayed in the
Status panel near the bottom of the window.
787Agilent Technologies

12 GPIB Analyzer
Menu Commands
788

Each of the menu items available in the Hardware Setup
Window is described in online help.
Macro Files
GPIB analyzer requests can be combined and placed in a
macro file that can be executed at any time.
NOTE IC-CAP macros for IC-CAP Models are different from macro files
interpreted by the GPIB analyzer.
The GPIB analyzer’s ability to interpret a file containing a
series of requests is valuable for:

• Prototyping an instrument driver for testing a series of
commands and checking instrument responses. (The GPIB
analyzer macro facility includes some capabilities that are
not available in interactive use, such as serial polling until
a particular bit is set in the response, or delaying for a
fixed number of seconds.)

• Repeatedly manually executing a sequence of GPIB
analyzer commands.
Macro File Example
This section provides an example of a acceptable GPIB
analyzer macro file. The syntax of each line is very simple
and the system can readily distinguish comments from
commands. Note that expressions, accepted in IC-CAP
macros, are not accepted here; most arguments are treated
literally. These commands are typed in a text file using any
text editor, for example, vi.
IC-CAP Reference

GPIB Analyzer 12

IC-CAP Reference
The Macros submenu (from the Tools menu) provides 2
macro commands: choose Specify to provide the name of the
file to be read and executed; then, choose Execute. If
changes are made to the file, it is necessary only to save the
changes and again select Execute.

Macro Commands

$c This is a small GPIB Analyzer macro file; this line is a comment
$a 17 active address = 17
$c send request for instrument ID string:
ID\n
$r read answer back
$p print it to the Status window
$c now send a string to reset the instrument:
RST\n
$w 2 wait 2 seconds after sending RST to instrument
$c The following ’$m’ command opens a dialog window, and asks:
$c ’Will now call othermacrofile; want to continue?’
$c At that point, the user can use the mouse to
$c cancel the execution of this macro or continue.
$m Will now call othermacrofile
$i /users/icuser/othermacrofile call another macro, like a subroutine
RST\n
$w 2 wait 2 seconds after sending RST to instrument
The macro file contains 2 kinds of statements:

• Literal strings to send to the instruments, such as in the
Send String command

• Commands and directives, such as set the active address
or do a serial poll.

Commands and directives start with a dollar sign ($).
Descriptions of the available commands and directives are
shown in the following table.

Table 97 Commands and Directives

Command/
Directive

Description

$c Indicates that the current line is purely a comment. Do not
attempt to substitute an exclamation mark (!) to indicate a
comment.
789

790

12 GPIB Analyzer

$r Read data into the GPIB analyzer’s read buffer, as in the Receive
String command. The result is also copied onto the top-level
IC-CAP system variable named HPIB_READ_STRING, if this
variable has been defined by the user.

$a 2 Sets the active address to a literal integer value (2 in this case)

$w 3 Specifies the wait time, in this example, 3 seconds; if the optional
argument is absent, a default of 2 is used.

$p Prints the GPIB analyzer’s read buffer, as in the Display String
command

$m Displays a message panel for the user to indicate whether to stop
or continue. The system appends the phrase want to continue? to
the characters that follow $m on the command line. Refer to
“Macro File Example” on page 788.

$n Prints status to the status panel of the Instrument Setup window
as the macro is executed, for example:
$n the macro has reset the instrument, and is about to download
set points

$s Performs a serial poll of the active address. If an integer
parameter is present, then it is considered a serial poll mask, and
the program loops until
(<poll result> AND <integer mask>) is non-zero, that is, a
desired bit is set. If the mask is negative, the looping continues
until a mask-specified bit is clear.
For example, to loop until the serial poll response at the active
address has a 1 in bit 6, do this:

$s 64
To loop until the serial poll response at the active address has a 0
in bit 6, do this:

$s -64

$i Calls or includes another file and execute the macros in it. This is
like calling a subroutine; for example,

$i /users/icuser/macrofile

Table 97 Commands and Directives

Command/
Directive

Description
IC-CAP Reference

GPIB Analyzer 12
Macro File Syntax Rules
IC-CAP Reference

The following rules apply when writing GPIB analyzer macro
files.

• Macro command files are read by the GPIB bus analyzer
and lines in the files elicit GPIB bus analyzer actions. Use
only 1 action per line.

• Blank lines, or lines with only white space are ignored. In
any line, leading white space is ignored.

• Some lines are sent to the instrument, others are
commands or directives.

• If the dollar sign ($) appears after optional leading white
space, a line is considered a directive or command.
Otherwise, the first non-white and all subsequent
characters in the line are sent to the active address.

• \b \r \n \0 \f \t \v \\ \$ \<any other
single character> will first be converted to control
characters or other characters. Use this for sending
carriage-return, linefeed, or other terminators.
Conversions are listed in the following table. (\<any
other single character> is really a no-op; it causes the
<any other single character> to be sent. If it is necessary
to send a line that starts with the dollar sign, it can be
sent by preceding it with a backslash as shown in the
following table.)

Table 98 Control Characters in the GPIB analyzer

String in Macro File Character Sent to Instrument

\b backspace

\r CR

\n newline (linefeed)

\0 null

\f formfeed

\t tab

\v vertical tab
791

792

12 GPIB Analyzer

• Directives and commands have the dollar sign ($)
character, a single command character that is not
case-sensitive, and optional trailing arguments. White
space between the command character and the first
argument is optional. Recall that any other characters
appearing on a line, after the directive and its arguments,
are ignored. This allows comments alongside directives if
desired. For example,

$a 17 this sets the active address to 17

To stay consistent with other facilities in IC-CAP, and to
keep GPIB analyzer macro files more readable, you may
wish to adopt the following style for end-of-line
comments:

$a 17 ! this sets the active address to 17

However, do not use the exclamation mark (!) to associate
an end-of-line comment to a string sent to an instrument.
The ! character and the rest of the comment will be sent
to the instrument:

RST\n ! OUCH. Not only RST<LF>, but all these other
characters go out also!

\\ backslash

\$ dollar sign

\<any other single character> <any other single character>

Table 98 Control Characters in the GPIB analyzer

String in Macro File Character Sent to Instrument
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

A
OMI and C++ Glossary

This glossary provides definitions of terminology particular
to the programming environment for the Open Measurement
Interface and C++. For more information on C++ and its
syntax, refer to “Syntax” on page 226.

base class A class from which another class inherits data
and functions. For example:
// base_class is inherited by derived class
class derived_class : public base_class { ... } ;
// example from user_meas.hxx:
class cvu_4194 : public user_unit { ... } ;

Calibrate A menu function to calibrate instruments used by
a Setup.

class An extension of struct declarations from C. Like a
struct declaration in C, a C++ class declaration can list a
series of data members. In addition, a class can declare
functions to operate on the data members. When only these
functions manipulate the data members, the integrity of the
data is better protected. This protection of data members is
often termed encapsulation. Another important extension
beyond struct declarations is the following: a class
declaration can automatically contain all the data members
from another class, and can reuse all the functions declared
in the other class. This capability is termed inheritance, and
is discussed below. See also object.

const Indicates that a function won’t change an argument,
or acts like #define. For example:
// neither char array subject to change below:
int strcmp(const char*, const char*);
// like #define, but without global scope:
const int select_code=7;
793Agilent Technologies

794

A OMI and C++ Glossary

constructor Function to initialize an object’s members. For
example, hp4194::hp4194 in user_meas.cxx. Note the special
function naming convention, in which the class name
appears twice.

dat Class name associated with IC-CAP Setups.

delete A C++ statement used to release memory obtained by
new.

derive To make a new class that inherits data and functions
from a base class. In the base class example, the class
derived_class is derived from the class base_class.

derived class Opposite of base class. A derived class
generally adds data and functions beyond what it inherits
from its base class.

destructor Opposite of constructor. Often critical for using
delete to release memory obtained with new during
constructor execution. For example, hp4194::~hp4194 in
user_meas.cxx. Note the special function naming convention,
in which the class name appears twice.

device file A special UNIX file for which reads and writes
are done through I/O cards, like a GPIB card. In the OMI,
device file access (instrument I/O, in other words) is
encapsulated within the hpib_io_port class.

Driver Generation Scripts refer to mk_unit, mk_instr, and
mk_instr_ui.

friend class A class able to access the private members of
another class. It is often convenient for an instrument class
and its associated unit classes to do this. Examples are
presented in “Running the Scripts on Windows” on page 199.

Hardware Manager The single IC-CAP object responsible for
the functionality on the main menu of the Hardware Editor.

hpib_io_port A class providing an interface to I/O cards and
instruments that supports reading, writing, serial polling,
and other functions. Declared in io_port.h.

hwmanager Class name associated with Hardware Manager.
IC-CAP Reference

OMI and C++ Glossary A

IC-CAP Reference

inherit Obtain data and functions not by declaring them
explicitly, but by telling C++ you want the data and
functions from another class, in addition to any explicitly
declared for a new class. See the example with base class, in
which derived_class inherits base_class.

inheritance A C++ feature allowing 1 class to inherit the
data and functions of another class. This is valuable because
a class can reuse existing functionality, while adding to it.

instr[ument] The common base class for all instrument
objects is instr (declared in instr.h). See user_instr.h.

instr_options Common base class for all instrument options
editors. See user_instr_options.

instrument data Refers to data members declared in the
classes instr, user_instr, hp4194, or the instrument class
created with the mk_instr script.

instrument function Refers to functions declared in the classes
instr, user_instr, hp4194, or the instrument class created
with the mk_instr script.

internal sweep A main sweep in which an instrument unit is
programmed to acquire a series of data points without
IC-CAP directing the acquisition of each individual point.
Opposite of user sweep.

main sweep The innermost sweep in a measurement. The
opposite of a step sweep. In an IC-CAP Input editor, a main
sweep has Sweep Order set to 1.

Measure A menu function to execute the measurement
specified by a Setup.

Measurer The single IC-CAP object with overall
responsibility for Measure and Calibrate.

member data The variables declared in a class. When an
object is created it gets its own copies of these variables.
For example, in user_meas.hxx, the class hp4194 declares a
pointer to a cvu_4194 object as part of the hp4194’s member
data.
795

796

A OMI and C++ Glossary

member functions The functions declared in a class. For
example, in user_meas.hxx, the class cvu_4194 declares
zero_supply().

mk_instr A script to generate declarations for the
instrument part of a driver.

mk_instr_ui A script to generate all necessary code for the
instrument options editor for a driver.

mk_unit A script to generate declarations for the unit part
of a driver.

new A C++ statement that replaces the C malloc function.
The new statement dynamically allocates memory, and calls
a constructor if one is defined. For example:
// from hp4194::build_units in user_meas.cxx:
cv_unit = new cvu_4194 (CM,this,1) ;
// array of 1000 double precision numbers:
double* big_array = new double[1000] ;

object A data structure containing the variables listed in a
class declaration. An object also contains (due to
inheritance) all the variables declared in any base class. An
object and its components can be manipulated by the
functions in its own class declaration, as well as by the
functions in any base class declarations.

out Class name associated with IC-CAP Outputs.

overload Give 2 functions the same name, but different
argument lists. The compiler distinguishes which one to
call by checking the argument lists.

override Declares a function in a derived class, when it was
already declared in a base class, in order to specialize the
behavior of the function for the derived class.

private Used as a keyword in a class declaration to indicate
that subsequently declared member data (and sometimes
member functions) can only be accessed by the class
member functions. Private is the default policy in a class
declaration, until one of the keywords protected or public is
used.
IC-CAP Reference

OMI and C++ Glossary A

IC-CAP Reference

protected Similar to private, though not as strict. It permits
derived class member functions to have access to the
members listed below this keyword.

public Used in 2 senses. First, it is used like private but
with the opposite effect. It permits any other C++ code to
access the members listed below it. Second, it is used in
inheritance declarations as follows:
class cvu_4194 : public user_unit { ... } ;

Although the language permits public to be replaced or
absent in the declaration above, in OMI programming it
should always be present. The role of public in the
statement above is explained in such books as Stanley
Lippman’s C++ Primer.

Rebuild Active List A menu function in the Hardware Editor
that locates all supported GPIB instruments.

redeclare Same as override.

reference argument An argument whose address is passed to
a function, to reduce function call overhead, or to permit a
called function to directly modify data belonging to the
caller. See the explanation for & in Understanding C++ and
its Syntax, subsection New Symbols and Operators.

sweep Class name associated with IC-CAP Inputs. Also a
synonym for an IC-CAP Input.

sweep order An integer from 1 or higher. The main sweep
has sweep order 1. Any step sweeps, if present, have order
2 and higher.

sweep mode The physical dimension associated with a
sweep, such as Voltage or Time.

sweep type The type of numerical calculation used to
determine the step values in a sweep, such as LIN (linear
spacing), or LOG.

unit The common base class for all unit objects is unit
(declared in unit.h). See user_unit.h.
797

798

A OMI and C++ Glossary

unit data Refers to data members declared in the classes
unit, user_unit, cvu_4194, or any unit classes created with
the mk_unit script.

unit function Refers to functions declared in the classes unit,
user_unit, cvu_4194, or any unit classes created with the
mk_unit script.

user sweep The opposite of internal sweep. A sweep in
which the associated unit is not completely programmed
beforehand, but instead forces and measures each point
under explicit supervision by IC-CAP. Unless an instrument
supports 2 internal sweeps, any non-main sweep is a user
sweep. Often called spot mode.

user_instr_options Class from which OMI instrument options
editors are directly derived, as in:
class hp4194_table : public user_instr_options {...};

virtual function The effect of the virtual keyword is that
when Measurer invokes zero_supply() for a unit, the actual
function executed depends on the unit. If the unit is a
cvu_4194, the code that executes is cvu_4194::zero_supply().
This feature is often termed dynamic binding. An example
from unit.h is:
virtual int zero_supply() { return 0; }

void In C++ and ANSI/C, a function can be declared to
return nothing, using the special type void. For example:
void wait_delay_time() ; // from user_meas.hxx
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

B
Agilent EEBJT2 Model Equations

Constants 800

Base-Emitter and Base-Collector Current 800

Collector-Emitter Current 802

Base-Emitter and Base-Collector Capacitances 804

References 808

This appendix describes the HPEEBJT2 model equations
used in IC-CAP.
799Agilent Technologies

B Agilent EEBJT2 Model Equations
Constants
800

Extrinsic components including CXBC, CXBE, CXCE, LB, LC,
LE, RB, RC, and RE are constants.
Base-Emitter and Base-Collector Current
The base-emitter current in the BJT has been changed
significantly from the Gummel-Poon and other earlier
models. These models assume that the non-leakage
base-emitter current is related to the collector-emitter
current by a simple constant, known as beta. Observation of
base-emitter current in both silicon and AlGaAs devices has
shown that this assumption is incorrect. Difficulties with this
method of modeling base current have been observed for
many years. A large, very bias-dependent base resistance in
the modified Gummel-Poon model in Berkeley SPICE has
been used to attempt to correct the problem with the
base-emitter current expressions. This base resistance value
and its variation is often extracted from DC data only, with
the result that the behavior of the device over frequency is
often poorly modeled. This problem is then solved by
assigning some fraction of the base-collector capacitance to
either side of the base in a distributed manner.

Agilent EEsof’s experience with Agilent EEBJT2 has shown
that properly modeled base-emitter current and conductance
renders both the large bias-dependent base resistance and
distributed base-collector capacitance unnecessary and
greatly improves both the DC and AC accuracy of the
resulting model.

Agilent EEBJT2 models the base-emitter current with 2
non-ideal exponential expressions, 1 for the bulk
recombination current (usually dominant in silicon devices),
and 1 for other recombination currents (usually attributed to
surface leakage).
IC-CAP Reference

Agilent EEBJT2 Model Equations B

IC-CAP Reference

where

where

k is Boltzmann’s constant, and q is elementary charge.

Note that NBF is not necessarily 1.0, which is effectively the
case in the Gummel-Poon model.

The base-collector current is similarly modeled:

Virtually all silicon rf/microwave transistors are vertical
planar devices, so the second current term containing ISC
and NC is usually negligible.

The total base current Ib is the sum of Ibe and Ibc. Note
that this method of modeling base current obsoletes the
concept of a constant beta.

Ibe IBIF exp
Vbe

NBF VT•()------------------------------() 1.0–
 •

 ISE exp
Vbe

NE VT•()-------------------------() 1.0–
 •

 +=

VT
k TAMB•

q
-------------------------=

Ibc IBIR exp
Vbc

NBR VT•()
------------------------------() 1.0–

 •
 ISC exp

Vbc
NC VT•()

--------------------------() 1.0–
 •

 +=
801

B Agilent EEBJT2 Model Equations
Collector-Emitter Current
802

The forward and reverse components of the collector-emitter
current are modeled in a manner very similar to the
Gummel-Poon model, but with somewhat more flexibility.
Observation of collector-emitter current behavior has shown
that the forward and reverse components do not necessarily
share identical saturation currents, as in the Gummel-Poon
model. The basic expressions in Agilent EEBJT2, not
including high-level injection effects and Early effects, are:

where ISF and ISR are not exactly equal but are usually
very close. NF and NR are not necessarily equal or 1.0, but
are usually very close. Careful control of ambient
temperature during device measurement is required for
precise extraction of all of the saturation currents and
emission coefficients in the model.

The effects of high-level injection and bias-dependent base
charge storage are modeled via a normalized base charge, in
a manner similar to the Gummel-Poon model:

where

and

Icf ISF exp
Vbe

NF VT•()-------------------------() 1.0–
 •=

Icr ISR exp
Vbc

NR VT•()
-------------------------() 1.0–

 •=

Ice
Icf Icr–()

Qb
-------------------------=

Qb
Q1
2.0

 1.0 1.0 4.0 Q2•()++()•=
IC-CAP Reference

Agilent EEBJT2 Model Equations B

IC-CAP Reference
Q1
1.0

1.0
Vbc
VAF

 Vbe

VAR

 ––

---=

Q2
ISF
IKF

 exp

Vbe
NF VT•()-------------------------() 1.0–

 •

 ISR

IKR

 exp

Vbc
NR VT•()-------------------------() 1.0–

 •

+=

NOTE All computations of the exponential expressions used in the model are
linearized to prevent numerical overflow or underflow at large forward or
reverse bias conditions, respectively.
803

B Agilent EEBJT2 Model Equations
Base-Emitter and Base-Collector Capacitances
804

Diffusion and depletion capacitances are modeled for both
junctions of the transistor model in a manner very similar to
the Gummel-Poon model.

For Vbc ≤ FC • VJC

where

and

For Vbc > FC • VJC

For Vbe ≤ FC • VJE

where

For Vbe > FC • VJE

Cbc Cbcdiffusion Cbcdepletion+=

Cbcdiffusion TR Icr•=

Cbcdepletion
CJC

1.0
Vbc
VJC

 –

 MJC
--=

Cbcdepletion
CJC

1.0 FC–()MJC

 1.0

MJC Vbc FC VJC•()–()•
VJC 1.0 FC–()•

 +

 •=

Cbe Cbediffusion Cbedepletion+=

Cbedepletion
CJE

1.0
Vbe
VJE

 –

 MJE
---=
IC-CAP Reference

Agilent EEBJT2 Model Equations B

IC-CAP Reference

The diffusion capacitance for Cbe is somewhat differently
formulated vs. that of Cbc. The transit time is not a constant
for the diffusion capacitance for Cbe, but is a function of
both junction voltages, formulated in a manner similar to the
modified Gummel-Poon model. The total base-emitter charge
is equal to the sum of the base-emitter depletion charge
(which is a function of Vbe only) and the so-called transit
charge (which is a function of both Vbe and Vbc).

where

and

and

Cbedepletion
CJE

1.0 FC–()MJE

 1.0

MJE Vbe FC VJE•()–()•
VJE 1.0 FC–()•

--
 +

 •=

Qtransit Tff
Icf
Qb

 •=

Tff TF 1.0 XTF
Icf

Icf ITF+

 2.0

exp
Vbc

1.44 VTF•---------------------------()• •
 +

 •=

Cbediffusion Vbe()
Vbe∂

∂Qtransit
=

Cbediffusion Vbc()
Vbc∂

∂Qtransit
=

805

806

B Agilent EEBJT2 Model Equations
Equivalent Circuit

Intrinsic Model
(NPN or PNP)

+

-
Vbe

+

-Vbc
IC-CAP Reference

Agilent EEBJT2 Model Equations B

IC-CAP Reference
Intrinsic Model

Cbc

Cbe

Ibc

Ibe

Ice

IcfIcr

Ib

Ic

Ie

+

-

Vbc

+

−

Vbe
807

B Agilent EEBJT2 Model Equations
References
808

1 J. J. Ebers and J. L. Moll. “Large Signal Behaviour of
Junction Transistors,” Proc. I.R.E. 42, 1761 (1954).

2 H. K. Gummel and H. C. Poon. “An Integral
Charge-Control Relation for Bipolar Transistors,” Bell
Syst. Techn. J. 49, 115 (1970).

3 SPICE2: A Computer Program to Simulate Semiconductor
Circuits, University of California, Berkeley.

4 P. C. Grossman and A. Oki. “A Large Signal DC Model for
GaAs/GaxAl1-xAs Heterojunction Bipolar Transistors,”
Proceedings of the 1989 IEEE Bipolar Circuits and
Technology Meeting, pp. 258-262, September 1989.
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

C
Agilent EEFET3 Model Equations

Drain-Source Current 810

Dispersion Current (Idb) 816

Gate Charge Model 820

Output Charge and Delay 826

Gate Forward Conduction and Breakdown 827

Scaling Relations 828

References 831

This appendix describes the HPEEFET3 model equations
used in IC-CAP.
809Agilent Technologies

C Agilent EEFET3 Model Equations
Drain-Source Current
810

The drain-source current model in Agilent EEFET3 is
comprised of various analytic expressions that were
developed through examination of gm vs. bias plots on a
wide class of devices from various manufacturers. The
expressions below are given for Vds > 0.0 V although the
model is equally valid for Vds < 0.0 V. The model assumes
the device is symmetrical, and one need only replace Vgs
with Vgd and Vds with −Vds in order to obtain the reverse
region (Vds < 0.0 V) equations. The gm, gds and Ids equations
take on 4 different forms depending on the value of Vgs
relative to some of the model parameters. The Ids expression
is continuous through at least the second derivative
everywhere.

if Vgs ≥ Vg and VDELT ≤ 0.0

else if VDELT > 0.0 and Vgs > Vgb

else if Vgs ≤ Vt

gmo GMMAX 1 GAMMA VDSO Vds–()+{ }=

Idso GMMAX Vx Vgs()
VGO VTO+()

2
------------------------------------– VCH+

=

gdso GMMAX GAMMA Vgs VCH–()•–=

gmo gmm Vgb() mgmm
Vgs Vgb–()•+=

Idso gmm Vgb() Vgs Vgb–()•
mgmm

2
---------------- Vgs Vgb–()

2
Idsm Vgb()+ +=

gdso

∂ gmm Vgb()()

∂Vds
------------------------------------ Vgs Vgb–() 1

2
--- Vgs Vgb–()2

∂mgmm
∂Vds

--------------------•
∂Vgb
∂Vds
-------------gmo–+=
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

else

where

gmo 0.0=

Idso 0.0=

gdso 0.0=

gmo gmm Vgs()=

Idso Idsm Vgs()=

gdso
GMMAX

2
-----------------------GAMMA Vgs VCH–()–=

π
Vx Vgs() VGO VCH–()–

VTO VGO–
--• 1+cos

•

gmm V()
GMMAX

2
----------------------- 1 GAMMA VDSO Vds–()+[]=

π
Vx V() VGO VCH–()–

VTO VGO–
--• 1+cos

•

Idsm V()
GMMAX

2
----------------------- VTO VGO–() π⁄() π

Vx V() VGO VCH–()–

VTO VGO–
--•sin

=

Vx V() VTO VCH–()–+)

Vx V() V VCH–() 1 GAMMA VDSO Vds–()+[]=
811

812

C Agilent EEFET3 Model Equations

Vg
VGO VCH–

1 GAMMA VDSO Vds–()+
--- VCH+=

Vt
VTO VCH–

1 GAMMA VDSO Vds–()+
--- VCH+=

Vgb
VGO VDELT–() VCH–

1 GAMMA VDSO Vds–()+
--- VCH+=

mgmm

gmm∂

V∂

V Vgb=
=

GMMAX π•
2 VTO VGO–()
--------------------------------------- 1 GAMMA VDSO Vds–()+[] 2

–=

π–
VDELT

VTO VGO–
-------------------------------•sin•

gmm Vgb()
GMMAX

2
----------------------- 1 GAMMA VDSO Vds–()+[]=

π–
VDELT

VTO VGO–
-------------------------------• 1+cos

•

Idsm Vgb()
GMMAX

2
----------------------- VTO VGO–() π⁄() π–

VDELT
VTO VGO–
-------------------------------•sin

=

VGO VDELT VTO––())+

∂ gmm Vgb()()

∂Vds
----------------------------------- GMMAX

2
-----------------------– GAMMA π– VDELT

VTO VGO–
-------------------------------• 1+cos

=

IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

The preceding relations for Idso, gmo and gdso can now be
substituted in the following equations that model the current
saturation and output conductance. This portion of the
model can be recognized from the work of Curtice [1].

These expressions do an excellent job of fitting GaAs FET
I-V characteristics in regions of low power dissipation; they
will also fit pulsed (isothermal) I-V characteristics. To model
negative conductance effects due to self-heating, the thermal
model of Canfield was incorporated [2]. With this final
enhancement, the DC expressions for Ids and associated
conductances become:

∂mgmm
∂Vds

GMMAX π•
VTO VGO–()

----------------------------------- GAMMA() 1 GAMMA VDSO Vds–()+[]=

π–
VDELT

VTO VGO–
-------------------------------•sin•

∂Vgb
∂Vds

VGO VDELT–() VCH–

1 GAMMA VDSO Vds–()+[] 2
--- GAMMA•=

g'm gmo 1 KAPA Vds•+()
3Vds
VSAT

 tanh=

I'ds Idso 1 KAPA Vds•+()
3Vds
VSAT

 tanh=

g'ds gdso 1 KAPA Vds•+() IdsoKAPA+{ }
3Vds
VSAT

 tanh=

Idso

3 1 KAPA Vds•+()

VSAT
---•

3Vds
VSAT

2
sech+
813

814

C Agilent EEFET3 Model Equations

where

Qualitatively, the operation of the drain-source model can be
described as follows:

The Vds dependence of the equations is dominated by the
parameters VSAT, GAMMA, KAPA, and PEFF. Isothermal
output conductance is controlled by GAMMA and KAPA. The
impact of GAMMA on output conductance is more significant
near threshold. At Vgs=VCH, the output conductance is
controlled only by KAPA. The parameter PEFF provides a
correction to the isothermal model for modeling the
self-heating effects manifested as a negative resistance on
the I-V curves. The parameter VSAT represents the
drain-source voltage at which the current saturates and
output conductance becomes a constant (approximately).

The overall impact of VCH on the I-V characteristics is
second order at best, and many different values of VCH will
provide good fits to I-V plots. For most applications
encountered, it is our experience that the default value of
1.0V is an adequate value for VCH. Similar to VCH, VDSO is

Ids

I'ds

1
Pdiss
PEFF
---------------+

-------------------------=

gm

g'm

1
Pdiss
PEFF
---------------+

2
----------------------------------=

gds

g'ds

I'ds
2

PEFF
---------------–

1
Pdiss
PEFF
---------------+

2
----------------------------------=

Pdiss I'dsVds=
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

a parameter that should be set rather than optimized. At
Vds=VDSO, the drain-source model collapses to a single
voltage dependency in Vgs. It is recommended that the user
set VDSO to a typical Vds operating point in saturation. At
this point, many of the parameters can be extracted right off
a Ids-Vgs plot for Vds=VDSO or preferably, a gm(DC)-Vgs plot
at Vds=VDSO.

When Vds=VDSO and PEFF is set large (to disable the
self-heating model), the significance of the parameters VTO,
VGO, VDELT, GMMAX are easily understood from a plot of
gm(DC)-Vgs. GMMAX is the peak constant transconductance
of the model that occurs at Vgs=VGO. The parameter VTO
represents the gate-source voltage where gm goes to zero. If
VDELT is set to a positive value, then it causes the
transconductance to become linear at Vgs = VGO - VDELT
with a slope equal to that of the underlying cosine function
at this voltage. The parameter definitions are illustrated in
the following figure.

Figure 21 Agilent EEFET3 gm-Vgs Parameters

gm(DC)

Vgs

GMMAX

VTO VGO

VGO-VDELT
815

C Agilent EEFET3 Model Equations
Dispersion Current (Idb)
816

Dispersion in a GaAs MESFET drain-source current is
evidenced by the observation that the output conductance
and transconductance beyond some transition frequency is
higher than that inferred by the DC measurements. A
physical explanation often attributed to this phenomenon is
that the channel carriers are subject to being trapped in the
channel-substrate and channel-surface interfaces. Under
slowly varying signal conditions, the rate at which electrons
are trapped in these sites is equal to the rate at which they
are emitted back into the channel. Under rapidly varying
signals, the traps cannot follow the applied signal and the
high-frequency output conductance results.

The circuit used to model conductance dispersion consists of
the elements RDB, CBS (these linear elements are also
parameters) and the nonlinear source Idb(Vgs, Vds). The
model is a large-signal generalization of the dispersion
model proposed by Golio et al. [3]. At DC, the drain-source
current is just the current Ids. At high frequency (well above
the transition frequency), the drain source current will be
equal to Ids(high frequency) = Ids(DC) + Idb. Linearization of
the drain-source model yields the following expressions for
y21 and y22 of the intrinsic Agilent EEFET3 model.

where

y21 gdsgs gdbgs

gdbgs
1 jω CBS RDB••+
--–+=

y22 gdsds gdbds
1

RDB

gdbds
1

RDB
------------+

1 jω CBS RDB••+
--–+ +=

gdsgs

Ids∂

Vgs∂
------------=
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

.

Evaluating these expressions at the frequencies ω=0 and
ω=infinity produces the following results for
transconductance and output conductance:

For ω=0,

For ω=infinity,

Between these 2 extremes, the conductances make a smooth
transition, the abruptness of which is governed by the time
constant τdisp = RDB • CBS. The frequency f0 at which
the conductances are midway between these 2 extremes is
defined as

gdsds

Ids∂

Vds∂
------------=

gdbgs

Idb∂

Vgs∂
------------=

gdbds

Idb∂

Vds∂
------------=

Re y21[] gm gdsgs= =

Re y22[] gds gdsds= =

Re y21[] gm gdsgs gdbgs+= =

Re y22[] gds gdsds gdbds
1

RDB
------------+ += =

f0
1

2πτdisp
--------------------=
817

818

C Agilent EEFET3 Model Equations

,

The parameter RDB should be set large enough so that its
contribution to the output conductance is negligible. Unless
you are specifically interested in simulating the device near
f0, the default values of RDB and CBS will be adequate for
most microwave applications.

The Agilent EEFET3 Ids model can be extracted to fit either
DC or AC characteristics. In order to simultaneously fit both
DC I-Vs and AC conductances, Agilent EEFET3 utilizes a
simple scheme for modeling the Idb current source whereby
different values of the same parameters can be used in the
Ids equations. The DC and AC drain-source currents can be
expressed as follows:

Parameters such as VGO that do not have an AC counterpart
(i.e., there is no VGOAC parameter) have been found not to
vary significantly between extractions utilizing DC
measurements versus those utilizing AC measurements. The
difference between the AC and DC values of Ids, plus an
additional term that is a function of Vds only, gives the value
of Idb for the dispersion model

where Idbp and its associated conductance are given by:

For Vds > VDSM and ,

Ids
DC

Voltages Parameters,() Ids Voltages GMMAX VDELT VTO GAMMA,,,,(=

KAPA PEFF VTSO VGO VCH VDSO VSAT,,,,,,)

Ids
AC

Voltages Parameters,() Ids Voltages GMMAXAC VDELTAC VTOAC,,,,(=

GAMMAAC KAPAAC PEFFAC VTSOAC VGO VCH VDSO VSAT, , ,),,,,

Idb Vgs Vds,() Ids
AC

Vgs Vds,() Ids
DC

Vgs Vds,()– Idbp Vds()+=

KDB 0≠
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

For Vds < -VDSM and ,

For or ,

By setting the 7 high-frequency parameters equal to their
DC counterparts, the dispersion model reduces to Idb = Idbp.
Examination of the Idbp expression reveals that the
additional setting of GDBM to zero disables the dispersion
model entirely. Since the Idbp current is a function of Vds
only, it will impact output conductance only. However, the
current function will impact both gm and gds. For this
reason, the model is primarily intended to utilized gm data
as a means for tuning . Once this fitting is accomplished,
the parameters GDBM, KDB and VDSM can be tuned to
optimize the gds fit.

Idbp
GDBM
KDB

------------------ Vds VDSM–() KDB GDBM•()
1–

tan=

GDBM VDSM•+

gdbp
GDBM

KDB GDBM Vds VDSM–()2 1+•

--=

KDB 0≠

Idbp
GDBM
KDB

------------------ Vds VDSM+() KDB GDBM•()
1–

tan=

GDBM VDSM•–

gdbp
GDBM

KDB GDBM Vds VDSM+()2 1+•

---=

VDSM– Vds VDSM≤ ≤ KDB 0=

Idsm GDBM Vds•=

gdbm GDBM=

Ids
AC

Ids
AC
819

C Agilent EEFET3 Model Equations
Gate Charge Model
820

The Agilent EEFET3 gate charge model was developed
through careful examination of extracted device capacitances
over bias. The model consists of simple closed form charge
expressions whose derivatives fit observed bias dependencies
in capacitance data. This capacitance data can be obtained
directly from measured Y-parameter data.

The capacitance data is remarkably self-consistent. In other
words, a single qg function’s derivatives will fit both C11
data and C12 data. The Agilent EEFET3 gate charge
expression is:

where

This expression is valid for both positive and negative Vds.
Symmetry is forced through the following smoothing
functions proposed by Statz [4]:

C11

im y11[]

ω--------------------
qg∂

Vgs∂------------= =

C12

im y12[]

ω

qg∂

Vds∂
------------= =

qg Vj Vo,()
C11O C11TH–()

2
--g Vj() C11TH Vj VINFL–()+=

1 LAMBDA Vo VDSO–()•+[]• C12SAT Vo•–

g Vj() Vj VINFL–
DELTGS

3

3
DELTGS
----------------------- Vj VINFL–()
 cosh

 log+=

Vj
1
2
--- 2Vgs Vds– Vds

2
DELTDS

2
++

 =
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

Differentiating the gate charge expression wrt Vgs yields the
following expression for the gate capacitance C11:

where

The gate transcapacitance C12 is defined as:

The Agilent EEFET3 topology requires that the gate charge
be subdivided between the respective charge sources qgc and
qgy. Although simulation could be performed directly from

Vo Vds
2

DELTDS
2

+=

C11 Vj Vo,()
C11O C11TH–()

2
-- g' Vj()• C11TH+=

1 LAMBDA Vo VDSO–()•+[]•

g' Vj()
g Vj()d

Vjd
---------------- 1

3
DELTGS
----------------------- Vj VINFL–()tanh+= =

C12 Vj Vo,()
qg∂

Vds∂

qg∂

Vj∂

Vj∂

Vds∂

qg∂

Vo∂

Vo∂

Vds∂
------------+= =

C11 Vj Vo,()
1
2
---•

Vds

Vds
2

DELTDS
2

+

--- 1–=

C110 C11TH–
2

--------------------------------------gVj C11THVj VINFL–+ LAMBDA C12SAT–•+

Vds

Vds
2

DELTDS
2

+

---•
821

822

C Agilent EEFET3 Model Equations

the nodal gate charge qg, division of the charge into
branches permits the inclusion of the resistances RIS and
RID that model charging delay between the depletion region
and the channel. Agilent EEFET3 assumes the following form
for the gate-drain charge in saturation:

which gives rise to a constant gate-drain capacitance in
saturation. The gate-source charge qgc can now be obtained
by subtracting the latter from the gate charge equation.
Smoothing functions can then be applied to these
expressions in saturation in order to extend the model’s
applicable bias range to all Vds values.

These smoothing functions force symmetry on the qgy and
qgc charges such that

at Vgc = Vgy. Under large negative Vds (saturation at the
source end of the device), qgy and qgc swap roles, i.e:

The following continuous charge equations satisfy these
constraints and are specified in terms of the gate charge:

where f1 and f2 are smoothing functions defined by

qgy Vgy() CGDSAT Vgy qgyo+•=

qgy qgc

qg
2

------= =

qgc Vgc() CGDSAT Vgc qgco+•=

qgy Vgc Vgy,() qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ } f2•=

CGDSAT Vgy• f1•+

qgc Vgc Vgy,() qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ } f1•=

CGDSAT Vgc• f2•+
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

and

The capacitances associated with these branch charge
sources can be obtained through differentiation of the qgc
and qgy equations and by application of the chain rule to
the capacitances C11 and C12. The gate charge derivatives
re-formulated in terms of Vgc and Vgy are:

The branch charge derivatives are:

f1
1
2
--- 1

3
DELTDS
----------------------- Vgc Vgy–()
 tanh+=

f2
1
2
--- 1

3
DELTDS
----------------------- Vgc Vgy–()
 tanh–=

Cggy

qg∂

Vgy∂------------ C12 Vgc Vgc Vgy–,()–= =

Cggc

qg∂

Vgc∂
------------ C11 Vgc Vgc Vgy–,() C12 Vgc Vgc Vgy–,()+= =

Cgygy

qgy∂

Vgy∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ }

f2∂

Vgy∂
------------•= =

f2 Cggy CGDSAT Vgy

f1∂

Vgy∂
------------ f1+••+•+

Cgygc

qgy∂

Vgc∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ }

f2∂

Vgc∂
------------•= =

f2 Cggc CGDSAT–[] CGDSAT Vgy

f1∂

Vgc∂
------------••+•+
823

824

C Agilent EEFET3 Model Equations

where

Cgcgc

qgc∂

Vgc∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ }

f1∂

Vgc∂
------------•= =

f1 Cggc CGDSAT Vgc

f2∂

Vgc∂
------------ f2+••+•+

Cgcgy

qgc∂

Vgy∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ }

f1∂

Vgy∂
------------•= =

f1 Cggy CGDSAT–[] CGDSAT Vgc

f2∂

Vgy∂
------------••+•+

f1∂

Vgc∂

3
2 DELTDS•

3 Vgc Vgy–()

DELTDS

2
sech=

f1∂

Vgy∂------------
f1∂

Vgc∂------------–=

f2∂

Vgc∂

f1∂

Vgc∂
------------–=

f2∂

Vgy∂

f1∂

Vgc∂
------------=
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

When Vds=VDSO and VDSO>>DELTDS, the gate capacitance
C11 reduces to a single voltage dependency in Vgs. Similar to
the Ids model then, the majority of the important gate charge
parameters can be estimated from a single trace of a plot. In
this case, the plot of interest is C11-Vgs at Vds = VDSO.

The parameter definitions are illustrated in the following
figure. The parameter DELTDS models the gate capacitance
transition from the linear region of the device into
saturation. LAMBDA models the slope of the C11-Vds
characteristic in saturation. C12SAT is used to fit the gate
transcapacitance (C12) in saturation.

Figure 22 Agilent EEFET3 C11-Vgs Parameters

C11

Vgs

C11O

VINFL

C11TH

DELTGS
825

C Agilent EEFET3 Model Equations
Output Charge and Delay
826

Agilent EEFET3 uses a constant output capacitance specified
with the parameter CDSO. This gives rise to a drain-source
charge term of the form

The drain-source current previously described in this section
is delayed with the parameter TAU according to the
following equation:

In the frequency domain, only the transconductance is
impacted by this delay and the familiar expression for
transconductance is obtained:

ym = gm • exp(−j • ω • TAU)

qds Vds() CDSO Vds•=

Ids t() Ids Vgs t TAU–() Vds t(),()=
IC-CAP Reference

Agilent EEFET3 Model Equations C
Gate Forward Conduction and Breakdown
IC-CAP Reference

Forward conduction in the gate junction is modeled using a
standard 2-parameter diode expression. The current for this
gate-source current is:

where q is the charge on an electron, k is Boltzmann’s
constant and T is the junction temperature.

The Agilent EEFET3 breakdown model was developed from
measured DC breakdown data and includes the voltage
dependency of both gate-drain and gate-source junctions.
Agilent EEFET3 models breakdown for Vds>0V only,
breakdown in the Vds<0V region is not handled. The model
consists of 4 parameters that are easily optimized to
measured data. The breakdown current is given by:

For −Vgd > VBR

For

Some care must be exercised in setting IDSOC. This
parameter should be set to the maximum value attainable by
Ids. This precludes the possibility of the gate-drain current
flowing in the wrong direction.

Igs Vgs() IS e

qVgs
nkT

1–•=

Igd Vgd Vgs,() KBK 1
Ids Vgs Vds,()

IDSOC
----------------------------------– Vgd– VBR–()NBR•–=

Vgd VBR≤–

Igd Vgd Vgs,() 0=
827

C Agilent EEFET3 Model Equations
Scaling Relations
828

Scaling of Agilent EEFET3 model parameters is
accomplished through the use of the MDIF parameters UGW
and NGF and the device parameters UGW (same name as
the MDIF parameter) and N. From these 4 parameters, the
following scaling relations can be defined:

where UGWnew represents the device parameter UGW, the
new unit gate width.

Scaling will be disabled if any of the 4 scaling parameters
are set to 0. The new Agilent EEFET3 parameters are
computed internally by the simulator according to the
following equations:

sf
UGW

new
N•

UGW NGF•----------------------------------=

sfg
UGW N•

UGW
new

NGF•
---=

RIS
new RIS

sf
---------=

RID
new RID

sf
----------=

GMMAX
new

GMMAX sf•=

GMMAXAC
new

GMMAXAC sf•=

PEFF
new

PEFF sf•=

PEFFAC
new

PEFFAC sf•=
IC-CAP Reference

Agilent EEFET3 Model Equations C

IC-CAP Reference

RDB
new RDB

sf
------------=

GDBM
new

GDBM sf•=

KDB
new KDB

sf
------------=

IS
new

IS sf•=

KBK
new

KBK sf•=

IDSOC
new

IDSOC sf•=

RG
new RG

sfg
--------=

RD
new RD

sf
--------=

RS
new RS

sf
-------=

CBS
new

CBS sf•=

C11O
new

C11O sf•=

C11TH
new

C11TH sf•=

C12SAT
new

C12SAT sf•=

CGDSAT
new

CGDSAT sf•=

CDSO
new

CDSO sf•=
829

830

C Agilent EEFET3 Model Equations

Equivalent Circuit

Rdb

Ids

Igs

Igd

Qgc

Qgy

Rs

Rd

Rg
G’

G

S’

D’

D

SRis
+ -

+ -
Rid

C

Y

Cbs

B Idb Cdso
IC-CAP Reference

Agilent EEFET3 Model Equations C
References
IC-CAP Reference

1 W. R Curtice. “A MESFET model for use in the design of
GaAs integrated circuits,” IEEE Transactions of
Microwave Theory and Techniques, Vol. MTT-28, pp.
448-456, May 1980.

2 P. C. Canfield, “Modeling of frequency and temperature
effects in GaAs MESFETs” IEEE Journal of Solid-State
Circuits, Vol. 25, pp. 299-306,Feb. 1990.

3 J.M. Golio, M. Miller, G. Maracus, D. Johnson, “Frequency
dependent electrical characteristics of GaAs MESFETs,”
IEEE Trans. Elec. Devices, vol. ED-37, pp. 1217-1227,
May 1990.

4 H. Statz, P. Newman, I. Smith, R. Pucel, H. Haus, “GaAs
FET device and circuit simulation in SPICE,” IEEE Trans.
Elec. Devices, vol. ED-34, pp. 160-169, Feb. 1987.
831

832

C Agilent EEFET3 Model Equations

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

D
Agilent EEHEMT1 Model Equations

Drain-Source Current 834

Dispersion Current (Idb) 842

Gate Charge Model 846

Output Charge and Delay 852

Gate Forward Conduction and Breakdown 853

Scaling Relations 854

References 857

This appendix describes the Agilent EEHEMT model
equations used in IC-CAP.
833Agilent Technologies

D Agilent EEHEMT1 Model Equations
Drain-Source Current
834

The drain-source current model in Agilent EEHEMT1 is
comprised of various analytic expressions that were
developed through examination of gm vs. bias plots on a
wide class of devices from various manufacturers. The
expressions below are given for Vds > 0.0 V although the
model is equally valid for Vds < 0.0 V. The model assumes
the device is symmetrical, and one need only replace Vgs
with Vgd and Vds with −Vds in order to obtain the reverse
region (Vds < 0.0 V) equations. The gm, gds and Ids equations
take on 4 different forms depending on the value of Vgs
relative to some of the model parameters. The Ids expression
is continuous through at least the second derivative
everywhere.

if Vgs ≥ Vg

else if Vgs ≤ Vt

else

gmo GMMAX 1 GAMMA VDSO Vds–()+{ }=

Idso GMMAX Vx Vgs()
VGO VTO+()

2
------------------------------------– VCH+

=

gdso GMMAX GAMMA Vgs VCH–()•–=

gmo 0.0=

Idso 0.0=

gdso 0.0=

gmo gmm Vgs()=

Idso Idsm Vgs()=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

where

The following voltages define regions of operation that are
used in the gm compression terms:

gdso
GMMAX

2
-----------------------GAMMA Vgs VCH–()–=

π
Vx Vgs() VGO VCH–()–

VTO VGO–
--• 1+cos

•

gmm V()
GMMAX

2
----------------------- 1 GAMMA VDSO Vds–()+[]=

π
Vx V() VGO VCH–()–

VTO VGO–
--• 1+cos

•

Idsm V()
GMMAX

2
----------------------- VTO VGO–() π⁄() π

Vx V() VGO VCH–()–

VTO VGO–
--•sin

=

Vx V() VTO VCH–()–+)

Vx V() V VCH–() 1 GAMMA VDSO Vds–()+[]=

Vg
VGO VCH–

1 GAMMA VDSO Vds–()+
--- VCH+=

Vt
VTO VCH–

1 GAMMA VDSO Vds–()+
--- VCH+=

Vc VCO MU VDSO Vds–()•+=
835

836

D Agilent EEHEMT1 Model Equations

For Vgs > Vc, the basic Idso, gmo and gdso relations are
modified as follows:

for Vgs < Vb,

for Vgs ≥ Vb and b ≠ −1,

for Vgs ≥ Vb and b = −1

Vb VBC Vc+=

Va Vb VBA–=

gmo
comp

gmo gmv Vgs Vds,()–=

Idso
comp

Idso Idsv Vgs Vds,()–=

gdso
comp

gdso gdsv Vgs Vds,()–=

gmo
comp

gmo a Vgs Va–()b gmoff+–=

Idso
comp

Idso
a

b 1+
------------ Vgs Va–()b 1+

VBA
b 1+

––=

gmoff Vgs Vb–()•– Idsv Vb Vds,()–

gdso
comp

gdso MU a Vgs Va–()b gmoff+– gdsv Vb Vds,()–=

gmo
comp

gmo a Vgs Va–()b gmoff+–=

Idso
comp

Idso a Vgs Va–()log VBA()log–[]–=

gmoff Vgs Vb–()•– Idsv Vb Vds,()–
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

where

gdso
comp

gdso
MU a•

Vgs Va–()---------------------------– MU gmoff•– gdsv Vb Vds,()–=

a
gmv Vb Vds,() gmoff–

VBA
b

---=

b
svb VBA•

gmv Vb Vds,() gmoff–
---=

svb DELTGM
VBC

ALPHA
2

VBC
2

+

---•=

gmv V Vds,() DELTGM ALPHA
2

V Vc–()2+ ALPHA–•=

Idsv V Vds,() DELTGM
1
2
--- V Vc–() ALPHA

2
V Vc–()2+

•=

ALPHA
2

+
V Vc–() ALPHA

2
V Vc–()2++

ALPHA
---log•

ALPHA V Vc–())•–
837

838

D Agilent EEHEMT1 Model Equations

In order to prevent gm from becoming negative at high

gate-source biases, the following restriction is placed on the
parameter DELTGM:

The preceding relations for , and
can now be substituted in the following equations that model
the current saturation and output conductance. This portion
of the model can be recognized from the work of Curtice [1].

gdsv V Vds,() DELTGM MU
1
2

2 V Vc–()2 ALPHA
2

+

ALPHA
2

V Vc–()2+

--

•=

ALPHA
2

V Vc–() ALPHA
2

V Vc–()2++

---+

1
V Vc–()

ALPHA
2

V Vc–()2+

--+•

ALPHA)–

gmoff gmo VCO VDSO,()=

DELTGM
gmoff

ALPHA
2

VBC
2

+ ALPHA–

---<

Idso
comp

gmo
comp

gdso
comp

g'm gmo
comp

1 KAPA Vds•+()
3Vds
VSAT

 tanh=

I'ds Idso
comp

1 KAPA Vds•+()
3Vds
VSAT

 tanh=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

These expressions do an excellent job of fitting HEMT I-V
characteristics in regions of low power dissipation. They will
also fit pulsed (isothermal) I-V characteristics. In order to
model negative conductance effects due to self-heating, the
thermal model of Canfield was incorporated [2]. With this
final enhancement, the DC expressions for Ids and its
associated conductances become:

where

Qualitatively, the operation of the drain-source model can be
described as follows:

g'ds gdso
comp

1 KAPA Vds•+() Idso
comp

KAPA+

 3Vds

VSAT

 tanh=

Idso
comp 3 1 KAPA Vds•+()

VSAT
---•

3Vds
VSAT

2
sech+

Ids

I'ds

1
Pdiss
PEFF
---------------+

-------------------------=

gm

g'm

1
Pdiss
PEFF
---------------+

2
----------------------------------=

gds

g'ds

I'ds
2

PEFF
---------------–

1
Pdiss
PEFF
---------------+

2
----------------------------------=

Pdiss I'dsVds=
839

840

D Agilent EEHEMT1 Model Equations

The Vds dependence of the equations is dominated by the
parameters VSAT, GAMMA, KAPA, and PEFF. Isothermal
output conductance is controlled by GAMMA and KAPA. The
impact of GAMMA on output conductance is more significant
near threshold. At Vgs=VCH, the output conductance is
controlled only by KAPA. The parameter PEFF provides a
correction to the isothermal model for modeling the
self-heating effects manifested as a negative resistance on
the I-V curves. The parameter VSAT represents the
drain-source voltage at which the current saturates and
output conductance becomes a constant (approximately). The
parameter MU also impacts the I-V curves in the gm
compression region, but its effect is second order. In most
cases, the gm fit is more sensitive to the parameter MU.

The overall impact of VCH on the I-V characteristics is
second order at best, and many different values of VCH will
provide good fits to I-V plots. For most applications
encountered, it is our experience that the default value of
1.0V is an adequate value for VCH. Similar to VCH, VDSO is
a parameter that should be set rather than optimized. At Vds
= VDSO, the drain-source model collapses to a single voltage
dependency in Vgs. It is recommended that the user set
VDSO to a typical Vds operating point in saturation. At this
point, many of the parameters

can be extracted right off a Ids-Vgs plot for Vds=VDSO or,
preferably, a gm(DC)-Vgs plot at Vds=VDSO.

When Vds=VDSO and PEFF is set large (to disable the
self-heating model), the significance of the parameters VTO,
VGO, GMMAX, VCO, VBA, VBC, DELTGM and ALPHA are
easily understood from a plot of gm(DC)-Vgs. GMMAX is the
peak transconductance of the model that occurs at Vgs=VGO.
The parameter VTO represents the gate-source voltage where
gm goes to zero. Transconductance compression begins at
Vgs=VCO. ALPHA controls the abruptness of this transition
while DELTGM controls the slope of the gm characteristic in
compression. At Vgs=VCO+VBC, the linear gm slope begins to
tail-off and asymtotically approach zero. The shape of this
“tail-off” region is controlled by the parameter VBA. The
parameter definitions are illustrated in the following figure.
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

Figure 23 Agilent EEHEMT1 gm-Vgs Parameters

gm(DC)

Vgs

GMMAX

VTO VGO VCO+VBCVCO

DELTGM

“Roll-off” (ALPHA)

“Tail-off” (VBA)
841

D Agilent EEHEMT1 Model Equations
Dispersion Current (Idb)
842

Dispersion in a GaAs MESFET or HEMT drain-source
current is evidenced by the observation that the output
conductance and transconductance beyond some transition
frequency is higher than that inferred by the DC
measurements. A physical explanation often attributed to
this phenomenon is that the channel carriers are subject to
being trapped in the channel-substrate and channel-surface
interfaces. Under slowly varying signal conditions, the rate
at which electrons are trapped in these sites is equal to the
rate at which they are emitted back into the channel. Under
rapidly varying signals, the traps cannot follow the applied
signal and the high-frequency output conductance results.

The circuit used to model conductance dispersion consists of
the elements RDB, CBS (these linear elements are also
parameters) and the nonlinear source Idb(Vgs, Vds). The
model is a large-signal generalization of the dispersion
model proposed by Golio et al. [3]. At DC, the drain-source
current is just the current Ids. At high frequency (well above
the transition frequency), the drain source current will be
equal to Ids(high frequency) = Ids(DC) + Idb. Linearization of
the drain-source model yields the following expressions for
y21 and y22 of the intrinsic Agilent EEHEMT1 model:

where

y21 gdsgs gdbgs

gdbgs
1 jω CBS RDB••+
--–+=

y22 gdsds gdbds
1

RDB

gdbds
1

RDB
------------+

1 jω CBS RDB••+
--–+ +=

gdsgs

Ids∂

Vgs∂------------=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

Evaluating these expressions at the frequencies ω = 0 and ω
= infinity, produces the following results for
transconductance and output conductance:

for ω = 0,

for ω = infinity,

Between these 2 extremes, the conductances make a smooth
transition, the abruptness of which is governed by the time
constant τdisp = RDB • CBS. The frequency f0 at which
the conductances are midway between these 2 extremes is
defined as

The parameter RDB should be set large enough so that its
contribution to the output conductance is negligible. Unless
the user is specifically interested in simulating the device
near f0, the default values of RDB and CBS will be adequate
for most microwave applications.

gdsds

Ids∂

Vds∂------------=

gdbgs

Idb∂

Vgs∂
------------=

gdbds

Idb∂

Vds∂
------------=

Re y21[] gm gdsgs= =

Re y22[] gds gdsds= =

Re y21[] gm gdsgs gdbgs+= =

Re y22[] gds gdsds gdbds
1

RDB
------------+ += =

f0
1

2πτdisp
--------------------=
843

844

D Agilent EEHEMT1 Model Equations

The Agilent EEHEMT1 Ids model can be extracted to fit
either DC or AC characteristics. In order to simultaneously
fit both DC I-V characteristics and AC conductances,
Agilent EEHEMT1 utilizes a simple scheme for modeling the
Idb current source whereby different values of the same
parameters can be used in the Ids equations. The DC and AC
drain-source currents can be expressed as follows:

Parameters such as VGO that do not have an AC counterpart
(i.e., there is no VGOAC parameter) have been found not to
vary significantly between extractions utilizing DC
measurements versus those utilizing AC measurements. The
difference between the AC and DC values of Ids, plus an
additional term that is a function of Vds only, gives the
value of Idb for the dispersion model

where Idbp and its associated conductance are given by:

for Vds > VDSM and KDB ≠ 0,

Ids
DC

Voltages Parameters,() Ids Voltages GMMAX VDELT VTO,,,,(=

GAMMA KAPA PEFF VTSO DELTGM,,,, ,

VGO VCH VDSO VSAT, , ,)

Ids
AC

Voltages Parameters,() IdsVoltages GMMAXAC VDELTAC,(,,(=

VTOAC, GAMMAAC KAPAAC' PEFFAC VTSOAC,,,,

DELTGMAC VGO VCH VDSO VSAT, , , ,)

Idb Vgs Vds,() Ids
AC

Vgs Vds,() Ids
DC

Vgs Vds,()– Idbp Vds()+=

Idbp
GDBM
KDB

------------------ Vds VDSM–() KDB GDBM•()
1–

tan=

GDBM VDSM•+
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

for Vds < -VDSM and KDB ≠ 0,

for −VDSM ≤ Vds ≤ VDSM or KDB = 0,

By setting the 8 high-frequency parameters equal to their
DC counterparts, the dispersion model reduces to
Idb=Idbp. Examination of the Idbp expression reveals that the
additional setting of GDBM to zero disables the dispersion
model entirely. Since the Idbp current is a function of Vds
only, it will impact output conductance only. However, the
current function

will impact both gm and gds. For this reason, the model is
primarily intended to utilized gm data as a means for tuning

Once this fitting is accomplished, the parameters GDBM,
KDB and VDSM can be tuned to optimize the gds fit.

gdbp
GDBM

KDB GDBM Vds VDSM–()2 1+•

--=

Idbp
GDBM
KDB

------------------ Vds VDSM+() KDB GDBM•()
1–

tan=

GDBM VDSM•–

gdbp
GDBM

KDB GDBM Vds VDSM+()2 1+•

---=

Idsm GDBM Vds•=

gdbm GDBM=

Ids
AC

Ids
AC
845

D Agilent EEHEMT1 Model Equations
Gate Charge Model
846

The Agilent EEHEMT1 gate charge model was developed
through careful examination of extracted device capacitances
over bias. The model consists of simple closed form charge
expressions whose derivatives fit observed bias dependencies
in capacitance data. This capacitance data can be obtained
directly from measured Y-parameter data:

The capacitance data is remarkably self-consistent. In other
words, a single qg function’s derivatives will fit both C11
data and C12 data. The Agilent EEHEMT1 gate charge
expression is:

where

This expression is valid for both positive and negative Vds.
Symmetry is forced through the following smoothing
functions proposed by Statz [4]:

C11

im y11[]

ω--------------------
qg∂

Vgs∂------------= =

C12

im y12[]

ω

qg∂

Vds∂
------------= =

qg Vj Vo,()
C11O C11TH–

2
---------------------------------------g Vj() C11TH Vj VINFL–()+=

1 LAMBDA Vo VDSO–()•+[]• C12SAT Vo•–

g Vj() Vj VINFL–
DELTGS

3

3
DELTGS
----------------------- Vj VINFL–()
 cosh

 ln+=

Vj
1
2
--- 2Vgs Vds– Vds

2
DELTDS

2
++

 =
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

Differentiating the gate charge expression wrt Vgs yields the
following expression for the gate capacitance C11:

where

The gate transcapacitance C12 is defined as:

The Agilent EEHEMT1 topology requires that the gate charge
be subdivided between the respective charge sources qgc and
qgy. Although simulation could be performed directly from

Vo Vds
2

DELTDS
2

+=

C11 Vj Vo,()
C11O C11TH–

2
---------------------------------------g' Vj() C11TH+=

1 LAMBDA Vo VDSO–()•+[]•

g' Vj()
g Vj()d

Vjd
---------------- 1

3
DELTGS
----------------------- Vj VINFL–()tanh+= =

C12 Vj Vo,()
qg∂

Vds∂

qg∂

Vj∂

Vj∂

Vds∂

qg∂

Vo∂

Vo∂

Vds∂
------------+= =

C11 Vj Vo,()
1
2
---•

Vds

Vds
2

DELTDS
2

+

--- 1–=

C110 C11TH–
2

--------------------------------------g Vj() LAMBDA C12SAT–•+

Vds

Vds
2

DELTDS
2

+
---•
847

848

D Agilent EEHEMT1 Model Equations

the nodal gate charge qg, division of the charge into
branches permits the inclusion of the resistances RIS and
RID that model charging delay between the depletion region
and the channel. Agilent EEHEMT1 assumes the following
form for the gate-drain charge in saturation:

which gives rise to a constant gate-drain capacitance in
saturation.

The gate-source charge qgc can now be obtained by
subtracting the latter from the gate charge equation.
Smoothing functions can then be applied to these

expressions in saturation in order to extend the model’s
applicable bias range to all Vds values. These smoothing
functions force symmetry on the qgy and qgc charges such
that

at Vgc = Vgy. Under large negative Vds (saturation at the
source end of the device), qgy and qgc swap roles, i.e:

The following continuous charge equations satisfy these
constraints and are specified in terms of the gate charge:

where f1 and f2 are smoothing functions defined by

qgy Vgy() CGDSAT Vgy qgyo+•=

qgy qgc

qg
2

------= =

qgc Vgc() CGDSAT Vgc qgco+•=

qgy Vgc Vgy,() qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ } f2•=

CGDSAT Vgy• f1•+

qgc Vgc Vgy,() qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ } f1•=

CGDSAT Vgc• f2•+
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

and

The capacitances associated with these branch charge
sources can be obtained through differentiation of the qgc
and qgy equations and by application of the chain rule to the
capacitances C11 and C12. The gate charge derivatives
re-formulated in terms of Vgc and Vgy are:

The branch charge derivatives are:

f1
1
2
--- 1

3
DELTDS
----------------------- Vgc Vgy–()
 tanh+=

f2
1
2
--- 1

3
DELTDS
----------------------- Vgc Vgy–()
 tanh–=

Cggy

qg∂

Vgy∂------------ C12 Vgc Vgc Vgy–,()–= =

Cggc

qg∂

Vgc∂
------------ C11 Vgc Vgc Vgy–,() C12 Vgc Vgc Vgy–,()+= =

Cgygy

qgy∂

Vgy∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ }

f2∂

Vgy∂
------------•= =

f2 Cggy CGDSAT Vgy

f1∂

Vgy∂
------------ f1+••+•+

Cgygc

qgy∂

Vgc∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgc•–{ }

f2∂

Vgc∂
------------•= =

f2 Cggc CGDSAT–[] CGDSAT Vgy

f1∂

Vgc∂------------••+•+
849

850

D Agilent EEHEMT1 Model Equations

where

When Vds=VDSO and VDSO>>DELTDS, the gate capacitance
C11 reduces to a single voltage dependency in Vgs. Similar to
the Ids model, the majority of the important gate charge
parameters can then be estimated from a single trace of a

Cgcgc

qgc∂

Vgc∂------------ qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ }
f1∂

Vgc∂------------•= =

f1 Cggc CGDSAT Vgc

f2∂

Vgc∂
------------ f2+••+•+

Cgcgy

qgc∂

Vgy∂
------------ qg Vgc Vgc Vgy–,() CGDSAT Vgy•–{ }

f1∂

Vgy∂
------------•= =

f1 Cggy CGDSAT–[] CGDSAT Vgc

f2∂

Vgy∂------------••+•+

f1∂

Vgc∂------------
3

2 DELTDS•--------------------------------
3 Vgc Vgy–()

DELTDS

2
sech=

f1∂

Vgy∂

f1∂

Vgc∂
------------–=

f2∂

Vgc∂------------
f1∂

Vgc∂------------–=

f2∂

Vgy∂

f1∂

Vgc∂
------------=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

plot. In this case, the plot of interest is C11-Vgs at Vds =
VDSO. The parameter definitions are illustrated in the
following figure.

The parameter DELTDS models the gate capacitance
transition from the linear region of the device into
saturation. LAMBDA models the slope of the C11-Vds
characteristic in saturation. C12SAT is used to fit the gate
transcapacitance (C12) in saturation.

Figure 24 Agilent EEHEMT1 C11-Vgs Parameters

C11

Vgs

C11O

VINFL

C11TH

DELTGS
851

D Agilent EEHEMT1 Model Equations
Output Charge and Delay
852

Agilent EEHEMT1 uses a constant output capacitance
specified with the parameter CDSO. This gives rise to a
drain-source charge term of the form

The drain-source current described previously, is delayed
with the parameter TAU according to the following equation:

In the frequency domain, only the transconductance is
impacted by this delay and the familiar expression for
transconductance is obtained

ym = gm • exp(−j • ω • TAU)

qds Vds() CDSO Vds•=

Ids t() Ids Vgs t TAU–() Vds t(),()=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D
Gate Forward Conduction and Breakdown
IC-CAP Reference

Forward conduction in the gate junction is modeled using a
standard 2-parameter diode expression. The current for this
gate-source current is:

where q is the charge on an electron, k is Boltzmann’s
constant, and T is the junction temperature.

The Agilent EEHEMT1 breakdown model was developed from
measured DC breakdown data and includes the voltage
dependency of both gate-drain and gate-source junctions.
Agilent EEHEMT1 models breakdown for Vds > 0V only,
breakdown in the Vds < 0V region is not handled. The model
consists of 4 parameters that are easily optimized to
measured data. The breakdown current is given by:

for −Vgd > VBR

for −Vgd ≤ VBR

Some care must be exercised in setting IDSOC. This
parameter should be set to the maximum value attainable by
Ids. This precludes the possibility of the gate-drain current
flowing in the wrong direction.

Igs Vgs() IS e

qVgs
nkT

1–•=

Igd Vgd Vgs,() KBK 1
Ids Vgs Vds,()

IDSOC
----------------------------------– Vgd– VBR–()NBR•–=

Igd Vgd Vgs,() 0=
853

D Agilent EEHEMT1 Model Equations
Scaling Relations
854

Scaling of Agilent EEHEMT1 model parameters is
accomplished through the use of the MDIF parameters UGW
and NGF and the device parameters UGW (same name as
the MDIF parameter) and N. From these 4 parameters, the
following scaling relations can be defined:

where UGWnew represents the device parameter UGW, the
new unit gate width.

Scaling will be disabled if any of the 4 scaling parameters
are set to 0. The new Agilent EEHEMT1 parameters are
computed internally by the simulator according to the
following equations:

sf
UGW

new
N•

UGW NGF•
----------------------------------=

sfg
UGW N•

UGW
new

NGF•
---=

RIS
new RIS

sf
---------=

RID
new RID

sf
----------=

GMMAX
new

GMMAX sf•=

GMMAXAC
new

GMMAXAC sf•=

DELTGM
new

DELTGM sf•=

DELTGMAC
new

DELTGMAC sf•=

PEFF
new

PEFF sf•=
IC-CAP Reference

Agilent EEHEMT1 Model Equations D

IC-CAP Reference

PEFFAC
new

PEFFAC sf•=

RDB
new RDB

sf
------------=

GDBM
new

GDBM sf•=

KDB
new KDB

sf
------------=

IS
new

IS sf•=

KBK
new

KBK sf•=

IDSOC
new

IDSOC sf•=

RG
new RG

sfg
--------=

RD
new RD

sf
--------=

RS
new RS

sf
-------=

CBS
new

CBS sf•=

C11O
new

C11O sf•=

C11TH
new

C11TH sf•=

C12SAT
new

C12SAT sf•=

CGDSAT
new

CGDSAT sf•=
855

856

D Agilent EEHEMT1 Model Equations

Equivalent Circuit

CDSO
new

CDSO sf•=

Rdb

Ids

Igs

Igd

Qgc

Qgy

Rs

Rd

Rg
G’

G

S’

D’

D

SRis
+ -

+ -
Rid

C

Y

Cbs

B Idb Cdso
IC-CAP Reference

Agilent EEHEMT1 Model Equations D
References
IC-CAP Reference

1 W. R. Curtice, “A MESFET model for use in the design of
GaAs integrated circuits,” IEEE Transactions of
Microwave Theory and Techniques, Vol. MTT-28, pp.
448-456, May 1980.

2 P. C. Canfield, “Modeling of frequency and temperature
effects in GaAs MESFETs” IEEE Journal of Solid-State
Circuits, Vol. 25, pp. 299-306, Feb. 1990.

3 J. M. Golio, M. Miller, G. Maracus, D. Johnson, “Frequency
dependent electrical characteristics of GaAs MESFETs,”
IEEE Trans. Elec. Devices, vol. ED-37, pp. 1217-1227,
May 1990.

4 H. Statz, P. Newman, I. Smith, R. Pucel, H. Haus. “GaAs
FET device and circuit simulation in SPICE,” IEEE Trans.
Elec. Devices, vol. ED-34, pp. 160-169, Feb. 1987.
857

858

D Agilent EEHEMT1 Model Equations

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

E
Controlling IC-CAP from Another
Application

To Compile Using the Library 860

Details of Function Calls 862

Details of the LinkReturnS Structure 868

Other applications written in the C or C++ programming
language can control IC-CAP via a library provided by
IC-CAP. The library, libiclinklibs.a, consists of 6 function
calls which enable the application to launch IC-CAP and
communicate with it through an IPC (Inter-Process
Communication) link.

The library allows the C application to send arbitrary PEL
code to IC-CAP. The PEL code is then executed within
IC-CAP. The context of the PEL code is 1 level above the
macros in a Model. Therefore, the only variables available to
the PEL code are the top-level System Variables. To see
these variables, open the System Variables window using the
menu Tools > System Variables in IC-CAP’s Main window.

The library libiclinklibs.a contains the following calls:
int launch_iccap(const char *appName,
 const char *host,
 const char *iccapRoot,
 const char *altPath)
int initialize_session()
int terminate_session()
int send_map(int *map, int length)
int send_PEL(const char *PELText,
 int wait,
 char **errMsg,
 LinkReturnFuncT retfunc);
int get_PEL_response(char **errMsg, LinkReturnFuncT

retfunc);
859Agilent Technologies

E Controlling IC-CAP from Another Application
To Compile Using the Library
860

Other files provided by IC-CAP to establish an IPC link
include the following:

Platforms File Names

Solaris $ICCAP_ROOT/src/iclinklib.h

Solaris $ICCAP_ROOT/lib/sol2x/libiclinklibs.a
$ICCAP_ROOT/lib/sol2x/libiclinklib.so
NOTE In IC-CAP 2004, the name of the static library changed from libiclinklib.a to
libiclinklibs.a.
To compile your application with the static library, add
-liclinklibs to the compile command along with
-L$ICCAP_ROOT/lib/<pltfm> -liclinklibs where
<pltfm> is sol2x or hpux10. In general, the static library
(libiclinklibs.a) will be sufficient, but if you want to use the
shared version (libiclinklib.sl or libiclinklib.so), it is also
provided. To compile your application with the shared
library, add -liclinklib to the compile command along
with -L$ICCAP_ROOT/lib/<pltfm> -liclinklib where
<pltfm> is sol2x or hpux10. For the Sun compiler, use the
-Bstatic or -Bdynamic option to choose between the 2
libraries.
IC-CAP Reference

Controlling IC-CAP from Another Application E
Solaris Examples
IC-CAP Reference

To use the static iclinklibs library, and use shared libraries
for all others (libc, etc.):
cc program.c -L$ICCAP_ROOT/lib/sol2x -Bstatic -liclinklibs

-Bdynamic

To use static libraries for everything:
cc program.c -L$ICCAP_ROOT/lib/sol2x -Bstatic -liclinklibs

To use shared libraries for everything:
cc program.c -L$ICCAP_ROOT/lib/sol2x -Bdynamic -liclinklib

or
cc program.c -L$ICCAP_ROOT/lib/sol2x -liclinklib
861

E Controlling IC-CAP from Another Application
Details of Function Calls
862

This section describes each function call available in the
libiclinklibs.a library. The descriptions include available
arguments, and the results returned, including error codes.

For an example of each function call, see the IC-CAP IPC
Link example program ($ICCAP_ROOT/src/ipcexample.c).
This example program takes control of IC-CAP. It then sends
PEL commands to access variables and datasets in an npn
model, performs a time-consuming task, and sends a pin
mapping to IC-CAP and then accesses it.
launch_iccap
int launch_iccap(const char *appName,
 const char *host,
 const char *iccapRoot,
 const char *altPath)

launch_iccap invokes IC-CAP with the IPC link in place.

appName declares the name of the invoking program. This
name cannot contain any spaces. This name will appear in
the interactive dialog selector in IC-CAP as well as within a
menu. If appName is NULL or the null string, the default
link name will be Unnamed_Link.

host specifies the host’s name on which to run. If this string
is not NULL, and if gethostent matches this host with
gethostbyname(), then no remsh or rsh is used. If host is
not NULL (or null string), and it returns a hostent with
gethostbyname, then remsh or rsh will be used to invoke
IC-CAP.

iccapRoot is the path to where IC-CAP has been installed
on the machine on which it is to run. If iccapRoot is NULL,
it is assumed that ICCAP_ROOT is or will be set in the
environment and that $ICCAP_ROOT/bin is already in the
path.
IC-CAP Reference

Controlling IC-CAP from Another Application E

IC-CAP Reference
altPath identifies a different path. Ordinarily,
$ICCAP_ROOT/bin/iccap is used to invoke IC-CAP. Users
often place a wrapper around this script to set up
ICCAP_ROOT and LM_LICENSE_FILE. If this is the case, the
alternate script can be named in this argument.

Returns

launch_iccap returns 0 if successful, or the following error
codes:

-1 - Unable to determine current host.

-2 - Unable to fork.
initialize_session()

int initialize_session()

initialize_session attempts to gain control of the current
IC-CAP session. Once initialized, PEL calls can be sent.
IC-CAP is placed in a special mode on success of this call
which will not raise any error dialogs. It also actively listens
for calls from the link.

Returns

initialize_session() returns 0 if successful, or one of the
following error codes:

-1 - IC-CAP is being used interactively. Message should be
presented to user in this case telling them to set IC-CAP
for Linked Mode.

-2 - General Communications Failure. IC-CAP is not
responding as expected. The link has been broken.

-3 - The session is already running, and waiting for a PEL
response from a prior send_PEL with wait==0.
get_PEL_response must be called.
863

E Controlling IC-CAP from Another Application
terminate_session()
864

int terminate_session()

terminate_session relinquishes control of IC-CAP. This
enables you to interactively use IC-CAP.

Returns

terminate_session() returns 0 if successful, or one of the
following error codes:

-1 - Indicates that IC-CAP is in interactive mode.

-2 - Indicates a communications failure. When -2 is
returned, the link is broken.

-3 - The session can’t be terminated. Waiting for a PEL
response from a prior send_PEL with wait==0.
get_PEL_response must be called.
send_PEL
int send_PEL(const char *PELText, int wait, char **errMsg,
LinkReturnFuncT retfunc)

send_PEL sends PELText across the link to be executed
within IC-CAP. initialize_session() must have been called
successfully prior to this working. The text can be multiline
or a single line of code. Each call to send_PEL essentially
begins a new macro, so temporary variables within text will
not persist between send_PEL calls. However, temporary
variables can be used within multiline PELText. PELText
should be null terminated.

wait specifies if send_PEL should wait for the PEL to finish
before returning. If wait is nonzero, send_PEL will wait. If
wait is 0, send_PEL will return immediately upon sending
the PEL text to IC-CAP. The caller must then, at a later
time, call get_PEL_response() to wait for the call to complete
and collect the return status. See get_PEL_response.

If errMsg is not NULL and a PEL error occurs (noted by
return of -3), it will be set to point to an error message
returned from IC-CAP. The message will be a null
IC-CAP Reference

Controlling IC-CAP from Another Application E

IC-CAP Reference

terminated string and must be freed with free(). No memory
is allocated if NULL is passed to send_PEL, or if no error
occurs. errMsg is only meaningful when -3 is returned.

retfunc points to a function of type LinkReturnFuncT. This
function will be invoked whenever IC-CAP calls one of the
functions ICMSchar, ICMSint, ICMSreal, ICMSstr, or
ICMSarray. The one argument to this function is a pointer
to a LinkReturnS structure as shown in the following
statement:
typedef int (*LinkReturnFuncT)(struct LinkReturnS *);

For details about the structure, see “Details of the LinkReturnS
Structure” on page 868.

Returns

send_PEL() returns 0 if successful, or one of the following
error codes:

-1 - Indicates that IC-CAP is in interactive mode.

-2 - Indicates a communications failure. When -2 is
returned, the link is broken.

-3 - PEL was executed, but an IC-CAP error occurred.
Check errMsg for details.

-4 - PEL could not be sent, because there is a pending
response caused by a prior send_PEL with wait==0.
get_PEL_response
int get_PEL_response(char **errMsg, LinkReturnFuncT retfunc)

get_PEL_response waits PEL from a prior send_PEL (with
wait==0) to complete.

If errMsg is not NULL and a PEL error occurred (error code
-3), it will be set to point to an error message returned from
IC-CAP. The message will be a null terminated string and
must be freed with free(). No memory will be allocated if
NULL is passed to send_PEL, or if no error occurs. errMsg
is only meaningful when -3 is returned.
865

866

E Controlling IC-CAP from Another Application

retfunc points to a function of type LinkReturnFuncT. This
function is invoked when IC-CAP calls one of the functions
ICMSchar, ICMSint, ICMSreal, ICMSstr, or ICMSarray. The
one argument to this function is a pointer to a LinkReturnS
structure as shown in the following statement:
typedef int (*LinkReturnFuncT)(struct LinkReturnS *);

For details about the structure, see “Details of the LinkReturnS
Structure” on page 868.

Returns

get_PEL_response() returns 0 if successful, or one of the
following error codes:

-1 - Indicates that IC-CAP is in interactive mode.

-2 - Indicates a communications failure. When -2 is
returned, the link is broken.

-3 - PEL was executed, but an IC-CAP error occurred.
Check errMsg for details.

-4 - There were no prior send_PEL calls with wait==0 to
wait for.
send_map
int send_map(int *pinMap, int numPins)

send_map sends a new pin matrix mapping to IC-CAP for
use with ICMSpin() or SPECSpin(). The indices of the
pinMap array correspond to the actual pins in the hardware.
The values of pinMap correspond to the logical pad numbers
associated with the pins. For example, if pinMap[5]=12, a
call to SPECSpin(5) would return 12. If hardware contains
no 0 pin, load pinMap[0] with -1.

Returns

send_map() returns 0 if successful, or one of the following
error codes:

-1 - indicates that IC-CAP is in interactive mode.

-2 - indicates a communications failure. When -2 is
returned, the link is broken.
IC-CAP Reference

Controlling IC-CAP from Another Application E

IC-CAP Reference

-3 - Map cannot be sent. Waiting for a PEL response from
a prior send_PEL with wait==0. get_PEL_response must
be called.
867

E Controlling IC-CAP from Another Application
Details of the LinkReturnS Structure
868

struct LinkReturnS {
char type;
int indx;
int asize;
union{char c_val;

int i_val;
double r_val;
double *a_val;
char *s_val;

 } value;
};

type is a single character denoting type of data being
passed: I (Int), C (Char), R (Real), S (String) or X (array).

indx refers to the index field of an ICMSXXXX function call.
This is the index into which ICMS is to place the data.

asize is the size of the array that is passed in. This is 1 for
type I, C, and R. For S, it is the length of the array. For X,
it is the number of points in the data array.

union contains arguments where each x_val corresponds to
the type character.
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

F
ICCAP_FUNC Statement

The PEL statement ICCAP_FUNC replaced MENU_FUNC to
reflect the fact that many objects you act on are not
menu-related. (Note: Existing macros using the MENU_FUNC
statement will still work but we recommend you create new
macros using ICCAP_FUNC.)

The form of the PEL statement is
ICCAP_FUNC()

where () contains at least two arguments, each enclosed in
quotation marks, separated by a comma

• The first argument is the name of the object on which you
want to act

• The second argument is the action you want to perform

• Optional arguments can be used to anticipate prompts during
execution, namely for filenames for reading or writing

An example is shown next:
iccap_func("/CGaas1/dc/DeviceParameterSet","Memory Store")

where

CGaas1 is the model name

dc is the DUT name

DeviceParameterSet is the object on which to act

Memory Store is the action to perform on
DeviceParameterSet (the object)
869Agilent Technologies

F ICCAP_FUNC Statement
The Third
Parameter
870

The optional arguments anticipate the need for information
required to continue macro execution. If the argument is not
included, and information is required, a dialog box appears
prompting the user for the information. Usually, the optional
arguments are file names used when reading from or writing
to files. The following example shows how this optional
argument is used to specify the file fileName.mdm from
which to import data. This anticipates the need for a file
name prompt and so avoids interrupting execution.
Example
 iccap_func("CGaas1/dc/igvg_0vs","Import Data",
"fileName.mdm")

To successfully create macros with the ICCAP_FUNC statement,
you must understand the hierarchy of the objects and specify
the exact names of objects and actions. A tree-like structure,
shown next, illustrates the relationship of the objects.

IC-CAP
|— Variables
|— GUI Items

|— GUI Item
|— Simulation Debugger
|— Hardware

|— HPIB Analyzer
|— PlotOptions
|— MODEL(*)

|— Variables
|— GUI Items

|— GUI Item
|— Circuit
|— PlotOptimizer
|— PlotOptions
|— Parameter Set
|— MACRO(*)
|— DUT(*)

|—Variables
|— GUI Items

|— GUI Item
|—Test Circuit
|—Device Parameter Set
|—SETUP(*)

|—Variables
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference

|— GUI Items
|— GUI Item

|—Instrument Options
|—INPUT(*)
|—OUTPUT(*)
|—TRANSFORM(*)
|—PLOT(*)

|— PlotOptions

When specifying objects at lower levels, you must include the
related objects above them, separating them with slashes. For
example, to perform Save As on an instrument options table,
you would specify:
“/model/DUT/setup/InstrumentOptions”,”Save As”

where model, DUT, and setup are the actual model, DUT, and
setup names.

An asterisk (*) next to an object (in this illustration) indicates
that multiple objects or items with different names can be
specified for that object. For example, a model may have many
DUTs, but only one Parameter Set.

Tips:

• Objects (first argument) are case-sensitive and
space-sensitive; use exact spellings shown throughout this
documentation (spaces shown in the illustration at left are
for readability only). Use the notations ../ and ../.. to indicate
relative path for objects.

• Actions (second argument) are not sensitive to case or
spaces.
871

F ICCAP_FUNC Statement
Objects

IC-CAP
872

Specify using: "IC-CAP", "ic-cap" or "/"
Actions allowed

Change Directory (pg 905)
Clear Status Errors (pg 907)
Clear Status Output (pg 907)
Close Error Log (pg 909)
Close License Window
(pg 910)
Close Output Log (pg 910)
Create Variable Table Variable
(pg 912)
Debug Off (pg 930)
Diagnostics (pg 917)
Exit/Exit! (pg 927)
File Debug Off (pg 930)
File Debug On (pg 929)
License Status (pg 943)

New Model (pg 950)
Open Error Log (pg 952)
Open Hardware (pg 952)
Open Model (pg 953)
Open Output Log (pg 953)
Release License (pg 959)
Save All (pg 964)
Save All No Data (pg 964)
Screen Debug Off (pg 930)
Screen Debug On (pg 969)
Set Variable Table Value
(pg 981)
Simulation Debugger (pg 983)
Status Window (pg 984)
Stop Simulator (pg 984)
IC-CAP Reference

ICCAP_FUNC Statement F
Variables
IC-CAP Reference
Specify using: “<path>/Variables” where <path> is the path to a
Model, DUT, or Setup, or the slash (/) only to specify the
top-level IC-CAP object.
Actions allowed
 Open (pg 951)
Print Via Server (pg 956)
Save As (pg 964)
Save As No Data (pg 965)
Send To Printer (pg 973)
Set Table Field Value (pg 978)
Examples:
 iccap_func("/Variables","Save As")
iccap_func("/CGaas1/Variables","Save As")
iccap_func("/CGaas1/dc/Variables","Save As")
iccap_func("/myModel/myDut/mySetup/Variables","Save As")
GUI Items
Specify using: “GUIItems”

Actions allowed
 Open (pg 951)
Save As (pg 964)
GUI Item
Specify using: “GUIItem”
Actions allowed
 Add GUI (pg 900)
Close GUI (pg 909)
Close Single GUI (pg 910)
Copy (pg 911)
Destroy GUI (pg 916)
Destroy Single GUI (pg 917)
Display Modal GUI (pg 920)
Display Modeless GUI (pg 920)
Display Single Modal GUI (pg 921)
Display Single Modeless GUI (pg 922)
Set GUI Callbacks (pg 975)
Set GUI Options (pg 976)
873

F ICCAP_FUNC Statement
Simulation Debugger
874

Specify using: “SimulationDebugger”
Actions allowed
 Close (pg 908)
Manual Simulation (pg 947)
Save Command File (pg 966)
Save Input File (pg 966)
Save Output File (pg 966)
Simulation Debugger (pg 983)
Example
 iccap_func("ic-cap","Simulation Debugger")
Hardware
Specify using: “Hardware”
Actions allowed
 Add Active Instr (pg 899)
Add Interface File (pg 900)
Change Address (pg 904)
Clear Active List (pg 906)
Close Hardware (pg 910)
Delete Active Instr (pg 914)
Delete Interface File (pg 914)
Diagnostics (pg 918)
Disable Supplies (pg 919)
Display Found Instrs (pg 920)
Read from File (pg 956)
Rebuild Active List (pg 958)
Replace Interface File (pg 960)
Run Self-Tests (pg 963)
Write to File (pg 991)
IC-CAP Reference

ICCAP_FUNC Statement F
HPIB Analyzer
IC-CAP Reference
Specify using: “Hardware/HPIBAnalyzer”
Actions allowed

Bus status (pg 903)
Change Interface File (pg 905)
Check Active Address
(pg 906)
I-O_Lock (pg 933)
I-O_Reset (pg 934)
I-O_Screen Debug ON (pg 934)
I-O_Screen Debug OFF
(pg 934)
I-O_Unlock (pg 935)
Listen Active Address
(pg 944)
Macro File Execute (pg 944)
Macro File Specify (pg 946)
Print Read Buffer (pg 955)
Read String (pg 957)

Read String for Experts
(pg 958)
Search for Instruments
(pg 969)
Send Command Byte (pg 971)
Send, Receive, and Print
(pg 972)
Send String (pg 973)
Serial Poll (pg 974)
Set Active Address (pg 974)
Set Speed (pg 977)
Set Timeout (pg 979)
Talk Active Address (pg 985)
Who Are You (pg 990)
875

F ICCAP_FUNC Statement
MODEL
876

Specify using: “/<name>” where <name> is the name of the
model
Actions allowed

Clear Data/Both (pg 906)
Clear Data/Measured (pg 906)
Clear Data/Simulated
(pg 906)
Close All (pg 908)
Copy (pg 911)
Create Variable Table Variable
(pg 912)
Delete (pg 913)
Display Plots (pg 921)
Edit (pg 925)
Export Dataset (pg 928)
Import Data (pg 938)
Import Measured Data
(pg 939)
Import Measured or
Simulated Data (pg 940)

Import Simulated Data
(pg 940)
Import Simulated or
Measured Data (pg 941)
Open (pg 951)
Open DUT (pg 951)
Open Macro (pg 953)
New DUT (pg 949)
New Macro (pg 950)
Refresh Dataset (pg 959)
Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
Save Extracted Deck (pg 965)
Set Variable Table Value
(pg 981)
Stop Simulator (pg 984)
Circuit
Specify using: "/<model>/Circuit" where <model> is the name of
a model
Actions allowed
 Copy (pg 911)
Import Text (pg 942)
Open (pg 951)
Parse (pg 955)
Save As (pg 964)
Save As No Data (pg 965)
IC-CAP Reference

ICCAP_FUNC Statement F
PlotOptimizer
IC-CAP Reference
Specify using: "/<model>/PlotOptimizer" where <model> is the
name of a model
Actions allowed

Auto Set Min Max (pg 903)
Auto Set Optimize or Auto Set
And Optimize (pg 903)
Clear Plot Optimizer (pg 907)
Clear Table or Clear
Parameter Table (pg 907)
Disable All (pg 918)
Enable All (pg 926)
Optimize (pg 954)
Recall Parameters (pg 958)
Reset Min Max (pg 962)

Reset Option Table (pg 962)
Set Algorithm (pg 974)
Set Error (pg 975)
Set Table Field Value (pg 978)
Simulate All (pg 983)
Simulate Plot Inputs (pg 983)
Store Parameters (pg 984)
Tune Fast (pg 986)
Tune Slow (pg 987)
Undo Optim (pg 988)
PlotOptions

Plot Options are associated with the root IC-CAP object, models,
and plots. To name the plot options, name the object with
/PlotOptions appended (e.g., /PlotOptions,
/modelname/PlotOptions, or
/model/DUT/setup/plot/PlotOptions).
Actions allowed
 Set Table Field Value (pg 978)
Example
 iccap_func("myplot/PlotOptions","SetTableFieldValue",
"<access name>","<value>")

iccap_func("/mymodel/PlotOptions","SetTableFieldValue",
"<access name>","<value>")

iccap_func("/mymodel/PlotOptions","SetTableFieldValue",
"<access name>","<value>")

where <access name> and <value> examples are listed in the
following table:
NOTE To see the current <access name> and <value> settings, save the plot
options from the Plot Options dialog then view in a text editor.
877

878

F ICCAP_FUNC Statement

Table 99 PlotOption Access Name and Value Examples

Description Access Names Values

Setting Trace Color
on white

“On White[Data 0]” "2" (gxvt color index)

Setting Trace Color
on black

“On Black[Data 3]” "4" (gxvt color index)

Setting Symbol “Symbol[Data 0]” “Circle”

Selecting
Multicolor Curve
setting

"Multicolor" "Display all curves with the
configured trace color",
"Change color with every
curve", "Change color with
each 2nd order curve",
"Change color with each
highest order curve"

Selecting
Multicolor Curve
color

"On White[Curve 0]" "2" (gxvt color index)

Selecting Data
Representation

"Measured Trace",
"Simulated Trace",
"Transform Result"

"Symbols Only", "Solid Line",
"Dashed Line". Solid Line with
Symbols"

Layout and
background
settings

"Show Title",
"Show Title",
"Show Header",
“Show Footer",
"Show Legend",
"White Background",
"Show Area Tools"

"Yes", "No", "Automatic"

Selecting font and
size

"Font Type",
"Font Size"

"Arial for CAE", "12"

Selecting font and
size of Annotation

"Annotation Font Name"
"Annotation Font Sz"

"Arial for CAE","9"

Enable/Disable
Annotation

"Enable Annotation" "Yes", "No", "Automatic"

Annotation
Location

"Annotation Location" "Upper Left", etc.
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Annotation text "Annotation Text" "W=10" or use an IC-CAP
variable. Multiline text is
available, each line must be
separated by the string "\012"

Control Via PEL "PEL Control" "Yes", "No", "Automatic"

Specify annotation
macro/transform

"PEL Transform" <name path>

Specify when
updating the
annotation

"PEL Call Type" "0" Only when plot is opened
"1" Every time plot is refreshed

Table 99 PlotOption Access Name and Value Examples (continued)

Description Access Names Values
Parameter Set
Specify using: “/<model>/ParameterSet" where <model> is the
name of a model

Actions allowed
 Copy (pg 911)
Memory Recall (pg 948)
Memory Store (pg 949)
Open (pg 951)
ReadOnlyValues (pg 957)
Reset (pg 961)
Save As (pg 964)
Save As No Data (pg 965)
MACRO
Specify using: "/<model>/<macroName>" where <model> is the
name of a model, and <macroName> is the name of a macro
within that model
Actions allowed
 Copy (pg 911)
Delete (pg 913)
Execute (pg 927)
Open (pg 951)
879

880

F ICCAP_FUNC Statement

Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
IC-CAP Reference

ICCAP_FUNC Statement F
DUT
IC-CAP Reference
Specify using: "/<model>/<DUT>" where <model> is the name of
a model, and <DUT> is the name of a DUT within that model.
Actions allowed

Clear Data/Both (pg 906)
Clear Data/Measured (pg 906)
Clear Data/Simulated
(pg 906)
Close All (pg 908)
Close Branch (pg 908)
Copy (pg 911)
Create Variable Table Variable
(pg 912)
Delete (pg 913)
Display Plots (pg 921)
Export Dataset (pg 928)
Extract (pg 929)
Import Data (pg 938)
Import Measured Data
(pg 939)
Import Measured or
Simulated Data (pg 940)

Import Simulated Data
(pg 940)
Import Simulated or
Measured Data (pg 941)
Measure (pg 948)
New Setup (pg 950)
Open (pg 951)
Open Branch (pg 951)
Open Setup (pg 954)
Optimize (pg 954)
Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
Set Variable Table Value
(pg 981)
Simulate (pg 983)
881

F ICCAP_FUNC Statement
Test Circuit
882

Specify using: "/<model>/<dut>/TestCircuit" where <model> is
the name of a model and <dut> is the name of a DUT within that
model.
Actions allowed
 Copy (pg 911)
Import Text (pg 942)
Open (pg 951)
Parse (pg 955)
Save As (pg 964)
Save As No Data (pg 965)
Device Parameter Set
Specify using: "/<model>/<dut>/DeviceParameterSet" where
<model> is the name of a model and <dut> is the name of a DUT
within that model.
Actions allowed
 Copy (pg 911)
Memory Recall (pg 948)
Memory Store (pg 949)
Open (pg 951)
ReadOnlyValues (pg 957)
Reset (pg 961)
Save As (pg 964)
Save As No Data (pg 965)
IC-CAP Reference

ICCAP_FUNC Statement F
SETUP
IC-CAP Reference
Specify using: "/<model>/<DUT>/<Setup>" where <model> is the
name of a model, and <DUT> is the name of a DUT within that
model, and <Setup> is a setup within that DUT.
Actions allowed

Calibrate (pg 904)
Clear Data/Both (pg 906)
Clear Data/Measured (pg 906)
Clear Data/Simulated
(pg 906)
Close All (pg 908)
Copy (pg 911)
Create Variable Table Variable
(pg 912)
Delete (pg 913)
Display Plots (pg 921)
Export Data Measured
(pg 928)
Export Dataset (pg 928)
Export Data Simulated
(pg 929)
Extract (pg 929)
Import Create (pg 935)
Import Create Header Only
(pg 935)
Import Create Measured
(pg 936)
Import Create Measured or
Simulated (pg 936)
Import Create Simulated
(pg 937)
Import Create Simulated or
Measured (pg 937)

Import Data (pg 938)
Import Delete (pg 939)
Import Measured Data
(pg 939)
Import Measured or
Simulated Data (pg 940)
Import Simulated Data
(pg 940)
Import Simulated or
Measured Data (pg 941)
Measure (pg 948)
New Input (pg 949)
New Output (pg 949)
New Plot (pg 949)
New Transform (pg 949)
Open (pg 951)
Open Input (pg 952)
Open Output (pg 952)
Open Plot (pg 952)
Open Transform (pg 952)
Optimize (pg 954)
Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
Set Variable Table Value
(pg 981)
Simulate (pg 983)
883

F ICCAP_FUNC Statement
Instrument Options
884

Specify using: "/<model>/<DUT>/<Setup>/InstrumentOptions"
where <model> is the name of a model, and <DUT> is the name
of a DUT within that model, and <Setup> is a setup within that
DUT.
Actions allowed
 Open (pg 951)
Save As (pg 964)
Save As No Data (pg 965)
INPUT
Specify using: "/<model>/<DUT>/<Setup>/<Input>" where
<model> is the name of a model, and <DUT> is the name of a
DUT within that model, <Setup> is a setup within that DUT, and
<Input> is the name of an input within the setup.”
Actions allowed
 Copy (pg 911)
Delete (pg 913)
Dump To Stdout (pg 924)
Edit (pg 925)
Open (pg 951)
Print Via Server (pg 956)
Redisplay (pg 959)
Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
Send To Printer (pg 973)
Set Table Field Value (pg 978)
View (pg 990)
IC-CAP Reference

ICCAP_FUNC Statement F
OUTPUT
IC-CAP Reference
Specify using: "/<model>/<DUT>/<Setup>/<Output>" where
<model> is the name of a model, and <DUT> is the name of a
DUT within that model, <Setup> is a setup within that DUT, and
<Output> is the name of an output within the setup.
Actions allowed
 Copy (pg 911)
Delete (pg 913)
Dump To Stdout (pg 924)
Edit (pg 925)
Open (pg 951)
Print Via Server (pg 956)
Redisplay (pg 959)
Rename (pg 960)
Save As (pg 964)
Save As No Data (pg 965)
Send To Printer (pg 973)
Set Table Field Value (pg 978)
View (pg 990)

TRANSFORM
Specify using: "/<model>/<DUT>/<Setup>/<Transform>" where
<model> is the name of a model, and <DUT> is the name of a
DUT within that model, <Setup> is a setup within that DUT, and
<Transform> is the name of a transform within the setup.
Actions allowed
 Auto Set Min Max (pg 903)
Clear Table or Clear Parameter Table (pg 907)
Copy (pg 911)
Delete (pg 913)
Dump To Stdout (pg 924)
Execute (pg 927)
Open (pg 951)
Print Via Server (pg 956)
Recall Parameters (pg 958)
Redisplay (pg 959)
Rename (pg 960)
Reset Min Max (pg 962)
Reset Option Table (pg 962)
Save As (pg 964)
885

886

F ICCAP_FUNC Statement

Save As No Data (pg 965)
Send To Printer (pg 973)
Set Algorithm (pg 974)
Set Error (pg 975)
Set Table Field Value (pg 978)
Store Parameters (pg 984)
Tune Fast (pg 986)
Tune Slow (pg 987)
Undo Optim (pg 988)
View (pg 990)
PLOT
Specify using: “/<model>/<DUT>/<Setup>/<Plot>” where
<model> is the name of a model, and <DUT> is the name of a
DUT within that model, <Setup> is a setup within that DUT, and
<Plot> is the name of a plot within the setup.
IC-CAP Reference

ICCAP_FUNC Statement F
Actions allowed
IC-CAP Reference

Add Global Region (pg 899)
Add Trace Region (pg 901)
Area Tools (pg 901)
Area Tools Off (pg 901)
Area Tools On (pg 902)
Autoconfigure or
Autoconfigure And Enable
(pg 902)
Autoscale (pg 902)
Close (pg 908)
Color (pg 911)
Copy (pg 911)
Copy to Clipboard (pg 912)
Copy to Variables (pg 912)
Data Markers (pg 913)
Delete (pg 913)
Delete Global Regions
(pg 915)
Delete Trace Regions (pg 915)
Delete All User Regions
(pg 916)
Display Plot (pg 921)
Hide Highlighted Curves
(pg 932)
Legend Off (pg 943)
Legend On (pg 943)

Manual Rescale (pg 947)
Mark Curve Highlighted
(pg 947)
Open (pg 951)
Open Plot Optimizer (pg 954)
Print Via Server (pg 956)
Rescale (pg 961)
Reset to Saved Options
(pg 962)
Redisplay (pg 959)
Rename (pg 960)
Replot (pg 960)
Reset Global Region (pg 961)
Reset Trace Region (pg 963)
Save As (pg 964)
Save As No Data (pg 965)
Save Image (pg 966)
Scale Plot (pg 967)
Scale Plot Preview (pg 967)
Scale RI Plot (pg 968)
Show Highlighted Curves
(pg 982)

Turn Off Marker (pg 987)
Unmark All Highlighted
Curves (pg 988)
Unmark Highlighted Curve
(pg 989)
887

888

F ICCAP_FUNC Statement

Delete User Region (pg 916)
Disable All Traces (pg 918)
Disable Plot (pg 919)
Disable Trace (pg 919)
Display Plot (pg 921)
Display Plots (pg 921)
Draw Diag Line (pg 922)
Dump To Plotter (pg 923)
Dump To Printer (pg 923)
Dump Via Server (pg 924)
Dump Via Server UI (pg 925)
Edit (pg 925)
Enable Plot (pg 926)
Exchange Black-White
(pg 927)
Footer (pg 930)
Footer Off (pg 931)
Footer On (pg 931)
Full Page Plot (pg 931)
Header (pg 932)
Header Off (pg 932)
Header On (pg 932)
Legend (pg 942)

Scale RI Plot Preview (pg 968)
Select Error Region (pg 970)
Select Plot (pg 970)
Select Whole Plot (pg 971)
Send To Printer (pg 973)
Set Table Field Value (pg 978)
Set Target Vs Simulated
(pg 979)
Set Trace As Both (pg 980)
Set User Region (pg 980)
Show Absolute Error (pg 981)
Show Relative Error (pg 982)
Text Annotation (pg 985)
Text Annotation Off (pg 985)
Text Annotation On (pg 986)
Toggle Zoom (pg 986)
Undo Zoom (pg 988)
Unselect All (pg 989)
Update Annotation (pg 990)
View (pg 990)
Zoom Plot (pg 991)
IC-CAP Reference

ICCAP_FUNC Statement F
Actions
IC-CAP Reference
Actions can be used to automate many IC-CAP dialog buttons
and menu picks. The following tables cross-reference GUI
buttons or menu picks to their corresponding actions.

Table 100 Hardware Setup Window Cross-Reference

Button/Menu Pick Action

Add Interface “Add Interface File” on page 900

Add to List “Add Active Instr” on page 899

Configure > Instrument Address “Change Address” on page 904

Delete “Delete Active Instr” on page 914

DeleteAll “Clear Active List” on page 906

Delete Interface “Delete Interface File” on page 914

File > Close Window “Close Hardware” on page 910

File > Open “Read from File” on page 956

File > Save “Write to File” on page 991

Instruments > Display “Display Found Instrs” on page 920

Instruments > Find “Search for Instruments” on page 969

Instruments > Self Test “Run Self-Tests” on page 963

Instruments > Usage “Diagnostics” on page 918

Instruments > Zero Sources “Disable Supplies” on page 919

Rebuild “Rebuild Active List” on page 958

Tools > Address > Check “Check Active Address” on page 906

Tools > Address > Listen “Listen Active Address” on page 944

Tools > Address > Set “Set Active Address” on page 974

Tools > Address > Talk “Talk Active Address” on page 985

Tools > Address > Who Are You? “Who Are You” on page 990
889

F ICCAP_FUNC Statement

Tools > Interface > Change “Change Interface File” on page 905

Tools > Interface > Lock “I-O_Lock” on page 933

Tools > Interface > Reset “I-O_Reset” on page 934

Tools > Interface > Status “Bus status” on page 903

Tools > Interface > Unlock “I-O_Unlock” on page 935

Tools > Macros > Execute “Macro File Execute” on page 944

Tools > Macros > Specify “Macro File Specify” on page 946

Tools > Send Receive > Display String “Print Read Buffer” on page 955

Tools > Send Receive > Read String for Experts “Read String for Experts” on page 958

Tools > Send Receive > Receive String “Read String” on page 957

Tools > Send Receive > Send Byte “Send Command Byte” on page 971

Tools > Send Receive > Send Receive Display “Send, Receive, and Print” on page 972

Tools > Send Receive > Send String “Send String” on page 973

Tools > Serial Poll “Serial Poll” on page 974

Tools > Settings > Timeout “Set Timeout” on page 979

View > Screen Debug “I-O_Screen Debug OFF” on page 934
“I-O_Screen Debug ON” on page 934

Table 101 License Status Cross-Reference

Button/Menu Pick Action

OK “Close License Window” on page 910

Release “Release License” on page 959

Table 100 Hardware Setup Window Cross-Reference (continued)

Button/Menu Pick Action
890 IC-CAP Reference

ICCAP_FUNC Statement F

Table 102 Main Window Cross-Reference

Button/Menu Pick Action

File > Change Directory “Change Directory” on page 905

Edit > Copy “Copy” on page 911

Edit > Delete “Delete” on page 913

File > Edit “Edit” on page 925

File > Exit “Exit/Exit!” on page 927

File > New “New Model” on page 950

File > Open “Open Model” on page 953

File > Save As “Save All” on page 964
“Save All No Data” on page 964

Tools > Hardware Setup “Open Hardware” on page 952

Tools > License Status “License Status” on page 943

Tools > Options > Diagnostics “Diagnostics” on page 917

Tools > Options > File Debug “File Debug On” on page 929
“File/Screen Debug Off” on page 930

Tools > Options > Screen Debug “File/Screen Debug Off” on page 930
“Screen Debug On” on page 969

Tools > Simulation Debugger “Simulation Debugger” on page 983

Tools > Stop Simulator “Stop Simulator” on page 984

Windows > Status Window “Status Window” on page 984

Table 103 Model Window Cross-Reference

Button/Menu Pick Action

Circuit folder, Import Text “Import Text” on page 942

Circuit folder, Parse “Parse” on page 955

Data > Plots > Display All “Display Plots” on page 921
IC-CAP Reference 891

F ICCAP_FUNC Statement

Duts/Setups folder, Add “New DUT” on page 949
“New Setup” on page 950

DUTs/Setups, Extract/Optimize folder, Algorithm “Set Algorithm” on page 974

DUTs/Setups, Extract/Optimize folder, Error “Set Error” on page 975

DUTs/Setups, Extract/Optimize folder, Execute “Execute” on page 927

DUTs/Setups, Extract/Optimize folder, Recall Par “Recall Parameters” on page 958

DUTs/Setups, Extract/Optimize folder, Store Par “Store Parameters” on page 984

DUTs/Setups, Extract/Optimize folder, Tune Fast “Tune Fast” on page 986

DUTs/Setups, Extract/Optimize folder, Tune Slow “Tune Slow” on page 987

DUTs/Setups, Extract/Optimize folder, Undo Optim “Undo Optim” on page 988

DUTs/Setups, Extract/Optimize, Parameters folder, Autoset “Auto Set Min Max” on page 903

DUTs/Setups, Extract/Optimize, Parameters folder, Clear
Table

“Clear Table or Clear Parameter Table” on page 907

DUTs/Setups, Extract/Optimize, Parameters folder, Reset “Reset Min Max” on page 962

DUTs/Setups, Instrument Options folder “Set Instrument Option Value” on page 977

DUTs/Setups, Measure/Simulate folder, Calibrate “Calibrate” on page 904

DUTs/Setups, Measure/Simulate folder, Clear > Measured,
Simulated or Both Measured Simulated

“Clear Data/Simulated/Measured/Both” on page 906

DUTs/Setups, Measure/Simulate folder, Export Data “Export Data Measured” on page 928
“Export Data Simulated” on page 929

DUTs/Setups, Measure/Simulate folder, Import Create “Import Create” on page 935
“Import Create Header Only” on page 935
“Import Create Measured” on page 936
“Import Create Measured or Simulated” on page 936
“Import Create Simulated” on page 937
“Import Create Simulated or Measured” on page 937

DUTs/Setups, Measure/Simulate folder, Measure “Measure” on page 948

DUTs/Setups, Measure/Simulate folder, Simulate “Simulate” on page 983

DUTs/Setups, Measure/Simulate folder, View “View” on page 990

Table 103 Model Window Cross-Reference (continued)

Button/Menu Pick Action
892 IC-CAP Reference

ICCAP_FUNC Statement F

DUTs/Setups, Measure/Simulate and Plots folder “Set Table Field Value” on page 978

DUTs/Setups, Measure/Simulate folder, Input or Output,
View, Dump to Stdout

“Dump To Stdout” on page 924

DUTs/Setups, Measure/Simulate folder, Input or Output,
View, Print

“Dump To Plotter” on page 923
“Dump To Printer” on page 923
“Dump Via Server” on page 924
“Send To Printer” on page 973

DUTs/Setups, Measure/Simulate, Setup Variables folder,
System Variables

“Create Variable Table Variable” on page 912

DUTs/Setups, Setup Variables folder “Set Variable Table Value” on page 981

DUTs/Setups, Plots folder, Display Plot “Display Plot” on page 921

DUTs/Setups, Plots folder, Display Plots “Display Plots” on page 921

Edit > Cut Setup/Input “Import Delete” on page 939

Extract > Active Setup or Active DUT “Extract” on page 929

File > Close “Close All” on page 908

File > Export Data “Export Dataset” on page 928

File > Export Data > Extracted Deck “Save Extracted Deck” on page 965

File > Import Data “Import Data” on page 938
“Import Measured Data” on page 939
“Import Measured or Simulated Data” on page 940
“Import Simulated Data” on page 940
“Import Simulated or Measured Data” on page 941

File > Open “Open” on page 951
“Open DUT” on page 951
“Open Setup” on page 954
“ReadOnlyValues” on page 957

File > Open (Input, Output, Transform, or Plot level selection) “Open Input/Output/Transform/Plot” on page 952

File > Open (for Macro) “Open Macro” on page 953

File > Print, (various dialogs) > Print “Print Via Server” on page 956

Table 103 Model Window Cross-Reference (continued)

Button/Menu Pick Action
IC-CAP Reference 893

F ICCAP_FUNC Statement

File > Save As “Save As” on page 964
“Save As No Data” on page 965

Macro folder, New “New Macro” on page 950

Model Parameters folder, Memory Recall “Memory Recall” on page 948

Model Parameters folder, Memory Store “Memory Store” on page 949

Model Parameters folder, Reset “Reset” on page 961

Optimize > Active Setup or Active DUT “Optimize” on page 954

Tools > Plot Optimizer “Open Plot Optimizer” on page 954

Tools > Refresh Last Dataset “Refresh Dataset” on page 959

(various locations) > New “New Input/Output/Transform/Plot” on page 949

Table 104 Plot Optimizer Window Cross-Reference

Button/Menu Pick Action

Algorithm “Set Algorithm” on page 974

Parameters folder, Clear Table “Clear Table or Clear Parameter Table” on page 907

Error “Set Error” on page 975

Options folder, Print Settings “Dump To Plotter” on page 923
“Dump To Printer” on page 923
“Dump Via Server” on page 924
“Send To Printer” on page 973

File > Clear Plot Optimizer “Clear Plot Optimizer” on page 907

File > Reset Option Table “Reset Option Table” on page 962

File > Close “Close” on page 908

Optimize > Tune Fast “Tune Fast” on page 986

Optimize > Tune Slow “Tune Slow” on page 987

Tools > Undo Optim “Undo Optim” on page 988

Table 103 Model Window Cross-Reference (continued)

Button/Menu Pick Action
894 IC-CAP Reference

ICCAP_FUNC Statement F

Plots > Disable All “Disable All” on page 918

Plots > Enable All “Enable All” on page 926

Simulate > plot name “Simulate Plot Inputs” on page 983

Simulate > Simulate All “Simulate All” on page 983

Tools > AutoSet Min and Max “Auto Set Min Max” on page 903

Tools > Recall Parameters “Recall Parameters” on page 958

Tools > Reset Min and Max “Reset Min Max” on page 962

Tools > Store Parameters “Store Parameters” on page 984

Table 105 Plots Window Cross-Reference

Button/Menu Pick Action

File > Close “Close” on page 908

File > Print “Dump Via Server UI” on page 925

File > Save Image “Save Image” on page 966

Optimizer > Autoconfigure and Enable “Autoconfigure or Autoconfigure And Enable” on page 902

Optimizer > Disable All Traces “Disable All Traces” on page 918

Optimizer > Enable/Disable Plot “Disable Plot” on page 919
“Enable Plot” on page 926

Optimizer > Global Region > Delete All “Delete Global Regions” on page 915

Optimizer > Global Region > Reset “Reset Global Region” on page 961

Optimizer > Open Optimizer “Open Plot Optimizer” on page 954

Optimizer > trace > Disable “Disable Trace” on page 919

Optimizer > trace > Set as Both Target and Simulated “Set Trace As Both” on page 980

Optimizer > trace > Set as Target vs. “Set Target Vs Simulated” on page 979

Optimizer > trace > Trace Optimizer Region > Add “Add Trace Region” on page 901

Table 104 Plot Optimizer Window Cross-Reference (continued)

Button/Menu Pick Action
IC-CAP Reference 895

F ICCAP_FUNC Statement

Optimizer > trace > Trace Optimizer Region > DeleteAll “Delete Trace Regions” on page 915

Optimizer > trace > Trace Optimizer Region > Reset “Reset Trace Region” on page 963

Options > Autoscale “Autoscale” on page 902

Options > Copy to Clipboard “Copy to Clipboard” on page 912

Options > Copy to Variables “Copy to Variables” on page 912

Options > Draw Diag Line “Draw Diag Line” on page 922

Options > Edit Definition “Edit” on page 925

Options > Error > Select Error Region “Select Error Region” on page 970

Options > Error > Select Whole Plot “Select Whole Plot” on page 971

Options > Error > Show Absolute Error “Show Absolute Error” on page 981

Options > Error > Show Relative Error “Show Relative Error” on page 982

Options > Manual rescale “Manual Rescale” on page 947
“Scale Plot/Scale Plot Preview” on page 967
“Scale RI Plot/Scale RI Plot Preview” on page 968

Options > Replot “Replot” on page 960

Options > Rescale “Rescale” on page 961

Options > Session Settings > Area Tools “Area Tools” on page 901

Options > Session Settings > Color “Color” on page 911

Options > Session Settings > Exchange Black-White “Exchange Black-White” on page 927

Options > Session Settings > Footer “Footer” on page 930

Options > Session Settings > Header “Header” on page 932

Options > Session Settings > Legend “Legend” on page 942

Options > Session Settings > Reset to Saved Options “Reset to Saved Options” on page 962

Options > Session Settings > Text Annotation “Text Annotation” on page 985

Options > Update Annotation “Update Annotation” on page 990

Plots > Full Page Plot “Full Page Plot” on page 931

Table 105 Plots Window Cross-Reference (continued)

Button/Menu Pick Action
896 IC-CAP Reference

ICCAP_FUNC Statement F

Plots > Select Plot “Select Plot” on page 970

Plots > Undo Zoom “Undo Zoom” on page 988

Plots > Unselect All “Unselect All” on page 989

Plots > Zoom Plot “Zoom Plot” on page 991

Table 106 Simulation Debugger Window Cross-Reference

Button/Menu Pick Action

File > Close “Close” on page 908

File > Manual Simulation “Manual Simulation” on page 947

File > Save Command File
File > Save Input File
File > Save Output File

“Save Input/Command/Output File” on page 966

Table 107 Status Window Cross-Reference

Button/Menu Pick Action

File > Clear > Errors “Clear Status Errors” on page 907

File > Clear > Outputs “Clear Status Output” on page 907

File > Close Error Log “Close Error Log” on page 909

File > Close Output Log “Close Output Log” on page 910

File > Open Error Log “Open Error Log” on page 952

File > Open Output Log “Open Output Log” on page 953

Table 108 System GUI Items Cross-Reference

Button/Menu Pick Action

Add, Add Child “Add GUI” on page 900

Table 105 Plots Window Cross-Reference (continued)

Button/Menu Pick Action
IC-CAP Reference 897

F ICCAP_FUNC Statement

Close GUI “Close GUI” on page 909

Close Single GUI “Close Single GUI” on page 910

Destroy GUI “Destroy GUI” on page 916

Destroy Single GUI “Destroy Single GUI” on page 917

Display Modal GUI “Display Modal GUI” on page 920

Display Modeless GUI “Display Modeless GUI” on page 920

Display Single Modal GUI “Display Single Modal GUI” on page 921

Display Single Modeless GUI “Display Single Modeless GUI” on page 922

Set GUI Callbacks “Set GUI Callbacks” on page 975

Set GUI Options “Set GUI Options” on page 976

Table 108 System GUI Items Cross-Reference (continued)

Button/Menu Pick Action
898 IC-CAP Reference

ICCAP_FUNC Statement F
Add Active Instr
IC-CAP Reference
Automates the functionality of the “Add to List” button in the
Hardware Setup window’s Instrument Library field.
Valid Objects

Hardware

menu_func style command: "Add Active Instr"

Adds the instrument selected in the Instrument Library to the
Instrument List. To execute this function manually, the user
selects an instrument from the Instrument Library, then presses
the "Add to List" button. This functionality is emulated in PEL
by appending the instrument to be added in the format:

"library name.select code.address"

followed by "ok" to the end of the command string.

Where

library name is the instrument model number exactly as it is
listed in the Instrument Library.
select code is the bus address (in decimal notation) of the
GPIB card.
address is the address (in decimal notation) of instrument,
as set on the instrument itself.
Example
 iccap_func("Hardware","Add Active Instr","HP8510.7.16","ok")
Add Global Region
Automates the Optimizer > Global Region > Add menu pick in a
plot window.
Valid Objects
 Plot

menu_func style command: none

Adds a global trace region without deleting existing global trace
regions.
Example
 iccap_func("./dc/fgummel/ibicvsve", "AddGlobalRegion",
"0.6", "0.8", "-8", "-3")

! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AddGlobalRegion",

"0.6", "0.8", "-8", "-3", "1")
899

F ICCAP_FUNC Statement
See Also
900

Delete Global Regions (pg 915)
Add GUI
Automates the functionality of the “Add” and “Add Child”
buttons in the System GUI Items window.
Valid Objects
 GUI Item

menu_func style command: none

Adds Items to a GUI Items page or another GUI Item. You must
specify the Item’s name and type code. To see the codes for all
Item types, select the Show Codes button on the Properties
dialog of a GUI Item.
Example
 iccap_func("./GUIItems","Add GUI","ANewTable","TL")
iccap_func("./ANewTable","Add GUI","Button","PB")
See Also
 Close GUI (pg 909), Close Single GUI (pg 910), Destroy GUI
(pg 916), Destroy Single GUI (pg 917), Display Modal GUI
(pg 920), Display Modeless GUI (pg 920), Display Single Modal
GUI (pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
Add Interface File
Automates the functionality of the “Add Interface” button in the
Hardware Setup window’s GPIB Interface field.
Valid Objects
 Hardware

menu_func style command: "Add Active Interface"

Adds a GPIB Interface to the system. If this function were
executed manually, a dialog box would appear asking the user
for the name of the interface to be added. This functionality is
emulated in PEL by appending the interface to be added
followed by “ok” to the end of the command string.
Example
 iccap_func("Hardware","Add Interface File","hpib","ok")
IC-CAP Reference

ICCAP_FUNC Statement F
Add Trace Region
IC-CAP Reference
Automates the Optimizer > trace > Trace Optimizer Region >
Add menu pick in a plot window.
Valid Objects
 Plot

menu_func style command: none

Adds a trace optimizer region for the specified trace without
deleting existing trace optimizer regions.
Example
 iccap_func("./dc/fgummel/ibicvsve", "AddTraceRegion",
"Y Data 0", "0.6", "0.8", "-8", "-3")

iccap_func("./dc/fgummel/bvsic", "AddTraceRegion",
"Y Data 0", "1e-8", "1e-4", "20", "60")

! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AddTraceRegion",

"Y Data 0", "1e-8", "1e-4", "20", "60", "1")
See Also
 Delete Trace Regions (pg 915)
Area Tools

Automates the Options > Session Settings > Area Tools menu
pick in a plot window.
Valid Objects
 Plot

menu_func style command: none

Toggles the Area Tools on and off for the specified plot window.
Example
 iccap_func("./dc/fgummel/bvsic", "AreaTools")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaTools", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaTools")
See Also
 Area Tools Off (pg 901), Area Tools On (pg 902)
Area Tools Off
Hides the Area Tools for the specified plot window.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "AreaToolsOff")
901

902

F ICCAP_FUNC Statement
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaToolsOff", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaToolsOff")
See Also
 Area Tools (pg 901), Area Tools On (pg 902)
Area Tools On
Displays the Area Tools for the specified plot window.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "AreaToolsOn")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaToolsOn", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "AreaToolsOn")
See Also
 Area Tools (pg 901), Area Tools Off (pg 901)

Autoconfigure or Autoconfigure And Enable
Automates the Optimizer > Autoconfigure and Enable menu
pick in a plot window
Valid Objects
 Plot

menu_func style command: none

Automatically enables and configures the inputs in a Plot
window.
Example
 iccap_func("dc/fgummel/icibvsve", "Autoconfigure")
iccap_func("dc/fgummel/icibvsve", "AutoconfigureAndEnable")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "Autoconfigure", "1")
! Apply to all plots in a Multiplot
iccap_func("dc/fgummel/my_multiplot", "Autoconfigure")
Autoscale
Automates the Options > Autoscale menu pick in a plot window
Valid Objects
 Plot

menu_func style command: “Replot Data”
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Toggles whether the plot automatically rescales when the data
changes.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg", "Autoscale")
! Specify plot number for Multiplot
iccap_func("/CGaas1/dc/igvg/my_multiplot", "Autoscale", "1")
! Apply to all plots in a Multiplot
iccap_func("/CGaas1/dc/igvg/my_multiplot", "Autoscale")
Auto Set Min Max
Automates the Tools > AutoSet Min Max menu pick in the Plot
Optimizer window and the Auto Set button in the
Extract/Optimize folder.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Sets minimum and maximum optimizer parameter values based
on the value of the coefficient defined with the
AUTOSET_COEFF variable. The default coefficient value is 5.

Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”Auto Set Min Max”)
iccap_func(“./PlotOptimizer”,”Auto Set Min Max”)
Auto Set Optimize or Auto Set And Optimize
Automates the Optimizer > Autoset Min/Max and Optimize
menu pick in the Plot Optimizer window.
Valid Objects
 Plot Optimizer

menu_func style command: none

Sets minimum and maximum optimizer parameter values based
on the value of the coefficient defined with the
AUTOSET_COEFF variable then runs an optimization. The
default coefficient value is 5.
Example
 iccap_func(“./PlotOptimizer”,”AutoSetAndOptimize”)
Bus status
Automates the functionality of the “Tools/Interface/Status”
menu pick in the Hardware Setup window.
903

F ICCAP_FUNC Statement
Valid Objects
904
Hardware/HPIBAnalyzer

menu_func style command: "Bus status"

Provides information on the status of the current interface
including:

• Name

• Select Code

• Bus Address

• System Controller State

• Active Controller State

• Talker State

• Listener State

• SRQ State

• NDAC State

This information is displayed in the IC-CAP/Status window and,
if visible, the Hardware Setup window.
 Example
 iccap_func("Hardware/HPIBAnalyzer","Bus status")
Calibrate
Automates the Measure/Simulate folder’s Calibrate button.
Valid Objects
 Setup

menu_func style command: “Calibrate”

Performs calibration on the specified setup
Example
 iccap_func("CGaas1/dc/igvg_0vs","Calibrate")
Change Address
Automates the functionality of the Instrument Address spin box
in the dialog box displayed by the Configure button in the
Instrument List in the Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: "Change Address"
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Sets the address of the specified instrument. If this function
were executed manually, the desired new address would be read
from the spin box in the Configuration Dialog Box when the OK
button was pushed. This functionality is emulated in PEL by
appending the old GPIB name string in the format:
"library name.select code.address"

followed by "ok" and the new desired address followed by "ok" to
the end of the command string.
Example
 iccap_func("Hardware","Change Address",
"HP3577.7.18","ok","19","ok")
Change Directory
Automates IC-CAP/Main File > Change Directory
Valid Objects

IC-CAP

menu_func style command: “Utilities/Change Directory”

Prompts for the name of a new directory to use as the current
working directory. The directory prompt can be anticipated by
the third argument.
Example
 iccap_func("ic-cap","Change Directory",
"/users/me/my_other_work_dir")
Change Interface File
Automates the functionality of the Tools > Interface > Change
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Change Interface File"

Changes the currently active GPIB interface. All further
commands of the GPIB Analyzer will be directed to this new
interface. If this function were executed manually, a dialog box
would appear asking the user for the name of the new interface.
This functionality is emulated in PEL by appending the name of
the new interface followed by "ok" to the end of the command
string.
Example
 iccap_func("Hardware/HPIBAnalyzer","Change Interface File",
"new_name","ok")
905

F ICCAP_FUNC Statement
Check Active Address
906
Automates the functionality of the Tools > Address > Check
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Check Active Address"

This function sends a serial poll to the device at the currently
active address as previously set by a call to “Set Active
Address.” The result is displayed in the IC-CAP/Status window
and, if visible, the Hardware Setup window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Set Active Address",
"8","ok")

iccap_func("Hardware/HPIBAnalyzer","Check Active Address")
Clear Active List
Automates the functionality of the DeleteAll button in the
Hardware Setup window’s Instrument List field.
 Valid Objects
 Hardware

menu_func style command: "Clear Active List"

Removes all instruments in all setups from the Active
Instrument List.
Example
 iccap_func("Hardware","Clear Active List")
Clear Data/Simulated/Measured/Both
• Clear Data/Simulated

• Clear Data/Measured

• Clear Data/Both

Automates the Model Window's Data > Clear Active Setup Data
functionality or the Clear button in the Measure/Simulate
folder.
Valid Objects
 Model, DUT, Setup

menu_func style commands were the same.
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Clears the specified type of data from the outputs and
transforms of the named Model, named DUT, or named setup.
Examples
 iccap_func("/CGaas1/dc/igvg_0vs","Clear Data/Simulated")
iccap_func("/CGaas1/dc","Clear Data/Measured")
iccap_func("/CGaas1","Clear Data/Both")
Clear Plot Optimizer
Automates the File > Clear Plot Optimizer menu pick in the Plot
Optimizer window.
Valid Objects
 Plot Optimizer

menu_func style command: none

Disables all traces and regions in the plots, disables all open
plots, and clears the Parameters table.
Example
 iccap_func(“./PlotOptimizer”,”Clear Plot Optimizer”)
See Also
 Clear Table or Clear Parameter Table (pg 907)

Clear Status Errors
Clears Status window’s Warnings/Errors.
Valid Objects
 IC-CAP

menu_func style command: none
Example
 iccap_func("/","Clear Status Errors")
Clear Status Output
Clears Status window’s IC-CAP Output.
Valid Objects
 IC-CAP

menu_func style command: none
Example
 iccap_func("/","Clear Status Output")
Clear Table or Clear Parameter Table
Automates the Clear Table button on the Parameter folder in
the Plot Optimizer window and in the Extract/Optimize folder.
907

F ICCAP_FUNC Statement
Valid Objects
908
Transform, Plot Optimizer

menu_func style command: none

Deletes all parameters and variables in the optimizer’s
parameter folder.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”Clear Table”)
iccap_func(“./PlotOptimizer”,”Clear Table”)
See Also
 Clear Plot Optimizer (pg 907)
Close
Automates the IC-CAP/Simulation Debugger or Plot window’s
File > Close functionality.
Valid Objects
 Simulation Debugger, Plot

menu_func style command: “Close”

Closes the Simulation Debugger or Plot window if open.
 Example
 iccap_func("Simulation Debugger","Close")
! closed Simulation Debugger
iccap_func("/npn/dc/fgummel/ibicvsve","Close")
!closes plot
Close All
Automates the Model window’s File > Close functionality.
Valid Objects
 Model, DUT, Setup

menu_func style command: “Close All”

Closes the model window and all associated windows, or all plot
windows within a named DUT or setup.
Example
 iccap_func("/CGaas1","Close All")
! closes model and all children
iccap_func("/CGaas1/dc","Close All")
! closes all plots within DUT
Close Branch
Automates the action of closing a DUT on the DUTs/Setups tree.
Valid Objects
 DUT
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
menu_func style command: none

Closes a DUT on the DUTs/Setups tree. By default, if you
fabricate new DUTs with iccap_func Add DUT, the branch will
be in the open state. Use this iccap_func to close it.
Example
 iccap_func(“/mymodel/mydut”,“Close Branch”)
See Also
 Open Branch (pg 951)
Close Error Log
Automates the IC-CAP/Status window’s Close Error Log
functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Closes the error log file.
Example
 iccap_func("ic-cap","Close Error Log")

Close GUI
Automates closing an instance of a GUI item.
Valid Objects
 GUI Item

menu_func style command: none

Closes the named instance of a GUI item. Although no longer
displayed, the GUI item still reacts to modifications to the
variables page, etc.
Example
 iccap_func("/mdl/dut/orSet/GUIName","Close GUI",
"InstanceName")
See Also
 Add GUI (pg 900), Close Single GUI (pg 910), Destroy GUI
(pg 916), Destroy Single GUI (pg 917), Display Modal GUI
(pg 920), Display Modeless GUI (pg 920), Display Single Modal
GUI (pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
909

F ICCAP_FUNC Statement
Close Hardware
910

Automates the functionality of the File > Close Window menu
pick in the Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: none

This function closes the Hardware Setup window.
Example
 iccap_func("Hardware","Close Hardware")
Close License Window
Automates the functionality of the OK button in the License
Status window. The window must be currently displayed (either
by a License Status call or by choosing Tools > License Status in
the Main window).
Valid Objects
 IC-CAP

menu_func style command: none

This function closes the License Status window.
Example
 iccap_func("IC-CAP","Close License Window")
Close Output Log
Automates the IC-CAP/Status window’s Close Output Log
functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Closes the output log file.
Example
 iccap_func("ic-cap","Close Output Log")
Close Single GUI
Automates closing a single displayed GUI item.
Valid Objects
 GUI Item
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
menu_func style command: none

Closes the displayed GUI item. Although no longer displayed,
the GUI item still reacts to modifications to the variables page,
etc.
Example
 iccap_func("/mdl/dut/orSet/GUIName","Close Single GUI")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Destroy GUI (pg 916),
Destroy Single GUI (pg 917), Display Modal GUI (pg 920),
Display Modeless GUI (pg 920), Display Single Modal GUI
(pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
Color
Automates the Options > Session Settings > Color menu pick in
a plot window.
Valid Objects

Plot

Toggles between color and black and white. Each time you c all
you either go to color or to black and white.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Color")
Copy
Automates copying an item to a new name, but does not permit
undo or paste after completion.
Valid Objects
 Model, Macro, DUT, Setup, Input, Output, Transform, Plot,
Circuit, Test Circuit, Parameter Set, Device Parameter Set, GUI
Item.

menu_func style command: “Copy”

Prompts for the name of the copied item, or uses the optional
third argument if provided. The name of the copied item is
determined relative to the item being copied, not relative to the
transform/macro being run. Whether prompted or supplying
the optional third argument, the name of the copied item must
name the item. Thus to copy item item to container container,
you must specify the copied name as container/item, not simply
container.
911

F ICCAP_FUNC Statement
Example
912
iccap_func("/CGaas1","Copy","myCGaas1")
iccap_func("/CGaas1/extract","Copy","myCGaas1/extract2")
iccap_func("/mymodel/myGUI.subgui","Copy","newgui")
! creates /mymodel/myGUI.newgui
iccap_func("/mymodel/myGUI.subgui","Copy","./newGUI")
! creates /mymodel/newGUI (name relative to copied item)
Copy to Clipboard
Automates the Options > Copy to Clipboard menu pick in a plot
window. This feature is only available for the PC version of
IC-CAP.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Copy to
Clipboard")
Copy to Variables
Automates the Options > Copy to Variables menu pick in a plot
window.

Valid Objects
 Plot

menu_func style command: “Set Variables”

Sets X_HIGH, X_LOW, Y_HIGH, and Y_LOW if those variables
exist somewhere that the plot can see them and if a box has
been selected on the graph. This function is not available for the
Multiplot window.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Copy to
Variables")
Create Variable Table Variable
Automates adding a new variable to a Variable table.
Valid Objects
 IC-CAP, Model, DUT, Setup

menu_func style command: none

Uses one anticipated argument to name the variable to add to
the Variable table on the noted object. Note, if this variable
already exists, no action is taken.
IC-CAP Reference

ICCAP_FUNC Statement F
NOTE You cannot directly refer to a newly created variable in the PEL program
that created it. Indirect references such as lookup_var() and iccap_func
with “Set Variable Table Value” will work.

Variable identification is handled when a PEL program is parsed. Assuming
'newVar' does not exist in any Variable table, the following code example
treats newVar as a local variable:

iccap_func(".","CreateVariableTableVariable","newVar")
newVar=12
! newVar is local to PEL only, won't reference Variable table

However, if you run the same lines twice, the second time the iccap_func
does nothing and newVar is identified in the Variable table before the
program runs, and newVar will refer to the Variable table.
Examples
IC-CAP Reference
iccap_func("/npn","CreateVariableTableVariable",
"newVariable")
See Also
 Set Table Field Value (pg 978), Set Variable Table Value (pg 981)

Data Markers
Automates the Options > Data Markers menu pick in a plot
window
Valid Objects
 Plot

menu_func style command: “Line Number On Off”

Toggles whether Data Markers are displayed on the plot.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Data Markers")
Delete
Automates Edit > Delete (no Undo) menu selection
Valid Objects
 Model, Macro, DUT, Setup, Input, Output, Transform, Plot

menu_func style command: “Delete”

Deletes the named object from the system. No Undo
Example
 iccap_func("/CGaas1","Delete")
913

F ICCAP_FUNC Statement
Delete Active Instr
914

Automates the functionality of the Delete button in the
Hardware Setup window’s Instrument List field.
Valid Objects
 Hardware

menu_func style command: "Delete Active Instr"

Deletes the instrument selected in the Instrument List from the
Active Instrument List. If this function were executed manually,
the user would select the instrument in the Instrument List
field and press the "Delete" button. This functionality is
emulated in PEL by appending the instrument to be deleted in
the format:

"library name.select code.address"

followed by "ok" to the end of the command string.

Where

library name is the instrument model number exactly as it is
listed in the Instrument Library.
select code is the bus address (in decimal notation) of the
GPIB card.
address is the address (in decimal notation) of instrument,
as set on the instrument itself.
Example
 iccap_func("Hardware","Delete Active Instr",
"HP8510.7.16","ok")
Delete Interface File
Automates the functionality of the “Delete Interface” button in
the Hardware Setup window’s GPIB Interface field.
Valid Objects
 Hardware

menu_func style command: "Delete Active Interface"

Deletes a GPIB Interface from the system. If this function were
executed manually, the user would select the interface to be
delete from the GPIB Interface list and press the "Delete
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Interface" button. This functionality is emulated in PEL by
appending the interface name to be deleted followed by "ok" to
the end of the command string.
Example
 iccap_func("Hardware","Delete Interface File","hpib","ok")
Delete Global Regions
Automates the Optimizer > Global Region > Delete All menu
pick in a plot window.
Valid Objects
 Plot

menu_func style command: none

Deletes all global trace regions.
Example
 iccap_func("./dc/fgummel/ibicvsve", "DeleteGlobalRegions")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot",

"DeleteGlobalRegions", "1")
See Also
 Add Global Region (pg 899)

Delete Trace Regions
Automates the Optimizer > trace > Trace Optimizer Region >
DeleteAll menu pick in a plot window
Valid Objects
 Plot

menu_func style command: none

Deletes all existing trace optimizer regions for the selected
trace.
Example
 iccap_func("./dc/fgummel/ibicvsve", "DeleteTraceRegions",
“Y Data 0”)

! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot",

"DeleteTraceRegions", "Y Data 0", "1")
See Also
 Add Trace Region (pg 901)
915

F ICCAP_FUNC Statement
Delete All User Regions
916
Deletes all user defined regions.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("dc/fgummel/icibvsve", "DeleteAllUserRegions")
See Also
 Delete User Region (pg 916), Set User Region (pg 980)
Delete User Region
Deletes specified user defined region.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("dc/fgummel/icibvsve", "DeleteUserRegion",
"my_region_name")
See Also
 Delete All User Regions (pg 916), Set User Region (pg 980)

Destroy GUI
Automates closing an instance of a GUI item and frees the
associated memory.
Valid Objects
 GUI Item

menu_func style command: none

Closes the named instance of a GUI item and frees the
associated memory. The next Display needs to build the entire
item again.
Example
 iccap_func("/mdl/dut/orSet/GUIName","Destroy GUI",
"InstanceName")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy Single GUI (pg 917), Display Modal GUI
(pg 920), Display Modeless GUI (pg 920), Display Single Modal
GUI (pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
IC-CAP Reference

ICCAP_FUNC Statement F
Destroy Single GUI
IC-CAP Reference
Automates closing a single displayed GUI item and frees the
associated memory.
Valid Objects
 GUI Item

menu_func style command: none

Closes the displayed GUI item and frees the associated memory.
The next Display needs to build the entire item again.
Example
 iccap_func("/mdl/dut/orSet/GUIName","Destroy Single GUI")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Display Modal GUI (pg 920),
Display Modeless GUI (pg 920), Display Single Modal GUI
(pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
Diagnostics

Automates functionality of IC-CAP/Main Tools > Options >
Diagnostics.
Valid Objects
 IC-CAP

menu_func style command: “Utilities/Diagnostics”

Does a diagnostic check on most objects in the system. Reports
on data structure integrity. Output is of the format:

Diagnostics check for <type> <name>:
Errors listed here.

Diagnostics check for <type> <name>:
Errors listed here.

.

.

.

If no errors are reported, IC-CAP is functioning normally.
Example
 iccap_func("ic-cap","Diagnostics")
917

F ICCAP_FUNC Statement
Diagnostics
918
Automates the functionality of the Instruments > Usage menu
pick in the Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: "Diagnostics"

This command displays the usages of the instruments specified
in the model file.
Example
 iccap_func("Hardware","Diagnostics")
Disable All
Automates the Plots > Disable All menu pick in the Plot
Optimizer window.
Valid Objects
 Setup, Transform

menu_func style command: none

Disables all open Plot windows in a model file.

Example
 iccap_func(“./PlotOptimizer”,”DisableAll”)
Disable All Traces
Automates the Optimizer > Disable All Traces menu pick in a
plot window.
Valid Objects
 Plot

menu_func style command: none

Disables all trace.
Example
 iccap_func("dc/fgummel/icibvsve", "DisableAllTraces")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "DisableAllTraces", "1")
IC-CAP Reference

ICCAP_FUNC Statement F
Disable Plot
IC-CAP Reference
Automates the Optimizer > Enable/Disable Plot menu pick in a
plot window.
Valid Objects
 Plot

menu_func style command: none

Disables the plot window.
Example
 iccap_func("dc/fgummel/icibvsve", "DisablePlot")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "DisablePlot", "1")
Disable Supplies
Automates the functionality of the Instruments > Zero Sources
menu pick in the Hardware Setup window.
Valid Objects

Hardware

menu_func style command: "Disable Supplies"

This command sets the outputs of all signal sources found either
by the "Rebuild Active List" function or as the result of a
measurement.
Example
 iccap_func("Hardware","Disable Supplies")
Disable Trace
Automates the Optimizer > trace > Disable menu pick in a plot
window
Valid Objects
 Plot

menu_func style command: none

Disables the selected trace.
Example
 iccap_func("dc/fgummel/icibvsve", "DisableTrace", “Y Data 1”)
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "DisableTrace",

"Y Data 1", "1")
919

F ICCAP_FUNC Statement
Display Found Instrs
920

Automates the functionality of the Instruments > Display menu
pick in the Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: "Display Found Instrs"

This command displays all the devices found on the bus either
during the execution of the "Rebuild Active List" command or as
the result of a measurement.
Example
 iccap_func("Hardware","Display Found Instrs")
Display Modal GUI
Automates displaying a named instance of a modal GUI.
Valid Objects
 GUI Item

menu_func style command: none

Since the third argument is a unique name for that instance of
the dialog, you can raise three identical dialogs if it makes sense
to do so.
Example
 iccap_func("/mdl/dut/orSet/GuiName","Display Modal GUI",
"InstanceName")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modeless GUI (pg 920), Display Single Modal GUI
(pg 921), Display Single Modeless GUI (pg 922), Set GUI
Callbacks (pg 975), Set GUI Options (pg 976)
Display Modeless GUI
Automates displaying a named instance of a modeless GUI.
Valid Objects
 GUI Item

menu_func style command: none

Since the third argument is a unique name for that instance of
the dialog, you can raise three identical dialogs if it makes sense
to do so.
IC-CAP Reference

ICCAP_FUNC Statement F
Example
IC-CAP Reference
iccap_func("/mdl/dut/orSet/GuiName","Display Modeless GUI",
"InstanceName")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modal GUI (pg 920), Display Single Modal GUI (pg 921),
Display Single Modeless GUI (pg 922), Set GUI Callbacks
(pg 975), Set GUI Options (pg 976)
Display Plot
Automates the Display Plot functionality.
Valid Objects
 Plot

menu_func style command: “Display Plot”

Displays the named plot.
Examples:
 iccap_func("DC/forward/log_ia_va","Display Plot")
iccap_func("MultiPlot/wafermap_sim/WaferMap","Display Plot")

Display Plots
Automates the Data > Plots > Display All functionality.
Valid Objects
 Model, DUT, Setup

menu_func style command: “Display Plots”

Displays all plots available in the named Model, named DUT, or
named setup.
Examples:
 iccap_func("/CGaas1/dc","Display Plots")
iccap_func("/CGaas1/dc/igvg_0vs","Display Plots")
iccap_func("/CGaas1","Display Plots")
Display Single Modal GUI
Automates displaying a single modal GUI item.
Valid Objects
 GUI Item

menu_func style command: none
921

922

F ICCAP_FUNC Statement

Since a name is not required, you can only show the dialog once
using this command. This is useful for callbacks—see the
properties for the Wizard GUI Item's Cancel button in the
gui_tutorial.mdl.
Example
 iccap_func("/mdl/dut/orSet/GuiName","Display Single Modal
GUI")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modal GUI (pg 920), Display Modeless GUI (pg 920),
Display Single Modeless GUI (pg 922), Set GUI Callbacks
(pg 975), Set GUI Options (pg 976)
Display Single Modeless GUI
Automates displaying a single modeless GUI item.
Valid Objects
 GUI Item

menu_func style command: none

Since a name is not required, you can only show the dialog once
using this command. This is useful for callbacks—see the
properties for the Wizard GUI Item's Cancel button in the
gui_tutorial.mdl.
Example
 iccap_func("/mdl/dut/orSet/GuiName","Display Single Modeless
GUI")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modal GUI (pg 920), Display Modeless GUI (pg 920),
Display Single Modal GUI (pg 921), Set GUI Callbacks (pg 975),
Set GUI Options (pg 976)
Draw Diag Line
Automates the Options > Draw Diag Line menu pick in a plot
window
Valid Objects
 Plot

menu_func style command: “Draw Diag Line”
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Draws a solid line along the diagonal. Acts as a toggle, each time
you call you either draw it or take it down.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","DrawDiagLine")
! Specify plot number for Multiplot
iccap_func("/CGaas1/dc/igvg/my_multiplot","DrawDiagLine",

"1")
Dump To Plotter
Provided to be compatible with Version 4.5 style of printing
Valid Objects
 Plot

menu_func style command: “Dump To Printer”

Prompts for the name of the command through which to pipe
the HPGL file. May be anticipated by a third argument. Prints
the graphical plot.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Dump To
Plotter","lp -dmyprinter")
See Also

Print Via Server (pg 956), Dump To Printer (pg 923), Dump Via
Server (pg 924)
Dump To Printer
Provided to be compatible with 4.5 style of printing.
Valid Objects
 Plot

menu_func style command: “Dump To Printer”

Prompts for the name of the command through which to pipe
the required file. May be anticipated by a third argument. Prints
the graphical plot.
NOTE The format of the file passed to the command will be PostScript.
This is different from the 4.5 release. (Dump Via Server is
recommended.)

If existing PEL code passes a command as an additional
parameter, it must be modified to expect PostScript instead of
the 4.5 formats.
923

F ICCAP_FUNC Statement
Example
924
iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Dump To
Printer","lp -dmyprinter")
See Also
 Print Via Server (pg 956), Dump To Plotter (pg 923), Dump Via
Server (pg 924)
Dump To Stdout
Automates the "Dump To Stdout" button on the 'View Data'
window.
Valid Objects
 Input, Output, Transform

menu_func style command: “Dump To Stdout”

Writes the text that would go in the 'View Data' block out to the
output window of the Status window. Useful if running a logfile
of the output window and you want to monitor your
automation.
Example
 iccap_func("CGaas1/dc/igvg_0vs/vs","Dump To Stdout")
 Dump Via Server
Automates printing to supported file types.
Valid Objects
 Plot

menu_func style command: none (see “Send to Printer”)

Provides functionality for the HPGL2 printing capability
available in the File > Print dialog box. For the PC, this also
provides functionality for the .emf file output accessed in the
File > Print dialog box. Finally, it provides the capability to
create a black and white postscript file. Note, this is for
backward compatibility only and this black and white postscript
file can only be printed via this command—there is no user
interface access to generating such a postscript file.

This iccap_func() prompts with questions for additional
arguments. Initially you are prompted “Print to a File?”

if you answer “Y”, you are prompted for a filename and then
for the format
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
if you answer “N”, a failure is indicated since this option is
not available starting with IC-CAP 2004.
Examples:
 ! following line creates an HPGL2 file
iccap_func("myPlot","Dump Via Server","Y","hpglfile.hgl",

"HPGL2")
! following line creates a black & white postscript file
iccap_func("myPlot","Dump Via Server","Y","psfile.ps","PS")
! following line will create a .emf file on PC only
iccap_func("myPlot","Dump Via Server","Y","emffile.emf",

"EMF")
See Also
 Send To Printer (pg 973), Dump To Printer (pg 923), Dump To
Plotter (pg 923), and Variables PAPER (pg 781) and
PLOT_SCALE_FACTOR (pg 782)
Dump Via Server UI
Automates a Plot window’s File > Print functionality.
Valid Object
 Plot

Displays the Print dialog box for printing a graphical plot.

Example
 iccap_func("myPlot","Dump Via Server UI")
See Also
 Print Via Server (pg 956)
Edit
Automates the IC-CAP/Main window's File > Restore
functionality or an Input, Output, or Plot’s Edit… functionality.
Valid Objects
 Model, Input, Output, Plot

menu_func style command: “Edit”

Opens the Model window for the specified model. For Inputs,
Outputs, or Plots, opens the dialog box for editing the definition
of that Input, Output, or Plot. You cannot use extra arguments
to fill in the dialog box. For that functionality, use “Set Table
Field Value” instead.
925

F ICCAP_FUNC Statement
NOTE The dialog box for editing the definition of an Input, Output, or Plot actually
edits a temporary Input, Output, or Plot that is thrown away if the user
clicks Cancel. If the user clicks OK, then the temporary Input, Output, or
Plot is copied over the original Input, Output, or Plot. This changes the
order of the plots and also closes any open plots. The user will have to
reopen the plots or refresh a Multiplot.

You can use iccap_find_children to inspect the setup after a call to Edit to
determine if the user changed the name of the edited setup. If the old
name is no longer in the setup, then the new name will be the last item in
the list. If the user clicked Cancel, the order will be unchanged.
Example
926
iccap_func("/CGaas1","Edit")
iccap_func(“/npn/dc/fgummel/bvsic”,”Edit”)
iccap_func(“/npn/dc/fgummel/ic”,“Edit“)
iccap_func(“/npn/dc/fgummel/vc”,”Edit”)
Enable All
Automates the Plots > Enable All menu pick in the Plot
Optimizer window.

Valid Objects
 Plot Optimizer

menu_func style command: none

Enables all open Plot windows in a model file.
Example
 iccap_func(“./PlotOptimizer”,”Enable All”)
Enable Plot
Automates the Optimizer > Enable/Disable Plot menu pick in a
plot window
Valid Objects
 Plot

menu_func style command: none

Enables the plot window. Enabling the plot window
synchronizes it with the Plot Optimizer window.
Example
 iccap_func("dc/fgummel/icibvsve", "EnablePlot")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "EnablePlot", "1")
! Apply to all plots in a Multiplot
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
iccap_func("dc/fgummel/my_multiplot", "EnablePlot")
Exchange Black-White
Automates the Options > Session Settings > Exchange
Black-White menu pick in a plot window.
Valid Objects
 Plot

menu_func style command: “Exchange Blk Wht”

Toggles the background color of the plot from black to white.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Exchange
Black-White")
Execute
Automates the Execute button on the Macro or
Extract/Optimize Page.
Valid Objects

Macro, Transform

menu_func style command: “Execute” for macros and “Perform
Transform” for transforms

Executes the named macro or transform.
Example
 iccap_func("/CGaas1/extract","Execute")
iccap_func("/CGaas1/dc/igvg_0vs/rf_off","Execute")
Exit/Exit!

NOTE If the macro contains a LINPUT statement, which prompts for
user input, you can include the desired responses as additional
arguments in the iccap_func statement.
• Exit

• Exit!

Automates the IC-CAP/Main window’s File > Exit functionality.
Valid Objects
 IC-CAP
927

928

F ICCAP_FUNC Statement
menu_func style command: “Exit/Exit IC-CAP” which maps to
the new “Exit” form

Shuts down the current IC-CAP session.

• "Exit" will prompt the user to save files before exiting

• "Exit!" exits with no questions asked
Example
 iccap_func("ic-cap","Exit")
iccap_func("ic-cap","Exit!")
Export Data Measured
Automates the Export Data button in the Measure/Simulate
folder.
Valid Objects
 Setup

menu_func style command: none

Prompts for the name of the file to export the measured data to,
or uses the optional third argument if provided. (No provision is
made for exporting transforms with this iccap_func statement.)

Example
 iccap_func(“/spar_vs_temp/ac/spar_vs_temp”,”Export Data
Measured”,”my_file.mdm”)
Export Dataset
Automates the Model window’s File > Export Data menu pick
functionality.
Valid Objects
 Model, DUT, Setup

Exports the data to a dataset file (*.ds) in the specified path. If
the optional third argument is not specified, prompts for the full
path and file name.
Example
 iccap_func("/CGaas1","Export Dataset",
”/tmp/data/my_dataset.ds”)

iccap_func("/CGaas1/dc","Export Dataset",
”/tmp/data/my_dataset.ds”)

iccap_func("/CGaas1/dc/igvg_0vs","Export Dataset",
”/tmp/data/my_dataset.ds”)
See Also
 Refresh Dataset (pg 959)
IC-CAP Reference

ICCAP_FUNC Statement F
Export Data Simulated
IC-CAP Reference
Automates the Export Data button in the Measure/Simulate
folder.
Valid Objects
 Setup

menu_func style command: none

Prompts for the name of the file to export the simulated data to,
or uses the optional third argument if provided. (No provision is
made for exporting transforms with this iccap_func statement.)
Example
 iccap_func(“/spar_vs_temp/ac/spar_vs_temp”,”Export Data
Simulated”,”my_file.mdm”)
Extract
Automates the Extract menu picks.
Valid Objects

DUT, Setup

menu_func style command: “Extract”

Performs Extraction Transforms on all setups within named
DUT or within named setup.
Example
 iccap_func("/CGaas1/dc","Extract")
iccap_func("/CGaas1/dc/igvg_0vs","Extract")
File Debug On
Automates functionality of IC-CAP/Main Tools > Options > File
Debug.
Valid Objects
 IC-CAP

menu_func style command: “Utilities/File Debug On”

Logs most debug information to $HOME/.icdebug. Also prints
certain information only to the Status window.
NOTE File Debug On automatically turns Screen Debug Off.
929

F ICCAP_FUNC Statement
Example
930
iccap_func("ic-cap","File Debug On")
See Also
 Debug Off (pg 930), File Debug Off (pg 930)
File/Screen Debug Off
• File Debug Off

• Screen Debug Off

• Debug Off

Automates functionality of IC-CAP/Main Tools > Options > File
Debug and IC-CAP/Main Tools > Options > Screen Debug by
effectively turning the toggles off.
Valid Objects
 IC-CAP

menu_func style command: “Utilities/Debug Off”

"File Debug Off", "Screen Debug Off", and "Debug Off" All have
the same effect. They halt logging of data either to the screen or
file.

NOTE "File Debug Off" will halt Screen Debug if it was on.
Example
 iccap_func("ic-cap","Debug Off")
See Also
 File Debug On (pg 929), Screen Debug On (pg 969)
Footer
Automates the Options > Session Settings > Footer menu pick in
a plot window
Valid Objects
 Plot

Toggles the footer text on and off for the specified plot. If Show
Absolute Error or Show Relative Error is turned on, the error is
displayed in the footer area and the footer text is turned off.
Example
 iccap_func("./dc/fgummel/bvsic", "Footer")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Footer", "1")
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Footer")
See Also
 Footer Off (pg 931), Footer On (pg 931), Show Absolute Error
(pg 981), Show Relative Error (pg 982)
Footer Off
Turns off the footer text for the specified plot.
Valid Objects
 Plot
Example
 iccap_func("./dc/fgummel/bvsic", "FooterOff")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "FooterOff", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "FooterOff")
See Also
 Footer (pg 930), Footer On (pg 931)
Footer On
Turns on the footer text for the specified plot

Valid Objects
 Plot
Example
 iccap_func("./dc/fgummel/bvsic", "FooterOn")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "FooterOn", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "FooterOn")
See Also
 Footer (pg 930), Footer Off (pg 931)
Full Page Plot
Automates the Plots > Full Page Plot menu pick in a Multiplot
window
Valid Objects
 Plot

In the Multiplot window, displays only the specified plot and
hides all other plots. Use Undo Zoom to display all plots.
Example
 iccap_func("./dc/fgummel/my_multiplot", "FullPagePlot", "1")
See Also
 Toggle Zoom (pg 986), Zoom Plot (pg 991), Undo Zoom (pg 988)
931

F ICCAP_FUNC Statement
Header
932
Automates the Options > Session Settings > Header menu pick
in a plot window
Valid Objects
 Plot

Toggles the header text on and off for the specified plot.
Example
 iccap_func("./dc/fgummel/bvsic", "Header")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Header", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Header")
See Also
 Header Off (pg 932), Header On (pg 932)
Header Off
Turns on the header text for the specified plot
Valid Objects
 Plot

Example
 iccap_func("./dc/fgummel/bvsic", "HeaderOff")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "HeaderOff", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "HeaderOff")
See Also
 Header (pg 932), Header On (pg 932)
Header On
Turns on the header text for the specified plot
Valid Objects
 Plot
Example
 iccap_func("./dc/fgummel/bvsic", "HeaderOn")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "HeaderOn", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "HeaderOn")
See Also
 Header (pg 932), Header Off (pg 932)
Hide Highlighted Curves
Does not highlight the curves that were marked highlighted.
IC-CAP Reference

ICCAP_FUNC Statement F
Valid Objects
IC-CAP Reference
Plot

menu_func style command: none

This command allows you to retain the set of highlighted curves,
but not display them highlighted. Note the highlight set of
curves will always highlight during an optimization. You can
use this command to turn off the highlight after an optimization
completes.
Example
 iccap_func("dc/fgummel/icibvsve", "Hide Highlighted Curves")

! Do not show the curves highlighted, which have been marked
! highlighted in the 2nd subplot of my_muliplot.
! Specify the subplot number as "1"
iccap_func("dc/fgummel/my_multiplot", "Hide Highlighted

Curves", "1")

! Do not show the curves highlighted, which have been marked
! highlighted in all the subplots of my_muliplot.
iccap_func("dc/fgummel/my_multiplot","Hide Highlighted Curves")
See Also

Mark Curve Highlighted (pg 947), Unmark Highlighted Curve
(pg 989), Unmark All Highlighted Curves (pg 988), Show
Highlighted Curves (pg 982)
I-O_Lock
Automates the functionality of the Tools > Interface > Lock
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "I-O_Lock"

Because the GPIB allows multiple sessions on the same device
or interface, the action of opening does not mean the user has
exclusive use. In some cases, the user might not want others to
have access to the devices on the bus or interface while he is
using it. In such cases, the interface should be locked, which
restricts other device and interface sessions from accessing it.
This function sends a lock command to the currently active
interface.
Example
 iccap_func("Hardware/HPIBAnalyzer","I-O_Lock")
933

F ICCAP_FUNC Statement
I-O_Reset
934

Automates the functionality of the Tools > Interface > Reset
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func type command: "I-O_Reset"

This function sends a reset command to the currently active
interface.
Example
 iccap_func("Hardware/HPIBAnalyzer","I-O_Reset")
I-O_Screen Debug OFF
Automates the functionality of the View > Screen Debug menu
pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "I-O_Screen Debug OFF"

This command turns off the IC-CAP GPIB debugger and
removes the check mark from the menu item.
Example
 iccap_func("Hardware/HPIBAnalyzer","I-O_Screen Debugger
 OFF")
I-O_Screen Debug ON
Automates the functionality of the View > Screen Debug menu
pick in the Hardware Setup window. This menu item is a toggle.
If a checkmark appears next to the it, the debugger is ON;
otherwise, it is OFF.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "I-O_Screen Debug ON"

This command turns on the IC-CAP GPIB debugger which
produces detailed status messages as the various operations are
executed. This information is displayed in the IC-CAP/Status
window and, if visible, the Hardware Setup window.
Example
 iccap_func("Hardware/HPIBAnalyzer","I-O_Screen Debug ON")
IC-CAP Reference

ICCAP_FUNC Statement F
I-O_Unlock
IC-CAP Reference
Automates the functionality of the Tools > Interface > Unlock
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIB Analyzer

menu_func style command: "I-O_Unlock"

This function sends a unlock command to the currently active
interface.
Example
 iccap_func("Hardware/HPIBAnalyzer","I-O_Unlock")
Import Create
Reads named MDM file, removes existing information from
setup, then imports all header information and data from the
file to the setup object. If third argument is omitted, you will be
prompted for a filename.
Valid Objects

Setup

menu_func style command: none

Data is read into the measured array for outputs of type M or B
and into the simulated array for outputs of type S. This is
identical to Import Create Measured or Simulated.
Example
 iccap_func("/myModel/myDut/mySetup","Import Create",
"/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create")
! prompt user
See Also
 Import Create Header Only (pg 935), Import Create Measured
(pg 936), Import Create Simulated (pg 937), Import Create
Simulated or Measured (pg 937)
Import Create Header Only
Reads the header of the MDM file and creates or modifies the
named setup to exactly match the shape of the data contained
in the MDM file. No data is imported. If third argument is
omitted, you will be prompted for a filename.
Valid Objects
 Setup
935

936

F ICCAP_FUNC Statement

menu_func style command: none
Example
 iccap_func("/myModel/myDut/mySetup","Import Create Header
Only","/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create Header
Only") ! prompt user
See Also
 Import Create (pg 935), Import Create Measured (pg 936),
Import Create Simulated (pg 937), Import Create Measured or
Simulated (pg 936), Import Create Simulated or Measured
(pg 937)
Import Create Measured
Reads named MDM file, removes existing information from
setup, then imports all header information and data from the
file to the setup object. If third argument is omitted, you will be
prompted for a filename.
Valid Objects
 Setup

menu_func style command: none

Data is read into the measured array for outputs of type M or B
and no data is read into the simulated array for outputs of type
S.
Example
 iccap_func("/myModel/myDut/mySetup","Import Create
Measured","/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create
Measured")! prompt user
See Also
 Import Create (pg 935), Import Create Header Only (pg 935),
Import Create Simulated (pg 937), Import Create Measured or
Simulated (pg 936), Import Create Simulated or Measured
(pg 937)
Import Create Measured or Simulated
Reads named MDM file, removes existing information from
setup, then imports all header information and data from the
file to the setup object. If third argument is omitted, you will be
prompted for a filename.
Valid Objects
 Setup

menu_func style command: none
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Data is read into the measured array for outputs type M or B
and into the simulated array for outputs type S. This is identical
to Import Create.
Example
 iccap_func("/myModel/myDut/mySetup","Import Create Measured
or Simulated","/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create Measured
or Simulated") ! prompt user
See Also
 Import Create Header Only (pg 935), Import Create Measured
(pg 936), Import Create Simulated (pg 937), Import Create
Simulated or Measured (pg 937)
Import Create Simulated
Reads named MDM file, removes existing information from
setup, then imports all header information and data from the
file to the setup object. If third argument is omitted, you will be
prompted for a filename.
Valid Objects

Setup

menu_func style command: none

Data is read into the simulated array for outputs type S or B
and no data is read into the measured array for outputs of type
M.
Example
 iccap_func("/myModel/myDut/mySetup","Import Create
Simulated","/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create
Simulated") ! prompt user
See Also
 Import Create (pg 935), Import Create Header Only (pg 935),
Import Create Measured (pg 936), Import Create Measured or
Simulated (pg 936), Import Create Simulated or Measured
(pg 937)
Import Create Simulated or Measured
Reads named MDM file, removes existing information from
setup, then imports all header information and data from the
file to the setup object. If third argument is omitted, you will be
prompted for a filename.
Valid Objects
 Setup
937

938

F ICCAP_FUNC Statement

menu_func style command: none

Data is read into the simulated array for outputs of type S or B
and into the measured array for outputs of type M.
Example
 iccap_func("/myModel/myDut/mySetup","Import Create Simulated
or Measured","/tmp/tmpfile.mdm")

iccap_func("/myModel/myDut/mySetup","Import Create Simulated
or Measured") ! prompt user
See Also
 Import Create (pg 935), Import Create Header Only (pg 935),
Import Create Measured (pg 936), Import Create Simulated
(pg 937), Import Create Measured or Simulated (pg 936)
Import Data
Automates the Model window's File > Import Data > Active
Setup, All Setups in Active DUT, or All DUTs in a Model menu
pick.
Valid Objects
 Model, DUT, Setup

menu_func style command: none

For Model and DUT, MDM filenames are specified in
MDM_FILE_PATH and MDM_FILE_NAME in the setups
contained by the DUT or Model. For calls to Setup objects,
either specify the name in the 3rd argument or you will be
prompted for a filename.

Data is read into the measured array for outputs type M or B
and into the simulated array for outputs type S. This is identical
to Import Measured or Simulated Data.
Example
 iccap_func(“/CGaas1”,“Import Data”)
! Imports data to all DUTs in a model
iccap_func(“/CGaas1/dc”,“Import Data”)
! Imports data to all Setups in a DUT
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Data”)
! Imports data to a single setup, prompts user
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Data”,”tmp.mdm”)
! Imports data to a single setup
See Also
 Import Measured Data (pg 939), Import Measured or Simulated
Data (pg 940), Import Simulated Data (pg 940), Import
Simulated or Measured Data (pg 941)
IC-CAP Reference

ICCAP_FUNC Statement F
Import Delete
IC-CAP Reference
Deletes inputs and outputs from the named setup.
Valid Objects
 Setup

menu_func style command: none
Example
 iccap_func("/CGaas1/dc/igvg_0vs","Import Delete")
Import Measured Data
Automates the Model window's File > Import Data > Active
Setup, All Setups in Active DUT, or All DUTs in a Model menu
pick and selects Measured only.
Valid Objects

Model, DUT, Setup

menu_func style command: none

For Model and DUT, MDM filenames are specified in
MDM_FILE_PATH and MDM_FILE_NAME in the setups
contained by the DUT or Model. For calls to Setup objects,
either specify the name in the 3rd argument or you will be
prompted for a filename.

Data is read into the measured array for outputs of type M or B
and no data is read into the simulated array for outputs of type
S.
Example
 iccap_func(“/CGaas1”,“Import Measured Data”)
! Imports measured data to all DUTs in a model
iccap_func(“/CGaas1/dc”,“Import Measured Data”)
! Imports measured data to all Setups in a DUT
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Measured Data”)
! Imports measured data to a single setup and prompts user
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Measured

Data”,”tmp.mdm”)
! Imports measured data to a single setup
See Also
 Import Data (pg 938), Import Measured or Simulated Data
(pg 940), Import Simulated Data (pg 940), Import Simulated or
Measured Data (pg 941)
939

F ICCAP_FUNC Statement
Import Measured or Simulated Data
940

Automates the Model window's File > Import Data > Active
Setup, All Setups in Active DUT, or All DUTs in a Model menu
pick and selects Measured if available, otherwise Simulated.
Valid Objects
 Model, DUT, Setup

menu_func style command: none

For Model and DUT, MDM filenames are specified in
MDM_FILE_PATH and MDM_FILE_NAME in the setups
contained by the DUT or Model. For calls to Setup objects,
either specify the name in the 3rd argument or you will be
prompted for a filename.

Data is read into the measured array for outputs type M or B
and into the simulated array for outputs type S. This is identical
to Import Data.
Example
 iccap_func(“/CGaas1”,“Import Measured or Simulated Data”)
! Imports measured data if available, otherwise simulated
! data to all DUTs in a model
iccap_func(“/CGaas1/dc”,“Import Measured or Simulated Data”)
! Imports measured data if available, otherwise simulated
! data to all Setups in a DUT
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Measured or

Simulated Data”)
! Imports measured data if available, otherwise simulated
! data to a single setup and prompts user
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Measured or

Simulated Data”,”tmp.mdm”)
! Imports measured data if available, otherwise simulated
! data to a single setup
See Also
 Import Data (pg 938), Import Measured Data (pg 939), Import
Simulated Data (pg 940), Import Simulated or Measured Data
(pg 941)
Import Simulated Data
Automates the Model window's File > Import Data > Active
Setup, All Setups in Active DUT, or All DUTs in a Model menu
pick and selects Simulated only.
Valid Objects
 Model, DUT, Setup

menu_func style command: none
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
For Model and DUT, MDM filenames are specified in
MDM_FILE_PATH and MDM_FILE_NAME in the setups
contained by the DUT or Model. For calls to Setup objects,
either specify the name in the 3rd argument or you will be
prompted for a filename.

Data is read into the simulated array for outputs type S or B
and no data is read into the measured array for outputs of type
M.
Example
 iccap_func(“/CGaas1”,“Import Simulated Data”)
! Imports simulated data to all DUTs in a model
iccap_func(“/CGaas1/dc”,“Import Simulated Data”)
! Imports simulated data to all Setups in a DUT
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Simulated Data”)
! Imports simulated data to a single setup and prompts user
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Simulated

Data”,”tmp.mdm”)
! Imports simulated data to a single setup
See Also
 Import Data (pg 938), Import Measured Data (pg 939), Import
Measured or Simulated Data (pg 940), Import Simulated or
Measured Data (pg 941)

Import Simulated or Measured Data
Automates the Model window's File > Import Data > Active
Setup, All Setups in Active DUT, or All DUTs in a Model menu
pick and selects Simulated if available, otherwise Measured.
Valid Objects
 Model, DUT, Setup

menu_func style command: none

For Model and DUT, MDM filenames are specified in
MDM_FILE_PATH and MDM_FILE_NAME in the setups
contained by the DUT or Model. For calls to Setup objects,
either specify the name in the 3rd argument or you will be
prompted for a filename.

Data is read into the simulated array for outputs of type S or B
and into the measured array for outputs of type M.
Example
 iccap_func(“/CGaas1”,“Import Simulated or Measured Data”)
! Imports simulated data if available, otherwise measured
! data to all DUTs in a model
iccap_func(“/CGaas1/dc”,“Import Simulated or Measured Data”)
! Imports simulated data if available, otherwise measured
941

942

F ICCAP_FUNC Statement

! data to all Setups in a DUT
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Simulated or

Measured Data”)
! Imports simulated data if available, otherwise measured
! data to a single setup and prompts user
iccap_func(“/CGaas1/dc/igvg_0vs”,“Import Simulated or

Measured Data”,”tmp.mdm”)
! Imports simulated data if available, otherwise measured
! data to a single setup
See Also
 Import Data (pg 938), Import Measured Data (pg 939), Import
Measured or Simulated Data (pg 940), Import Simulated Data
(pg 940)
Import Text
Automates the "Import Text..." button in the Circuit folder.
Valid Objects
 Circuit, Test Circuit

menu_func style command: “Read Netlist”

Prompts for the name of a file from which to read text. Places all
text in the Circuit folder. Automatically performs Parse. An
optional third argument may be specified to name the file.
Example
 iccap_func("/CGaas1/Circuit","Import Text","mycirc.deck")
iccap_func("/CGaas1/dc/TestCircuit","Import Text",

"mycirc.deck")
Legend
Automates the Options > Session Settings > Legend menu pick
in a plot window
Valid Objects
 Plot

menu_func style command: none

Toggles the legend on and off for the specified plot.
Example
 iccap_func("./dc/fgummel/bvsic", "Legend")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Legend", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "Legend")
See Also
 Legend Off (pg 943), Legend On (pg 943)
IC-CAP Reference

ICCAP_FUNC Statement F
Legend Off
IC-CAP Reference
Turns off the legend for the specified plot
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "LegendOff")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "LegendOff", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "LegendOff")
See Also
 Legend (pg 942), Legend On (pg 943)
Legend On
Turns on the legend for the specified plot
Valid Objects
 Plot

menu_func style command: none

Example
 iccap_func("./dc/fgummel/bvsic", "LegendOn")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "LegendOn", "1")
! Apply to all plots in a Multiplot
iccap_func("./dc/fgummel/my_multiplot", "LegendOn")
See Also
 Legend (pg 942), Legend Off (pg 943)
License Status
Brings up the same dialog that IC-CAP/Main Tools > License
Status does.
Valid Objects
 IC-CAP

menu_func style command: “Utilities/Available Codewords”

Launches the 'License Status' dialog. However, this cannot be
modified while PEL is still running. This iccap_func is useful
only for informational purposes while the macro is running.
Example
 iccap_func("ic-cap","License Status")
943

F ICCAP_FUNC Statement
Listen Active Address
944

Automates the functionality of the Tools > Address > Listen
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Listen Active Address"

This function sends a LISTEN command to the device at the
currently active address. The result is displayed in the
IC-CAP/Status window and, if visible, the Hardware Setup
window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Listen Active Address")
Macro File Execute
Automates the functionality of the Tools > Macros > Execute
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Macro File Execute"

This command executes the IC-CAP GPIB macro file name saved
by the "Macro File Specify" command.
Example
 iccap_func("Hardware/HPIBAnalyzer","Marco File Execute")
//==
//
// IC-CAP GPIB Analyzer macro command file description:
//
//==

• Macro command files are read by the GPIB Analyzer and
lines in the files execute actions, one action per line.

• Blank lines, or lines with only white spaces are ignored.

• Some lines are sent, others are 'directives'

• In any line, leading white spaces are ignored

• If, after optional leading white spaces, the directive character
is seen, then that line is considered a directive. The dollar
sign ($) is the directive character

• If the first non-white character does not indicate directive,
then this character and all subsequent characters in the line
are sent to the active address
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference

• There is a means to send control characters, and this is the
only means to affix terminators

\b \r \n \0 \f \t \v \\ \<any other char>

will first be converted to control characters or otherwise:
backspace, CR, newline(=linefeed), null, formfeed, tab,
vertical tab, backslash, <any other char>, respectively. \<any
other char> behaves as a non-operation—it causes <any other
char> to be sent. Note that a backslash and the directive char
can always be sent, if preceded by backslash.

• Directives have a single command character (not case
sensitive) following the Dollar sign ($) and may have trailing
argument(s). White spaces between the command character
and 1st argument are optional. Any characters on a line
following the 'directive [arguments]' are ignored. This allows
you to add comments following directive statements as
desired.

• The directives are shown next:

$c indicates current line is a comment

$r reads into the read buffer

$a2 sets the active address (2 in this case)

$w3 wait for 3 seconds; if argument absent, default of ~2
chosen

$p prints the contents of the read buffer

$m message panel—user can indicate stop or continue;
system will append the words "; want to continue?" to
the characters that follow $m on the command line.

$n print something to the Output panel IC-CAP/Status
window and in the Hardware Setup window Status
panel, if visible.

$s serial poll of the device at the active address. If an
integer parameter is present, then it is a serial poll
mask, and the program will loop until <poll result>
AND <integer mask> is non-zero, i.e., a desired 'bit' is
set; if mask is negative, it loops until a mask-specified
bit is clear.
945

946

F ICCAP_FUNC Statement

An example of a legal macro file:

$i 'call' another file and execute the macros in it. It
should take the form:
$i /users/icuser/macrofile.

$c this is an example IC-CAP GPIB Analyzer macro file
...

$a 16 active address = 16

$c send request for instrument ID string:

*IDN?\n

$r read answer back

$p print it

RST\n

$w2 wait 2 seconds after sending RST to instrument

$c next will open window, and ask:

$c 'Will now call other_macro_file; want to continue?'

$m Will now call other_macro_file

$i /icecap/other_macro_file 'call' another macro file

RST\n

$w2 wait 2 seconds after sending RST to instrument
Macro File Specify
Automates the functionality of the Tools > Macros > Specify
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Macro File Specify"

This function saves the name of an IC-CAP GPIB Macro file to be
executed later. If this menu pick were done manually, a dialog
box would pop up requesting the name of the macro file. This
functionality is emulated in PEL by appending the name of the
file desired and "ok" to the command string.
IC-CAP Reference

ICCAP_FUNC Statement F
Example
IC-CAP Reference
iccap_func("Hardware/HPIBAnalyzer","Marco File Specify","
../mdl/bus_analyzer_macro.mac","OK")
Manual Rescale
Automates the Options > Manual rescale menu pick of a plot
window.
NOTE This function is included for backward compatibility only. We recommend
that you use Plot Scale. See “Scale Plot/Scale Plot Preview” on page 967.
Valid Objects
 Plot

menu_func style command: none

Adjusts the axes’ scales to values entered in statement. Scale
values are entered in the order
X-min, Y-min, X-max, Y-max.

Example
 iccap_func("/CGaas1/dc/igvg_0vs/ig_vs_vg","ManualRescale"
,”-2,0,0.1,0.01”)
Manual Simulation
Automates the IC-CAP/Simulation Debugger File > Manual
Simulation functionality.
Valid Objects
 Simulation Debugger

menu_func style command: “Manual Simulate”

Performs a manual simulation on the last simulation run.
Simulation Debugger window must be open. Must have an Input
file from a previous simulation in the simulation debugger input
window.
Example
 iccap_func("SimulationDebugger","Manual Simulation")
Mark Curve Highlighted
Marks a specific curve as a highlighted curve.
Valid Objects
 Plot
947

948

F ICCAP_FUNC Statement
menu_func style command: none
Example
 ! Mark the 1st curve of the 2nd trace as highlighted cure.
! Specify the trace number as "1", specify the curve number
! as "0"
iccap_func("dc/fgummel/icibvsve", "Mark Curve Highlighted",

"1", "0")

! Mark the 1st curve of the 1st trace of the 2nd subplot as
! highlighted cure.
! Specify the trace number as "0", specify the curve number
! as "0",
! Specify the subplot number as "1"
iccap_func("dc/fgummel/my_multiplot", "Mark Curve

Highlighted", "0", "0","1")
See also
 Unmark Highlighted Curve (pg 989), Unmark All Highlighted
Curves (pg 988), Hide Highlighted Curves (pg 932), Show
Highlighted Curves (pg 982)
Measure
Automates the Measure menu picks.

Valid Objects
 DUT, Setup

menu_func style command: “Measure”

Performs a measurement on all setups within named DUT or
within named setup.
Example
 iccap_func("/CGaas1/dc","Measure")
iccap_func("/CGaas1/dc/igvg_0vs","Measure")
Memory Recall
Automates the “Memory Recall” button on a Model Parameters
page.
Valid Objects
 Parameter Set, Device Parameter Set

menu_func style command: “Recall Stored Values”

Restores the parameter values previously stored via Memory
Store.
Example
 iccap_func("/CGaas1/ParameterSet","Memory Recall")
iccap_func("/CGaas1/dc/DeviceParameterSet","Memory Recall")
See Also
 Memory Store (pg 949)
IC-CAP Reference

ICCAP_FUNC Statement F
Memory Store
IC-CAP Reference
Automates the “Memory Store” button on a Model Parameters
page.
Valid Objects
 Parameter Set, Device Parameter Set

menu_func style command: “Store Current Values”

Makes a temporary, internal, hidden copy of the current state of
the parameter page.
Example
 iccap_func("/CGaas1/ParameterSet","Memory Store")
iccap_func("/CGaas1/dc/DeviceParameterSet","Memory Store")
See Also
 Memory Recall (pg 948)
New DUT
Automates the Model window's Add... Button functionality.
Valid Objects

Model

menu_func style command: none

Adds a new DUT to the named model. Prompts for the name
unless one is provided as the optional third argument.
Example
 iccap_func("/CGaas1","New DUT","Dut1")
New Input/Output/Transform/Plot
• New Input

• New Output

• New Transform

• New Plot

Automates the "New..." Buttons under the various setup pages.
Valid Objects
 Setup

menu_func style command: none

Adds a new Setup child the named Setup. Will prompt for the
name unless one is provided as the optional third argument.
Example
 iccap_func("/CGaas1/ac/s_at_f","New Input","input1")
949

950

F ICCAP_FUNC Statement

iccap_func("/CGaas1/ac/s_at_f","New Output","output1")
iccap_func("/CGaas1/ac/s_at_f","New Transform","transform1")
iccap_func("/CGaas1/ac/s_at_f","New Plot","plot1")
New Macro
Automates the Macros Page New... Button functionality.
Valid Objects
 Model

menu_func style command: none

Adds a new macro to the named model. Prompts for the name
unless one is provided as the optional third argument.
Example
 iccap_func("/CGaas1","New Macro","Dut1")
New Model
Automates the IC-CAP/Main window’s File > New functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Adds a new model to the system. An optional third parameter
will be the name for the model, otherwise a prompt will appear
for the name of the new model.
Example
 iccap_func("/","New Model")
iccap_func("/","New Model","MyModel")
New Setup
Automates the “Add...” Button under the DUTs/Setups tree.
Valid Objects
 DUT

menu_func style command: none

Adds a new Setup the named DUT. Will prompt for the name
unless one is provided as the optional third argument.
Example
 iccap_func("/CGaas1/dc","New Setup","Setup1")
IC-CAP Reference

ICCAP_FUNC Statement F
Open
IC-CAP Reference
Automates the File > Open menu pick in the model window
when replace is selected or when File > Open is chosen in the
system variables window.
Valid Objects
 GUI Items, Model, Variables, Circuit, Parameter Set, Macro,
DUT, Test Circuit, Device Parameter Set, Setup, Instrument
Options, Input, Output, Transform, Plot

menu_func style command: “Read From File”

Prompts for the new name of the file to read, or uses the
optional third argument if provided. This will read the file over
the top of the specified object leaving the name unchanged.
Destroys all previous contents of the named object.
Example
 iccap_func("/CGaas1","Open","tmpSave.mdl")
iccap_func("/CGaas1/Variables","Open","myvars.vat")
See Also

Open Model (pg 953), Open DUT (pg 951), Open Macro (pg 953),
Open Setup (pg 954), Open Input (pg 952), Open Output
(pg 952), Open Transform (pg 952), Open Plot (pg 952),
ReadOnlyValues (pg 957)
Open Branch
Automates the action of opening a DUT on the DUTs/Setups
tree.
Valid Objects
 DUT

menu_func style command: none

Opens a DUT on the DUTs/Setups tree.
Example
 iccap_func(“/mymodel/mydut”,”Open Branch”)
See Also
 Close Branch (pg 908)
Open DUT
Automates the Model window's File > Open functionality for the
DUT level selection.
Valid Objects
 Model
951

952

F ICCAP_FUNC Statement

menu_func style command: none

Prompts for a name of a .dut file to be read into the current
model unless the optional third argument is specified as the
name.
Example
 iccap_func("/CGaas1","Open DUT","mydutfile.dut")
Open Error Log
Automates the IC-CAP/Status window’s File > Open Error Log
functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Opens the error log file using the file name if provided.
Example
 iccap_func("ic-cap","Open Error Log", <optional file name>)
Open Hardware
Automates the IC-CAP/Main window’s Tools > Hardware Setup
functionality.
Valid Objects
 IC-CAP

menu_func style command: “Hardware/Edit”

Opens the Hardware Setup window.
Example
 iccap_func("ic-cap","Open Hardware")
Open Input/Output/Transform/Plot
• Open Input

• Open Output

• Open Transform

• Open Plot

Automates the Model window's File > Open functionality for the
Input, Output, Transform, or Plot level selection.
Valid Objects
 Setup
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
menu_func style command: none

Prompts for a name of a .inp, .out, .xfm, or .plt file to be read
into the current setup unless the optional third argument is
specified as the name.
Example
 iccap_func("/CGaas1/ac/s_at_f","Open Input","myInput.inp")
iccap_func("/CGaas1/ac/s_at_f","Open Output","myOutput.out")
iccap_func("/CGaas1/ac/s_at_f","Open Transform",

"myTransform.xfm")
iccap_func("/CGaas1/ac/s_at_f","Open Plot","myPlot.plt")
Open Macro
Automates the Model window's File > Open functionality for the
Macro level selection.
Valid Objects

Model

menu_func style command: none

Prompts for a name of a .mac file to be read into the current
model unless the optional third argument is specified as the
name.
Example
 iccap_func("/CGaas1","Open Macro","mydutfile.mac")
Open Model
Automates the IC-CAP/Main window’s File > Open
functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Prompts for a name of a file from which to read models. Name
of file can be specified as a third argument.
Example
 iccap_func("/","Read Model")
iccap_func("/","Read Model","MyModel.mdl")
Open Output Log
Automates the IC-CAP/Status window’s File > Open Output Log
functionality.
953

F ICCAP_FUNC Statement
Valid Objects
954
IC-CAP

menu_func style command: none

Opens the output log file using file name if provided.
Example
 iccap_func("ic-cap","Open Output Log", <optional file name>)
Open Plot Optimizer
Automates the Tools > Plot Optimizer menu pick of a model
window and the Optimizer > Open Optimizer menu pick in a
plot window.
Valid Objects
 Plot

menu_func style command: none

Opens the Plot Optimizer window.
Example
 iccap_func("dc/fgummel/icibvsve", "OpenPlotOptimizer")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "OpenPlotOptimizer",

"1")

Open Setup
Automates the Model window's File > Open functionality for the
Setup level selection.
Valid Objects
 Model

menu_func style command: none

Prompts for a name of a .set file to be read into the current
model unless the optional third argument is specified as the
name.
Example
 iccap_func("/CGaas1/dc","Open Setup","mysetfile.set")
Optimize
Automates the Optimize menu picks in the Extract/Optimize
folder and the Optimize > Run Optimization menu pick in the
Plot Optimizer window.
Valid Objects
 DUT, Setup, Plot Optimizer
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
menu_func style command: “Extract”

Performs Transforms that are optimizers on all setups within
named DUT/setup or in the Plot Optimizer window.
Example
 iccap_func("./CGaas1/dc","Optimize")
iccap_func("./CGaas1/dc/igvg_0vs","Optimize")
iccap_func(“./PlotOptimizer”,”Optimize”)
Parse
Automates the "Parse..." button in the Circuit folder
Valid Objects
 Circuit, Test Circuit

menu_func style command: “Parse”

Checks the syntax of the Circuit in reference to the specified
simulator and updates the list of parameters if they have
changed names. NOTE: Parse does not assign the Parameters
table values to those in the Circuit, unless they have been newly
added.

Example
 iccap_func("/CGaas1/Circuit","Parse")
iccap_func("/CGaas1/dc/TestCircuit","Parse")
See Also
 Reset (pg 961)
Print Read Buffer
Automates the functionality of the Tools > Send Receive >
Display String menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIB Analyzer

menu_func style command: “Print Read String”

This function prints the ASCII string stored in the read buffer
that had been read back by a call to “Read String”. The string is
displayed in the IC-CAP/Status window and if visible, the
Hardware Setup window.
Example
 iccap_func("Hareware","HPIB Analyzer","Print Read Buffer")
955

F ICCAP_FUNC Statement
Print Via Server
956
Automates the functionality of File > Print in the Model
windows and the “Print” button on various dialogs.
Valid Objects
 Variables, Input, Output, Transform, Plot

menu_func style command: none (see “Send to Printer”)

Displays the Print dialog box for printing the item. Starting with
IC-CAP 2004, the Print dialog box is always displayed when
printing. In previous releases, File > Print did not display a
dialog box except when asking for a file name if printing to a
file.

For plots, Print Via Server prints a tabular listing of the data. To
print the graphical plot, use Dump Via Server UI.
Example
 iccap_func("/CGaas1/Variables","Print Via Server")
See Also
 Send To Printer (pg 973), Dump To Printer (pg 923), Dump To
Plotter (pg 923), Dump Via Server (pg 924), Dump Via Server UI
(pg 925)

Read from File
Automates the functionality of the File > Open menu pick in the
Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: “Read from File”

Reads in a previously saved hardware configuration file. If this
function were executed manually, a dialog box would appear
asking the user for the name of the configuration file to read.
This functionality is emulated in PEL by appending the desired
file name followed by "ok" to the end of the command string.
Example
 iccap_func("Hardware","Read from File","
../mdl/hwm_pel_test.hdw","ok")
IC-CAP Reference

ICCAP_FUNC Statement F
ReadOnlyValues
IC-CAP Reference
Automates the File > Open menu pick when Read Values Only is
selected in the Model Parameters folder or the DUT Parameters
folder.
Valid Objects
 Parameter Set, Device Parameter Set

Prompts for the new name of the file to read, or uses the
optional third argument if provided. This replaces parameter
Values while maintaining existing Min and Max ranges if
possible. If the new value is outside the existing range, Min or
Max is extended to include the new Value and a warning is
displayed in the Status window.
Example
 iccap_func("./ParameterSet","ReadOnlyValues","myparms.mps")
iccap_func("/CGaas1/dc/DeviceParameterSet","ReadOnlyValues",

"myparms.dps")
See Also
 Open (pg 951)
Read String

Automates the functionality of the Tools > Send Receive >
Receive String menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Read String"

This function reads back an ASCII string from the device at the
currently active address as previously set by a call to “Set Active
Address”. The device should have been previously prepared to
talk by sending it a string that generated something for it to say.
The received string itself is not displayed; rather the number of
characters read is displayed in the IC-CAP/Status window and,
if visible, the Hardware Setup window. The string itself is stored
in a read_buffer where a call to “Print Read Buffer” can display
it later.
Example
 iccap_func("Hardware/HPIBAnalyzer","Read String")
957

F ICCAP_FUNC Statement
Read String for Experts
958
Automates the functionality of the Tools > Send Receive > Read
String for Experts menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Read String for Experts"

This function is similar to the "Read String" command except it
skips the talk/listen setup of the device which should be done
using the "Send Command Byte" command. The result is placed
in the HPIB_READ_STRING system variable, if it has been
defined.
Example
 iccap_func("Hardware/HPIBAnalyzer","Read String for Experts")
Rebuild Active List
Automates the functionality of the “Rebuild” button in the
Hardware Setup window’s Instrument List field.
 Valid Objects
 Hardware

menu_func style command: "Rebuild Active List"

Scans the bus and rebuilds the active instrument list for all
DUTs and setups based on the instruments it finds there.
Example
 iccap_func("Hardware","Rebuild Active List")
Recall Parameters
Automates the Tools > Recall Parameters menu pick in the Plot
Optimizer window and the Recall Par button in the
Extract/Optimize folder.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Resets the optimizer Parameters table values to the locally
stored values.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”Recall Parameters”)
iccap_func(“./PlotOptimizer”,”Recall Parameters”)
IC-CAP Reference

ICCAP_FUNC Statement F
See Also
IC-CAP Reference
Store Parameters (pg 984)
Redisplay
Provided for compatibility.
Valid Objects
 Input, Output, Transform, Plot

menu_func style command: “Redisplay”

Refreshes the screen of the 'View Data' of the associated object.
Example
 iccap_func("CGaas1/dc/igvg_0vs/vs","Redisplay")
Refresh Dataset
Automates the Model window’s Tools > Refresh Last Dataset
menu pick functionality.
Valid Objects

Model

Exports new data to the last exported dataset file (*.ds). If no
dataset file had been successful exported, this function will
have no effect.
Example
 iccap_func("/","Refresh Dataset")
See Also
 Export Dataset (pg 928)
Release License
Automates the functionality of the Release button in the License
Status window’s In Use field.
Valid Objects
 IC-CAP

menu_func style command: none

This function releases a license for a specified licensed feature
and returns it to the license pool. Specify the desired license
name, followed by ok.

Valid license names are:

DC Measurements Gummel-Poon Bipolar Model
959

960

F ICCAP_FUNC Statement

AC Measurements Curtice-Statz GAAS Model

LCRZ Measurements Time Domain Measurements

HP Pulsed System
Measurements

Philips MEXTRAM Model

1/f Noise Measurements Philips MOS Model 9

Analysis UCB MOS3 Model

IC-CAP Statistics UCB BSIM3 Model

HP Root FET Model UCB BSIM4 Model

HP Root MOS Model HP EEFET3 Model

HP Root Diode Model HP EEHEMT1 Model

VBIC BJT Model HP EEBJT2 Model
Example
 iccap_func("IC-CAP","Release License","DC Measurements",
"ok")
Rename
Automates changing the text under the Model icon.
Valid Objects
 Model, Macro, DUT, Setup, Input, Output, Transform, Plot

menu_func style command: “Rename”

Prompts for the new name of the model, or uses the optional
third argument if provided.
Example
 iccap_func("/CGaas1","Rename","my_CGaas1")
Replace Interface File
This function is not implemented.
Replot
Automates the Options > Replot menu pick of a plot window.
Valid Objects
 Plot

menu_func style command: “Replot Data”
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Refreshes the plot-- plot window must be open.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Replot")
Rescale
Automates the Options > Rescale menu pick in a plot window.
Valid Objects
 Plot

menu_func style command: “Rescale Graph”

Adjusts the axes to fit the data.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Rescale")
! Specify plot number for Multiplot
iccap_func("/CGaas1/dc/igvg/my_multiplot","Rescale","1")
Reset
Automates the “Reset” button on a Model Parameters page.
Valid Objects

Parameter Set

menu_func style command: “Reset to Defaults”

Resets the parameter values to the values in the Circuit folder.
Example
 iccap_func("/CGaas1/ParameterSet","Reset")
iccap_func("/CGaas1/dc/DeviceParameterSet","Reset")
Reset Global Region
Automates the Optimizer > Global Region > Reset menu pick in a
plot window.
Valid Objects
 Plot

menu_func style command: none

Deletes all existing global trace regions on the plot and defines a
new global trace region.
Example
 iccap_func("./dc/fgummel/ibicvsve", "ResetGlobalRegion",
"0.6", "0.8", "-8", "-3")

iccap_func("./dc/fgummel/bvsic", "ResetGlobalRegion",
"1e-8", "1e-4", "20", "60")

! Specify plot number for Multiplot
961

962

F ICCAP_FUNC Statement

iccap_func("./dc/fgummel/my_multiplot", "ResetGlobalRegion",
"0.6", "0.8", "-8", "-3", "1")
Reset Min Max
Automates the Tools > Reset Min Max menu pick in the Plot
Optimizer window and the Reset Min Max button in the
Extract/Optimize folder.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Sets minimum and maximum optimizer parameter values based
on the value of the coefficient defined with the
AUTOSET_COEFF variable on the System Variables page. The
default coefficient value is 5.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”ResetMinMax”)
iccap_func(“./PlotOptimizer”,”ResetMinMax”)
Reset Option Table
Automates the File > Reset Option Table menu pick in the Plot
Optimizer window.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Resets all options in the Options table to the default values.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”ResetOptionsTable”)
iccap_func(“./PlotOptimizer”,”ResetOptionsTable”)
Reset to Saved Options
Automates the Options > Session Settings > Reset to Saved
Options menu pick in a plot window.
Valid Objects
 Plot

menu_func style command: none
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Restores the Plot Options to their saved state. For Multiplot,
specify a plot number to reset the Plot Options for a specific
plot. To reset the Plot Options for a Multiplot, do not specify a
plot number.
Example
 iccap_func("./dc/fgummel/bvsic", "ResettoSavedOptions")
iccap_func("./dc/fgummel/my_multiplot",

"ResettoSavedOptions")
! Specify plot number in Multiplot to reset specific plot
iccap_func("./dc/fgummel/my_multiplot",

"ResettoSavedOptions", "1")
Reset Trace Region
Automates the Optimizer > trace > Trace Optimizer Region >
Reset menu pick in a plot window
Valid Objects
 Plot

menu_func style command: none

Deletes all existing trace optimizer regions for the specified
trace and defines a new trace optimizer region.

Example
 iccap_func("./dc/fgummel/ibicvsve", "ResetTraceRegion",
"Y Data 0", "0.6", "0.8", "-8", "-3")

iccap_func("./dc/fgummel/bvsic", "ResetTraceRegion",
"Y Data 0", "1e-8", "1e-4", "20", "60")

! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "ResetTraceRegion",

"Y Data 0", "0.6", "0.8", "-8", "-3", "1")
Run Self-Tests
Automates the functionality of the Hardware Setup >
Instruments > Self Test menu pick in the Hardware Setup
window.
Valid Objects
 Hardware

menu_func style command: "Run Self-Tests"

Runs self tests on all instruments found on the bus during a
rebuild of the active list or a measure. Note that to successfully
perform the "Run Self-Tests" function either the "Rebuild Active
List" or the "Measure" function must have been performed first.
Example
 iccap_func("Hardware","Run Self-Tests");
963

F ICCAP_FUNC Statement
Save All
964
Automates IC-CAP/Main File > Save As, but does not permit
selective grouping of models into a .mdl file
Valid Objects
 IC-CAP

menu_func style command: “Write All Models To File”

Prompts for the name of a file and saves all loaded models to
that file. Name of the file can be anticipated by the third
argument.
Example
 iccap_func("/","Save All","myfile.mdl")
See Also
 Save All No Data (pg 964), Save As (pg 964), Save As No Data
(pg 965)
Save All No Data
Automates IC-CAP/Main File > Save As with the "Save without
measured/simulated data" option, but does not permit selective
grouping of models into a .mdl file

Valid Objects
 IC-CAP

menu_func style command: none

Prompts for the name of a file and saves all loaded models to
that file without any measured or simulated data. Name of the
file can be anticipated by the third argument.
Example
 iccap_func("/","Save All No Data")
See Also
 Save As (pg 964), Save All No Data (pg 964)
Save As
Automates the Model window's File > Save As functionality for
the Model level selection.
Valid Objects
 GUI Items, Model, Variables, Circuit, ParameterSet, Macro, DUT,
TestCircuit, DeviceParameterSet, Setup, InstrumentOptions,
Input, Output, Transform, Plot

menu_func style command: “Write To File”
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Prompts for a name of a .mdl file to be written unless the
optional third argument is specified as the file name.

If the third parameter is "", then the function will write the file
out to the default name. The default name is the name of the file
that it was read in from, or the name of the last file to which it
was written.
Example
 iccap_func("/CGaas1","Save As","tmpFile.mdl")
See Also
 Save All (pg 964), Save All No Data (pg 964), Save As No Data
(pg 965)
Save As No Data
Automates the Model window's File > Save As functionality for
the Model level selection choosing the "Save Without
Measured/Simulated Data" option.
Valid Objects

Model, Variables, Circuit, Parameter Set, Macro, DUT Test
Circuit, Device Parameter Set, Setup, Instrument Options,
Input, Output, Transform, Plot

menu_func style command: none

Prompts for a name of a .mdl file to be written unless the
optional third argument is specified as the file name.

If the third parameter is "", then the function will write the file
out to the default name. The default name is the name of the file
that it was read in from, or the name of the last file to which it
was written.
Example
 iccap_func("/CGaas1","Save As No Data","smallFile.mdl")
See Also
 Save All (pg 964), Save All No Data (pg 964), Save As (pg 964)
Save Extracted Deck
Automates the Model window's File > Export Data > Extracted
Deck functionality.
Valid Objects
 Model

menu_func style command: “Save Extracted Deck”
965

966

F ICCAP_FUNC Statement

Merges the current Parameters table into the current circuit
and writes the results to a file. An optional third argument can
specify the name of the file or the iccap_func will prompt for a
name.
Example
 iccap_func("/CGaas1","Save Extracted Deck","my_deck")
Save Image
Automates the File > Save Image menu pick in a plot window
Valid Objects
 Plot

menu_func style command: none

Saves an image of the named plot in .xwd format using the
specified file name.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Save Image",
"nmos2_idvsvg.xwd")
Save Input/Command/Output File
• Save Input File

• Save Command File

• Save Output File

Automates the IC-CAP/Simulation Debugger File > Save Input
File, File > Save Output File, or File > Save Command File
functionality.
Valid Objects
 Simulation Debugger

menu_func style commands were the same

Saves a copy of the last input, output or command file sent to
the simulator with the Simulation Debugger open. A simulation
must have previously been run with the Simulation Debugger
open. An optional third command can be specified to name the
file.
Example
 iccap_func("Simulation Debugger","Save Input File")
iccap_func("Simulation Debugger","Save Command File")
iccap_func("Simulation Debugger","Save Output File",

"myOutFile)
IC-CAP Reference

ICCAP_FUNC Statement F
Scale Plot/Scale Plot Preview
IC-CAP Reference
• Scale Plot

• Scale Plot Preview

Automates the Options > Manual rescale... menu pick in a plot
window (except for Polar Graph and Smith Chart—see “Scale RI
Plot/Scale RI Plot Preview” on page 968).
Valid Objects

Plot

menu_func style command: none

Prompts appear for you to enter required values for the
parameters that describe the plot’s scaling values. The prompts
appear in the following order for the X axis first, then the Y
axis, and finally the Y2 axis:

1 minimum scale value

2 maximum scale value

3 number of major divisions

4 number of minor divisions

Entering AUTOMATIC for an axis’ minimum value (the first
prompt), sets that axis to autoscaled and no further prompts
will appear for that axis.

Scale Plot Preview functions the same way as Scale Plot, but the
scaling will be lost on the next Replot command.

You can anticipate the prompts and include the scale values for
the parameters in the required order. The following example
sets the plot’s scale to the values listed in the table:
Example
 iccap_func("Plot","Scale Plot","0","100","10","5",
"-10","10","5","1","AUTOMATIC")

! Specify plot number for Multiplot
iccap_func("Multiplot","Scale Plot","0","100","10","5",

"-10","10","5","1","AUTOMATIC","1")
967

968

F ICCAP_FUNC Statement
Axis Minimum Maximum Major
Divisions

Minor
Divisions

X 0 100 10 5

Y -10 10 5 1

Y2 Autoscaled
See Also
 Scale RI Plot/Scale RI Plot Preview (pg 968)
Scale RI Plot/Scale RI Plot Preview
• Scale RI Plot

• Scale RI Plot Preview

Automates the Options > Manual rescale... menu pick in a
real-imaginary plot window (RI Graph, Polar Graph, and Smith
Chart).
 NOTE You can scale RI Graph plots using either Scale Plot or Scale RI Plot. All
other plot types can only be scaled using one scale type—not both. For
Polar Graph and Smith Chart plot types, you can only use Scale RI Plot. For
all other plot types, you can only use Scale Plot.
Valid Objects
 Plot

menu_func style command: none

Prompts appear for you to enter required values for the
parameters that describe the plot’s scaling values. The prompts
appear in the following order:

1 Format for Center Point (RI, Z or MP)

• RI - Real/Imaginary

• Z - Normalized Real/Imaginary (Smith Chart format)

• MP - Magnitude/Phase

2 Center Point Val1 (Real, Normalized Real, or Magnitude)

3 Center Point Val2 (Imaginary, Normalized Imaginary, or
Phase)
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
4 Radius Magnitude

5 Number of divisions on Real Axis

6 Number of subdivisions per division on Real Axis

7 Number of divisions on Imaginary Axis

8 Number of subdivisions per division on Imaginary Axis

Scale RI Plot Preview functions the same way as Scale RI Plot,
but the scaling will be lost on the next Replot command.

You can anticipate the prompts and include the scale values for
the parameters in the required order.
Example
 iccap_func("polar_plot","Scale RI Plot","MP","1","3.14","1",
"5","4","5","4")

! Specify plot number for Multiplot
iccap_func("polar_plot","Scale RI Plot","MP","1","3.14","1",

"5","4","5","4","1")
See Also
 Scale Plot/Scale Plot Preview (pg 967)
Screen Debug On

Automates functionality of IC-CAP/Main Tools > Options >
Screen Debug.
Valid Objects
 IC-CAP

menu_func style command: “Utilities/Screen Debug On”

Logs all debug information to the IC-CAP/Status window.
NOTE Screen Debug On automatically turns File Debug Off.
Example
 iccap_func("ic-cap","Screen Debug On")
See Also
 Debug Off (pg 930), Screen Debug Off (pg 930)
Search for Instruments
Automates the functionality of the Instruments > Find menu
pick in the Hardware Setup window.
969

F ICCAP_FUNC Statement
Valid Objects
970

Hardware/HPIBAnalyzer

menu_func style command: "Search for Instruments"

Using the currently active interface, this function sends a serial
poll to all possible addresses other then that of the interface
card itself. The results are displayed in the IC-CAP/Status
window and if visible, the Hardware Setup window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Search for Instruments")
Select Error Region
Automates the Options > Error > Select Error Region menu pick
in a plot window
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "SelectErrorRegion")
iccap_func("./dc/fgummel/bvsic", "SelectErrorRegion",

"x1", "x2", "y1", "y2")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "SelectErrorRegion",

"1")
iccap_func("./dc/fgummel/my_multiplot", "SelectErrorRegion",

"x1", "x2", "y1", "y2", "1")
See Also
 Select Whole Plot (pg 971), Show Absolute Error (pg 981), Show
Relative Error (pg 982)
Select Plot
Automates the Plots > Select Plot menu item in a Multiplot
window
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "SelectPlot")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "SelectPlot", "1")
See Also
 Unselect All (pg 989)
IC-CAP Reference

ICCAP_FUNC Statement F
Select Whole Plot
IC-CAP Reference
Automates the Options > Error > Select Whole Plot menu item in
a plot window
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "SelectWholePlot")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "SelectWholePlot",

"1")
See Also
 Select Error Region (pg 970), Show Absolute Error (pg 981),
Show Relative Error (pg 982)
Send Command Byte
Automates the functionality of the Tools > Send Receive > Send
Byte menu pick in the Hardware Setup window.
Valid Objects

Hardware/HPIBAnalyzer

menu_func style command: "Send Command byte"

This command sends one low_level command byte, specified as
a decimal integer, to the currently active address. The following
list summarizes the GPIB low_level byte commands in common
use.

Mnemonic Definition Byte

ATN Attention

DCL Device Clear 20

EOI End or Identify

EOL End of Line

GET Group Execute Trigger 8

GTL Go To Local 1

IFC Interface Clear

LAD Listen Address 32 + address
971

972

F ICCAP_FUNC Statement

LLO Local Lockout 17

MLA My Listen Address

MTA My Talk Address

OSA Other Secondary Address

PPC Parallel Poll Configure 5

PPD Parallel Poll Disable

PPU Parallel Poll Unconfigure 21

REN Remote Enable

SDC Selected Device Clear 4

SPD Serial Poll Disable 25

SPE Serial Poll Enable 24

SRQ Service Request

TAD Talk Address 64 + address

UNL Unlisten 63

UNT Untalk 95

Mnemonic Definition Byte
Example
 iccap_func("Hardware/HPIBAnalyzer","Send Command Byte","63",
"ok")
Send, Receive, and Print
Automates the functionality of the Tools > Send Receive > Send
Receive Display menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Send, Receive, and Print"

This command sends a string the currently active address,
reads back and displays the response. If this function were
executed manually, a dialog box would appear asking for the
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
string to be sent. This functionality is emulated in PEL by
appending the desired string followed by "ok" to the command
line string.
Example
 iccap_func("Hardware/HPIBAnalyzer","Send, Receive, and
Print","*IDN?\n","ok")
Send String
Automates the functionality of the Tools > Send Receive > Send
String menu pick in the Hardware Setup window.
Valid Objects

Hardware/HPIBAnalyzer

menu_func style command: "Send String"

This function sends an ASCII to the device at the currently
active address. If this function were executed manually, a dialog
box would appear asking for the string to be sent. This
functionality is emulated in PEL by appending the desired
string followed by “ok” to the command line string. The result is
displayed in the IC-CAP/Status window and, if visible, the
Hardware Setup window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Send String","*IDN?\n")
Send To Printer
Provided to be compatible with Version 4.5 style of printing
Valid Objects
 Variables, Input, Output, Transform, Plot

menu_func style command: “Send To Printer”

Prompts for the name of the command through which to pipe
the required file. May be anticipated by a third argument.
Example
 iccap_func("/CGaas1/Variables","Send To Printer",
"lp -dmyprinter")

iccap_func("/CGaas1/Variables","Send To Printer","cat")
See Also
 Print Via Server (pg 956),Dump To Printer (pg 923), Dump To
Plotter (pg 923), Dump Via Server (pg 924)
973

F ICCAP_FUNC Statement
Serial Poll
974

Automates the functionality of the Tools > Serial Poll menu pick
in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Serial Poll"

This function sends a serial poll command to the device at the
currently active address. The result is displayed in the
IC-CAP/Status window and if visible, the Hardware Setup
window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Serial Poll")
Set Active Address
Automates the functionality of the Tools > Address > Set menu
pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Set Active Address"

Sets the address to which the GPIB Analyzer commands will be
sent. If this menu pick were done manually, a dialog box would
appear asking for the desired address. This functionality is
emulated in PEL by appending the desired address followed by
“ok” to the end of the command string.
Example
 iccap_func("Hardware/HPIBAnalyzer","Set Active Address",
"8","ok")
Set Algorithm
Automates the Algorithm drop down menu pick in an
Extract/Optimize folder or in a Plot Optimizer window.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Sets the optimization algorithm to one of the following choices:
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference

Algorithm Full Name PEL Code

Levenberg-Marquardt L

Random R

Hybrid (Random/LM) H

Sensitivity Analysis S

Random (Gucker) A

Gradient B

Random Minimax U

Gradient Minimax E

Quasi-Newton G

Least Pth I

Minimax N

Hybrid (Random/Quasi-Newton) P

Genetic Q
Example
 iccap_func("./PlotOptimizer", "SetAlgorithm", "Minimax")
iccap_func("dc/fgummel/optim1", "SetAlgorithm", "B")
Set Error
Automates the Error drop down menu pick in an
Extract/Optimize folder or in a Plot Optimizer window.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Sets the optimization error to either Relative or Absolute.
Example
 iccap_func("./PlotOptimizer", "SetError", "Relative")
iccap_func("dc/fgummel/optim1", "SetError", "Absolute")
Set GUI Callbacks
Allows setting a callback on a GUI item.
975

F ICCAP_FUNC Statement
Valid Objects
976

GUI Item

menu_func style command: none

This action requires three other arguments. The first is the code
for the callback. The second and third extra argument are the
two parameters to the callbacks associated iccap_func().
Example
 iccap_func("./someItem","Set GUI Callback", "AC", "aMacro",
"Execute)
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modal GUI (pg 920), Display Modeless GUI (pg 920),
Display Single Modal GUI (pg 921), Display Single Modeless GUI
(pg 922), Set GUI Options (pg 976)
Set GUI Options
Automates changing options for any Item on a GUI Page.
Valid Objects
 GUI Item

menu_func style command: none

You can enter as many additional arguments as desired. The last
argument must be "" (a null string) to signify completion. Each
argument is of the form <code>=<val>. Code is the associated
code for the option as found by choosing Show Codes on the
properties dialog.

The <val> can be one of four forms:

• A literal

<val> may be a string or a number

• A Variable Changed

If the first character after the equal sign is a %, the value is
taken to track a variable by the given name.

• An Enumerated type code

Many options have enumerated types such as list selection
mode. Each of these possible values has an associated code
that can be viewed on the properties dialog.

• Multiple Enumerated types
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Some options (e.g., sizing options) allow multiple
enumerated types to be set (fixed width and fixed height).
These are indicated by specifying <code>|<code>.
Example
 iccap_func("./someItem","Set GUI Options", "OR=HO",
"CA="title","")

iccap_func("./some.other.item","Set GUI Options",
"TO=FW|FH","")
See Also
 Add GUI (pg 900), Close GUI (pg 909), Close Single GUI
(pg 910), Destroy GUI (pg 916), Destroy Single GUI (pg 917),
Display Modal GUI (pg 920), Display Modeless GUI (pg 920),
Display Single Modal GUI (pg 921), Display Single Modeless GUI
(pg 922), Set GUI Callbacks (pg 975)
Set Instrument Option Value
Valid Objects
 Input, Output

menu_func style command: none

Allows setting the option fields in an instrument option table.

Example
 iccap_func("c/c/x","SetInstrumentOptionValue","Delay Time",
"foo")
Set Speed
This function is not implemented in IC-CAP Version 5.0
977

F ICCAP_FUNC Statement
Set Table Field Value
978

Automates deleting variables and setting Input, Output, Plot,
and all Transform fields.
Valid Objects
 Input, Output, Plot, Transform, PlotOptimizer, PlotOptions,
Variables

menu_func style command: none

To set a Transform function, use the field name “Function”. To
set the text for the body of a PEL program, use the field name
“Program”. To set fields in two dimensional tables, such as the
optimizer's input and parameter tables, use [] to indicate which
row you want to set. Identify the row using either the row’s
index number or the name in the first field of the row. For
example:

Name Value Min Max
BF 100 50 150
IS 100a 50a 120a

To access the Min of BF use:

"Min[0]" (0 is the index number for the first row.)
or
"Min[BF]" (BF is the name in the first field of the row and it
must be unique to correctly identify the row.)

If you set the start, stop, or number of points for an input,
follow with a “Redisplay” statement to recalculate its size. Only
a single “Redisplay” statement is needed after setting multiple
input fields.

Action name may be shortened to “STFV” for brevity.

See the following examples:
Example
 iccap_func("dc/fgummel/ic","SetTableFieldValue","Mode","V")
iccap_func("myplot","SetTableFieldValue","Header","This is

the header")
iccap_func("dc/fgummel/myxform","SetTableFieldValue",

"Function","Program")
iccap_func("dc/fgummel/myxform","SetTableFieldValue",

"Program","!autogenerated
print 'This is an autogenerated PEL'")

iccap_func("dc/fgummel/optim1","SetTableFieldValue",
"Target[1]","ib.m")

iccap_func("dc/fgummel/optim1","SetTableFieldValue",
"Simulated[1]","ib.s")
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
iccap_func("dc/fgummel/optim1","STFV","Name[2]","BF")
iccap_func("vd","SetTableFieldValue","# of Points","100")
iccap_func("vd","Redisplay")
iccap_func("./PlotOptimizer", "STFV", "Print Parameters", "N")
iccap_func("./PlotOptimizer", "STFV", "Name[0]", "BF")
iccap_func("./ParameterSet", "STFV", "Min[BF]", "100a")
iccap_func("./ParameterSet", "STFV", "Max[BF]", "150")
iccap_func("./ParameterSet", "STFV", "Param Value[BF]", "100")
! Deleting varibles: First argument can be Model, DUT,
! Setup, or the slash (/) to specify top-level IC-CAP object.
iccap_func(".","STFV","Name[aaa]","") ! Changes the value
! of the Name cell corresponding with "aaa" to "".
See Also
 Redisplay (pg 959)
Set Target Vs Simulated
Automates the Optimizer > trace > Set as Target vs. menu pick
in a plot window
Valid Objects

Plot

menu_func style command: none

Configures the specified trace as Target versus a specified
Simulated trace.
Example
 iccap_func("./dc/rgummel/ibievsvc", "SetTargetVsSimulated",
"Y Data 0", "Y Data 1")

! Specify plot number for Multiplot
iccap_func("./dc/rgummel/my_multiplot", "SetTargetVsSimulated",

"Y Data 0", "Y Data 1", "1")
See Also
 Set Trace As Both (pg 980)
Set Timeout
Automates the functionality of the Tools > Settings > Timeout
menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Set Timeout"

Sets the timeout of the device at the currently active address as
previously set by a call to “Set Active Address”. If this function
were executed manually, a dialog box would appear asking for
979

980

F ICCAP_FUNC Statement
the desired timeout, in seconds. This functionality is emulated
in PEL by appending the desired timeout followed by “ok” to the
end of the command string.
Example
 iccap_func("Hardware/HPIBAnalyzer","Set Timeout","10","ok")
Set Trace As Both
Automates the Optimizer > trace > Set as Both Target and
Simulated menu pick in a plot window
Valid Objects
 Plot

menu_func style command: none

Configures the selected trace with its measured data set as
Target and its simulated data set as Simulated.
Example
 iccap_func("dc/fgummel/icibvsve", "SetTraceAsBoth", "Y Data 1")
! Specify plot number for Multiplot
iccap_func("dc/fgummel/my_multiplot", "SetTraceAsBoth",

"Y Data 1", "1")
 See Also
 Set Target Vs Simulated (pg 979)
Set User Region
Defines a user region.
Valid Objects
 Plot

menu_func style command: none

User boxes are colored squares that you can define using the
following syntax:
iccap_func("<plotName>", "SetUserRegion", "<RegionName>",
"x1" ,"x2", "y1", "y2", "<color>", "<ReferenceAxis>")

Where:

<RegionName> is a unique name that identifies the region

x1, x2, y1, y2 are the string coordinates of the region

<color> is a number between 0 and 127

<ReferenceAxis> is either "Y" or "Y2" and is used to apply the
coordinates in one axis or the other.
IC-CAP Reference

ICCAP_FUNC Statement F
Example
IC-CAP Reference
x=lookup_obj_attribute("ibicvsve","UserSelectedRegion")
iccap_func("ibicvsve","SetUserRegion","LeftRegion",x[0],x[1],

x[2],x[3],5,"Y2")
See Also
 Delete All User Regions (pg 916), Delete User Region (pg 916)
Set Variable Table Value
Automates adding a new variable to a Variable table.
Valid Objects
 IC-CAP, Model, DUT, Setup

menu_func style command: none

Uses two anticipated arguments to name the variable and value
to be set. If the named variable does not exist on the object
named, the system searches upwards through the hierarchy to
find it.
 Examples
 iccap_func("/npn","SetVariableTableValue","SIMULATOR",
"spice3")
See Also

Set Table Field Value (pg 978), Create Variable Table Variable
(pg 912)
Show Absolute Error
Automates the Options > Error > Show Absolute Error menu
item in a plot window
Valid Objects
 Plot

menu_func style command: none

Displays the MAX and RMS absolute errors in the footer area
and turns off relative error or footer text if displayed.
Example
 iccap_func("./dc/fgummel/bvsic", "ShowAbsoluteError")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "ShowAbsoluteError",

"1")
See Also
 Show Relative Error (pg 982), Select Whole Plot (pg 971), Select
Error Region (pg 970)
981

F ICCAP_FUNC Statement
Show Highlighted Curves
982

Highlights all curves marked in the highlight set for a given
trace. Simply marking a curve highlighted does not turn on the
actual highlighting.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("dc/fgummel/icibvsve", "Show Highlighted
Curves")

! Show the curves highlighted, which have been marked
! highlighted in the 2nd subplot of my_muliplot.
! Specify the subplot number as "1"
iccap_func("dc/fgummel/my_multiplot", "Show Highlighted

Curves", "1")

! Show the curves highlighted, which have been marked
! highlighted in all the subplots of my_muliplot.
iccap_func("dc/fgummel/my_multiplot", "Show Highlighted

Curves")
See also
 Mark Curve Highlighted (pg 947), Unmark Highlighted Curve
(pg 989), Unmark All Highlighted Curves (pg 988), Hide
Highlighted Curves (pg 932)
Show Relative Error
Automates the Options > Error > Show Relative Error menu
item in a plot window
Valid Objects
 Plot

menu_func style command: none

Displays the MAX and RMS relative errors in the footer area
and turns off absolute error or footer text if displayed.
Example
 iccap_func("./dc/fgummel/bvsic", "ShowRelativeError")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "ShowRelativeError",

"1")
See Also
 Show Absolute Error (pg 981), Select Whole Plot (pg 971), Select
Error Region (pg 970)
IC-CAP Reference

ICCAP_FUNC Statement F
Simulate
IC-CAP Reference
Automates the Simulate menu picks.
Valid Objects
 DUT, Setup

menu_func style command: “Extract”

Performs Simulation on all setups within named DUT or within
named setup.
Example
 iccap_func("/CGaas1/dc","Simulate")
iccap_func("/CGaas1/dc/igvg_0vs","Simulate")
Simulate All
Automates the Simulate > Simulate All menu pick in the Plot
Optimizer window.
Valid Objects

Plot Optimizer

menu_func style command: none

Simulates all enabled traces.
Example
 iccap_func(“./PlotOptimizer”,”SimulateAll”)
Simulate Plot Inputs
Automates the Simulate > plot name menu pick in the Plot
Optimizer window.
Valid Objects
 Plot Optimizer

menu_func style command: none

Simulates all enabled traces in the specified plot.
Example
 iccap_func(“./PlotOptimizer/optim1”,”SimulatePlotInputs”)
Simulation Debugger
Automates the IC-CAP/Main window’s Tools > Simulation
Debugger functionality.
Valid Objects
 IC-CAP
983

984

F ICCAP_FUNC Statement
menu_func style command was “Utilities/Open Simulation
Debugger”
Example
 iccap_func("ic-cap","Simulation Debugger")
Status Window
Automates the IC-CAP/Main window’s Windows > Status
Window functionality.
Valid Objects
 IC-CAP

menu_func style command: none

Raises the Status window to the top of the screen
Example
 iccap_func("ic-cap","Status Window")
Stop Simulator
Automates the IC-CAP/Main and Model window’s Tools > Stop
Simulator functionality.
 Valid Objects
 IC-CAP, Model

menu_func style command: none

If a simulator is configured for CAN_PIPE mode, this action will
stop any currently running simulator. If the current simulator
is not CAN_PIPE, or if no simulator is currently running, this
action will do nothing.
Example
 iccap_func("/","Stop Simulator")
Store Parameters
Automates the Tools > Store Parameters menu pick in the Plot
Optimizer window and the Store Par button in the
Extract/Optimize folder.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Locally stores the current parameter values to the Stored
column on the optimizer Parameters table. When the file is
saved, these values are stored as part of the optimizer settings.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”Store Parameters”)
iccap_func(“./PlotOptimizer”,”Store Parameters”)
See Also
 Recall Parameters (pg 958)
Talk Active Address
Automates the functionality of the Tools > Address > Talk menu
pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: "Talk Active Address"

This function sends a TALK command to the device at the
currently active address. The result is displayed in the
IC-CAP/Status window and if visible, the Hardware Setup
window.

Example
 iccap_func("Hardware/HPIBAnalyzer","Talk Active Address")
Text Annotation
Automates the Options > Session Settings > Text Annotation
menu pick in a plot window.
Valid Objects
 Plot

menu_func style command: none

Toggles Text Annotation on and off for the specified plot.
Example
 iccap_func("./dc/fgummel/bvsic", "TextAnnotation")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot","TextAnnotation","1")
See Also
 Text Annotation Off (pg 985), Text Annotation On (pg 986)
Text Annotation Off
Turns off text annotation for the specified plot.
Valid Objects
 Plot
985

986

F ICCAP_FUNC Statement
menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "TextAnnotationOff")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "TextAnnotationOff",

"1")
See Also
 Text Annotation (pg 985), Text Annotation On (pg 986)
Text Annotation On
Turns on text annotation for the specified plot.
Valid Objects
 Plot

menu_func style command: none
Example
 iccap_func("./dc/fgummel/bvsic", "TextAnnotationOn")
! Specify plot number for Multiplot
iccap_func("./dc/fgummel/my_multiplot", "TextAnnotationOn",

"1")
See Also
 Text Annotation (pg 985), Text Annotation Off (pg 985)
 Toggle Zoom
Automates the Plots > Zoom Plot menu pick in a Multiplot
window.
Valid Objects
 Plot

menu_func style command: none

In the Multiplot window, displays the selected plot in zoom
format.
Example
 iccap_func("./dc/fgummel/my_multiplot","ToggleZoom","1")
See Also
 Zoom Plot (pg 991), Undo Zoom (pg 988), Full Page Plot (pg 931)
Tune Fast
Automates the Tune Fast button in the Extract/Optimize folder
and in the Plot Optimizer window.
Valid Objects
 Setup, Transform, Plot Optimizer

menu_func style command: none
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
Displays set of sliders enabling you to constantly tune set of
optimization parameters during an optimization. The object
name must include the optimization transform name.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs/optim1”,”Tune Fast”)
iccap_func(“./PlotOptimizer/optim1”,”Tune Fast”)
Tune Slow
Automates the Tune Slow button in the Extract/Optimize folder
and in the Plot Optimizer window.
Valid Objects
 Setup, Transform, Plot Optimizer

menu_func style command: none

Displays set of sliders enabling you to tune set of optimization
parameters during an optimization. The object name must
include the optimization transform name.
Example
 iccap_func(“/CGaas1/dc/igvg_0vs/optim1”,”Tune Slow”)
iccap_func(“./PlotOptimizer/optim1”,”Tune Slow”)

Turn Off Marker
Automates the action of clicking outside the grid boundary on a
plot, which has the same effect as deselecting any selected
points.
Valid Objects
 Plot

menu_func style command: none

If a point is selected and the marker information is displayed
under the title, this call will deselect the selected point and turn
off the marker information. It will have no effect if no points
were selected.
Example
 iccap_func("dc/fgummel/icibvsve", "Turn Off Marker")

! turn off the point selected on the 2nd subplot of
! my_muliplot.
! Specify the subplot number as "1"
iccap_func("dc/fgummel/my_multiplot", "Turn Off Marker”,”1”)

! Turn off the selected points on all plots of a multiplot
iccap_func("dc/fgummel/my_multiplot", "Turn Off Marker”)
987

F ICCAP_FUNC Statement
Undo Optim
988

Automates the Undo Optim button in the Extract/Optimize
folder and in the Plot Optimizer window.
Valid Objects
 Transform, Plot Optimizer

menu_func style command: none

Resets the parameter values in the optimizer Parameters table
to values prior to the optimizations and runs a simulation.
Example
 iccap_func(“./CGaas1/dc/igvg_0vs”,”Undo Optim”)
iccap_func(“./PlotOptimizer”,”Undo Optim”)
Undo Zoom
Automates the Plots > Undo Zoom menu pick in a Multiplot
window.
Valid Objects
 Plot

menu_func style command: none

Resets the Multiplot window to its default format.
Example
 iccap_func("./dc/fgummel/my_multiplot","UndoZoom","1")
See Also
 Full Page Plot (pg 931), Toggle Zoom (pg 986), Zoom Plot
(pg 991)
Unmark All Highlighted Curves
Unmarks all highlighted curves.
Valid Objects
 Plot

menu_func style command: none
Example
 ! Unmark all the highlighted curves.
iccap_func("dc/fgummel/icibvsve", "Unmark All Highlighted

Curves")

! Specify the subplot number as "1"
! Unmark all the highlighted curves in the 2nd subplot of
! my_multiplot.
iccap_func("dc/fgummel/my_multiplot", "Unmark All

Highlighted Curves", "1")
IC-CAP Reference

ICCAP_FUNC Statement F

IC-CAP Reference
! Unmark all the highlighted curves in all the subplots of
! my_multiplot.
iccap_func("dc/fgummel/my_multiplot", "Unmark All

Highlighted Curves")
See also
 Mark Curve Highlighted (pg 947), Unmark Highlighted Curve
(pg 989), Hide Highlighted Curves (pg 932), Show Highlighted
Curves (pg 982)
Unmark Highlighted Curve
Unmark the specific highlighted curve.
Valid Objects
 Plot

menu_func style command: none
Example

! Unmark the highlighted cure which is the 1st curve of the
! 2nd trace.
! Specify the trace number as "1", specify the curve number
! as "0"
iccap_func("dc/fgummel/icibvsve", "Unmark Curve

Highlighted", "1", "0")

! Unmark the highlighted curve which is the 1st curve of the
! 1st trace of the 2nd subplot
! Specify the trace number as "0", specify the curve number
! as "0",
! Specify the subplot number as "1"
iccap_func("dc/fgummel/my_multiplot", "Unmark Curve

Highlighted", "0", "0","1")
See also
 Mark Curve Highlighted (pg 947), Unmark All Highlighted
Curves (pg 988), Hide Highlighted Curves (pg 932), Show
Highlighted Curves (pg 982)
Unselect All
Automates the Plots > Unselect All menu pick in a Multiplot
window
Valid Objects
 Plot

menu_func style command: none

In the Multiplot window, unselects the currently selected plot.
Example
 iccap_func("./dc/fgummel/my_multiplot","UnselectAll")
See Also
 Select Plot (pg 970)
989

F ICCAP_FUNC Statement
Update Annotation
990

Automates the Options > Update Annotation menu pick in a plot
window.
Valid Objects
 Plot

menu_func style command: “Replot Data”

If an annotation file exists for the plot, this will update the
display to make it current with the contents of the annotation.
Example
 iccap_func("/CGaas1/dc/igvg_0vs/vs/ig_vs_vg","Update
Annotation")
View
Automates the View button on the Setup Pages.
Valid Objects
 Input, Output, Transform, Plot

menu_func style command: “Display Data”

Opens a window containing the data contained in the named
item.
Example
 iccap_func("CGaas1/dc/igvg_0vs/vs","View")
Who Are You
Automates the functionality of the Tools > Address > Who Are
You? menu pick in the Hardware Setup window.
Valid Objects
 Hardware/HPIBAnalyzer

menu_func style command: none

This function tries to determine the identity of the device at the
currently active address as previously set by a call to “Set Active
Address”. The result is displayed in the IC-CAP/Status window
and if visible, the Hardware Setup window.
Example
 iccap_func("Hardware/HPIBAnalyzer","Who Are You")
IC-CAP Reference

ICCAP_FUNC Statement F
Write to File
IC-CAP Reference
Automates the functionality of the File > Save menu pick in the
Hardware Setup window.
Valid Objects
 Hardware

menu_func style command: “Save to File”

Saves the current hardware configuration to a file. If this
function were executed manually, a dialog box would appear
asking the user for the name of the file to which the current
configuration was to be saved. This functionality is emulated in
PEL by appending the desired file name followed by "ok" to the
end of the command string.
Example
 iccap_func("Hardware","Save to File","
../mdl/hwm_pel_test.hdw","ok")
Zoom Plot

Automates the Plots > Zoom Plot menu pick in a Multiplot
window.
Valid Objects
 Plot

menu_func style command: none

In the Multiplot window, displays the selected plot in zoom
format.
Example
 iccap_func("./dc/fgummel/my_multiplot","ZoomPlot","1")
See Also
 Undo Zoom (pg 988), Toggle Zoom (pg 986), Full Page Plot
(pg 931)
991

992

F ICCAP_FUNC Statement

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

G
54120 Demo

TDR Example 994

Standard Time-Domain Example 997

Controlled Pulse Generator Example 1001

Calibration 1005

Tips 1006

Aligning Measured and Simulated Data 1007

The 54120.demo.mdl file is included to provide you with
examples of using the 54120 series digitizing oscilloscopes.
The model file shows how to construct a Model, DUT, and
Setup for time-domain measurement and simulation. The
model file actually contains three different models, one for
each of the following modes of operating a scope:

• TDR

• Standard Time-Domain

• Standard Time-Domain with IC-CAP controlled pulse
generator

The DUTs modeled in these three examples are fairly
degenerate, being just lengths of cables, modeled as
transmission lines. No extractions have been set up, but both
Setups can be simulated and measured, and the simulated
waveforms appear in plots with the measured waveforms.
NOTE The ’Standard Time-Domain’ and ’Standard Time-Domain with IC-CAP
controlled pulse generator’ are also available with the HP 54510
oscilloscope.
993Agilent Technologies

G 54120 Demo
TDR Example
994

After loading the model file (54120.demo.mdl), open the
mdltdr model for this example.

In this example, the setup tdr_setup makes measurements
using the scope's internal capabilities for sourcing a TDR
pulse train. The acquisition of reflected and transmitted
waveforms is demonstrated, and the waveforms are plotted.
Measurement/Instrument Setup
The instrument setup is an HP 54123T oscilloscope with a 1
meter 50-ohm cable, part no. 8120-4948, attached from the
channel 1 port to the channel 4 port. (Be sure to issue the
Rebuild command so the oscilloscope will be recognized by
IC-CAP.)
Simulation
The circuit for this model contains a transmission line to
simulate the cable, and it contains a 50-ohm resistor to
simulate the loading offered by the channel 4 input.

The 50 ohms present as a channel 1 source impedance are
automatically accounted for in the tdr_step input. See the
Table 109 for details.
IC-CAP Reference

54120 Demo G
Setup specifics
IC-CAP Reference

Edit the tdr_setup setup (mdltdr) as described in the
following input and output tables.

Table 109 Inputs

Input Name Value/Description

time This input is necessary to specify the time window for which the
measured and simulated data will be acquired. It uses the Mode T.
Naming it time is not necessary.

tdr_step This input describes the pulse stimulus. Note the following
comments on some of the important fields:
Mode:
must be V
+ Node and - Node:
points at which the simulated pulse is applied
Unit:
scope channel from which TDR pulse is sourced. The scope can
only source from its left-most port, generally designated as CH1.
Type:
must be TDR
Pulsed Value:
Note: 400m is used here. The manual states "a pulsed value of
200mv" is what the scope will deliver. This is true when the scope
delivers its pulse across a 50-ohm load. The open-circuit value is
actually 400mV, and that is what is required here for agreement
between measured and simulated waveforms. This value will
affect simulated data only—the scope provides no flexibility in its
pulse magnitude.
Delay Time, Rise Time, Fall Time, Pulse Width, Resistance:
These are all selected to cause the simulator to use a signal
specification roughly compatible with the 54120-family TDR pulse
specification. Changing these values will affect simulated data
only.
Period:
Values from 2usec to 65535usec can be chosen, which will affect
both measured and simulated data. For simulation, the limits are
actually much wider
995

996

G 54120 Demo

Table 110 Outputs

Output
Name

Value/Description

tdtout This output will collect a waveform on the 4th input port of the
scope. Note the use of CH4, and the Mode V. This is transmission
data, in that it is what is transmitted through the cable, from CH1.

tdrout This output will collect a waveform on the 1st input port of the
scope. Note the use of CH1 to specify this. During simulation, the
waveform is captured across the + and - Nodes shown. This is
reflection data, because it is the waveform reflected from the
cable and CH4 back to CH1, where the stimulus originates.
IC-CAP Reference

54120 Demo G
Standard Time-Domain Example
IC-CAP Reference

After loading the 54120.demo.mdl model file, open the
mdl8112 model for this example. This example demonstrates
using an external signal generator with a scope. IC-CAP will
not directly control the signal generator, so you must control
it from its front panel. An HP 8112A 50 MHz pulse
generator was used while developing this model.

In this example, the setup td_meas makes measurements
assuming that an external signal generator (an HP 8112) is
attached to the DUT and the scope. This arrangement
provides much greater flexibility in the characteristics of the
stimulus delivered to the DUT (the scope's pulse generator
has limited flexibility, by comparison, with an instrument
such as the HP 8112).

In this setup, waveforms are acquired on two scope inputs.
Also, IC-CAP exercises the scope's ability to compute
peak-to-peak and rms voltages. These computed voltages
appear on the same plot as the waveforms, for visual
comparison.
Measurement/Instrument Setup
The instrument setup includes an HP 54123T oscilloscope
with an HP 8112A generator. You will need several
BNC/APC-3.5 adapters.

Note: If the attenuators suggested on the scope inputs are
not used, reduce the 8112 output signal below 320mV and
adjust the Pulsed Value (in the input
mdl8112/dut_8112/td_meas/ext_pulse) accordingly. (See
Table 111 for details.) A suitable attenuator for 3.5mm
connectors is part no. 33340C.

• Triggering

A 1 meter, 50-ohm cable is run from the Trigger output of
the 8112, onto a 20dB attenuator on the Trigger input of
the scope.

• Signals
997

998

G 54120 Demo

A 61cm 50-ohm BNC cable, 8120-1839, is run from the
8112's signal output to a BNC T-connector. The T feeds
scope channel 1 through a 20dB attenuator. The T also
feeds a1 meter, 50-ohm cable, 8120-4948, which feeds
scope channel 4 through another 20dB attenuator. Add
BNC/APC-3.5 adapters as needed.

By pressing the scope's LOCAL key and then its
AUTOSCALE key, you can see if it is receiving trigger and
input signals properly. (Two waveforms should appear on
the scope's display.)

Be sure to issue the Rebuild command so the oscilloscope
will be recognized by IC-CAP.
Simulation
The circuit for this model contains a transmission line to
simulate the cable run from scope channel 1 to scope
channel 4; this helps model the delay that will be apparent
in the plotted waveforms. The circuit also contains 50-ohm
resistors to simulate the loading offered by the channel 1
input and the channel 4 input. (These resistors would
probably be more appropriately represented in a test circuit
for the DUT dut_8112.)

The source impedance of the HP 8112 generator is
automatically accounted for in the ext_pulse input, which
exists in the setup td_meas. (See Table 111 for details.)
Setup specifics
Edit the td_meas setup (mdl8112) as described in the
following input and output tables.

Table 111 Inputs

Input Name Value/Description

time This Input is necessary to specify the time window for which the
measured and simulated data will be acquired. It uses the Mode T.
Naming it time is not necessary. The start and stop times are
selected so that several complete waveforms will be plotted.
IC-CAP Reference

54120 Demo G

IC-CAP Reference

ext_pulse This Input describes the pulse stimulus, for Simulation purposes.
For measurement, you should attempt to key in the same values
on the front panel of the pulse generator being used. Note the
following comments on some of the important fields:
Mode:
must be V
+ Node and - Node:
points across which a simulated pulse is applied
Unit:
The special case GROUND is employed here to instruct IC-CAP to
suppress the scope's own step generator. This makes it possible
for the external pulse generator to be employed during
measurement. By selecting Unit = GROUND, this ext_pulse input
is effectively not used during the Measure menu selection.
However, it is included for Simulate.
Type:
Must be TDR
Pulsed Value:
3.3 was the value used to generate the measured data seen in the
plot for this Setup. Unless you have 20dB attenuators on the
scope inputs (a suitable attenuator for 3.5mm connectors is part
no. 33340C), this value should be adjusted below 320mv, and the
pulse generator should be adjusted similarly.
Rise Time, Fall Time, Pulse Width:
On the pulse generator, attempt to set these as shown in the
IC-CAP Setup.
Delay Time, Resistance:
These were determined empirically using the HP 8112 to develop
this demonstration. You may find different values give better
agreement between the measured and simulated waveforms.
Period:
Enter the same value in the IC-CAP Setup and on the generator's
front panel. 200n was used for the waveforms shown.

Table 111 Inputs

Input Name Value/Description
999

1000

G 54120 Demo

Table 112 Outputs

Output
Name

Value/Description

wave1 This output will collect a waveform on the 1st input port of the
scope. Note the use of CH1 to specify this. The Mode should be V.
The simulated waveform is captured across the + and - Nodes
shown.

wave4 This output will collect a waveform on the 4th input port of the
scope. Note the use of CH4, and the Mode V. The simulated
waveform is captured across the + and - Nodes shown. With the
suggested cabling arrangement, the data of this output is slightly
delayed, relative to the wave1 output.

vpp1 This output is only available for measurement (note the type M)
because the oscilloscope computes it using special firmware
algorithms. The Mode T is used to request these special
Time-domain computations from the scope. By pressing the
middle mouse button on the field Pulse Param, you can obtain
help (in the Status panel) regarding the choices available from the
scope. In this case, the peak-to-peak voltage associated with the
measured part of wave1 will be obtained.

vpp4 This output is like vpp1, but obtains measured peak-to-peak
voltage for CH4 and wave4.

vrms4 This output obtains measured RMS voltage for CH4 and wave4.
IC-CAP Reference

54120 Demo G
Controlled Pulse Generator Example
IC-CAP Reference
This example demonstrates a standard time-domain mode
where the pulse generator is controlled by IC-CAP. It uses
an external signal generator with a scope. IC-CAP directly
controls the HP 8130A pulse generator. After loading the
54120.demo.mdl model file, open the mdl8130 model for this
example.

In this example, the setup td_meas controls an external
signal generator (an HP 8130) that is attached to the DUT
and the scope. In this setup, a waveform is acquired on one
scope input. Also, IC-CAP exercises the scope's ability to
compute period, +width, -width, risetime, falltime, and
peak-to-peak voltage.
Measurement/Instrument Setup

The hardware arrangement includes an HP 54123T
oscilloscope with an HP 8130A generator. You will need
several BNC/APC-3.5 adapters.
NOTE If the attenuators suggested on the scope inputs are not used, adjust the
Pulsed Value (in the input mdl8130/dut_8130/td_meas/ext_pulse) so
that it is below 320mV. (See Table 113 on page 1002 for details.) A suitable
attenuator for 3.5mm connectors is part no. 33340C.
• Triggering

A 1 meter, 50-ohm cable is run from the Trigger output of
the 8130, onto a 20dB attenuator on the Trigger input of
the scope.

• Signals

A 61cm 50-ohm BNC cable, 8120-1839, is run from the
8130's signal output to a BNC/APC-3.5 adapter connected
to scope channel 1 through a 20dB attenuator.
Additionally, the signal can be fed to scope channel 1
through the use of a BNC T-connector as described in the
8112 case.
1001

1002

G 54120 Demo

Be sure to issue the Rebuild command so the oscilloscope
will be recognized by IC-CAP.
Simulation
The circuit for this model contains a transmission line to
simulate the cable run from scope channel 1 to scope
channel 4; this helps model the delay that will be apparent
in the plotted waveforms. The circuit also contains 50-ohm
resistors to simulate the loading offered by the channel 1
input and the channel 4 input. (These resistors would
probably be more appropriately represented in a test circuit
for the DUT dut_8130.)
Setup specifics
Edit the td_meas setup (mdl8130) as described in the
following input and output tables.

Table 113 Inputs

Input Name Value/Description

time This input is necessary to specify the time window for which the
measured and simulated data will be acquired. It uses the Mode T.
Naming it time is not necessary. The start and stop times are
selected so that several complete waveforms will be plotted.
IC-CAP Reference

54120 Demo G

IC-CAP Reference

ext_pulse This input describes the pulse stimulus, for simulation purposes.
For measurement, you should attempt to key in the same values
on the front panel of the pulse generator being used. Note the
following comments on some of the important fields.
Mode:
must be V
+ Node and - Node:
points across which a simulated pulse is applied
Unit:
must be PULSE1, which corresponds to the output of the 8130.
Type:
must be PULSE or TDR. PULSE is used in this example.
Pulsed Value:
4.0 was the value used to generate the measured data seen in the
plot for this setup. Unless you have 20dB attenuators on the
scope inputs (a suitable attenuator for 3.5mm connectors is part
no. 33340C), this value should be adjusted below 320mv.
Rise Time, Fall Time, Pulse Width:
Set to 2u, 4u, and 40u for this example.
Delay Time, Resistance:
Set to 0 for this example.
Period:
Set to 60u for this example.

Table 114 Outputs

Output
Name

Value/Description

wave1 This output will collect a waveform on the 1st input port of the
scope. Note the use of CH1 to specify this. The Mode should be '.
The simulated waveform is captured across the + and - Nodes
shown. A similar wave4 output can be defined to collect a
waveform on CH4 of the scope.

Table 113 Inputs

Input Name Value/Description
1003

1004

G 54120 Demo

period,
pwidth,
nwidth,
risetime,
falltime,
swing

These outputs are only available for measurement (note the type
M) because the oscilloscope computes it using special firmware
algorithms. The Mode T is used to request these special
Time-domain computations from the scope. By pressing the
middle mouse button on the field Pulse Param, you can obtain
help (in the Status panel) regarding the choices available from the
scope.

Table 114 Outputs

Output
Name

Value/Description
IC-CAP Reference

54120 Demo G
Calibration
IC-CAP Reference

If you want IC-CAP to use your Channel Gain and Skew
calibrations (performed via the front panel) follow these
guidelines:

1 For a skew calibration, perform a dummy measurement,
to get the time axis parameters downloaded.

2 Follow the instructions in the Front-Panel Reference for
Gain and/or Skew calibration.

3 Continue with IC-CAP measurements.

4 If the time window is changed while using skew
calibration, this procedure should be repeated.

The instrument should be powered-on for 15 to 30 minutes
before attempting calibration.
1005

G 54120 Demo
Tips
1006

• The open circuit voltage of the scope's own pulse
generator is 400mV. See the Pulsed Value information for
the TDR Example in Table 109 on page 995.

• The Offset and Range options available for each channel
do not affect the range and resolution of measured
waveforms. However, poor selections can cause errors in
the T Mode measurements described previously.

• The Instrument Option ‘Averages’ should be used with
caution when making certain T Mode measurements, such
as Risetime. An averaged waveform will appear to exhibit
a slower transition than any single instance of the same
waveform. (Consult the Front-Panel Reference for your
oscilloscope.)

In algebraic terms, the instrument returns
Risetime(average(waveform)), and not
average(Risetime(waveform)) when Averages >1 and a
T-Mode output for Risetime is established.

Other instrument-computed pulse parameters are obtained
the same way, though only the edge-speed computations
suffer adverse effects.
IC-CAP Reference

54120 Demo G
Aligning Measured and Simulated Data
IC-CAP Reference

This example demonstrates aligning simulated and measured
time-domain data when using a Pulse Generator.

The HP 8130 has a delay between its trigger output and its
signal output. This delay induces a minor difficulty when
attempting to align simulated and measured data, because
simulators have no such delay. This delay has some
dependency on pulse parameters, especially Period. This was
accounted for during driver design by adding the ‘Pulse
Delay Offset’ instrument option.

The value specified for ‘Pulse Delay Offset’ is added to the
TDR or PULSE input's Delay value. Positive values will shift
the waveform to the right, and negative values will shift the
waveform to the left. This option enables you to align the
simulated and measured waveforms. The option may need
adjustment if the Period is changed. The default for this
option is zero.

A fundamental problem with time-domain measurement is
that the instruments do not have infinite speed, so you
cannot measure everything you can simulate.

There are two situations when this is really important:

• The 54120 series cannot digitize any data until at least
16ns after a trigger edge is received. For this reason,
IC-CAP imposes a lower bound on the T-mode Start time,
to protect you from obtaining invalid data.

• The HP 8130 emits a trigger pulse approximately 18ns
before its signal pulse. It was designed this way because
oscilloscopes may need some ‘setup’ time to capture the
first edge appearing on the pulsed signal line. In plots,
this causes the measured waveform to shift to the right,
relative to the simulated waveform.

To obtain good time-axis alignment between simulated and
measured data, we recommend these steps:

• Increase the Delay in the PULSE input in the setup. This
should shift the simulated waveform to the right.
1007

1008

G 54120 Demo

• Decrease the HP 8130's ‘Pulse Delay Offset’ Instrument
Option. This should shift the measured waveform to the
left, inducing alignment.

By following the above steps, there should be no problem
obtaining proper alignment between simulated and measured
waveforms.

Note that if you try to set ‘Pulse Delay Offset’ to less than
zero, you may get a measurement error message. To avoid
such errors, first increase the Delay field in the PULSE or
TDR type input. The instrument's ‘Pulse Delay Offset’ option
plus the Delay in the PULSE input must add to greater than
or equal to zero.
IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

H
User C Functions

Example 1 1010

Example 2 1011

Function Descriptions 1012

Hints 1018

You can write C routines that can be called from Programs
or Macros. These routines can open, read, write, and close
files. You can also specify any desired offset in the file, and
display that position for reference. The location of these files
is $ICCAP_ROOT/src.

IC-CAP imposes no limit on the number of files you can
have open at one time. For limits of your operating system,
refer to your operating system documentation.

The point-by-point assignment User C I/O capability
increases IC-CAP's flexibility in accepting data sets from
external sources. For additional information, refer to
“Assignment” on page 706.

Tip:

• To view the arguments required by any given function
from within the program, create a standalone transform
and supply the desired function name in the Function
field. IC-CAP will provide labeled fields indicating the
arguments required by that function for use in a
transform.
1009Agilent Technologies

H User C Functions
Example 1
1010

This example shows how to read a data set from a file using
the following three functions:

• USERC_open

• USERC_readnum

• USERC_close

Example 1, to be coded as a Transform Program from a
Setup
! This Program reads a data set from a disk file 'datafile'.
! It is assumed that the file has scientific notation
! numbers, e.g., 15 or 15.0E3, separated by white space. The
! white-space can be any amount of blanks, tabs,
! carriage-returns, or newlines (linefeeds).
fnum = USERC_open("datafile","r")
! open a file for reading
COMPLEX tmp_array[SIZE(vb)]
! array as big as data set 'vb'
i=0
WHILE i < SIZE(tmp_array)
 data_pt=USERC_readnum(fnum,0," %lf")
! fnum came from USERC_open.
! 0 indicates NOT an instrument.
! " %lf" (leading space intentional)
! is to scan for any amount of
! white-space (including none),
! followed by a long-float number,
! i.e. a double precision
! real number.
 PRINT data_pt
! To show each value as it is read.
 tmp_array[i] = data_pt
 i=i+1
END WHILE
status=USERC_close(fnum)
! close the open file.
RETURN tmp_array
! store data, for plotting, etc.
IC-CAP Reference

User C Functions H
Example 2
IC-CAP Reference

This example causes the transform to read the specified file
<datafile> and return the array contained therein, using the
following function:

• USERC_read_reals

The floating point numbers in the file can be separated by
various separators, including any mixture of newlines, tabs,
and spaces, as well as comma (,) and semicolon (;)
characters.

The USERC_read_reals function offers a simpler solution
than Example 1. And it is possible to use the notation
'USERC_read_reals(<datafile>)' elsewhere in IC-CAP; for
example, it can be used directly in a Plot definition.

Additional comments can be found in the source file
$ICCAP_ROOT/src/userc_io.c. If you intend to modify the
functions, or create new versions, you should save the
original source file. For more information, review “Creating
C Language Functions in IC-CAP” in the User’s Guide.

Example 2, to be coded as a Transform Program from a
Setup
return USERC_read_reals(<datafile>)
! read an array of reals from a file
1011

H User C Functions
Function Descriptions

USERC_open
1012
This function opens a file for reading, writing or both. It
returns one value: -1 or an integer file descriptor. The -1
value indicates an error. The integer file descriptor must be
saved and supplied to a variety of other USERC functions.

USERC_open accepts two arguments:

• The first argument is the pathname of the desired file to
open.

• The second argument is the access mode.

Listed below are some guidelines taken from the UNIX man
page fopen(3S). For additional information, see that page.

r read

w write

a append

+ mode (update mode) if you must read and write the
file, or you want to write to specific locations
without losing previous data in the file.

r and r+ (read) modes will never create the file if it does
not already exist. All four of the "w" and "a"
(write and append) modes will create the file if is
not there.

w and w+ Modes will truncate an existing file
Tips:

• Refer to “Hints for Reading/Writing Same File” on page 1019
for tips on reading from and writing to the same file.

• With instruments, it is highly advisable to use
USERC_open once with mode "r" for reading, and once
with mode "w" for writing. This avoids some problems in
the standard I/O library that involve positioning in the
I/O stream.
IC-CAP Reference

User C Functions H
USERC_close
IC-CAP Reference
This function closes an open file. It returns a value
indicating the status. If successful, it returns 0; otherwise it
returns -1.

USERC_close accepts one argument:

• The file descriptor obtained from the call to USERC_open.

It performs an fclose(3). By default, the system will call
fclose for all files opened by the User C I/O facility
whenever the last Program or Macro terminates. It does this
with userc_end_of_prog(), which is described in
$ICCAP_ROOT/src/userc_io.c.
USERC_write

This function prints anything to an open file, in ASCII. It
returns a value indicating the status. If successful, it returns
0; otherwise it returns -1.

USERC_write accepts three arguments:

• The first argument should be a file descriptor obtained
from USERC_open.

• The second argument should be a flag (0 or 1) indicating
whether the output file should be considered a device file,
that is, an instrument. Use 0 unless you are reading from
an instrument.

• The third argument should be a string, for example.
VAL$(2), or VAL$(BF), or
"TNOM="&VAL$(TNOM)&newline_string.

Tips:

• This function calls fflush(3) to ensure that a write-to-file
or write-to-instrument is never delayed by the buffering
present in the standard I/O facility.

• For information regarding instrument timeouts when
writing, refer to “Hints for Timeouts” on page 1018.
1013

H User C Functions
USERC_readnum
1014

This function reads one real number from a file, for example,
1.0E6. (See also USERC_readstr.) It returns one value: a real
number read from a file or from an instrument. The returned
value should be a valid real number if one exists; else the value
is set to 9.99998E+37, for example, if EOF is encountered. (This
mimics what the HP 54120 does when no valid data exists, but
is a slightly different value.)

USERC_readnum accepts three arguments:

• The first argument should be a file descriptor obtained from
USERC_open.

• The second argument should be a flag (0 or 1) indicating
whether the input file should be considered a device file, that
is, an instrument. Use 0 unless you are reading from an
instrument.

• The third argument should be a scanf format string, for
example, "%*5s%lf%*1[\n]", which means skip over a
5-character string, then get a double number, then read and
skip a newline. (Consult man page scanf(3S).) The scanf
format string provides some flexibility in terms of separating
the number out from any surrounding text or mnemonics
that are not of interest.

Tips:

• To avoid a potential core dump, %lf should be included only
once, and any other "%" specifiers should have an asterisk (*)
after them.

• If reading from an instrument that must communicate
multiple data points in one read, it is necessary to create a
modified version of this function to obtain those multiple
data points.

• For information regarding instrument timeouts when
reading, refer to “Hints for Timeouts” on page 1018.
IC-CAP Reference

User C Functions H
USERC_readstr
IC-CAP Reference

This function reads a string from a file and places it in an
IC-CAP variable you specify. (See also “USERC_readnum” on
page 1014.) It returns a value indicating the status. If
successful, it returns 0; otherwise it returns -1.

USERC_readstr accepts four arguments:

• The first argument should be a file descriptor obtained from
USERC_open.

• The 2nd argument should be a flag (0 or 1) indicating
whether the input file should be considered a device file, that
is, an instrument. Use 0 unless you are reading from an
instrument.

• The third argument should be a scanf format string, for
example, %*5s%s%*1[\n]. This example means skip over a
5-character string, then get a string, then read and skip a
newline. (Consult man page scanf(3S).) The scanf format
string provides some flexibility in terms of separating the
number out from any surrounding text or mnemonics that
are not of interest.

• The fourth argument should be the name of an IC-CAP
variable that receives its value from the string that is read.

Tips:

• To avoid a potential core dump, %s should be included only
once, and any other "%" specifiers should have an asterisk (*)
after them.

• For information regarding instrument timeouts when
reading, refer to “Hints for Timeouts” on page 1018.
USERC_seek
This function goes to a particular byte offset in a file. (This
function is basically an interface to fseek(3S)). It returns a
value indicating the status. If successful, it returns 0;
otherwise it returns -1.

USERC_seek accepts three arguments:
1015

1016

H User C Functions

• The first argument should be a file descriptor obtained
from USERC_open.

• The second argument should be an offset in bytes.

• The third argument should indicate the relative starting
point for the offset. Use 0 if you want the seek offset to
be relative to the beginning of the file, or 1 if the seek
offset should be relative to the current position in the file.

Tips:

• Each line in an ASCII file uses 1 byte for a newline
terminator.

• USERC_tell can be used to determine the current position,
if you intend to seek elsewhere, and then return to the
current position.

• It is neither useful nor advisable to use this function on
device files, such as instruments or terminals.
USERC_tell
This function shows the current byte offset in a file. (This
function is basically an interface to ftell(3S).) It returns a
value indicating the status. If successful, it returns 0;
otherwise it returns -1.

USERC_tell accepts one argument:

• The argument should be a file descriptor obtained from
USERC_open.
USERC_read_reals
This function opens a file, reads an array of reals, closes the
file, and returns an array. It returns -1 if the file could not
be opened for reading, else 0.

USERC_read_reals accepts one argument:

• The argument should be the name of a file with real
number data.

Invoking this function produces the following sequence of
actions:
IC-CAP Reference

User C Functions H

IC-CAP Reference

• Read real numbers from a file

• Return them as an array in iccap

• Open, read, and close the data file

• Close file in the event of user-requested interrupt (Ctrl-C)

• Print warning if unexpected number of points in file
1017

H User C Functions
Hints

Hints for Instruments
1018

Instrument I/O is undertaken by opening a device file
associated with the instrument. As described in the section
USERC_open, instrument input and output is best
accomplished by dedicating two separate file descriptors, one
for reading, and one for writing. The USERC_open function
can be called twice, as shown in the following example:
rdfile = USERC_open("/dev/hpib_721","r")
! for reading input
wrfile = USERC_open("/dev/hpib_721","w")
! for writing output
status=USERC_write(wrfile,1,"*IDN?")
! ask for ID of 54120
status=USERC_readstr(rdfile,1,"%s%*[\n]",readstr)
! read ID into readstr, and discard trailing newline
status=USERC_close(rdfile)
status=USERC_close(wrfile)

If instrument I/O is intended, you may want to review the
documentation provided for the User C prober facility. This
facility offers several GPIB routines that could be valuable,
for example, serial polling.

Because of the need for instruments to sometimes
communicate several data points at once (compared to
retrieving data from a file, where you can obtain exactly as
much data as desired, in as many reads as desired), it will
probably be necessary for the read functions,
USERC_readnum and USERC_readstr, to be extended and
modified for use with some instruments. One possibility
would be new User C functions dedicated to reading entire
arrays out of particular instrument types.
Hints for Timeouts
By default, the routines for reading and writing do not
employ a timeout. However, you can interrupt them using
Ctrl-C. The UNIX library routine io_timeout_ctl can be used
to associate a timeout with one of the file descriptors
returned by USERC_open. This would require that one or more
IC-CAP Reference

User C Functions H

IC-CAP Reference
of the above routines be modified, after which recompiling and
linking are necessary. For details, refer to Creating C Language
Functions in IC-CAP” in the User’s Guide.
Hints for Reading/Writing Same File
If you need to read from and write to the same disk file,
you should employ USERC_open once, using one of the
following update modes "r+", "w+", or "a+.” Then, you should
adhere to the following guidelines (which are also described
on the UNIX man page fopen(3S)):

• A write should not be immediately followed by a read
without performing an intervening seek.

• A read should not be immediately followed by a write
unless the read encountered end-of-file, or you perform
an intervening seek.
Hints for Carriage Returns, Line Feeds, etc.

The functions for reading and writing (USERC_readnum,
USERC_readstr, and USERC_write) can handle a limited set
of unprintable characters. For example, an instrument can
be sent a string with a trailing carriage return and line feed,
as shown next.
status=USERC_write(wrfile,1,"*IDN?\r\n")
! \r and \n => CR and LF

If you want to collect a string from an instrument, and the
instrument is going to attach a trailing carriage return and
line feed, but you want to retrieve the whole string except
for the terminating carriage return and line feed, follow the
example shown next.
status=USERC_readstr(rdfile,1,"%[^\r\n]\r\n",readstr)
! note: the specifier %[^\r\n] collects
! all characters EXCEPT \r and \n

The set of characters that can be specified in this manner is
the same as those accepted by the Send String command
(Instrument Setup window). For details, refer to “Macro File
Syntax Rules” on page 791.
1019

1020

H User C Functions

IC-CAP Reference

Agilent 85190A IC-CAP 2008
Reference

I
icedil Functions

DIL-related Functions 1022

Other Functions 1023

The 'icedil' functions are used to control a raw GPIB device
file from userc functions. These functions provide a thin
layer on top of the HP DIL library to hide GPIB specific details,
thus making it easier to use GPIB I/O as well as to port userc
functions to non-HP machines. The source files are written in
plain C and are provided with a Makefile.

There are two icedil files in $ICCAP_ROOT/src:

Most icedil functions are named after corresponding DIL
functions and return the same values. However there are
some functions that do not correspond to any DIL functions.

icedil.h Contains low level I/O call prototypes

icedil.c Includes actual codes for each ice_hpib_xxxx
call
1021Agilent Technologies

I icedil Functions
DIL-related Functions
1022

The following functions perform the same task as their
corresponding DIL functions. They are provided to facilitate
porting to non-HP machines. For descriptions of these
functions, refer to your GPIB documentation.

• ice_hpib_abort

• ice_hpib_bus_status

• ice_hpib_eoi_ctl

• ice_hpib_ren_ctl

• ice_hpib_send_cmnd

• ice_hpib_spoll

• ice_hpib_status_wait

The following functions also perform the same task as their
corresponding DIL functions, however the corresponding DIL
functions are named as io_xxxx instead of hpib_xxxx.

• ice_hpib_get_term_reason

• ice_hpib_eol_ctl

• ice_hpib_lock

• ice_hpib_unlock

• ice_hpib_timeout
IC-CAP Reference

icedil Functions I
Other Functions
IC-CAP Reference

The following functions are translated either to system calls
or to a set of low level functions to make GPIB programming
easier. The controller address on a GPIB is kept in a static
array hidden in icedil.o so that users of this library do not
need to remember it. However users can read this address at
any time using ice_hpib_get_address().

ice_hpib_bus_init This function takes an eid (entity id) and initializes the raw
GPIB associated with this eid as follows:

EOI Enable
EOL No EOL character
Timeout 2 sec
Remote Line Asserted

ice_hpib_open This function takes a device file name (full path name) and
a flag (usually O_RDWR) to be passed to open() system
call. It opens this device file and initializes it by calling
ice_hpib_bus_init(). This function must be used prior to
using a raw GPIB device file.

ice_hpib_read This takes an eid, a pointer to a character buffer, the
maximum number of bytes to read, and an addrs. It sets
myself a listener and the addressed device a talker, then
receives the response from that device.

ice_hpib_write This function takes an eid, a pointer to a character buffer,
the number of bytes to send, and addrs. It sets myself a
talker and the addressed device a listener, then sends the
specified characters to that device.

ice_hpib_close This function takes an eid and closes the device file
associated with this eid. This function is used to terminate
communication with this device file.

ice_hpib_clear This function takes an eid and a GPIB address. It sends a
Selected Device Clear to the GPIB device specified by the
addrs.

ice_hpib_get_address This function takes an eid and returns my GPIB address on
the device file associated with the eid. Usually this is 21.
Note that currently no function is provided to change this
controller address.
1023

1024

I icedil Functions

ice_hpib_listen This function takes an eid and a GPIB address. It prepares
the GPIB so that the device specified by addrs is a talker
and myself is a listener. This function is called from
ice_hpib_read().

ice_hpib_talk This function takes an eid and a GPIB address. It prepares
the GPIB so that the device specified by addrs is a listener
and myself is a talker. This function is called from
ice_hpib_write().

ice_hpib_wait This takes one float and waits for the float second. This is
implemented as a busy wait with the gettimeofday() system
call.

ice_hpib_strpos This takes two strings (string1, string2) and returns the
position of the string2 in string1. This is similar to POS()
function in HP BASIC.

ice_hpib_raw_read This takes an eid, a pointer to a character buffer, and a
length. This reads up to the length number of bytes from the
device file specified by eid until it sees either an EOI or a
terminal character. This function does not set up a
talker/listener pair on the bus.

ice_hpib_raw_write This takes an eid, a pointer to a character buffer, and a
length. This writes out the length number of bytes from the
buffer without setting up a talker/listener pair on the bus.

ice_hpib_check_eid This is a "static" function visible only inside of icedil.c file.
This function returns 0 if the given eid is out of the valid
range and non-zero for a valid eid.
IC-CAP Reference

Index

Numerics
54120 demo, 993
8510_MAXFREQ variable, 770, 771
8753_TRL_Cal function, 419

A
abs function, 419
acs function, 420
acsh function, 420
add active instrument, automating, 899
Add button, 900
Add Child button, 900
add global region, automating, 899
add GUI, automating, 900
Add Interface button, 900
add interface file, automating, 900
Add to List button, 899
add trace region, automating, 901
Add, Global Region, 899
Add, Trace Optimizer Region, 901
address, check active, 906
IC-CAP Reference
ADS
assigning node names, 342
C-preprocessor, 393
data access component, 396
describing a circuit, 340
describing a subcircuit, 343
describing device model, 342
expression capability, 370
indicating comments, 342
instance statements, 366
non-piped simulation, 340
parameter attribute definitions, 354
parameter sweep example, 347
piped simulation, 338
reserve words, 398
simulation example, 335
simulator, 329
simulator syntax, 358
subcircuit definitions, 368
syntax, 357
VarEqn data types, 392

Agilent EEBJT2 model, equations, 799
Agilent EEFET3 model, equations, 809
Agilent EEHEMT1 model, equations, 833
Agilent Infiniium oscilloscope, 135
AgilentHBT_ABCX_extract function, 420
AgilentHBT_calculate_ccb function, 420
AgilentHBT_calculate_rbb function, 421
AgilentHBT_CCMAX_extract function, 421
AgilentHBT_CEMAX_extract function, 421
AgilentHBT_CJC_extract function, 421
AgilentHBT_CJE_extract function, 422
AgilentHBT_IS_NF_extract function, 422
AgilentHBT_ISC_NC_extract function, 422
AgilentHBT_ISE_NE_extract function, 423
AgilentHBT_ISH_NH_extract

function, 423
AgilentHBT_ISR_NR_extract

function, 423
AgilentHBT_ISRH_NRH_extract

function, 423
AgilentHBT_ITC_ITC2_extract
function, 424

AgilentHBT_Param_Init function, 424
AgilentHBT_TFC0_extract function, 424
AgilentHBT_VJC_extract function, 425
AgilentHBT_VJE_extract function, 425
allow_internal variable, 774
analyzer

DC, 24
dynamic signal, 153
ENA, 90
GPIB, 787
impedance, 68
network, 86, 102, 106, 110, 111, 113,

114, 122
PNA, 95
precision impedance, 82, 84
precision semiconductor parameter, 49
semiconductor parameter, 43, 46

ANNOTATE_AUTO variable, 764
ANNOTATE_CSET variable, 764
ANNOTATE_FILE variable, 764
ANNOTATE_MACRO variable, 764
ANNOTATE_PLOTS variable, 764
area tools off, automating, 901
area tools on, automating, 902
area tools, automating, 901
arg function, 425
arrays, variable, 703
ascii$ function, 426
asn function, 426
asnh function, 426
assignment statement, 706
atn function, 426
atnh function, 427
Auto Set button, 903
Autoconfigure and Enable, Optimizer, 902
autoconfigure, automating, 902
autofit function, 427
1025

Index

automating
add active instrument, 899
add global region, 899
add GUI, 900
add interface file, 900
add trace region, 901
area tools, 901
area tools off, 901
area tools on, 902
autoconfigure, 902
autoscale, 902
autoset min max, 903, 906
bus status, 903
calibration, 904
change address, 904
change directory, 905
check active address, 906
clear active setup, 906
clear plot optimizer, 907
clear status errors, 907
clear status output, 907
clear table, 907
close GUI, 909
close hardware setup window, 910
close license window, 910
close output log, 910
close single GUI, 910
command, saving, 966
copying, 911
data, exporting extracted deck, 965
DC source supplies, disabling, 919
delete all user regions, 916
delete user region, 916
deleting hardware interfaces, 914
deleting named objects, 913
diagnostics, 917
DUT, new, 949
DUT, open, 951
Error Log, open, 952
exiting the program, 927
exporting data, 928, 929
exporting dataset, 928
extraction transforms, 929
file debug, 929, 930
File Open, 951
file restore, 925
file saving, 964, 965
File, open, 956, 957
footer, 930
1026
footer off, 931
footer on, 931
full page plot, 931
GPIB debugger, 934
GPIB lock, 935
GUI, delete displayed item, 917
GUI, delete named instance, 916
GUI, displaying modal, 920
GUI, displaying modeless, 920
GUI, displaying single modal, 921
GUI, displaying single modeless, 922
hardware configuration saving, 991
Hardware Setup, open, 952
header, 932
header off, 932
header on, 932
I/O locking, 933
Import Create, 935, 936, 937
Import Data, 938, 939, 940, 941
Import Delete, 939
Import Text, 942
input, saving, 966
instrument I/O, 971
instrument identification, 990
instrument search, 969
instruments, displaying, 920
legend, 942
legend off, 943
legend on, 943
License Status, 943
Listen Active Address, 944
Macro File Execute, 944
Macro File Specify, 946
macro or transform execution, 927
Macro, new, 950
Macro, open, 953
Manual Rescale, 947
Manual Simulation, 947
Measure menu, 948
Memory Recall, 948
Memory Store, 949
Model, new, 950
Model, open, 953
New Input/Output/Transform/Plot,

new, 949
Open Input/Output/Transform/Plot,

new, 952
Optimize menu, 954
Output Log, open, 953
output, saving, 966
Parse, 955
plot color, 911
Plot Optimizer, open, 954
Plot refreshing, 960
plot, copy to clipboard, 912
plot, copy to variable, 912
plot, delete global region, 915
plot, delete trace optimizer region, 915
plot, disabling single, 919
plot, disabling traces, 919
plot, disabling traces in, 918
plot, draw drag line in, 922
plot, dump to plotter, 923
plot, dump to printer, 923
plot, dump to status window, 924
plot, dump via server, 924
plot, dump via server UI, 925
plot, enable all, 926
plot, enabling and disabling, 926
plot, inverse color scheme, 927
plot, save image, 966
plot, scaling, 967, 968
plots, disabling all, 918
plots, displaying all, 921
Print, 956
Read Buffer, print, 955
Read String, 957, 958
Rebuild Active List, 958
Recall Parameters, 958
Redisplay, 959
Refresh Dataset, 959
Release License, 959
Rename model, 960
Rescale plot, 961
Reset global trace region, 961
Reset optimizer options, 962
Reset optimizer parameters, 962
Reset parameters, 961
reset to saved options, 962
Reset trace regions, 963
Run self-tests, 963
screen debug, 930, 969
select error region, 970
select plot, 970
select whole plot, 971
send receive display, 972
send string, 973
send to printer, 973
IC-CAP Reference

Index

serial poll, 974
set active address, 974
set algorithm, 974
set error, 975
set GUI callbacks, 975
set GUI options, 976
set instrument option value, 977
set table field value, 978
set target vs simulated, 979
set timeout, 979
set trace as both, 980
set user region, 980
set variable table value, 981
Setup, add new, 950
Setup, open, 954
show absolute error, 981
show relative error, 982
simulate, 983
simulate all, 983
simulate plot inputs, 983
simulation debugger, 983
status window, 984
stop simulator, 984
store parameters, 984
talk active address, 985
text annotation, 985
text annotation off, 985
text annotation on, 986
toggle zoom, 986
tune fast, 986
tune slow, 987
undo optimization, 988
undo zoom, 988
unselect all, 989
variable, add new to table, 912
view data, 990
zoom plot, 991

autoscale, automating, 902
autoset min max, automating, 903
AUTOSET_COEFF variable, 766

B
BANDWIDTH variable, 778, 779
base-emitter

capacitances, 804
current, 800

BASIC, programming language, 687
BJT, variables, 782
IC-CAP Reference
BJT_dc_model function, 435
BJTAC_high_freq function, 436
BJTAC_rb_rbm_irb function, 436
BJTCV_stoc function, 436
BJTDC_fwd_gummel function, 437
BJTDC_is_nf function, 438
BJTDC_nr function, 438
BJTDC_rc function, 439
BJTDC_rcfb function, 439
BJTDC_re function, 439
BJTDC_rev_gummel function, 440
BJTDC_vaf_var function, 440
BPOPAMP_macro_model function, 441
branch

close, 908
open, 951

BSIM1DC_geom_indep function, 442
BSIM1DC_lin_sat function, 443
BSIM1DC_sub function, 444
BSIM2_lin_plot function, 444
BSIM2_save_dev_pars function, 444
BSIM2DC_geom_indep function, 445
BSIM2DC_lin_sat function, 446
BSIM3_calculate function, 446
BSIM3_check_par function, 448
BSIM3_DC_calc_bin_parameter

function, 448
BSIM3_DC_calculate function, 449
BSIM3_DC_get_parameter function, 453
BSIM3_DC_vth function, 455
BSIM3_error function, 456
BSIM3_set_opt function, 457
BSIM3_toolkit_vth function, 458
BSIM3CV_total_cap function, 459
BSIM3CVmodCBD function, 459
BSIM3CVmodCBS function, 459
BSIM3DC_bulk_short function, 459
BSIM3DC_lin_large function, 459
BSIM3DC_lin_narrow function, 459
BSIM3DC_lin_short function, 460
BSIM3DC_lin_small function, 460
BSIM3DC_model function, 460
BSIM3DC_sat_narrow function, 460
BSIM3DC_sat_short function, 460
BSIM3DC_sat_short2 function, 461
BSIM3DC_sub_short function, 461
BSIM3DC_sub_short2 function, 461
BSIM3DC_vth function, 461
BSIM3DC_vth_sim function, 461
BSIM3DC_vth_versus function, 461
BSIM4_check_par function, 462
BSIM4_DC_calc_bin_parameter

function, 462
BSIM4_DC_calculate function, 464
BSIM4_DC_extr_A0_AGS_KETA

function, 472
BSIM4_DC_get_parameter function, 473
BSIM4_DC_vth function, 478
BSIM4_error function, 482
BSIM4_set_opt function, 483
BSIMCV_total_cap function, 484
bus status, automating, 903
BYPASS_CV_CAL variable, 770

C
C++

glossary, 793
open measurement interface, 226, 793

CAL_OPEN_C, 106
CAL_OPEN_C variable, 767
CAL_OPEN_C0, 106
CAL_OPEN_C0 variable, 767
CAL_OPEN_C1, 106
CAL_OPEN_C1 variable, 767
CAL_OPEN_C2, 106
CAL_OPEN_C2 variable, 767
CAL_Z0, 106
CAL_Z0 variable, 767
Calibrate button, 904
calibration

54120 demo, 1005
open measurement interface, 214, 232
variables, 767

calibration, automating, 904
capacitance meter, 73
capacitance-voltage meters, 67
CDF_ERROR_FIT variable, 764
ceil function, 484
change address, automating, 904
Change Directory, 905
change directory, automating, 905
check active address, automating, 906
check_error_log function, 485
CHECK_PLOT_MATCH variable, 764
circlefit function, 485
1027

Index

circuit descriptions
ADS, 340
ELDO, 256
HSPICE, 256
MNS, 323
Saber, 303
SPECTRE, 278
SPICE, 256

class hierarchy, open measurement
interface, 228

clear active list, automating, 906
Clear Active Setup Data, 906
clear active setup, automating, 906
Clear button, 906
clear plot optimizer automating, 907
Clear Plot Optimizer menu pick, 907
clear status errors, automating, 907
clear status output, automating, 907
Clear Table button, 907
clear table, automating, 907
close branch, automating, 908
Close Error Log, 909
close GUI, automating, 909
close hardware setup window,

automating, 910
close license window, automating, 910
close model file, 908
close model file, automating, 908
close output log, automating, 910
close simulation debugger file, 908
close simulation debugger file,

automating, 908
close single GUI, automating, 910
Close, Model File, 908
Close, Simulation Debugger File, 908
codeword, ADS simulator, 333
collector-emitter current, 802
command, saving, automating, 966
commands, GPIB, 789
compile, using library, 860
COMPLEX statement, 705
conjg function, 485
Connect function, 486
CONSTANT_TAU variable, 782
constants

Agilent EEBJT2, 800
built-in, 747

controlled pulse generator example, 1001
copy2output function, 486
1028
copying, automating, 911
correlation function, 486
cos function, 486
cosh function, 487
C-preprocessor, ADS, 393
curtice extraction variables, 782
CV_FREQ variable, 770

See specific instrument under
instruments entry

D
DASH_DOT variable, 764
data

ADS access, 396
aligning measured and

simulated, 1007
management variables, 783
types, 710

data, exporting extracted deck,
automating, 965

dataset function, 487
DC analyzers, 24
DC source, 37
DC source supplies, disabling,

automating, 919
DC voltage source, 35
debugging

MNS simulation, 314
open measurement interface, 205

DEFAULT_SIMU variable, 775
delete all user regions, automating, 916
Delete button, hardware setup, 914
Delete Interface button, 914
delete user region, automating, 916
DeleteAll button, 906
deleting hardware interfaces,

automating, 914
deleting named objects, automating, 913
derivative function, 488
diagnostics, automating, 917
diagnostics, automating hardware, 918
diagnostics, variables, 782
digital capacitance meter, 70
digitizing oscilloscope, 126, 131
DIODEDCmod_ia function, 489
dispersion current

Agilent EEFET3, 816
Agilent EEHEMT1, 842
drain-source current
Agilent EEFET3, 810
Agilent EEHEMT1, 834

driver generation scripts, 196
mk_instr, 197
mk_instr_ui, 198
mk_unit, 196

DRIVER variable, 781
drivers

adding, 196
creating alternatives, 208
floating point errors, 238
matrix, 168
open measurement interface, 209
prober, 156
signal handling, 238

DUMP_CMND variable, 781
DUMP_DPI variable, 781
DUMP_WHITE variable, 781
DUT, new, automating, 949
DUT, open, automating, 951
DUT_TREE_COLS variable, 768
dvm_aperture variable, 774
dvm_auto_zero variable, 774
dvm_terminals variable, 774
dvm_track_hold variable, 774
dvm_trigger_mode variable, 774
DYNAMIC_MULTIPLOT_MODE

variable, 764

E
EEbjt2_ce_dc_iv function, 489
EEbjt2_ce_ss_elements function, 490
EEbjt2_extrinsic_ckt function, 490
EEbjt2_Is_N function, 491
EEbjt2_mdl function, 492
EEfet3_ckt function, 493
EEfet3_cs_dc_iv function, 493
EEfet3_lecp function, 494
EEfet3_mdl function, 494
EEfet3_model_name function, 494
EEfet3_package function, 495
EEfet3_ResCheck function, 496
EEfet3_Rs_delta_m function, 497
EEfet3_Rs_delta_s function, 498
EEfet3_s2ckt function, 498
EEfet3_spars function, 499
EEmos1_ckt function, 500
IC-CAP Reference

Index

EEmos1_cs_dc_iv function, 500
EEmos1_lecp function, 501
EEmos1_mdl function, 502
EEmos1_model_name function, 502
EEmos1_package function, 503
EEmos1_ResCheck function, 504
EEmos1_s2ckt function, 506
EEmos1_spars function, 507
ELDO

circuit description, 256
ELDO_VERSION variable, 266
simulator

syntax for additional models, 265
variables, 780

ELDO_VERSION variable, 780
ELSE statement, 694
ENA network analyzer, 90
END IF statement, 694
END WHILE statement, 694
equation function, 507
equations

Agilent EEBJT2, 799
Agilent EEFET3, 809

Error Log, open, automating, 952
error messages, 223
examples

ADS simulation, 335
MNS simulation, 313
Saber simulation, 295
SPICE simulation, 244

exception handling, 238
Execute button, 927
exiting the program, automating, 927
exp function, 508
exporting data, automating, 928, 929
exporting dataset, automating, 928
expressions

ADS capability, 370
boolean, 750
Parameter Extraction Language, 748

EXTR_DUT variable, 775
EXTR_MODEL variable, 775
extraction

variables, 775
extraction transforms, automating, 929

F
file debug, automating, 929, 930
IC-CAP Reference
File Open, automating, 951
file restore, automating, 925
file saving, automating, 964, 965
File, open, automating, 956, 957
fit_line function, 508
FIX_PLOT_SIZE variable, 765
floor function, 508
FNPort function, 509
footer off, automating, 931
footer on, automating, 931
footer, automating, 930
full page plot, automating, 931
function

calls to libiclinklibs.a, 862
calls to library, 752

functions
built-in, 714
Parameter Extraction Language, 687
See individual function name or Chapter

8

G
GAASAC_calc_rc function, 509
GAASAC_calc_rl function, 510
GAASAC_cur function, 510
GAASAC_l_and_r function, 511
GAASAC_r_and_c function, 512
GAASCV_cgs_cgd function, 513
GAASDC_cur function, 513
GAASDC_cur2 function, 514
GAASDC_lev1 function, 514
GAASDC_lev2 function, 515
GAASDC_rd function, 515
GAASDC_rs function, 516
GAASmod_cgd function, 516
GAASmod_cgs function, 516
GAASmod_id function, 517
GAASmod_ig function, 517
gate charge

Agilent EEFET3, 820
Agilent EEHEMT1, 846

gate forward conduction
Agilent EEFET3, 827
Agilent EEHEMT1, 853

GET_DATASET statement, 694
GET_INT statement, 695
get_PEL_response function, 865
GET_REAL statement, 696
GET_STRING statement, 697
GLOBAL_VAR statement, 697
GPIB

analyzer, 787
interface, HP 4071A, 25
open measurement interface, 223, 225

GPIB debugger, automating, 934
GPIB lock, automating, 935
GUI item, close single, 910
GUI, delete displayed item,

automating, 917
GUI, delete named instance,

automating, 916
GUI, displaying modal, automating, 920
GUI, displaying modeless, automating, 920
GUI, displaying single modal,

automating, 921
GUI, displaying single modeless,

automating, 922
GUI_PAGE_SUPRESS_SUMMARY

variable, 769
GWIND_WHITE variable, 765
GWINDX variable, 765
GWINDY variable, 765

H
H11corr function, 517
hardware

editor, 219
hardware configuration saving,

automating, 991
Hardware Setup, open, automating, 952
header off, automating, 932
header on, automating, 932
header, automating, 932
HFBJT_linear_elem_extr function, 518
HFBJT_linear_ssmod_sim function, 518
HFMOD_get_bias_size function, 518
HFMOD_get_freq_index function, 518
HFMOD_get_freq_value function, 519
HFMOD_remove_freq_dbl function, 519
HFMOD_remove_freq_mat function, 519
HFMOS3_capas function, 520
HFMOS3_lin_large function, 520
HFMOS3_lin_narrow function, 520
HFMOS3_lin_short function, 521
HFMOS3_modcap function, 521
HFMOS3_paras function, 521
1029

Index

HFMOS3_sat_short function, 521
HFMOS3_StoC function, 521
HFMOS3_StoZ function, 522
HFMOS3_sub_large function, 522
HFMOS3_total_cap function, 522
hierarchical simulation

in Saber, 307
in SPECTRE, 285
in SPICE, 260

HISTOGRAM_GAUSSIAN_FIT
variable, 765

HISTOGRAM_NORMALIZATION
variable, 765

HISTOGRAM_NUM_BINS variable, 765
HP 4062UX prober and matrix, 187
HP BASIC See Chapter 8, Parameter

Extraction Language
HP5250_bias_card function, 524
HP5250_bias_channel function, 525
HP5250_bias_init function, 525
HP5250_bias_setmode function, 525
HP5250_card_config function, 526
HP5250_compensate_cap function, 527
HP5250_connect function, 528
HP5250_couple_enable function, 528
HP5250_couple_setup function, 528
HP5250_debug function, 529
HP5250_disconnect_card function, 529
HP5250_init function, 529
HP5250_show function, 530
HPdiode_C function, 530
HPdiode_C2 function, 530
HPdiode_data_acqu function, 531
HPdiode_fgrt function, 532
HPdiode_fless function, 532
HPdiode_I function, 531
HPdiode_iextr function, 532
HPdiode_mdl function, 532
HPdiode_para_at_f function, 532
HPdiode_para_f function, 532
HPdiode_Q function, 531
HPdiode_R function, 531
HPdiode_S11i function, 531
HPdiode_S11r function, 531
HPdiode_V function, 531
HPdiode_wr function, 533
hpeesofsim interface, 332
hpeesofsim variables, 778
HPEESOFSIM_HB_OPTIONS variable, 778
1030
HPEESOFSIM_OPTIONS variable, 778
HPEESOFSIM_TRAN_OPTIONS

variable, 778
HPEESOFSIM_USE_LOWER_CASE_PARA

MS variable, 778
HPEESOFSIM_USE_MIXED_CASE_PARA

MS variable, 779
HPIB_abort function, 533
HPIB_clear function, 533
HPIB_close function, 533
HPIB_command function, 534
HPIB_eoi function, 534
HPIB_fwrite function, 534
HPIB_open function, 535
HPIB_read function, 536
HPIB_read_reals function, 537
HPIB_READ_STRING variable, 770
HPIB_readnum function, 538
HPIB_readstr function, 538
HPIB_spoll function, 539
HPIB_srq function, 539
HPIB_timeout function, 539
HPIB_write function, 539
HPMOS_process_pars function, 540
HPMOSDC_lin_large function, 540
HPMOSDC_lin_narrow function, 541
HPMOSDC_lin_short function, 541
HPMOSDC_sat_short function, 541
HPRoot_data_acqu function, 541
HPRoot_FET function, 542
HPRoot_fet_acqu function, 542
HPRoot_FET_t function, 542
HPRoot_Id function, 543
HPRoot_Idh function, 543
HPRoot_Ig function, 543
HPRoot_Initial function, 543
HPRoot_mos_acqu function, 544
HPRoot_mos_para function, 544
HPRoot_MOSFET function, 544
HPRoot_n function, 544
HPRoot_para_cal function, 545
HPRoot_parasitic function, 545
HPRoot_Qd function, 545
HPRoot_Qg function, 546
HPRoot_Vd function, 546
HPRoot_Vg function, 546
HPRoot_wr function, 546
HPRoot_Y11i function, 547
HPRoot_Y11r function, 547
HPRoot_Y12i function, 547
HPRoot_Y12r function, 547
HPRoot_Y21i function, 548
HPRoot_Y21r function, 548
HPRoot_Y22i function, 548
HPRoot_Y22r function, 548
HPSPICE simulator, 242
HPTFT_param function, 549
HPTFTCV_model_cgd function, 549
HPTFTCV_model_cgs function, 549
HPTFTCV_model_id function, 550
HPTFTDC_lin function, 550
HPTFTDC_sat function, 550
HSPICE

circuit description, 256
HSPICE_VERSION variable, 265
simulator, 242, 265
variables, 781

HSPICE_NODE_STRLEN variable, 781
HSPICE_VERSION variable, 781

I
I/O locking, automating, 933
IC_DIAG_FLAGS variable, 782
ICCAP_FIND_CHILDREN statement, 698
ICCAP_FUNC statement, 699, 869
ICCAP_MAXIMUM_CALL_CHAIN

variable, 769
icdb_add_comment function, 550
icdb_close function, 551
icdb_get_sweep_value function, 551
icdb_open function, 552
icdb_register_con_sweep function, 552
icdb_register_lin_sweep function, 552
icdb_register_list_sweep function, 553
icdbf_add_comment function, 554
icdbf_close function, 555
icdbf_export_data function, 555
icdbf_get_sweep_value function, 555
icdbf_open function, 556
icdbf_register_con_sweep function, 556
icdbf_register_lin_sweep function, 557
icdbf_register_list_sweep function, 557
ICMSarray function, 559
ICMSchar function, 559
ICMSpin function, 560
ICMSreal function, 560
ICMSstr function, 560
IC-CAP Reference

Index

icstat_activate function, 561
icstat_analysis function, 561
icstat_attribute_2_parameter

function, 561
icstat_clear function, 561
icstat_close_sdf_file function, 562
icstat_correlation function, 562
icstat_deactivate function, 562
icstat_delete function, 563
icstat_equations function, 563
icstat_exit function, 564
icstat_factor_analysis function, 564
icstat_from_partable function, 565
icstat_get_attribute_columns

function, 565
icstat_get_cell function, 566
icstat_get_column function, 567
icstat_get_deactivated function, 567
icstat_get_filtered_rows function, 568
icstat_get_row function, 568
icstat_get_text_cell function, 569
icstat_insert function, 569
icstat_nonparametric_models

function, 570
icstat_num_attributes function, 570
icstat_num_columns function, 571
icstat_num_deactivated function, 571
icstat_num_filtered function, 571
icstat_num_rows function, 572
icstat_open function, 572
icstat_open_sdf_file function, 572
icstat_parameter_2_attribute

function, 573
icstat_parametric_models function, 573
icstat_plot_graph function, 573
icstat_save_sdf_file function, 574
icstat_set_cell function, 574
icstat_set_column function, 575
icstat_set_param_column_labels

function, 575
icstat_set_row function, 576
icstat_set_text_cell function, 577
icstat_stat_summary function, 577
icstat_to_partable function, 578
icstat_write_to_status_window

function, 579
IF THEN statement, 694
IGNORE_8510_RF_UNLOCK

variable, 770
IC-CAP Reference
IGNORE_PLOT_LOC variable, 765
impedance analyzer, 68
Import Create, automating, 935, 936, 937
Import Data, automating, 938, 939, 940,

941
Import Delete, automating, 939
Import Text, automating, 942
INCLUDEPORTNOISE variable, 779
initialize_session function, 863
inline functions, 227
input, saving, automating, 966
inputs

open measurement interface, 222
INST_END_ADDR variable, 770
INST_START_ADDR variable, 171, 189,

770
instraliases file, 114
Instrument Address entry, 904
instrument I/O, automating, 971
instrument identification, automating, 990
instrument search, automating, 969
1031

Index

instruments
Agilent 4294A, 82
Agilent B1500A, 61
Agilent E4991A, 84
Agilent E5071C-240/440, 90
Agilent E5071C-245/445, 90
Agilent E5071C-280/480, 90
Agilent E5071C-285/485, 90
Agilent E5260, 50
Agilent E5270, 55
Agilent E8356A, 96
Agilent E8357A, 96
Agilent E8358A, 96
Agilent E8361A, 96
Agilent E8362A, 96
Agilent E8362B, 96
Agilent E8363A, 96
Agilent E8363B, 96
Agilent E8364A, 96
Agilent E8801A, 96
Agilent E8802A, 96
Agilent E8803A, 96
Agilent ENA, 90
Agilent Infiniium oscilloscope, 135
Agilent PNA, 95
CV meters, 67
DC analyzer, 24
ENA, 90
HP 3577, 102
HP 4071A, 25
HP 4140, 35
HP 4141, 37
HP 4145, 43
HP 4194, 68
HP 4271, 70
HP 4275, 71
HP 4280, 73
HP 54120, 126
HP 54121, 126
HP 54122, 126
HP 54123, 126
HP 54510, 131
HP 54750 oscilloscope, 140
HP 8130, 149
HP 8131, 150
HP/Agilent 35670A, 153
HP/Agilent 4142, 38
HP/Agilent 4155, 46
HP/Agilent 4156, 49
1032
HP/Agilent 4284, 75
HP/Agilent 4285, 77
HP/Agilent 8510, 106
HP/Agilent 8702, 110
HP/Agilent 8719, 111
HP/Agilent 8720, 111
HP/Agilent 8722, 113
HP/Agilent 8753, 114
network analyzers, 86
options, 209
oscilloscopes, 126
PNA, 95
pulse generators, 149
rebuilding list, 231
supported, 23
Wiltron 360, 122

instruments, displaying, automating, 920
integral0 function, 579
integral3 function, 579
Interface File, hardware, changing, 905
I-O reset, automating, 934

J
JUNCAP function, 579
JUNCAP_TR function, 580

K
K707_init function, 580
K708a_init function, 580
K70X_clear_setup function, 580
K70X_close_crosspoints function, 581
K70X_config_trigger function, 581
K70X_connect_sequence function, 582
K70X_copy_setup function, 582
K70X_debug function, 583
K70X_delete_setup function, 583
K70X_edit_setup function, 583
K70X_init_interface function, 584
K70X_open_crosspoints function, 584
K70X_trigger_disable function, 584
K70X_trigger_enable function, 585

L
launch_iccap function, 862
LCR_RST_MEM variable, 770
LCR_RST_MEM_ variable, 770
legend off, automating, 943
legend on, automating, 943
legend, automating, 942
libiclinklib.a library, 859
libicuserc library, 203
libicusercxx library, 203
License Status, automating, 943
license, ADS simulator, 333
LINEAR_CGD variable, 782
LINEAR_CGS variable, 782
linfit function, 585
LINKarray function, 586
LINKchar function, 586
LINKint function, 586
LINKpin function, 587
LINKreal function, 587
LinkReturnS structure, 868
LINKstr function, 587
LINPUT statement, 699
Listen Active Address, automating, 944
log function, 588
log10 function, 588
lookup_par function, 588
lookup_var function, 589

M
Macro File Execute, automating, 944
Macro File Specify, automating, 946
macro or transform execution,

automating, 927
Macro, new, automating, 950
Macro, open, automating, 953
MACRO_LIST_COLS variable, 768
macros

for a switching matrix, 187
for a wafer prober, 187
GPIB analyzer, 788

Manual Rescale, automating, 947
Manual Simulation, automating, 947
matrix

cautions, 189
driver, 168
internals, 170
macros for, 187

MAX_DC_SWEEPS variable, 775
max_newton_iters variable, 772
MAX_PARALLEL_SIMULATOR

variable, 779
IC-CAP Reference

Index

MAX_SETUP_POINTS variable, 770, 775
MAXIMUM_LIST_LENGTH variable, 768
MAXRB variable, 783
MDM_EXPORT_COMMENT variable, 784
MDM_EXPORT_COMMENT_FILE

variable, 784
MDM_EXPORT_XFORM_DATA

variable, 784
MDM_FILE_NAME variable, 784
MDM_FILE_PATH variable, 784
MDM_HEADER_VERBOSE variable, 784
MDM_REL_ERROR variable, 784
MDM_VALUES_LIST variable, 785
MDM_XFORM_LIST, 785
MDM_ZERO_TOL variable, 785
MDS_MEASURE_FAST variable, 771
mean function, 589
MEAS_SIM_LIST_COLS variable, 768
Measure menu, automating, 948
MEASURE_FAST variable, 771
measurement

AC, 110, 111, 115
capacitance, 68, 73
DC, 43, 46, 49
HP 4062UX, 187
HP 85124 variables, 771
matrix

driver, 168
internals, 170

open measurement interface, 216, 233
parametric, 50, 55
prober

cautions, 189
commands, 162
control, 189
driver, 156
functions, 157
internals, 161
settings, 162
test program, 166

time domain, 126, 149, 150
time domain with Agilent Infiniium

scope, 136
time domain with HP 54510, 131
variables, 770

mem_diag function, 589
Memory Recall, automating, 948
Memory Store, automating, 949
IC-CAP Reference
MENU_FUNC statement
See ICCAP_FUNC statement

meter
capacitance, 73
digital capacitance, 70
multi-frequency LCR, 71
precision LCR, 75, 77

Mextram variables, 780
MEXTRAM_stoc function, 589
MINLOG, 765
mk_instr driver generation script, 197
mk_instr_ui driver generation script, 198
mk_unit driver generation script, 196
MM9 function, 590
MM9_COPY function, 590
MM9_DATA function, 591
MM9_GEOMPAR function, 591
MM9_GEOMSCAL function, 591
MM9_KEEP function, 591
MM9_LIN_EXT function, 591
MM9_SAT_EXT function, 591
MM9_SAVE_SPARS function, 592
MM9_SETUP function, 592
MM9_STH_EXT function, 592
MM9_TEMPPAR function, 592
MM9_TEMPSCAL function, 592
MM9_WEAVAL_EXT function, 592
MNS

assigning node names, 324
debugger, 314
describing a circuit, 323
describing a subcircuit, 325
describing device model, 324
indicating comments, 324
input language, 328
libraries, 328
non-piped simulation, 317
parameter sweep example, 318
piped simulation, 316
simulation example, 313
simulator, 311
simulator options, 323
variables, 779

MNS_HB_OPTIONS variable, 779
MNS_OPTIONS variable, 779
MNS_TRAN_OPTIONS variable, 779
Model, new, automating, 950
Model, open, automating, 953
modular DC source, 38
MOS_process_pars function, 592
MOSCV_total_cap function, 593
MOSCVmodCBD function, 593
MOSCVmodCBS function, 593
MOSDC_lev2_lin_large function, 594
MOSDC_lev2_lin_narrow function, 594
MOSDC_lev2_lin_short function, 594
MOSDC_lev2_sat_short function, 595
MOSDC_lev3_lin_large functions, 595
MOSDC_lev3_lin_narrow function, 595
MOSDC_lev3_lin_short, 596
MOSDC_lev3_sat_short function, 596
MOSDC_lev6_lin_large function, 596
MOSDC_lev6_lin_narrow function, 597
MOSDC_lev6_lin_short function, 597
MOSmodel function, 597
MOSmodel2 function, 597
multi-frequency LCR meter, 71
MXT_AUTO_RANGE variable, 780
MXT_AUTO_SMOOTH variable, 780
MXT_cbc function, 598
MXT_cbe function, 598
MXT_cj0 function, 598
MXT_csc function, 599
MXT_forward_hfe function, 599
MXT_forward_ic function, 600
MXT_forward_vbe function, 600
MXT_ft function, 601
MXT_hard_sat_isub function, 601
MXT_I0 function, 603
MXT_ic_vce function, 602
MXT_jun_cap function, 604
MXT_reverse_currents function, 604
MXT_reverse_hfc function, 605
MXT_reverse_hfc_sub function, 606
MXT_reverse_isub function, 606
MXT_show_parms function, 607
MXT_veaf_ib function, 608
MXT_veaf_ic function, 608
MXT_vear_ie function, 609
MXT_VEF function, 609
MXT_VER function, 610

N
network analyzer, 86, 102, 106, 110, 111,

113, 114, 122
New Input/Output/Transform/Plot,

automating, 949
1033

Index

NO_ZEROING variable, 771
node names

assigning for ADS, 342
assigning for MNS, 324
assigning for SPICE, 260

NOISE_1f_bjt_1Hz function, 626
NOISE_1f_bjt_calc function, 626
NOISE_1f_bjt_extract function, 627
NOISE_1f_force_bias function, 628
NOISE_1f_get_Af function, 629
NOISE_1f_get_Bf function, 629
NOISE_1f_get_Ef function, 629
NOISE_1f_get_Kf function, 629
NOISE_1f_mos_1Hz function, 629
NOISE_1f_set_Af function, 630
NOISE_1f_set_Bf function, 630
NOISE_1f_set_Ef function, 630
NOISE_1f_set_Kf function, 630
NOISE_1f_stop_bias function, 630
NOISETEMP variable, 779
non-piped

ADS simulation, 340
Saber simulation, 298

numeric precision, controlling, 689

O
OK button, license status window, 910
open branch, automating, 951
Open Input/Output/Transform/Plot,

automating, 952
open measurement interface

adding a driver, 196
alternatives to creating drivers

using, 208
C++
1034
coding hints, 221, 226
calibration, 214, 232
capabilities, 191
class hierarchy, 228
coding hints, 202
concepts, 192
debugging, 205
driver contents, 209
error messages, 223
exception handling, 238
generation scripts, 196
hardware editor, 219
inputs and outputs, 222
instrument options, 209
measurement, 216, 233
mk_instr script, 197
mk_instr_ui script, 198
mk_unit script, 196
new executable, 203
purpose, 191
reading from GPIB, 223
rebuilding the instrument list, 231
requirements, 192
serial polling, 224
setup checking, 210
signal handling, 238
strings, 224
time delay, 225
troubleshooting, 204
user build process, 194
user input dialog box, 225
user-supplied functions, 231
using C++, 793
warning messages, 223
writing to GPIB, 225

OPEN_RES variable, 775
operators precedence, 751
Optimize function, 631
Optimize menu, automating, 954
Options/Rescale, 902
oscilloscope

Agilent Infiniium, 135
digitizing, 126, 131
series digitizing, 140

output
open measurement interface, 222

output charge
Agilent EEFET3, 826
Agilent EEHEMT1, 852
output log, close, 910
Output Log, open, automating, 953
output, saving, automating, 966
OVERRIDE_LIMITS variable, 783

P
p1_error_scale variable, 772
p1_i_type variable, 774
p1_meas_i_offset variable, 773
p1_meas_offset variable, 773
p1_step_scale variable, 772
p1_step_size variable, 771
p1_tune_error variable, 772
p1_v_type variable, 773
p2_error_scale variable, 772
p2_i_type variable, 774
p2_meas_i_offset variable, 773
p2_meas_offset variable, 773
p2_step_scale variable, 772
p2_step_size variable, 772
p2_tune_error variable, 772
p2_v_type variable, 774
pA meter, 35
Package function, 632
PAPER variable, 781
PARALLEL_INPUT_UNITS_OK

variable, 771
Parameter Extraction Language

assignment, 706
boolean expressions, 750
built-in constants, 747
built-in functions, 714
concepts, 688
data types, 710
expressions, 748
function list calls, 752
identifiers, 688
keywords, 688
operator precedence, 751
statements, 693
variables, 769

PARAMETER_PRECISION variable, 768,
775

parameters
ADS attribute definitions, 354
sweeping

ADS example, 347
MNS example, 318
IC-CAP Reference

Index

Saber example, 300
SPICE example, 254

parametric measurement solution, 50, 55
Parse, automating, 955
PB_abort function, 633
PB_bincode function, 634
PB_bindex function, 634
PB_bindex_cr function, 635
PB_gindex_cr function, 635
PB_gsite_xy function, 635
PB_index function, 636
PB_index_cr function, 636
PB_msite_xy function, 637
PBench_CMD function, 637
Pdown function, 637
PEL

See Parameter Extraction Language
performance network analyzer, 95
Phome function, 638
Pimove function, 638
Pink function, 638
piped simulation

ADS, 338
Saber, 298

plot
characteristics, 764
variables, 781

plot color, automating, 911
Plot Optimizer, open, automating, 954
Plot refreshing, automating, 960
plot, color, 911
plot, copy to clipboard, automating, 912
plot, copy to variable, automating, 912
plot, data markers, 913
plot, delete global region, automating, 915
plot, delete trace optimizer region,

automating, 915
plot, disabling single, automating, 919
plot, disabling traces in, automating, 918
plot, disabling traces, automating, 919
plot, draw drag line in, automating, 922
plot, dump to plotter, automating, 923
plot, dump to printer, automating, 923
plot, dump to status window,

automating, 924
plot, dump via server UI, automating, 925
plot, dump via server, automating, 924
plot, enable all, automating, 926
IC-CAP Reference
plot, enabling and disabling,
automating, 926

plot, inverse color scheme,
automating, 927

plot, save image, automating, 966
plot, scaling, automating, 967, 968
PLOT_CMND variable, 781
PLOT_LINE_WIDTH variable, 765
PLOT_LIST_COLS variable, 768
PLOT_SCALE_FACTOR variable, 782
PLOT_TRACE_LINE variable, 765
PLOT_TRACE_LINE_WIDTH variable, 765
PLOTOPT_AUTOCONFIG_WARNING

variable, 767
PLOTOPT_USE_YAXES_TYPE

variable, 767
plots, disabling all, automating, 918
plots, displaying all, automating, 921
Pmove function, 638
PNCAPsimu function, 639
POLARITY variable, 775
Porig function, 639
Ppos function, 639
PRE_5_8510_FIRMWARE variable, 771
PRECISE simulator, 269
precision

impedance analyzer, 82, 84
LCR meter, 75, 77
numeric, controlling, 689
See PARAMETER_PRECISION
See WORKING_PRECISION
SeePARAMETER_PRECISION
semiconductor parameter analyzer, 49

PRINT statement, 700
print variables, 781
Print, automating, 956
PRINT_CMND variable, 782
PRINTER IS statement, 700
prober
APM3000A, 164
APM6000A, 164
APM7000A, 164
cautions, 189
commands, 162
control, 189
driver, 156
driver internals, 161
EG1034X, 162
EG2001X, 163
functions, 157
settings, 162
SUMMIT10K, 164
SUSS PA 150 PA 200, 165
test program, 166

Prober_debug function, 640
Prober_init function, 640
Prober_reset function, 640
Prober_status function, 641
Program function, 641
Pscale function, 643
PSP_check_par function, 645
PSP_DC_calc_bin_parameter

function, 645
PSP_DC_vth function, 644
PSP_set_opt function, 646
PSPICE simulator, 272
PTFTCV_cgd function, 647
PTFTCV_cgs function, 647
PTFTDC_lin function, 648
PTFTDC_sat function, 648
pulse generator, 149, 150
pulse_fall_time variable, 772
pulse_rise_time variable, 772
Pup function, 648

R
rand_flat function, 649
rand_gauss function, 649
rand_seed function, 650
random function, 652
RBBcalc function, 653
Read Buffer, print, automating, 955
Read String, automating, 957, 958
Rebuild Active List, automating, 958
Recall Parameters, automating, 958
Redisplay, automating, 959
1035

Index

Refresh Dataset, automating, 959
Release License, automating, 959
remote control of IC-CAP, 859
Rename model, automating, 960
Rescale plot, automating, 961
reserve words, ADS, 398
Reset global trace region, automating, 961
Reset optimizer options, automating, 962
Reset optimizer parameters,

automating, 962
Reset parameters, automating, 961
reset to saved options, automating, 962
Reset trace regions, automating, 963
RETAIN_DATA variable, 768
RETAIN_PLOT variable, 765
RETAIN_SIMU variable, 768
RETURN statement, 700
RETURN_VALUE statement, 701
RI_GRAPH_SYMMETRY variable, 766
RMSerror function, 654
Rocky Mountain BASIC, 687
Run self-tests, automating, 963

S
Saber

circuit description, 303
describing device model, 304
hierarchical simulation, 307
indicating comments, 310
libraries, 310
non-piped simulations, 298
parameter sweep example, 300
piped simulations, 298
simulation example, 295
simulator, 293
template description, 306
test circuits, 307
variables, 780

SABER_ALTER variable, 780
SABER_DC_OPTIONS variable, 780
SABER_OPTIONS variable, 780
SABER_VERSION variable, 780
SCALEITF variable, 782
SCALETF variable, 782
SCALEVTF variable, 783
SCALEXTF variable, 783
1036
scaling relations
Agilent EEFET3, 828
Agilent EEHEMT1, 854

SCATTER_CONTOURS variable, 766
SCATTER_NUM_SEGMENTS

variable, 766
screen debug, automating, 930, 969
select error region, automating, 970
select plot, automating, 970
select whole plot, automating, 971
semiconductor

parameter analyzer, 43, 46
parametric tester, 25

semiconductor device analyzer, 61
send receive display, automating, 972
send string, automating, 973
send to printer, automating, 973
send_map function, 866
send_PEL function, 864
serial poll, automating, 974
serial polling, 224
set active address, automating, 974
set algorithm, automating, 974
set error, automating, 975
set GUI callbacks, automating, 975
set GUI options, automating, 976
set instrument option value,

automating, 977
set table field value, automating, 978
set target vs simulated, automating, 979
set timeout, automating, 979
set trace as both, automating, 980
set user region, automating, 980
set variable table value, automating, 981
setup checking, 210
Setup, add new, automating, 950
Setup, open, automating, 954
shared library, creating, 203
show absolute error, automating, 981
show relative error, automating, 982
show_current_range variable, 773
SHOW_GRID variable, 766
SHOW_INPUT_OUTPUT_FINDER

variable, 768
SHOW_PLOT_TITLE variable, 766
show_samples variable, 773
show_stats variable, 773
show_tuning variable, 773
show_voltage_range variable, 773
SIGFPE signal, 238
SIGINT signal, 238
signal handling, 238
SIM_USE_LOWER_CASE_PARAMS

variable, 776
SIM_USE_UPPER_CASE_PARAMS

variable, 776
simulate all, automating, 983
simulate plot inputs, automating, 983
simulate, automating, 983
simulation

ADS
circuit description, 340
describing device model, 342
example, 335
non-piped, 340
piped, 338
subcircuit model, 343

MNS
circuit description, 323
describing device model, 324
example, 313
non-piped, 317
options, 323
piped, 316
subcircuit model, 325

Saber
circuit description, 303
describing device model, 304
example, 295
hierarchical, 307
piped and non-piped, 297
template description, 306
test circuit, 307

SPECTRE
describing device model, 280
hierarchical, 285
piped and non-piped, 288
subcircuit model, 281
test circuit, 285

SPICE
describing device model, 257
example, 244
hierarchical, 260
piped and non-piped, 246
subcircuit model, 259
test circuit, 260

variables, 775
simulation debugger, automating, 983
IC-CAP Reference

Index

SIMULATOR variable, 776
simulators

ADS, 329
differences in SPICE, 267
ELDO, 265
HPSPICE, 242
HSPICE, 242, 265
MNS, 311
PRECISE, 269
PSPICE, 272
Saber, 293
SPICE2, 241
SPICE3, 241

sin function, 655
sinh function, 655
SLIDER statement, 702
smooth3 function, 655
software calibration

HP 3577, 105
HP/Agilent 8510, 108
HP/Agilent 8720, 113
HP/Agilent 8753, 120

source/monitor unit, 50, 55
SPECSSpin function, 656
SPECTRE, 276

circuit description, 278
describing a subcircuit, 281
describing device model, 280
hierarchical simulation, 285
test circuits, 285

SPECTRE interfaces, 276
SPICE

assigning node names, 260
circuit description, 256
circuit description syntax, 263
describing a subcircuit, 259
describing device model, 257
hierarchical simulation, 260
parameter sweeping example, 254
performing a simulation, 244
simulator differences, 267
test circuits, 260

SPICE2 simulator, 241
SPICE3 simulator, 241
spmodeads interface, 332
sqrt function, 656
standard time-domain example, 997
IC-CAP Reference
statements
ADS instance, 366
assignment, 706
ICCAP_FUNC, 869
Parameter Extraction Language, 693

status window, automating, 984
stop simulator, automating, 984
store parameters, automating, 984
strings, 224
sweeping parameters

ADS example, 347
MNS example, 318
Saber example, 300
SPICE example, 254

SWM_debug function, 657
SWM_init function, 657
syntax

ADS, 357
ADS simulator, 358
GPIB analyzer, 791
SPICE circuit description, 263

system variables, 763

T
talk active address, automating, 985
tan function, 657
tanh function, 657
TDR example, 994
TEMP variable, 777
temperature

SPECTRE simulation options, 278
SPICE simulation options, 256

template
Saber simulation, 306

templates, 276
terminate_session function, 864
test circuit

Saber simulators, 307
SPECTREE simulators, 285
SPICE simulators, 260

text annotation off, automating, 985
text annotation on, automating, 986
text annotation, automating, 985
time delay, 225
tis_p_down function, 659
tis_p_home function, 659
tis_p_imove function, 659
tis_p_ink function, 659
tis_p_move function, 659
tis_p_orig function, 659
tis_p_pos function, 659
tis_p_scale function, 659
tis_p_up function, 659
tis_prober_get_ba function, 660
tis_prober_get_name function, 660
tis_prober_init function, 660
tis_prober_read_sysconfig function, 660
tis_prober_reset function, 660
tis_prober_status function, 660
TNOM variable, 777
toggle zoom, automating, 986
Tools/Interface/Status, 903
Transform, 687
TRL_Cal function, 660
troubleshooting, 204
tune fast, automating, 986
tune slow, automating, 987
TUNER statement, 701
TwoPort function, 661
TWOPORT_C variable, 777
TWOPORT_L variable, 777
TWOPORT_Z0, 106
TWOPORT_Z0 variable, 777
TWOPORT2 function, 662

U
UCB MOS extraction variables, 783
undo optimization, automating, 988
undo zoom, automating, 988
unselect all, automating, 989
update annotation, 990
update annotation, automating, 990
UPDATE_AUTO statement, 704
UPDATE_EXPLICIT statement, 704
UPDATE_EXTRACT statement, 704
UPDATE_MANUAL statement, 704
UPDATE_OPTIMIZE statement, 704
USE_ALTER variable, 780
USE_DCIP_COM variable, 780
USE_OLD_CASE_PARM_RULE

variable, 777
USE_PLOT_LOOKUP variable, 766
USE_SABER_COM variable, 781
user build process, 194
user C functions, 1009
user input, 225
1037

Index

user interface variables, 768
UserC_avg_2 function, 662
UserC_avg_3 function, 662
USERC_close, 1013
USERC_close function, 663
USERC_conjg function, 663
USERC_data_w_check function, 663
USERC_get_object_name function, 664
USERC_init_param function, 664
USERC_num_of_points function, 665
USERC_open, 1012
USERC_open function, 665
USERC_read_reals, 1016
USERC_read_reals function, 666
USERC_readnum, 1014
USERC_readnum function, 666
USERC_readstr, 1015
USERC_readstr function, 666
USERC_seek, 1015
USERC_seek function, 667
USERC_set_param function, 667
USERC_set_param_quiet function, 668
USERC_size function, 668
USERC_sweep_mode function, 668
USERC_sweep_name function, 669
USERC_sweep_start function, 669
USERC_sweep_stepsize function, 669
USERC_sweep_stop function, 670
USERC_system function, 670
USERC_tell, 1016
USERC_tell function, 670
USERC_transpose function, 671
USERC_write, 1013
USERC_write function, 671
usersimulators file, 269, 272, 291, 316,

338
user-supplied functions, 231

V
VarEqn data types, 392
variable, add new to table,

automating, 912
1038
variables, 256, 278
BJT extraction, 782
calibration, 767
curtice extraction, 782
data management, 783
diagnostics, 782
ELDO, 780
extraction options, 775
HP 85124 measurement options, 771
hpeesofsim, 778
HSPICE, 781
measurement options, 770
Mextram, 780
MNS, 779
parameter extraction language, 769
print/plot, 781
Sabre, 780
simulation, 775
system, 763
TEMP, in SPECTRE simulation, 278
TEMP, in SPICE simulation, 256
TNOM, in SPECTRE simulation, 278
TNOM, in SPICE simulation, 256
UCB MOS, 783
UI options, 768
X_HIGH/Y_HIGH, 783

variance function, 671
VBIC_ac_solver function, 672
VBIC_avc function, 672
VBIC_cbc function, 673
VBIC_cbe function, 673
VBIC_cj0 function, 673
VBIC_clean_data function, 674
VBIC_csc function, 674
VBIC_dc_approx function, 674
VBIC_dci_solver function, 675
VBIC_dcv_solver function, 676
VBIC_fg_currents function, 676
VBIC_ibci_nci function, 678
VBIC_ibei_nei function, 678
VBIC_ikf function, 678
VBIC_ikr function, 679
VBIC_is_nf function, 679
VBIC_isp_nfp function, 679
VBIC_nr function, 680
VBIC_qcdepl function, 680
VBIC_rcx function, 680
VBIC_rg_currents function, 681
VBIC_stoc function, 682
VBIC_vef_ver function, 683
view data, automating, 990

W
Wait function, 683
warning messages, 223
WD variable, 783
WHILE statement, 694
wirexfX function, 684
wirexfXY function, 684
wirexfY function, 685
wirexfYX function, 685
WORKING_PRECISION variable, 769, 775

X
X_HIGH variable, 783
X_LOW variable, 783
XFORM_LIST_COLS variable, 769

Y
Y_HIGH variable, 783
Y_LOW variable, 783

Z
zoom plot, automating, 991
IC-CAP Reference

	Contents
	Supported Instruments
	DC Analyzers
	HP 4071A Semiconductor Parametric Tester
	HP 4140 pA Meter/DC Voltage Source
	HP 4141 DC Source/Monitor
	HP/Agilent 4142 Modular DC Source/Monitor
	HP 4145 Semiconductor Parameter Analyzer
	HP/Agilent 4155 Semiconductor Parameter Analyzer
	HP/Agilent 4156 Precision Semiconductor Parameter Analyzer
	Agilent E5260 Series Parametric Measurement Solutions
	Agilent E5270 Series Parametric Measurement Solutions
	Agilent B1500A Semiconductor Device Analyzer

	Capacitance-Voltage Meters
	HP 4194 Impedance Analyzer
	HP 4271 1 MHz Digital Capacitance Meter
	HP 4275 Multi-Frequency LCR Meter
	HP 4280 1 MHz Capacitance Meter
	HP/Agilent 4284 Precision LCR Meter
	HP/Agilent 4285 Precision LCR Meter
	Agilent E4980A Precision LCR Meter
	Agilent 4294A Precision Impedance Analyzer
	Agilent E4991A RF Impedance/Material Analyzer

	Network Analyzers
	Agilent E5071C ENA Series Network Analyzer
	Agilent PNA Series Vector Network Analyzer
	HP 3577 Network Analyzer
	HP/Agilent 8510 Network Analyzer
	HP/Agilent 8702 Network Analyzer
	HP/Agilent 8719 Network Analyzer
	HP/Agilent 8720 Network Analyzer
	HP/Agilent 8722 Network Analyzer
	HP/Agilent 8753 Network Analyzer
	Wiltron360 Network Analyzer

	Oscilloscopes
	HP 54120T Series Digitizing Oscilloscopes
	HP 54510 Digitizing Oscilloscope
	Agilent Infiniium Oscilloscope
	HP 54750 Series Digitizing Oscilloscopes
	Differential TDR/TDT Capability

	Pulse Generators
	HP 8130 Pulse Generator
	HP 8131 Pulse Generator

	Dynamic Signal Analyzer
	HP/Agilent 35670A Dynamic Signal Analyzer

	Drivers
	Prober Drivers
	External Prober User Functions
	Internal Prober Functions
	Prober Settings and Commands

	Prober Driver Test Program
	Matrix Drivers
	External Matrix Driver User Functions
	Internal Matrix Driver Functions

	Using IC-CAP with B2200A/B2201 Low-Leakage Mainframe Driver
	Utility Functions
	Initialization and General Configuration
	Transforms Governing the Bias Mode
	Transforms Governing the Ground Mode
	Transforms Governing the Couple Mode
	Transforms Governing the Switching

	Using IC-CAP with the HP�5250A Matrix Driver
	Utility Functions
	Initialization and General Configuration
	Transforms Governing the Bias Mode
	Transforms Governing the Couple Mode
	Transforms Governing the Switching

	Using IC-CAP with HP�4062UX and Prober/Matrix Drivers
	Writing a Macro
	Prober Control
	Special Conditions

	Adding Instrument Drivers to IC-CAP
	Using the Open Measurement Interface
	Driver Development Concepts
	Adding a Driver
	Debugging
	Alternatives to Creating New Drivers
	What Makes up an IC-CAP Driver
	Programming with C++

	Class Hierarchy for User-Contributed Drivers
	Order in Which User-Supplied Functions are Called
	During Rebuild
	During Calibrate
	During Measure

	Handling Signals and Exceptions

	SPICE Simulators
	SPICE Simulation Example
	Piped and Non-Piped Simulations
	Piped and Non-Piped SPICE Simulations
	Non-Piped HSPICE Simulations
	Non-Piped ELDO Simulations

	Output Data Formats
	SPICE Parameter Sweeps
	Circuit Model Descriptions
	Specifying Simulator Options
	Describing the Device Model
	Describing Subcircuits
	Assigning Node Names
	Test Circuits and Hierarchical Simulation

	Circuit Description Syntax
	SPICE Simulators
	HSPICE Simulator
	ELDO Simulator

	SPICE Simulator Differences
	Using the PRECISE Simulator with IC-CAP
	Using the PSPICE Simulator with IC-CAP

	SPECTRE Simulator
	SPECTRE Interfaces
	SPECTRE Interface
	SPECTRE443 Interface
	SPECTRE442 Interface
	Open Simulator Interface (OSI)

	Circuit Model Descriptions
	Specifying Simulator Options
	Valid SPECTRE Netlist Syntax for IC-CAP
	Describing a Device
	Describing the Model
	Describing Subcircuits
	Using a Device Statement and Model Card Configuration
	Using a Single Subcircuit Block Configuration
	Using a Device Statement Followed by a Subcircuit Block
	Test Circuits and Hierarchical Simulation

	Piped and Non-Piped SPECTRE Simulations
	Using SPECTRE Simulator Templates with CANNOT_PIPE
	Using SPECTRE Simulator Templates with CAN_PIPE
	Using Template SPICE3 and the Open Simulator Interface spectre3.c

	Saber Simulator
	Saber Simulation Example
	Piped and Non-Piped Saber Simulations
	Saber Parameter Sweeps
	The Alter Command
	Circuit Model Description
	Selecting Simulator Options
	Entering Circuit Descriptions

	MNS Simulator
	MNS Simulation Example
	The Simulation Debugger

	Piped MNS Simulations
	Non-Piped MNS Simulations
	MNS Parameter Sweeps
	Example Circuit Simulation Parameter Sweep

	Circuit Model Description
	Selecting Simulator Options
	Entering Circuit Descriptions
	Device Model Descriptions
	Subcircuit Model Descriptions

	MNS Input Language
	MNS Libraries

	ADS Simulator
	ADS Interfaces
	Hardware and Operating System Requirements
	Codewording and Security
	Setting Environment Variables
	ADS Simulation Example
	The Simulation Debugger

	Piped ADS Simulations
	Non-Piped ADS Simulations
	Circuit Model Description
	Selecting Simulator Options
	Entering Circuit Descriptions
	Device Model Descriptions
	Subcircuit Model Descriptions

	ADS Parameter Sweeps
	Example Circuit Simulation Parameter Sweep

	Interpreting this Chapter
	General Syntax
	The ADS Simulator Syntax
	Field Separators
	Continuation Characters
	Name Fields
	Parameter Fields
	Node Names
	Lower/Upper Case
	Units and Scale Factors
	Booleans
	Ground Nodes
	Global Nodes
	Comments
	Statement Order
	Naming Conventions
	Currents

	Instance Statements
	Model Statements
	Subcircuit Definitions
	Expression Capability
	Constants
	Variables
	Expressions
	Functions
	Conditional Expressions

	VarEqn Data Types
	Type conversion

	“C-Preprocessor”
	File Inclusion
	Library Inclusion
	Macro Definitions
	Conditional Inclusion

	Data Access Component
	Reserved Words

	IC-CAP Functions
	Parameter Extraction Language
	Fundamental Concepts
	Keywords
	Identifiers
	Numeric Precision
	Statements
	Data Types
	Built-in Functions
	Built-In Constants

	Expressions
	Calls to the Function Library

	File Structure and Format
	File Structure
	Example File

	Variables
	GPIB Analyzer
	Menu Commands
	Macro Files
	Macro File Example
	Macro Commands
	Macro File Syntax Rules

	OMI and C++ Glossary
	Agilent EEBJT2 Model Equations
	Constants
	Base-Emitter and Base-Collector Current
	Collector-Emitter Current
	Base-Emitter and Base-Collector Capacitances
	References

	Agilent EEFET3 Model Equations
	Drain-Source Current
	Dispersion Current (Idb)
	Gate Charge Model
	Output Charge and Delay
	Gate Forward Conduction and Breakdown
	Scaling Relations
	References

	Agilent EEHEMT1 Model Equations
	Drain-Source Current
	Dispersion Current (Idb)
	Gate Charge Model
	Output Charge and Delay
	Gate Forward Conduction and Breakdown
	Scaling Relations
	References

	Controlling IC-CAP from Another Application
	To Compile Using the Library
	Solaris Examples

	Details of Function Calls
	launch_iccap
	initialize_session()
	terminate_session()
	send_PEL
	get_PEL_response
	send_map

	Details of the LinkReturnS Structure

	ICCAP_FUNC Statement
	Objects
	IC-CAP
	Variables
	GUI Items
	GUI Item
	Simulation Debugger
	Hardware
	HPIB Analyzer
	MODEL
	Circuit
	PlotOptimizer
	PlotOptions
	Parameter Set
	MACRO
	DUT
	Test Circuit
	Device Parameter Set
	SETUP
	Instrument Options
	INPUT
	OUTPUT
	TRANSFORM
	PLOT

	Actions
	Add Active Instr
	Add Global Region
	Add GUI
	Add Interface File
	Add Trace Region
	Area Tools
	Area Tools Off
	Area Tools On
	Autoconfigure or Autoconfigure And Enable
	Autoscale
	Auto Set Min Max
	Auto Set Optimize or Auto Set And Optimize
	Bus status
	Calibrate
	Change Address
	Change Directory
	Change Interface File
	Check Active Address
	Clear Active List
	Clear Data/Simulated/Measured/Both
	Clear Plot Optimizer
	Clear Status Errors
	Clear Status Output
	Clear Table or Clear Parameter Table
	Close
	Close All
	Close Branch
	Close Error Log
	Close GUI
	Close Hardware
	Close License Window
	Close Output Log
	Close Single GUI
	Color
	Copy
	Copy to Clipboard
	Copy to Variables
	Create Variable Table Variable
	Data Markers
	Delete
	Delete Active Instr
	Delete Interface File
	Delete Global Regions
	Delete Trace Regions
	Delete All User Regions
	Delete User Region
	Destroy GUI
	Destroy Single GUI
	Diagnostics
	Diagnostics
	Disable All
	Disable All Traces
	Disable Plot
	Disable Supplies
	Disable Trace
	Display Found Instrs
	Display Modal GUI
	Display Modeless GUI
	Display Plot
	Display Plots
	Display Single Modal GUI
	Display Single Modeless GUI
	Draw Diag Line
	Dump To Plotter
	Dump To Printer
	Dump To Stdout
	Dump Via Server
	Dump Via Server UI
	Edit
	Enable All
	Enable Plot
	Exchange Black-White
	Execute
	Exit/Exit!
	Export Data Measured
	Export Dataset
	Export Data Simulated
	Extract
	File Debug On
	File/Screen Debug Off
	Footer
	Footer Off
	Footer On
	Full Page Plot
	Header
	Header Off
	Header On
	Hide Highlighted Curves
	I-O_Lock
	I-O_Reset
	I-O_Screen Debug OFF
	I-O_Screen Debug ON
	I-O_Unlock
	Import Create
	Import Create Header Only
	Import Create Measured
	Import Create Measured or Simulated
	Import Create Simulated
	Import Create Simulated or Measured
	Import Data
	Import Delete
	Import Measured Data
	Import Measured or Simulated Data
	Import Simulated Data
	Import Simulated or Measured Data
	Import Text
	Legend
	Legend Off
	Legend On
	License Status
	Listen Active Address
	Macro File Execute
	Macro File Specify
	Manual Rescale
	Manual Simulation
	Mark Curve Highlighted
	Measure
	Memory Recall
	Memory Store
	New DUT
	New Input/Output/Transform/Plot
	New Macro
	New Model
	New Setup
	Open
	Open Branch
	Open DUT
	Open Error Log
	Open Hardware
	Open Input/Output/Transform/Plot
	Open Macro
	Open Model
	Open Output Log
	Open Plot Optimizer
	Open Setup
	Optimize
	Parse
	Print Read Buffer
	Print Via Server
	Read from File
	ReadOnlyValues
	Read String
	Read String for Experts
	Rebuild Active List
	Recall Parameters
	Redisplay
	Refresh Dataset
	Release License
	Rename
	Replace Interface File
	Replot
	Rescale
	Reset
	Reset Global Region
	Reset Min Max
	Reset Option Table
	Reset to Saved Options
	Reset Trace Region
	Run Self-Tests
	Save All
	Save All No Data
	Save As
	Save As No Data
	Save Extracted Deck
	Save Image
	Save Input/Command/Output File
	Scale Plot/Scale Plot Preview
	Scale RI Plot/Scale RI Plot Preview
	Screen Debug On
	Search for Instruments
	Select Error Region
	Select Plot
	Select Whole Plot
	Send Command Byte
	Send, Receive, and Print
	Send String
	Send To Printer
	Serial Poll
	Set Active Address
	Set Algorithm
	Set Error
	Set GUI Callbacks
	Set GUI Options
	Set Instrument Option Value
	Set Speed
	Set Table Field Value
	Set Target Vs Simulated
	Set Timeout
	Set Trace As Both
	Set User Region
	Set Variable Table Value
	Show Absolute Error
	Show Highlighted Curves
	Show Relative Error
	Simulate
	Simulate All
	Simulate Plot Inputs
	Simulation Debugger
	Status Window
	Stop Simulator
	Store Parameters
	Talk Active Address
	Text Annotation
	Text Annotation Off
	Text Annotation On
	Toggle Zoom
	Tune Fast
	Tune Slow
	Turn Off Marker
	Undo Optim
	Undo Zoom
	Unmark All Highlighted Curves
	Unmark Highlighted Curve
	Unselect All
	Update Annotation
	View
	Who Are You
	Write to File
	Zoom Plot

	54120 Demo
	TDR Example
	Measurement/Instrument Setup
	Simulation
	Setup specifics

	Standard Time-Domain Example
	Measurement/Instrument Setup
	Simulation
	Setup specifics

	Controlled Pulse Generator Example
	Measurement/Instrument Setup
	Simulation
	Setup specifics

	Calibration
	Tips
	Aligning Measured and Simulated Data

	User C Functions
	Example 1
	Example 2
	Function Descriptions
	USERC_open
	USERC_close
	USERC_write
	USERC_readnum
	USERC_readstr
	USERC_seek
	USERC_tell
	USERC_read_reals

	Hints
	Hints for Instruments
	Hints for Timeouts
	Hints for Reading/Writing Same File
	Hints for Carriage Returns, Line Feeds, etc.

	icedil Functions
	DIL-related Functions
	Other Functions

	Index

