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Abstract—Intensity-invariant local phase features based on Log-Gabor filters have been recently shown to
produce highly accurate localizations of bone surfaces from three-dimensional (3-D) ultrasound. A key challenge,
however, remains in the proper selection of filter parameters, whose values have so far been chosen empirically and
kept fixed for a given image. Since Log-Gabor filter responses widely change when varying the filter parameters,
actual parameter selection can significantly affect the quality of extracted features. This article presents a novel
method for contextual parameter selection that autonomously adapts to image content. Our technique automati-
cally selects the scale, bandwidth and orientation parameters of Log-Gabor filters for optimizing local phase
symmetry. The proposed approach incorporates principle curvature computed from theHessianmatrix and direc-
tional filter banks in a phase scale-space framework. Evaluations performed on carefully designed in vitro exper-
iments demonstrate 35% improvement in accuracy of bone surface localization compared with empirically-set
parameterization results. Results from a pilot in vivo study on human subjects, scanned in the operating room,
show similar improvements. (E-mail: rafeef@ece.ubc.ca) � 2011 World Federation for Ultrasound in Medicine
& Biology.
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INTRODUCTION

Ultrasound (US) image feature extraction algorithms are
strongly influenced by the quality of the acquired data.
Characteristic artifacts, such as low signal-to-noise ratio
and shadowing, significantly complicate image interpre-
tation and automatic processing. Further complications
arise due to image gray level variations within and across
images. Recent advances in US technology, including
advanced transducer design, increased spatial and
temporal resolutions, real-time digital signal processing
and miniaturization have led to a significant increase in
the use of US in image-guided interventions. Examples
include orthopaedics (Barrat et al. 2006, 2008; Beek
et al. 2008; Penney et al. 2006), cardiology (Bosch
et al. 2002; Boukerroui et al. 2001), breast oncology
(Madabhushi et al. 2003) and prostate oncology (Pathak
et al. 2000). US imaging has frequently been proposed
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as a potentially valuable modality for use in orthopaedic
applications as it can provide real-time imaging data
without exposing either the patient or the surgical team
to radiation. Current and proposed applications include
identification of landmarks (e.g., pelvic landmarks used
to define the anterior pelvic plane in hip replacement
surgery [Barrat et al. 2006; 2008]), registration of
preoperative models (Barrat et al. 2008) and visualization
of the quality of fracture reductions (Beek et al. 2008;
Kryvanos 2002). In all of these situations, it is highly
desirable to rapidly and automatically extract the
relevant bone surface information from the B-mode US
images because it is impractical to have the surgeon
manually digitize points on US images during a live
procedure. This has naturally led to an increased need
for developing automatic image segmentation methods
capable of localizing anatomical structures of interest
with sufficient accuracy and efficiency without being
affected by the typical US imaging artifacts.

In this article we focus on bone US imaging in the
context of orthopaedic fracture surgeries. Our main
interest is in bone fractures of the distal radius, which
are responsible for about one sixth of all fractures seen
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in emergency departments in the United States (Hanel
et al. 2002; McMurtry et al. 1997), as well as fractures
of the pelvis (Coppola and Coppola 2000).

Several researchers investigated the use of US in
orthopaedic surgery. Tonetti et al. (2001) registered
manually-digitized bone contour points from B-mode
ultrasound images of a pelvis to their corresponding
computed tomography (CT) datasets. In a different study
on human cadavers, Barratt et al. (2006) manually
segmented the pelvis and femur bone surfaces from US
data and registered them to corresponding CT dataset.
Despite the accurate results obtained in these studies,
they suffered from major drawbacks including the signif-
icant time and effort needed for manual segmentation, as
well as the large inter- and intra-user variability (Barratt
et al. 2006; Beek et al. 2008). To overcome such
limitations and to automate the bone surface extraction
procedure, methods based on image intensity and local
gradient information have been used (Daanen et al.
2004; Foroughi et al. 2007; Kowal et al. 2007; Kryvanos
2002). However, managing the sensitivity of intensity
and gradient-based techniques to US artifacts, machine
settings and algorithm parameters remains a serious chal-
lenge. In particular, small scale variations resulting from
speckle must be addressed explicitly to reduce the inci-
dence of false bone edge detection. Also, the dependence
of bone appearance on the US beam direction increases
the number of false and missed edges. To make segmenta-
tion more robust, methods were proposed for incorpo-
rating a priori bone appearance information into the
segmentation framework (Daanen et al. 2004; Foroughi
et al. 2007; Jain and Taylor 2004). However, fractured
bone surfaces in orthopaedic surgery applications, as
well as reduced bones secured with internal fixation
devices, do not have a continuous smooth surface and
often significantly violate prior assumptions regarding
bone shape. Some groups have proposed methods
combining segmentation techniques with multimodal
registration of US and CT (Amin et al. 2003; Brendel
et al. 2002; Ionescu et al. 1999). However, in orthopaedic
surgery, CT is not routinely used for many types of
fractures and is reserved for cases where the fracture is
complex and the identification of the fractured parts has
proven to be difficult with standard fluoroscopy. CT
scanning of all fracture cases for the purpose of US
segmentation would increase the associated costs and
radiation exposure, which defeats one of the main
advantages of employing US.

Intensity invariant local phase-based feature extrac-
tion has been shown to be promising for processing US
images of soft tissue (Boukerroui et al. 2001; Cao et al.
2006; Grau and Noble 2005; Mulet-Parada and Noble
2000; Sanchez-Ortiz et al. 2000; Ye and Noble 2002)
and, more recently, bone surfaces (Hacihaliloglu et al.
2006, 2009a). Although such phase-based techniques
successfully extracted the desired image features, they
remain sensitive to the underlying filter parameters
used. Previous approaches totally relied on empirical
selection of suitable filter parameters, which was per-
formed by trial and error and ad hoc investigations of
filter outputs on samples of US images depicting a certain
anatomical area of interest (Hacihaliloglu et al. 2006,
2009a; Kovesi 1997; Mulet-Parada and Noble 2000).
Once acceptable filter parameters were found, they were
typically fixed for subsequent applications to new data.
The difficulty in relating correct parameter choices to
the properties of the image and image-processing task
has thus inhibited more widespread use of phase-based
techniques.

In this work (Preliminary results of this work
appeared in Hacihaliloglu et al. (2009b), we present a
novel method for automatic selection of the scale, band-
width, orientation and angular bandwidth parameters in
Log-Gabor filter-based phase symmetry (PS) in US
images, specifically in the context of bone surface local-
ization. Our proposed approach relies on contextual
information obtained solely from image content by incor-
porating the principal curvature computed from the
Hessian matrix and directional filter banks in a phase
scale-space framework.

We present extensive validation studies using care-
fully designed in vitro experiments as well as an in vivo
study of human subjects with distal radius fractures. We
quantitatively demonstrate the utility of our parameter
selection approach, its insensitivity to US artifacts when
detecting bone boundaries and its superior performance
in terms of surface localization accuracy.
METHODS AND MATERIALS

Review of Log-Gabor filter-based analysis of bone US
Previous work by our group (Hacihaliloglu et al.

2009a) presented a local phase-based method for ex-
tracting ridge-like features, similar to those that occur
at soft tissue/bone interfaces, using a PS measure. In
this article, we improve our approach by completely
automating the parameter selection process. Our bone
segmentation approach focuses on extraction of ridge-
like features but could be extended to other feature
types. A ridge can be thought of as a one-dimensional
(1-D) curve representing an axis of local symmetry. It
is well known that symmetric features can be extracted
using local phase information (Kovesi 1997). Local
phase of a 1-D signal can be obtained by convolving
the signal with a pair of band-pass quadrature filters
(an odd filter and an even filter). Using the two filters
in quadrature enables the calculation of signal ampli-
tude and phase at a particular scale (spatial frequency)
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at a given spatial location. One choice of quadrature
filters is the Log-Gabor filter, R(u,u0), which can be
constructed with an arbitrary bandwidth. To obtain
simultaneous localization of spatial and frequency
information, analysis of the signal must be done over
a narrow range (scale) of frequencies at different loca-
tions in the signal. This can be achieved by constructing
a filter bank using a set of quadrature filters created
from rescalings of the Log-Gabor filter.

This analysis can be extended into two dimensions
(2-D) where a filter tuned to a particular orientation, f0,
in the frequency domain (u) is constructed by multi-
plying a radial Log-Gabor function, R(u,u0), with an
angular Gaussian, (G(f,f0), tuned to f0:
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Here, k is the standard deviation of the filter in the radial
direction, and u0 is the filter’s center spatial frequency.
The term k/u0 is related to the bandwidth (b) of the filter
with b 5 22(log2/2)(20.5)log(k/u0) (Hacihaliloglu et al.
2009a).

The scaling of the radial Log-Gabor function is
achieved by using different wavelengths that are based
on multiples of a minimum wavelength, lmin, which is
a user-defined parameter. The relationship between the
filter scale m, and the filter center frequency u0 is set as
u0 5 1/ (lmin (d)

m21) where d is a scaling factor defined
for computing the center frequencies of successive filters.
sf 5 Df/s defines the angular bandwidth DU 5
2sf(2log2)

0.5 whereDf is the angular separation between
neighbouring orientations and is defined asDf5 180�/Nr

and Nr denotes the total number of orientations used. The
parameter s is the standard deviation of the Gaussian
spreading function in the angular direction that describes
the filter’s angular selectivity. To obtain higher orientation
selectivity, the angular function must become narrower.
Steering of the filter is achieved by changing its angle
(f0). In our previous work (Hacihaliloglu et al. 2009a),
these filter parameters were empirically set by extensively
investigating the Log-Gabor filter outputs on different US
images of in vivo human distal radius and pelvis data.
Designing a filter with two scales (m 5 2) and six orien-
tations (Nr 5 6), with k/u0 5 0.25 and a min filter wave-
length of lmin 5 25 pixels typically offered reasonable
spectral coverage and orientation resolution and produced
good bone surface localization in the presence of speckle.
Using this 2-D Log-Gabor filter the 2-D PS measure is
calculated as:
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Where [erm(x,y), orm(x,y)]5[real(F21(2DLG3F(I(x,y))),
imag(F21(2DLG3F(I(x,y)))]. F and F21 denote the
forward and inverse Fourier transforms respectively and
I(x,y) is the B-mode US image. Tr is a noise threshold
value calculated from the smallest scale filter response
and 3 is a small number included to avoid division by zero.
Proposed data-driven filter parameterization
The appropriate design of the Gabor filter bank relies

on the proper selection of the set of its main parameters,
namely; bandwidth (b), scale (lmin), angular bandwidth
(DU) and orientation (f0). The combination of these
various parameters directly affects the filter’s ability to
extract accurate local phase image features. In the
following sections, we analyze the Log-Gabor filter
response in detail and present a data-driven approach for
contextual selection of these parameters. Our approach
first optimizes the bandwidth according to image acquisi-
tion properties. We then optimize for the scale parameter
based on a set of initial filter orientations extracted
through analysis of bone surface orientation information
from the B-mode US image. We finally optimize for the
orientations and angular bandwidth parameters.

Filter bandwidth selection
The filter bandwidth in the radial direction (b 522

(2/ln2)(0.5)ln(k/u0)) is related to both the spatial extent
of the US speckle and the boundary responses in the
image. We therefore first estimate the image speckle
size by generating a set of images covering a range of
depths acquired by the US transducer (in our experiments,
the transducer’s center ultrasound frequency 5 7.5 MHz,
image depth setting ranged between 1.9 cm and 7.2 cm).
Since the grey level in the US images used in this study is
compressed on a logarithmic scale, we first map the gray
level to a linear scale using IL(x,y)510I(x,y)/51 where
I(x,y) is the decompressed grey level intensity of the pixel
located at the image coordinates (x,y) (Smith et al. 2000).
By analysing a region with fully developed speckle from
each image in the set, we compute the autocorrelation of
each region and extract the full-width at half-maximum
(FWHM) value, which we then use as a measure of the



1692 Ultrasound in Medicine and Biology Volume 37, Number 10, 2011
speckle size similar to (Wagner et al. 1983). Although the
speckle size is known to vary spatially, the location of the
bone surface can be at an arbitrary location, so the entire
image was used to calculate speckle size. In practice, the
bone reflection is typically near the focal field and the
average speckle size calculated from the whole image is
similar to the speckle size near the focal region. We,
thus, compute the ratio, k/u0, for each image using:

k=u0 5 exp
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where r is the pixel size in mm. We average the k/u0

ratio over the set of different B-mode US test images
(25 images in our experiments). The resultant average
is then set as the filter bandwidth. Note that selecting
a bandwidth significantly greater than this value (i.e.,
selecting a smaller value for k/u0) will result in a filter
that fails to separate small scale speckle features from
larger scale boundary responses. On the other hand,
selecting a significantly lower bandwidth will reduce
the accuracy of the boundary detection and cause blurring
of the detected bone boundary (Fig. 1).
Initial filter orientation selection
The orientation of the Log-Gabor filter is controlled

by the angular Gaussian function (G(f,f0)). During the
calculation of the PS metric, the filter is directed at
a number of orientations. Commonly, six orientations
are employed to cover the entire angular range (0�–150�
Fig. 1. Effect of filter bandwidth selection on local phase-bas
image of human distal radius. (b)–(d) Phase symmetry (PS) im
respectively. (b) illustrates unintended speckle detection at hi
low bandwidths, while (c) reflects the effect of selecting an a

sections of the bone with little influence exhibi
with 30� increments), with the responses subsequently
averaged (Hacihaliloglu et al. 2006, 2009a; Kovesi
1997; Mulet-Parada and Noble 2000). However, given
the highly directional nature of ultrasound bone image
data, integration of responses from all these different
filter orientations in fact largely degrades the PS
response due to the inclusion of many irrelevant filter
orientations. Noting that the strongest ridge features
appear when the filter orientation is perpendicular to the
bone surface (Fig. 2), identifying and combining filter
angles which produce strong responses will therefore
likely enhance feature extraction.

Bone surfaces in B-mode US images typically
appear as elongated line-like objects with a higher gray
level value compared with the other image features. A
similar observation applies to the corresponding PS
images. Therefore, integration along a bony feature
produces a higher intensity value than doing the integra-
tion along a non-bony feature. Using this simple fact, we
employ the radon transform (RT) to detect the orientation
of such line-like structures. To automatically define
meaningful starting angles for our filter, we initially
cluster the RT (obtained from the B-mode US image)
image using k-means clustering (Fig. 3).

The projection angles corresponding to the peak
values of the RT generally reflect the angles perpendic-
ular to the high-intensity features, i.e., the bone surfaces
in our case. Those angles are therefore used for initial-
izing the orientations of the Log-Gabor filter. During
the identification of distal radius fractures in a clinical
ed bone detection. (a) In vivo B-mode ultrasound (US)
ages obtained using k/u0 values of 0.05, 0.24 and 0.55,
gh bandwidths, (d) illustrates bone boundary blurring at
ppropriate bandwidth where the PS captures continuous
ted by soft-tissue interfaces and speckle.



Fig. 2. Effects of filter orientation selection. (a) B-mode US of in vivo distal radius. (b) filter response atf5 60�. (c) Filter
response at f 5 120�. (d) Filter response at f 5 0�. All images were produced at a fixed filter scale of lmin 5 25 and
k/u0 5 0.25 degraded bone surface due to the inclusion of less informative orientations with weaker bone responses.
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setting, the US transducer is positioned in dorsal, volar
and radial sections. On the other hand, for pelvic ring
factures the ultrasound images are obtained from maxi-
mally anterior left and right iliac spine points and, also,
from the body of the pubis containing pubic tubercles
to define the pelvic coordinate system. Investigating
different in vivo scans obtained from these regions, we
can see that bone surfaces produce either a curved (radius,
femur) or a tilted response (pelvis). Therefore, construct-
ing a filter with as little as three orientations is sufficient
to cover the range of bone feature orientations that are
present in the US images obtained from these regions.

Based on this analysis, three initial filter angles are
selected, which we choose from the cluster corresponding
to the peak values of the RT (Fig. 3c). Specifically, the
mean value of the projection angles corresponding to
the RT values in that chosen cluster and two additional
angles set at 61 standard deviation within the threshold
region are used. These three initial angles are used as
the initial filter angle parameters during the calculation
of the filter scale as explained in the next section.
Filter scale selection
Local image PS is computed by convolving the

image with a number of scaled Log-Gabor filters. Each
scaling is designed to pick out particular features of the
image being analyzed with results typically integrated
over multiple scales (in addition to multiple orientations)
(Hacihaliloglu et al. 2009a). Since boundaries are ex-
tracted by analyzing the PS measure over a range of
scales, correct scale selection is of major importance.
When using very small scales, the filters become highly
sensitive to speckle. Selecting larger scales blurs the ex-
tracted bone features. Simply integrating different filter
scales for PS calculations is typically inadequate as it
results in PS images that either extract speckle or blurs
the detected features (in our case bone boundaries), as
demonstrated in Figure 4.

Line enhancing filters based on multiscale eigen-
value analysis of the Hessian matrix have been used to
extract vessel-like structures in 2-D and 3-D medical
images, e.g., (Frangi et al. 1998). The scale selection
approach we present in this article is inspired by this
approach where we generate the Hessian matrix in (4):

H 5

�
Lxx Lxy

Lyx Lyy

�
; Lab5

v2L

vavb
(4)

where L is the image obtained by convolving the US
image with the Log-Gabor filter at a particular scale.
Here, the subscripts x and y represent spatial derivatives
in the x and y directions, respectively. At this stage, the
orientation of the Log-Gabor filter during the scale setting
step is set to the initial filter angle calculated from the
B-mode US image, as outlined in ‘‘Initial Filter Orienta-
tion Selection’’ section. We then calculate a ridge strength
measure, Ag5t2g((Lxx2Lyy)

214Lxy
2), which is the

square of the g normalized eigenvalue difference, with t
being the scale of the filter (t 5 lmin) (Lindeberg 1998)
(Fig. 5). This metric in our context measures the ‘‘ridge-
ness content’’ of the image, since our main interest here is
in localizing bone contours, which generally appear as
ridges in US images. The optimal scale is, thus, defined



Fig. 3. Filter orientation selection step. (a) Radon transform (RT) of B-mode US image in Figure 2a, (b) k-mean clustered
RTof (a), (c) the cluster corresponding to the highest RT values. The three initial angles deduced from this cluster are 68�,
86� and 104�. The arrows are pointing out to the location on the x-axis corresponding to the selected initial angle values.
Red vertical arrow is the location of the mean value of the highest RT cluster (shown as white region in c) whereas
yellow arrows are the location of the 61 standard deviation from the mean (left yellow arrow is the initial angle value
corresponding to mean-standard deviation whereas the yellow arrow on the right is the initial angle values corresponding

to mean 1 standard deviation).
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as the one corresponding to the maximal ridgeness
content in the Gabor filtered image. To define the
optimum global filter scale, which highlights the most
significant ridge content, we analyze the intensity distri-
bution of Ag over all possible scales (e.g., ranging from
2 to 150 in our experiments). We then select the scale
where the sum of the intensities achieves a maximum
value as the optimal filter scale (Fig. 5d). This is based
on the fact that at the optimal scale the response of the
filter will produce a sharp ridge feature aligned with the
bone surface, whereas significantly different scales will
result either in detection of speckle or blurred bone
surfaces which will reduce the intensity sum (Fig. 1a–c).
This analysis is repeated for each orientation separately.
Filter orientation refinement
To select the final filter orientations, the RT is

re-calculated for the ridge strength image Ag as obtained
using the scale calculated in ‘‘Filter Scale Selection’’
section. Figure 6 shows the calculated RT of the Ag for
the initial angle of 104� as an example. Noting that the
RT has high intensity locations indicating the presence
of line-like structures in the image, the maximum value
of the RT simply indicates the main orientation of the
bone, since it has the strongest filter response, and is
thus used to set the final filter orientation. Figure 6b
shows an example where the angle corresponding to the
peak occurs at 115�, hence, the initial angle set as per
section ‘‘initial filter orientation selection’’ is corrected
based on this new calculated angle.We note that this anal-
ysis is done for all the three initial filter angles obtained
from section ‘‘initial filter orientation selection’’, but
we only show example for one of the initial angles. Using
more than three angles adds to the computational costs
and did not improve the results significantly, so three
are used in our experiments.

Filter angular bandwidth selection
The angular bandwidth parameter, sø, corresponds

to the standard deviation of the Gaussian spreading func-
tion in the angular direction and describes the filter’s
angular selectivity. Investigating the example in
Figure 7, we can see that large angular bandwidths
make the Log-Gabor filter act as a smoothing filter,
without being sensitive to any orientation. On the other



Fig. 4. Effects of filter scale selection. (a) Original B-mode US image of an in vivo distal radius. (b) Phase symmetry (PS)
obtained using a scale value of lmin 5 2. (c) PS obtained using a scale value of lmin 5 88. (d) PS obtained by combining

the results of both scales (2 and 88).
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hand, for small angular bandwidths, the filter acts like
a line detector degrading the curvature of the bone surface
as it becomes less sensitive to curvature. This makes the
extracted features look like short line segments when the
true surface is curved. Therefore, using the same analysis
we used in our filter scale selection process would not be
suitable to set sø, since the intensity distribution of Ag

over all possible angular bandwidths will give a peak at
very large angular bandwidths. An example for his
Fig. 5. Effects of filter bandwidth selection. Ag ridge strength ob
for a fixed filter orientation (140�) and scale (a) lmin 5 10, (b) l
that the bone ridge content in (b) is the strongest and the most co
situation is given in Figure 7 where selecting the peak
value of the angular bandwidth vs. the sum of intensity
values of Ag corresponds to a filter response shown in
Figure 7a.

We, thus, analyze the kurtosis of the RT of Ag over
the values of angular bandwidth. Higher kurtosis means
more of the variance is due to infrequent extreme devia-
tions (i.e., an Ag image with uniform black background
with sharp high-intensity bone boundary), opposed to
tained from aB-mode ultrasound (US) image in Figure 2a

min 5 35 and (c) lmin 5 140. Investigating (a)–(c) we see
ntinuous. (d) Filter scale vs. sum of intensity values of Ag.



Fig. 6. Filter orientation selection. (a): Ag obtained using the
initial filter angle (a) f 5 104� which is calculated from the
radon transform (RT) of the B-mode image, (b) RT of (a)
showing new peak at 115�, respectively. The initial orientation
of the filter is thus fine-tuned to 115�. This analysis is repeated

for the other two initial filter angles as well.

Fig. 7. Effect of varying angular bandwidth on the Log-Gabor
filter output for filter orientation 115�. (a) sø 5 120�,

(b) sø 5 30� and (c) sø 5 7.5�.
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frequent modestly-sized deviations (i.e., an Ag image
with uniform black background degraded with speckle/
soft tissue interfaces or short line segments with different
intensity values). We then select the bandwidth as that
corresponding to the peak kurtosis value (Fig. 8b). During
this stage, the Ag images are obtained using the optimum
filter scale as calculated in ‘‘filter scale selection’’ section.

Experimental set-up for quantitative validation
We constructed a phantom for validation purposes

which comprised an ex vivo bovine femur specimen inside
an open-topped Plexiglas cylindrical tube (The bovine
specimen was obtained through a certified butcher
following guidelines and notification of the UBC Animal
Care and Biosafety Committee) (Fig. 9). Twenty-eight
markers (1 mm diameter steel balls) were added to the
phantom with fourteen beads placed on each side of the
bone (longitudinally) and spaced at equal axial intervals
over a distance of 75 mm. We obtained 3-D US scans of
this phantom with each volume containing 16 fiducials
(eight on each side) spanning a region of 37.8 mm. To
hold the specimen and fiducials in place during the
scanning procedures, the tube was filled with a firm gel
(Super Soft Plastic; M-F Manufacturing, Fort Worth, TX,
USA). The difference in the speed of sound in soft tissue
(est. 1540m/s) and gel (est. 1340 m/s) during the image
reconstruction process was compensated to improve
the accuracy of alignment of the ultrasound and CT.

The constructed phantom was then scanned in an
Xtreme CT machine with isometric 0.25 mm voxels.
US scanning was performed using a 3-D GE Voluson
730 Expert system (GE Healthcare, Waukesha, WI)
with a 3-D RSP5-12 probe. The reconstructed US
volumes were 199 3 119 3 50 voxels (lateral 3 axial 3
elevational) with an isotropic voxel size of 0.19 mm. The
US data was resampled to match the resolution of the
CT image. Also, a fiducial-based rigid-body registration
was applied to align the 3-D CT and 3D US volumes.



Fig. 8. Angular bandwidth selection step. (a) Filter angular
bandwidth vs. sum of intensity values of Ag. (b) Filter angular
bandwidth vs. kurtosis of radon transform (RT) obtained from

calculating the RT of Ag.

Fig. 9. Experimental set-up used for our quantitative validation.
(a) Our constructed phantom comprised of an ex vivo bovine
femur specimen inside an open-topped Plexiglas cylindrical
tube filled with polyvinyl chloride gel. (b) Diagram depicting
a 2-D axial cut of the constructed phantom showing the fiducials

inserted into the gel.
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Following registration, bone surfaces were extracted
from CT scan using a simple thresholding operation to
establish a ‘gold standard’ bone surface. Bone surfaces
were then extracted from the 3-D US volume by process-
ing each individual slice using our proposed PS features,
both with (proposed method) and without (Hacihaliloglu
et al. 2009a) parameters being optimized for comparison.
To compare the gold standard surface (obtained from the
CT data) to the US-extracted surface obtained using PS
method, a signed distance map was computed around
the bone surface contour extracted from the CT image.
We then transformed each non-zero value in the phase-
processed US image to its corresponding location in the
CT image and identified the signed distance value associ-
ated with that location. This produced a set of intensity/
distance pairs. High- intensity values confined to a zone
near zero distance would indicate an accurately located
surface. Our surface matching error was hence defined
by the average signed distance values corresponding
to the maximum phase intensity value along each vertical
column of the 2-D PS images. This surface localization
accuracy assessment was repeated for 15 different
volumes obtained from the same specimen by processing
each 2-D slice of the 3-D US volume and averaging
the results.

We have also performed an exhaustive search for
parameter selection to compare the localization accuracy
achieved using the exhaustive search parameters with the
accuracy found by using the proposed method. For the
exhaustive search, PS images were extracted using all
the possible parameter combinations and calculating the
previously explained signed distance error metric. The
optimum parameters were chosen as the ones that gave
the lowest mean error.

Finally, to show that the proposed method is less
sensitive to typical US artifacts and soft tissue interfaces,
we also calculated the signed distance values correspond-
ing to all PS intensity values rather than the maximum
PS intensity in the vertical direction as done for surface
localization accuracy assessment. This analysis was
again repeated by processing each 2-D slice of the 3-D
US volume and averaging the results. The method was
implemented in MATLAB (The Mathworks Inc., Natick,
MA, USA).

Clinical study
The patients were presented to the emergency

department with right wrist pain. The fracture was



1698 Ultrasound in Medicine and Biology Volume 37, Number 10, 2011
identified as a distal dorsal radius fracture. During the
scanning, US coupling gel was placed on the skin over
the dorsal, volar and radial sections. The patient scans
were obtained after obtaining the ethical approval from
UBC ethics board and obtaining signed consent of the
patient. In total, 15 different US volumes for each patient
were acquired. The gold standard comparison was
provided by the 3-D surfaces extracted from the preoper-
ative CT scans. The analysis was done by assessing the
‘‘fitness’’ of US derived surfaces to the gold standard
which was achieved using the same procedure explained
in previous section where a phantom set-up was used.
US image was matched to the CT surface by matching
selected anatomical landmarks (note: in previous
ex vivo bovine study, we used implanted fiducials to
perform the registration, but fiducials could not be
used in this clinical study) and computing the rigid
Fig. 10. Signed distance plots obtained from our quantitativ
B-mode US image intensity. (b) Signed distance (mm) vs. pha
the best empirically set parameters using two scales. (c) Sign
proposed optimized parameter phase symmetry method. (d) Sign
symmetry method using the exhaustive search parameters. Signe
B reflect features corresponding to soft tissue interface or spe
rectangular boxes A are features corresponding to shadowing a
these rectangles we can clearly see that with the proposed para

method becomes less sensitive
body transformation. This registration procedure was
repeated 10 times to compensate for the error that might
be introduced during the anatomical landmark selection
procedure.
Qualitative evaluation
We performed several qualitative evaluation tests

using in vivo scans of a human distal radius and pelvis.
We also demonstrate the effectiveness of the proposed
method in extracting bone surfaces from US scans
obtained during the clinical study.
RESULTS AND DISCUSSION

Quantitative results
The distribution of intensity values with their corre-

sponding signed distance values obtained from one
e validation experiment. (a) Signed distance (mm) vs.
se intensity obtained from phase symmetry method with
ed distance (mm) vs. phase intensity obtained from our
ed distance (mm) vs. phase intensity obtained from phase
d distance/intensity pairs inside the red rectangular boxes
ckle noise. Signed distance/intensity pairs inside the red
rtefact, speckle noise or thick bone response. Comparing
meter optimization algorithm, the phase symmetry (PS)
to typical US artifacts.



Table 1. Quantitative results for bone surface localization accuracy assessment comparing empirical phase symmetry (PS) and
exhaustive search PS with the proposed parameter tuned PS

Volume

Empirical PS

Optimized PS Exhaustive search PSOne scale Two scales

Mean (mm) STD (mm) Mean (mm) STD (mm) Mean (mm) STD (mm) Mean (mm) STD (mm)

1 1.67 3.91 3.32 4.70 0.77 2.17 1.54 2.88
2 2.03 4.56 3.87 5.21 1.98 4.21 0.55 1.81
3 2.54 4.91 3.46 5.48 0.91 2.74 0.67 1.85
4 1.84 4.12 3.19 4.74 1.2 3.15 1.19 3.49
5 3.1 4.17 4.20 4.85 2.44 3.47 1.02 2.31
6 3.07 4.60 4.28 5.09 2.6 4.11 0.35 1.65
7 2.62 3.95 3.85 4.97 2.35 3.91 0.37 0.47
8 2.52 4.48 4.49 5.30 2.85 4.88 3.42 5.23
9 2.33 4.06 3.74 5.03 2.26 3.94 0.36 0.46
10 2.03 4.05 3.07 4.84 1.7 3.5 0.69 2.4
11 2.13 4.09 3.39 4.98 2.61 4.43 0.81 2.50
12 1.78 4.26 2.71 4.72 1.54 3.66 2.03 4.55
13 0.95 4.01 2.84 4.94 0.22 2.18 0.50 3.44
14 2.65 4.70 4.29 5.32 3.97 5.07 3.36 5.28
15 0.97 4.07 2.92 4.98 0.23 2.50 0.57 3.62

Average 2.14 4.26 3.58 5.01 1.84 3.59 1.16 2.79

STD 5 standard deviation.
The results represent the average signed distance values that correspond to all phase intensity values of a 3-D US volume.
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B-mode US image volume by processing each individual
2-D slice are shown in Figure 10. The figure also shows
the corresponding results obtained from PS images calcu-
lated using the best empirically-set parameters and the PS
image calculated using the proposed parameter optimized
approach. Investigating these figures we can see that in
both of the PS images, the concentration of the intensity
values away from the zero signed distance value is much
Table 2. Quantitative results for bone surface localization accurac
exhaustive search PS with the pr

Volume

EPS

One scale Two scales

Mean (mm) STD (mm) Mean (mm) STD (mm

1 0.83 1.81 0.79 1.79
2 0.75 2.23 0.66 1.89
3 1.25 2.92 0.96 2.34
4 0.65 1.69 0.63 1.87
5 0.69 1.26 0.76 1.28
6 0.25 0.54 0.31 0.90
7 0.57 0.50 0.60 0.53
8 0.83 1.47 0.47 0.96
9 0.57 0.95 0.58 0.62
10 0.19 0.95 0.15 0.52
11 0.29 0.96 0.28 0.53
12 0.96 2.31 0.76 1.84
13 20.35 1.39 20.46 0.59
14 0.69 1.64 0.15 0.82
15 20.40 1.38 20.46 0.97

Average 0.51 1.46 0.41 1.16

EPS 5 empirical phase symmetry; ESPS 5 exhaustive search phase symm
The results represent the average signed distance values corresponding to

3D US volume.
less compared with the B-mode US image gray level
value distribution, which highlights the ability of the PS
method in extracting bone surfaces without being
affected by the US image artifacts. It can be easily noted
how the PS obtained using the optimized parameters is
much less sensitive to typical US artifacts or soft tissue
interfaces compared with the PS obtained using the
empirically-set parameters. Figure 10d shows the phase
y assessment comparing empirical phase symmetry (PS) and
oposed parameter tuned PS

OPS ESPS

) Mean (mm) STD (mm) Mean (mm) STD (mm)

0.67 1.14 0.53 1.19
0.51 1.42 0.21 0.20
0.65 1.35 0.51 1.49
0.50 1.45 0.14 1.38
0.62 0.34 0.55 0.92
0.30 0.64 0.27 0.65
0.59 0.54 0.41 0.24
0.40 0.28 0.30 1.30
0.44 0.27 0.38 0.25
0.14 0.35 0.05 0.69
0.27 0.55 0.12 0.61
0.66 1.35 0.51 1.75

20.40 0.15 20.20 1.99
0.12 0.65 0.07 1.18

20.50 0.17 20.18 2.18
0.33 0.71 0.24 1.06

etry; OPS 5 optimized phase symmetry; STD 5 standard deviation.
the maximum phase intensity value along each vertical column of a



Table 3. Quantitative results obtained from the clinical study

Clinical study 1 Clinical study 2 Clinical study 3

EPS OPS ESPS EPS OPS ESPS EPS OPS ESPS

Average mean error (mm) 0.77 0.33 0.31 0.94 0.46 0.38 0.47 0.33 0.35
STD (mm) 1.10 0.52 0.59 1.45 0.55 0.74 1.39 0.88 1.41

EPS 5 empirical phase symmetry; ESPS 5 exhaustive search phase symmetry; OPS 5 optimized phase symmetry; STD 5 standard deviation.
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intensity signed distance plot obtained from the exhaus-
tive search method. Comparing this plot with the one
obtained using the proposed method (Fig. 10c), we can
see that the distribution of intensity values are really close
Fig. 11. Qualitative results on human in vivo data. (a) B-mode
areas. Imaging depth of the USmachine was 3.5, 3.5, 1.9, 4.5 an
(PS) images using two different filter scales (25 and 75). (c) No
images obtained using the proposed optimized parameters. Whi
not bone surfaces due to combining orientations that are not pe
PS. The white circles highlights example locations of a degrad

orientations with weake
to the exhaustive search method which took about one
day to compute. The results obtained from calculating
the average signed distance values where all the PS inten-
sity values were used are given in Table 1. Investigating
US image of distal radius (rows 1–4) and pelvis (row 5)
d 4.9 cm, respectively. (b) Nonoptimized phase symmetry
n-optimized PS images using one scale only (25). (d) PS
te arrows point out some extracted phase features that are
rpendicular to the bone surface during the calculation of
ed bone surface due to the inclusion of less informative
r bone responses.



Automatic parameter selection for phase based bone segmentation d I. HACIHALILOGLU et al. 1701
the results we can see that using the parameters derived
from the image domain makes the Log-Gabor filter less
sensitive to typical US artifacts (Table 1).

The average surface matching mean error was 0.51
mm (STD: 1.46 mm) with the best empirically-set param-
eters compared with 0.33 mm (STD: 0.71 mm) for our
proposed automatically-set parameters (Table 2).
Choosing two scales for the empirical method decreases
the surface matching mean error to 0.41 mm (STD:
Fig. 12. Qualitative results from three clinical studies where the
the scanned area involved a distal radius fracture. (a) 2-D sagi
fracture. (b) B-mode US image red arrow points out to the locati
empirical filter parameters. (c) PS image obtained using the fi

(d) PS image using filter parameters obtain
1.16 mm) but introduces more outlier points away from
the zero signed distance indicating an increase in the
detection of US artifacts (Table 1). The surface matching
error with the best parameters from exhaustive search was
0.24 mm (STD: 1.06 mm).

Investigating Tables 1 and 2, we can see that the
exhaustive search parameters achieve slightly better
localization results than the proposed parameter
selection method, but it should be noted that an
scanned area involved a distal radius fracture: one where
ttal CT slice where the zoomed in version shows a clear
on of fracture, phase symmetry (PS) image obtained using
lter parameters obtained from the proposed framework.
ed from exhaustive search procedure.
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exhaustive search required 24 h to computer per image,
compared with 6 s with the proposed method. It is,
therefore, impractical to use an exhaustive search or
even an iterative search for the optimal parameters in
a clinical setting.

Clinical study results
Quantitative surface matching results are given in

Table 3. The proposed method for optimizing the filter
parameters results in an improvement on the surface
localization accuracy.

Qualitative results
Figure 11 shows a qualitative comparison of PS

images of an in vivo human distal radius and pelvis
obtained with the proposed optimized Gabor filter param-
eters and contrasted to the best values we could empiri-
cally set. Note how the local phase images obtained
empirically using two scales extracted more US artifacts
and resulted in a thicker bone boundary due the unsuit-
able scale combination. Moreover, integrating the zero
angle as one of the filter orientations caused the detection
of unwanted features on the sides of the bone surface
(Fig. 11, white arrows). Decreasing the filter scale to
1 in the empirical case caused gaps in the extracted
bone surfaces (Fig. 11, white circles). Our surface results
on the other hand, which used optimized filter parame-
ters, were consistently sharper with reduced unwanted
features on the bone sides and with no gaps in the
detected surfaces. Finally investigating Figure 12, we
can clearly see the importance of filter parameter selec-
tion on the clinical data as well. The local phase
symmetry method with the optimized filter parameters
is less sensitive to typical US artifacts and extracts
sharper bone boundaries. Specifically, investigating the
results from columns two and three, we can see that the
gap between the fractured fragments is visualized better
using the optimized filter parameters.

We believe that this filter bandwidth, scale and
orientation adaptation approach addresses the key weak-
nesses of the previously published local phase based
image enhancement methods (Hacihaliloglu et al.
2009a). In particular, the combination of automatic scale
selection method with a simple orientation optimization
module was shown to produce qualitatively and quantita-
tively improved results. It should be noted that the
previous local phase-based feature extraction algorithms
(Hacihaliloglu et al. 2009a) are likely to enhance speckle
regions and soft tissue interfaces as well as bone surfaces
since they do not provide and explicit mechanism for
distinguishing between these features, whereas the
proposed data driven approach handles this situation by
means of a ‘‘ridgeness’’ measure for automatic scale
selection and orientation optimization with RT.
Qualitative results obtained from in vivo and clinical
scans demonstrated the critical importance of selecting
the correct filter parameters in local phase based US pro-
cessing. Quantitative results were also presented on
a specially constructed bone phantom where the gold
standard surface of the bone was established through
CT imaging. An improvement of close to 0.18 mm in
bone localization accuracy was observed. Furthermore,
our adaptive parameter selection approach produces close
to a 50% decrease in the variability and in the reduction of
worst case scenario (i.e., the standard deviation of the
bone surface localization error for the proposed method
[0.71 mm] is almost half of the empirical PS [1.46 mm]
method) compared with empirical and exhaustive search
methods. In US based computer assisted orthopaedic
surgery (CAOS) systems, inaccuracies may arise from
various sources such as US-CT registration, tracking of
surgical instruments and localization of the surgical tool
tips. Therefore, an improvement in bone surface extrac-
tion from US data plays an important role in all US based
CAOS systems, which will in turn improve the total accu-
racy of the system that should be generally between 2 and
4 mm (Phillips 2007).
CONCLUSIONS

Though local image phase information has been
successfully applied for extracting US image features,
none of the prior studies investigated the effects of param-
eter setting on the extracted features nor provided guide-
lines on how proper selection could be achieved. Some
authors left this as an open question for future develop-
ment, while others tried to address it in an ad hoc manner,
by investigating the filter outputs on samples of US
imaged depicting a certain anatomical area of interest.
In this article, we proposed a novel approach for auto-
matic data-driven selection of the scale, bandwidth and
orientation of Log-Gabor filters for calculating phase
based features in bone US.

To determine the filter bandwidth, US images with
fully developed speckle were analyzed and the image
speckle sizewas measured by calculating the autocorrela-
tion function. For scale selection, we used a ‘‘ridgeness
content’’ measure obtained from the Hessian matrix
eigenvalues. This measure was adopted since a line
profile across a bone surface in an US response typically
depicts a ridge-like rather than a step or ramp-like edge at
the bone boundaries (Hacihaliloglu et al. 2009a). This
metric could be changed to a step edge response, which
is a common feature in echocardiography US images
seen at the epicardial, endocardial and pericardial bound-
aries (Mulet-Parada and Noble 2000). For orientation
selection, the appearance of bone surfaces was incorpo-
rated within our framework where a RT obtained from
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the image ridgeness content measure was used to deduce
the optimal angles of the directional filter. Because bone
surfaces in US images typically appear as elongated
line-like features, the RT that was used in this study is
the classical RT where the integration of intensity values
is performed along a line. This could be easily extended
to a generalized RT where the integration could be per-
formed on a curve that would be more suitable during
enhancing circular features from US images.

Our qualitative and quantitative results on phantom,
in vivo and clinical data demonstrate how the proposed
technique for automatic filter parameter setting enables
the robust capture of bone US image features based on
local phase information, which is of great utility in
US-based computer aided intervention systems.

Our future work will include the extension of auto-
matic parameter selection to 3-D and the validation of
the proposed method on other clinical scans that involve
pelvic ring fractures.
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