
Cooperative Secondary Authorization Recycling

Qiang Wei, Matei Ripeanu, and Konstantin Beznosov
Dept. of Electrical and Computer Engineering, University of British Columbia

Vancouver, BC, Canada
qiangw@ece.ubc.ca, matei@ece.ubc.ca, beznosov@ece.ubc.ca

ABSTRACT
As distributed applications such as Grid and enterprise sys-
tems scale up and become increasingly complex, their authoriza-
tion infrastructures—based predominantly on the request-response
paradigm—are facing challenges in terms of fragility and poor scal-
ability. We propose an approach where each application server
caches previously received authorizations at its secondary decision
point and shares them with other application servers to mask au-
thorization server failures and network delays.

This paper presents the design of our cooperative secondary au-
thorization recycling system and its evaluation using simulation
and prototype implementation. The results demonstrate that our
approach improves the availability of authorization infrastructures
while preserving their performance characteristics. Specifically,
by sharing authorizations, the cache hit rate—an indirect metric
of availability—can reach 70%, even when only 10% of autho-
rizations are cached. Depending on the deployment scenario, the
performance in terms of the average time for authorizing an appli-
cation request can be reduced by up to 30%.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed applications; C.4
[Computer-Communication Networks]: Performance of Sys-
tems—Reliability, availability, and serviceability

General Terms
Security, Design, Performance, Reliability

Keywords
CSAR, SAAM, authorization recycling, cooperation

1. INTRODUCTION
Architectures of modern access control solutions—such as [15,

10, 18, 22, 20, 9]—are based on the request-response paradigm,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

as illustrated in the dashed box of Figure 1. In this paradigm, the
policy enforcement point (PEP) intercepts application requests, ob-
tains access control decisions (or authorizations) from the policy
decision point (PDP), and enforces those decisions.

In large enterprise systems, PDPs are commonly implemented
as centralized authorization servers, providing important benefits:
consistent policy enforcement across multiple PEPs and reduced
administration costs of authorization policies. As with all central-
ized architectures, this architecture has two critical drawbacks: the
PDP is a single point of failure (SPF) as well as a potential perfor-
mance bottleneck.

The SPF aspect of PDP leads to reduced availability: the au-
thorization server responsible for making authorizations may not
be reachable due to a failure (transient, intermittent, or permanent)
of the network, of the software located in the critical path (e.g.,
OS), of the hardware, or even from a misconfiguration of the sup-
porting infrastructure. A conventional approach to improving the
availability of a distributed infrastructure is failure masking through
redundancy of either information, or time, or through physical re-
dundancy [13]. However, redundancy and other general purpose
fault-tolerance techniques for distributed systems scale poorly, and
become technically and economically infeasible when the number
of entities in the system reaches thousands [14, 24].

In a massive-scale enterprise system with non-trivial authoriza-
tion policies, making authorizations is often computationally ex-
pensive due to the complexity of the policies involved and the large
size of the resource and user populations. Thus, the centralized
PDP often becomes a performance bottleneck [19]. Additionally,
the communication delay between the PEP and the PDP—added to
the inherent cost of computing an authorization—can make autho-
rization overhead prohibitively high.

The state-of-the-practice approach to improving overall system
availability and reducing processing delays observed by the client
is to cache authorizations at each PEP—what we refer to as au-
thorization recycling. Existing authorization solutions commonly
provide PEP-side caching [15, 10, 18]. These solutions, however,
only employ a simple form of authorization recycling: a cached
authorization is reused only if the authorization request in question
exactly matches the original request for which the authorization
was made. We refer to such reuse as precise recycling.

To improve authorization system availability and reduce delay,
Crampton et al. [8], introduced the secondary and approximate au-
thorization model (SAAM), which adds a secondary decision point
(SDP) to the traditional request-response paradigm (Figure 1). The
SDP is collocated with the PEP and can resolve authorization re-
quests not only by reusing cached precise authorizations but also
by inferring approximate authorizations from cached precise au-
thorizations. The employment of approximate authorizations im-

Figure 1: SAAM adds SDP to authorization systems based on
request-response paradigm.

proves the availability and performance of the access control sub-
system, which ultimately improves the observed availability and
performance of the applications themselves.

In the solution proposed by Crampton et al., however, each SDP
serves only its own PEP, which means that cached authorizations
are reusable only for the requests made through the same SDP. In
this paper, we propose an approach where different SDPs act jointly
to serve all PEPs. We aim to further improve the resilience of
the authorization infrastructure to network and authorization server
failures, and to minimize the delay in producing authorizations.

We believe that our approach is especially applicable to the dis-
tributed systems involving either cooperating parties, such as Grid
systems, or replicated services, such as load-balanced clusters. Co-
operating parties or replicated services usually have similar users
and resources, and use centralized authorization servers (e.g., in
Grid [26]) to enforce consistent access control policies. Therefore,
authorizations can often be shared among them, bringing benefits
to each other.

This paper makes the following contributions:

• We propose the concept of cooperative secondary authoriza-
tion recycling (CSAR), analyze its design requirements, and
propose a concrete architecture.

• We use simulations and a prototype to demonstrate CSAR
feasibility and evaluate its benefits. Evaluation results show
that by combining the cooperation and inference, our ap-
proach improves the availability of authorization infrastruc-
tures while preserving their performance. Specifically, the
overall cache hit rate can reach 70%, even with only 10%
of authorizations cached at each SDP. This high hit rate re-
sults in more requests being resolved by the local and other
cooperating SDPs, even when the authorization server is un-
available or slow, thus increasing the availability of autho-
rization infrastructures and reducing the load of the autho-
rization server. Additionally, our experiments show that re-
quest processing time can be improved by up to 30%.

The rest of this paper is organized as follows. Section 2 presents
the SAAM definitions and algorithms. Section 3 describes the
CSAR design. Section 4 evaluates CSAR’s performance, through
simulation and a prototype implementation. Section 5 discusses
related work. Finally, we summarize our work in Section 6.

2. BACKGROUND
This section briefly describes the SAAM definitions and the al-

gorithms for the Bell-LaPadula (BLP) access control model. More
detail can be found in [8].

SAAM formally defines an authorization request and authoriza-
tion response. An authorization request is a tuple (s, o, a, c, i),
where s is the subject, o is the object, a is the access right, c is the
request contextual information, and i is the request identifier. Two
requests are equivalent if they only differ in their identifiers. An au-
thorization response to request (s, o, a, c, i) is a tuple (r, i, E, d),
where r is the response identifier, i is the corresponding request
identifier, d is the decision, and E is the evidence. The evidence
is a list of response identifiers that were used for computing a re-
sponse, and can be used to prove the correctness of the response.

In addition, SAAM defines the primary, secondary, precise, and
approximate authorization responses. The primary response is a re-
sponse made by the PDP, and the secondary response is a response
produced by the SDP. A response is precise if it is a primary re-
sponse to the request in question or a response to an equivalent
request. Otherwise, if the SDP infers the response based on the
responses to other requests, the response is approximate. In the
rest of this paper, we use “request” as shorthand for “authorization
request” and “response” as shorthand for “authorization response”.

The inference algorithm for approximate responses depends on
the access control model. For example, the BLP model [2] spec-
ifies how information can flow within the system based on labels
attached to each subject and object. Let λ be the security func-
tion mapping an object or subject to its security label. A subject
s can read an object o if λ(s) > λ(o); a subject s can write
to an object o if λ(s) 6 λ(o). The SAAMBLP inference algo-
rithm uses the responses to past requests to infer information about
the relative ordering on security labels associated with subjects
and objects. If, for example, three requests, (s1, o1, read, c1, i1),
(s2, o1, append, c2, i2), (s2, o2, read, c3, i3) are allowed by the
PDP, it can be inferred that λ(s1) > λ(o1) > λ(s2) > λ(o2).
Therefore, a request (s1, o2, read, c4, i4) should also be allowed,
and the corresponding response is (r4, i4, [i1, i2, i3], allow).

Crampton et al. [8] present simulation results that demonstrate
the effectiveness of this approach. With only 10% of authoriza-
tions cached, the SDP can resolve over 30% more authorization
requests than a conventional PEP with caching. In the rest of the
paper we present the CSAR design, as well as evaluation results
that suggest cooperation among SDPs is possible and can further
improve access control system availability.

3. CSAR DESIGN
This section presents the design requirements for cooperative au-

thorization recycling, the CSAR system architecture, and finally the
detailed CSAR design.

3.1 Design Requirements
The CSAR system aims to improve the availability of access

control infrastructures while controlling their overhead, by sharing
authorization information among cooperative SDPs. Each SDP re-
solves the requests from its own PEP by locally making secondary
authorization decisions, by involving other cooperative SDPs in the
authorization process, or by passing the request to the remote PDP.

Since the system involves caching and cooperation, we consider
the following design requirements:

Low overhead. As each SDP participates in making authoriza-
tions for some non-local requests, its load is increased. The design
should therefore minimize this additional overhead.

Trustworthiness. As each PEP enforces responses that are possi-
bly offered by non-local SDPs, which might be malicious, the PEP
should be able to verify the validity of each response by, for exam-
ple, tracing it back to a trusted source.

Consistency. Brewer [5] conjectures and Lynch et al. [12] prove
that distributed systems cannot simultaneously provide the follow-
ing three properties: availability, consistency, and partition toler-
ance. We believe that availability and partition tolerance are es-
sential properties that an access control system should offer. We
thus relax consistency requirements in the following sense: with
respect to an update action, various components of the system can
be inconsistent for at most a user-configured finite time interval.

Configurability. The system should be configurable to adapt to dif-
ferent performance objectives at various deployments. For exam-
ple, a deployment with a set of latency-sensitive applications may
require requests are resolved in minimal time. A deployment with
applications generating a high volume of authorization requests, on
the other hand, should attempt to aggressively exploit caching and
the inference of approximate authorizations to reduce load on the
PDP, the bottleneck of the system.

Backward compatibility. The system should be backward
compatible so that minimal changes are required to existing
infrastructure—i.e., PEPs and PDP—in order to switch to CSAR.

3.2 Adversary Model
The CSAR system involves multiple components: the PDP,

PEPs, and SDPs. The PDP is the ultimate authority for access con-
trol decisions. We assume that the PDP cannot be compromised.
We further assume that each PEP trusts decisions received from
its own SDP. However, the adversary can eavesdrop or spoof any
network traffic or compromise an application server host with its
PEP(s) and SDP(s). The adversary can also compromise the client
computer(s). Therefore, there could always be one or more mali-
cious clients, SDPs, or PEPs in the system. Additionally, requests
and responses could be eavesdropped, spoofed, or replayed.

3.3 System Architecture
This section presents an overview of the system architecture and

discusses our design decisions in addressing the configurability and
backward compatibility requirements.

As illustrated by Figure 2, a CSAR deployment contains multi-
ple PEPs, SDPs, and one PDP. Each SDP is host-collocated with
its PEP at an application server. Both the PEP and SDP are ei-
ther part of the application or of the underlying middleware. The
PDP is located at the authorization server and provides authoriza-
tion decisions to all applications. The PEPs mediate the application
requests from clients, generate authorization requests, and enforce
the authorization decisions made by either the PDP or SDPs.

For increased availability and lower load on the central PDP, our
design exploits the cooperation between SDPs. Each SDP com-
putes responses to requests from its PEP, and can participate in
computing responses to requests from other SDPs. Thus, autho-
rization requests and responses are transferred not only between
the application server and the authorization server, but also between
cooperating application servers.

CSAR is configurable to optimize the performance requirements
of each individual deployment. Depending on the specific appli-
cation, geographic distribution and network characteristics of each
individual deployment, performance objectives can vary from re-
ducing the overall load on the central PDP, to minimizing client-
perceived latency, and to minimizing the network traffic generated.

Figure 2: CSAR introduces cooperation between SDPs.

Configurability is achieved by controlling the amount of paral-
lelism in the set of operations involved in resolving a request: (1)
the local SDP can resolve the request using data cached locally; (2)
the local SDP can forward the request to other cooperative SDPs
to resolve it using their cached data; and (3) the local SDP can for-
ward the request to the central PDP. If the performance objective is
to reduce latency, then the above three steps can be performed con-
currently, and the SDP will use the first response received. If the
objective is to reduce network traffic and/or the load at the central
PDP, then the above three steps are performed sequentially.

CSAR is designed to be easily integrated with existing access
control systems. Each SDP provides the same interface to its PEP
as to the PDP, thus the CSAR system can be deployed incrementally
without requiring any change to existing PEP or PDP components.
Similarly, in systems that already employ authorization caching but
do not use CSAR, the SDP can offer the same interface and protocol
as the legacy component.

3.4 Discovery Service
One essential component enabling cooperative SDPs to share

their authorizations is the discovery service (DS), which helps an
SDP find other SDPs that might be able to resolve a request.

A naive approach to implementing the discovery functionality
(similar to a popular deployment configuration of Squid [11], a co-
operative Web-page proxy cache) is request broadcasting: when-
ever an SDP receives a request from its PEP, it broadcasts the re-
quest to all other SDPs in the system. All SDPs attempt to resolve
the request, and the PEP enforces the response it receives first.

This approach is straightforward and might be effective when
the number of cooperating SDPs is small and the cost of broad-
casting is low. However, it has two important drawbacks. First, it
inevitably increases the load on all SDPs. Second, it causes high
traffic overhead when SDPs are geographically distributed.

To address these two drawbacks, an SDP in CSAR selectively
distributes requests only to those SDPs that are likely to be able
to resolve them. We introduced the DS to achieve this selective

distribution. To be able to resolve a request, an SDP either caches
the response or infers an approximate response. For this purpose,
both the subject and object of the request have to be present in the
SDP’s cache.

The role of the DS is to store the mapping between entities and
SDPs. In this paper, we use entity as a general term for either a
subject or an object. The DS provides an interface with the follow-
ing two functions: put(entity, SDPaddress) and get(entities),
where entities is a subject and object pair. Given an entity
and the address of an SDP, the put function stores the mapping
(entity, SDPaddress). A put operation can be interpreted as
“this SDP knows something about the entity.” Given a subject and
object pair, the get function returns a list of SDP addresses that are
mapped to both the subject and object. The results returned by the
get operation can be interpreted as “these SDPs know something
about both the subject and object and thus might be able to resolve
the request involving them”.

Using DS avoids broadcasting requests to all SDPs. Whenever
an SDP receives a primary response to a request, it calls the put
function to register itself in the DS as a suitable SDP for both the
subject and object of the request. When cooperation is required, the
SDP calls the get function to retrieve from the DS a set of addresses
of those SDPs that might be able to resolve the request.

Note that the DS is logically centralized, but can have a scalable
and resilient implementation. Compared to the PDP, the discovery
service is simple—it only performs put and get operations— and
general—it does not depend on any particular security policy. As a
result, a scalable and resilient implementation is easier to achieve.
In fact, the discovery service can be easily implemented on top
of a distributed hash table with proved reliability and scalability
properties [21].

We do not assume that the DS is trusted by any component of the
system. Our design limits a malicious DS to being able to compro-
mise only the performance but not the correctness of the system.

3.5 Response Verification
A malicious SDP could generate any response it wants, for ex-

ample, denying all requests and thus launching a denial-of-service
(DoS) attack. Therefore, when an SDP receives a secondary re-
sponse from other SDPs, it has to verify the response in terms of
both response integrity and the correctness of the inference process
that produced the response. To enable response verification, the
PDP needs to sign every primary response. Each SDP can inde-
pendently verify the integrity of each primary response, assuming
it has access to the PDP’s public key.

As explained in Section 2, an SDP can generate two types of sec-
ondary responses: precise responses and approximate responses.
Because each precise response is generated from an equivalent pri-
mary response, it can be verified by simply validating its signature.
To verify approximate responses, each SDP uses the evidence part
of the response.

When an SDP receives a response with a non-empty evidence,
the SDP first verifies the signature of each primary response in the
evidence. Second, the SDP uses the knowledge of both the infer-
ence algorithm and evidence to prove that the response is inferable
from the list of primary responses in the evidence. If any of these
two steps fails, the verification fails and the response is ignored.

Verification of each approximate response unavoidably intro-
duces computational cost, which depends on the length of the ev-
idence list. Based on the administration policy and deployment
environment, the verification process can be configured differently
to achieve various trade-offs between security and performance.

3.6 Cache Consistency
Similar to other distributed systems involving caches, CSAR

needs to maintain cache consistency. In our system, the caches be-
come inconsistent when access control policies change at the PDP
but some SDPs do not update accordingly. Consequently, the SDPs
may begin making stale decisions. In this section, we describe the
mechanism used by CSAR to provide cache consistency.

3.6.1 Assumptions
For context, we first state a few assumptions relevant to access

control systems. We begin with the architecture of the authorization
server.

We assume that access control polices are stored persistently in
the policy store of the authorization server. The PDP makes autho-
rization decisions against the policy store. In practice, the policy
store can be a policy database or a collection of policy files.

We further assume that security administrators deploy and up-
date policies through the policy administration point (PAP), which
is consistent with the standard XACML architecture [27]. In ad-
dition, we assume that the PAP interface provides security admin-
istrators with the option to specify the criticality of the ongoing
change. We elaborate on this aspect later when we describe the
requirements.

Finally, we assume there are only fail-stop failures in the system.

3.6.2 Requirements and Design Decisions
The key requirement of our cache consistency mechanism is ef-

ficiency. Specifically, providing cache consistency should not add
much server overhead or network traffic. To address this require-
ment, we divide all the policy changes into three categories: criti-
cal changes, time-sensitive changes, and time-insensitive changes.
This division is based on yet another assumption, that not all policy
changes are at the same level of criticality. By discriminating policy
changes according to these types, we are able to employ different
consistency techniques to achieve efficiency for each type. Our de-
sign allows a CSAR deployment to support any combination of the
three types.

In addition, the mechanism should maintain backward compat-
ibility with existing authorization servers, which requires that the
PDP is not aware of the existence of SDPs. Therefore, we can-
not modify the PDP to support cache consistency. To address this
requirement, we add a policy change manager (PCM), collocated
with the policy store. The PCM monitors the policy store and de-
tects policy changes, and informs the SDPs about the changes.

In the rest of this section, we define three types of policy changes
and discuss cache consistency approaches for each.

3.6.3 Support for Critical Changes
Critical changes in authorization policies are those changes that

need to be propagated urgently throughout the enterprise applica-
tions, requiring immediate updates on all SDPs. For instance, an
error found in the authorization policy that, if not fixed immedi-
ately, will result in leaking customers’ personal information to the
public and possibly causing substantial damage to the company’s
reputation, must be handled immediately. Therefore, an immediate
correction in the authorization policy is critical.

When an administrator makes a critical change in the authoriza-
tion policy, our approach requires that he or she also specifies a
time period t, within which CSAR must inform the administrator
whether all the SDPs have been successfully updated. Period t is
usually assumed to be just a few minutes. To accommodate varia-
tions in requirements for efficiency, we devised two approaches to
updating SDPs with critical changes: all-flush and selective-flush.

In the all-flush approach, the PCM broadcasts every policy up-
date message to all the SDPs. Upon receiving the message, each
SDP flushes its cache and reports the success or failure of flushing
to the PCM. When all the SDPs have replied or the time period t
ends, the PCM reports the results to the administrator. For the SDPs
without acknowledgment or with unsuccessful results, the adminis-
trator has to take out-of-band measures for flushing caches of those
SDPs, e.g., by manually restarting corresponding machines. We
assume that, given an IP address of an application server, the ad-
ministrator can identify the physical location of the machine.

The above process requires the PCM to wait for a period t if
some SDPs are unavailable due to network partitions. To avoid
waiting, the PCM can run a failure detection service like Google’s
Chubby [6]. With Chubby, each SDP can be viewed as a PCM
client that maintains a Chubby session through periodic handshakes
with the PCM. The PCM thus knows the live status of each SDP,
which allows the PCM to avoid contacting dead SDPs.

The all-flush approach is simple. However, it is inefficient, for
three reasons. First, not all critical changes need to be propagated,
because they might have no effect on any cached response. For ex-
ample, when a policy change is due to merely the addition of an
object or user (a.k.a., subject), this change clearly cannot invali-
date any cached response. Therefore, propagation for such policy
changes is unnecessary. Second, even when a change affects some
cached responses, not all SDPs may have cached those responses.
For example, if a user has been revoked access right(s) but only one
SDP has ever cached the responses for this user, then other SDPs
do not have to act upon the revocation. Finally, not all cached re-
sponses get invalidated by every policy change. Using our previous
example, the SDP only needs to flush those cached responses that
involve the user in question. The rest of the cached responses will
remain valid.

Considering the above observations, we developed a more ef-
ficient approach to propagating critical policy changes, called
selective-flush, since only some SDPs are updated and only se-
lected cache entries are flushed. Compared to the all-flush ap-
proach, the selective-flush approach has the benefits of reducing
server overhead and network traffic while minimizing the impact
on system availability. We sketch out the propagation process here.

The PCM first determines which subjects and/or objects are af-
fected by the policy change. Since most modern enterprise access
control systems make decisions by comparing security attributes
(e.g., roles, clearance, sensitivity, groups) of subjects and objects,
the PCM maps the policy change to the entities whose security at-
tributes are affected. For example, if permission p has been revoked
from role r, then the PCM determines all objects of p (denoted by
Op) and all users assigned to r (denoted by Sr).

The PCM then finds out which SDPs need to be notified of the
policy change. Given the entities affected by the policy change,
the PCM uses the discovery service (DS) to find those SDPs that
might have responses for the affected entities in their caches. The
PCM sends the DS a policy change message containing the affected
entities, (Op, Sr). Upon receiving the message, the DS first replies
back with a list of the SDPs that have cached the responses for
the entities. Then it removes entries with those SDPs and entities
from its map to reflect the flushing. After the PCM gets the list of
SDPs from the DS, it multicasts the policy change message to these
affected SDPs.

In the case where the DS is not available or slow, the PCM can
simply broadcast the policy change message to all the SDPs in the
system. However, this contingency tactic is still better than the
all-flush approach, because the message indicates the entities to be
removed.

When an SDP receives a policy change message, it flushes those
cached responses that contain the entities and then acknowledges
the results to the PCM. In the above example, with revoking per-
mission p from role r, the SDP would flush those responses from
its cache that contain both objects in Op and subjects in Sr . The
rest of the process is similar to the all-flush approach.

In order for the selective-flush approach to be practical, the PCM
should have the ability to quickly identify the subjects or objects
affected by the policy change. However, this procedure may not be
trivial due to the dynamics of modern access control systems. We
have developed identification algorithms for the policies based on
the BLP model, and will explore this issue for other access control
models in future research.

3.6.4 Support for Time-sensitive Changes
Time-sensitive changes in authorization policies are less urgent

than critical ones but still need to be propagated within a known pe-
riod of time. For example, an employee is assigned to a new project
or receives a job promotion. When an administrator makes a time-
sensitive change, it is the PCM that computes the time period t in
which caches of all SDPs are guaranteed to become consistent with
the change. As a result, even though the PDP starts making autho-
rization decisions using the modified policy, the change becomes
in effect throughout the CSAR deployment only after time period
t. Notice that this does not necessarily mean that the change itself
will be reflected in the SDPs’ caches by then, only that the caches
will not use responses invalidated by the change.

CSAR employs time-to-live (TTL) to process time-sensitive
changes. Every primary response is assigned a TTL that deter-
mines how long the response remains valid in the cache, such as
one day or one hour. The assignment can be performed by either
the SDP, the PDP itself, or a proxy, through which all responses
from the PDP pass before arriving to the SDPs. The choice de-
pends on the deployment environment and backward compatibility
requirements. Every SDP periodically purges from its cache those
responses whose TTL elapses.

The TTL value can also vary from response to response. Some
responses (say, authorizing access to more valuable resources) can
be assigned a smaller TTL than others. For example, for a BLP-
based policy, the TTL for the responses concerning top-secret ob-
jects could be shorter than for confidential objects.

3.6.5 Support for Time-insensitive Changes
When the administrator makes a time-insensitive change, the

system guarantees that all SDPs will eventually become consistent
with the change. No promises are given, however, about how long
it will take. Support for time-insensitive changes is necessary be-
cause some systems may not be able to afford the cost of, or are
just not willing to support, critical or time-sensitive changes.

One approach to supporting time-insensitive change is by flush-
ing the SDP’s cache, either passively or actively. The passive ap-
proach is achieved when the application server reboots for mainte-
nance. In the active approach, each SDP can flush responses older
than a pre-determined age, which is the same as the time-sensitive
approach with each SDP assigning TTL to the arriving responses.

4. EVALUATION
In evaluating CSAR, we wanted first to demonstrate that our de-

sign works. Then we sought to estimate the achievable gains in
terms of availability and performance, and determine how these
characteristics depend on factors such as the number of cooperat-
ing SDPs and the frequency of policy changes.

(a) Hit rate as a function of cache warmness
for 5 SDPs compared to 1 SDP (i.e., SAAM).

(b) Hit rate as a function of number of SDPs
at cache warmness of 10%.

(c) The contribution of a new SDP to hit rate
improvement at cache warmness of 10%.

Figure 3: Impact of cache warmness, overlap rate, and the number of cooperating SDPs on hit rate.

We used both simulation and a prototype implementation to eval-
uate CSAR. The simulation enabled us to study availability by hid-
ing the complexity of underlying communication, while the pro-
totype enabled us to study both performance and availability in a
more dynamic and realistic environment.

We used a similar setup for both the simulation and implemen-
tation experiments. The PDP made access control decisions using
a BLP-based policy in an XML file stored on disk. The policy was
enforced by all the PEPs. Each SDP instance contained 100 sub-
jects and 100 objects, and implemented the same inference algo-
rithm. While the subjects were the same for each SDP, the objects
could be different in order to simulate the resource overlap.

4.1 Simulation-based Evaluation
We used simulation to evaluate the benefits of cooperation on

system availability and on reducing load at the PDP. We used the
cache hit rate as an indirect metric for these two characteristics.
A request resolved without contacting the PDP was considered a
cache hit. A high cache hit rate results in masking transient PDP
failures (thus improving the availability of the access control sys-
tem) and reducing the load on the PDP (thus effectively improving
the scalability of the system).

CSAR involves multiple SDPs. In the experiments, we inspected
one of the SDPs and explored the influence of the following three
factors on its hit rate: (a) the number of cooperating SDPs; (b)
the cache warmness at each SDP (which is defined as the ratio of
cached request-response pairs to the total possible request-response
pairs); and (c) the overlap rate between the resource spaces of
two cooperating SDPs (which is defined as the ratio of the objects
owned by both SDPs to the objects owned only by the inspected
SDP). The overlap rate provides a unique measure of similarity be-
tween the resources of two cooperating SDPs.

A simulation engine was responsible for running the experiment
and gathering the results. It read requests from the training set and
testing set, and submitted each request to the PDP and the SDPs.
Each request was made up of a subject, object, and access right
(read and append). The training set was a randomized list of every
possible request in the request space, while the testing set was a
random sampling of requests.

The simulation engine operated in two different modes: warm-
ing and testing. In the cache warming mode, the engine submitted
requests from the training set to the PDP. The engine used the re-
sponses from the PDP to update the SDPs, warming their caches to
a specified level, the percentage of authorizations cached. Once a
desired cache warmness was achieved, the engine switched to test-
ing mode. The SDP caches were not updated in this mode, which
is only used to estimate cache hit rates. The engine submitted re-

quests from the testing set to the SDPs, recorded their responses,
and calculated the hit rate as the ratio of the testing requests re-
solved by SDPs to all testing requests. This process was repeated
for different levels of cache warmness, from 0 to 100%, with an
increment of 5%.

Simulation results were gathered on a commodity PC with one
2.8 GHz Intel Pentium 4 processor and 1 GB of RAM. The simu-
lation framework was written in Java and ran on Sun’s 1.5.0 JRE.
In all of the experiments, we used the same cache warmness for
each SDP and the same overlap rate between the inspected SDP
and every other cooperative SDP.

4.1.1 Results and Discussion
In the first experiment, we studied how the hit rate depends on

cache warmness and overlap rate. Figure 3(a) compares the hit rate
for the case of one SDP, representing SAAM (bottom curve), with
the hit rate achieved by cooperating SDPs. Here, five cooperating
SDPs collectively resolve responses and have their resource spaces
overlap at either 10%, 50%, or 100%.

Figure 3(a) indicates that, when cache warmness is low (around
10%), the hit rate is still larger than 50% for overlap rates of 50%
and up. In particular, when the overlap rate is 100%, CSAR can
achieve a hit rate of almost 70% at 10% cache warmness. Low
cache warmness can be caused by the characteristics of the work-
load, by limited storage space, or by frequently changed access
control policies. For a 10% overlap rate, however, CSAR outper-
forms SAAM by a mere 10%, which might not warrant the cost of
CSAR’s complexity.

In the second experiment, we studied the impact of the number
of cooperating SDPs on the hit rate under various overlap rates. We
varied the number of SDPs from 1 to 10, while maintaining 10%
cache warmness at each SDP. Figure 3(b) presents the results for
10%, 50%, and 100% overlap rates.

As expected, increasing the number of SDPs leads to higher hit
rates. At the same time, the results shown in Figure 3(c) indicate
that additional SDPs provide diminishing returns. For instance, the
first SDP brings a 14% improvement in the hit rate, while the 10th
SDP contributes only 2%. One can thus limit the number of co-
operating SDPs to control the overhead traffic without losing the
major benefits of cooperation. The results also suggest that in a
large system with many SDPs, the impact of a single SDP’s failure
on the overall hit rate is negligible.

4.2 Prototype-based Evaluation
This section describes our prototype design and the results of our

experiments with the prototype. The prototype system consisted of
the implementations of PEPs, SDPs, a DS, a PDP, and a test driver,

Figure 4: Response time as a function of number of requests
observed by SDPs.

all of which communicated with each other using Java RMI. Each
PEP received randomly generated requests from the test driver and
called its local SDP for authorizations. Upon an authorization re-
quest from its PEP, each SDP attempted to resolve this request first
locally, then by querying the DS and other SDPs, and, if nothing
worked, by calling the PDP. Each SDP maintained a dynamic pool
of worker threads that concurrently queried other SDPs. The DS
used a customized hash map which supported assigning multiple
values (SDP addresses) to a single key (entity).

We implemented the PAP and the PCM according to the design
described in Section 3.6. To simplify the prototype, the two com-
ponents were process-collocated with the PDP. Additionally, we
implemented the selective-flush approach for propagation of policy
changes.

To support response verification, we generated a 512-bit RSA
key pair for the PDP. Each SDP maintained a copy of the PDP’s
public key. After the PDP generated a primary response, it signed
the response by computing a SHA1 digest of the response and sign-
ing the digest with its private key.

4.2.1 Evaluating Response Time
First we used the prototype to study the performance of CSAR

in terms of client-perceived response time. We compared response
times for the following five settings:

1. No caching. SDPs were not deployed and PEPs sent authoriza-
tion requests directly to the PDP.

2. Non-cooperative caching (SAAM). SDPs were deployed and
available only to their local PEP. When a request was received, each
SDP first tried to resolve the request locally. If this step was unsuc-
cessful, the request was sent to the PDP.

3. CSAR with SDPs deployed in the same LAN. In this sce-
nario, cooperation was enabled and SDPs were deployed in the
same LAN. Requests were resolved sequentially for minimizing
the load on the PDP, at the expense of response time (see CSAR
configurability in Section 3.3).

4. CSAR with SDPs deployed in a WAN. This scenario was the
same as the previous one except that SDPs were deployed in a
WAN. In the experiment, we simulated this scenario by introducing
a 40ms round-trip delay to each authorization request sent between
SDPs.

5. CSAR with response verification. This scenario was the same
as the third scenario except that response verification was enabled.
Every primary response was signed by the PDP and every sec-
ondary response was verified by the SDP in terms of both response
integrity and correctness of inference process.

The experimental system consisted of four PEP processes col-
located with their SDPs, a PDP, and a DS. The overlap rate used
among the SDPs’ resource spaces was 100%. Each two collocated
PEPs and SDPs shared a commodity PC with 2.8 GHz Intel Pen-
tium 4 processor and 1 GB of RAM. The DS and the PDP ran on
one of the two machines, while the test driver ran on the other. The
two machines were connected by a 100 Mbps LAN. We introduced
a 40ms delay to each authorization request sent to the PDP in order
to simulate the delay caused by network delays between application
servers and the PDP, and the computational delay at the PDP neces-
sary to compute authorizations with complex authorization polices.

At the start of each experiment, the caches were cold. The test
driver maintained a thread for each PEP, simulating one client per
PEP. Each thread sent requests to its PEP sequentially. The test
driver recorded the response time for each request. After every 100
requests the test driver calculated the mean response time and used
it as an indicator of the response time for this period.

We ran the experiment to answer the following question: When
is the cooperation among SDPs most helpful for performance?
Specifically, when cache warmness is low, each SDP does not have
a sufficient number of responses in its cache to resolve new requests
on its own. When the cache warmness is high, each SDP can re-
solve most requests locally, and therefore rarely uses other SDPs
or the PDP. We chose to run the experiment when the cache size is
still small, i.e., 5,000 requests for each SDP at the end.

Figure 4 shows the plotted results. The following can be directly
observed from the figure:

1. For the “no caching” scenario, all of the average response
times are slightly higher than 40ms. This is because all re-
quests have to be resolved by the PDP.

2. When caching and approximate authorizations are enabled,
response times decrease consistently with the number of re-
quests because more requests are resolved locally.

3. When cooperation is enabled for SDPs deployed in the same
LAN, response times are further reduced after 1,000 re-
quests.

4. When cooperation is enabled for SDPs deployed in a WAN,
response times are almost double compared to the previous
scenario.

5. When response verification is enabled, its impact on response
times is small: response time is increased less than 5%. Al-
though we only show the results for SDPs deployed in the
same LAN, this also applies to the scenario when SDPs are
deployed in a WAN.

The results for the third scenario indicate that while overall co-
operation does not bring significant benefits in terms of improving
response time, it does improve average response time everywhere
except with cold or close-to-cold caches. The improvement is due
to the requests resolved by the cooperating SDPs without going to
the PDP. Particularly, we observe up to 30% improvement when be-
tween 2,000 requests and 3,000 requests have been processed. On
the other hand, when SDPs are distributed over a WAN, the perfor-
mance gain by recycling is lost due to the latency caused by cache
misses.

(a) Hit-rate drops with every policy change for both approximate
recycling (AR) and precise recycling (PR).

(b) Hit rate as a function of number of requests at various frequen-
cies of policy change.

Figure 5: The impact of policy changes on hit rate with a single SDP.

Note that for the cooperation-enabled scenarios we used a se-
quential authorization process: the SDP first tried to resolve a re-
quest locally, then, if unsuccessful, contacted other SDPs, and only
then the PDP. This procedure has the advantage of reducing the
load on the PDP. If the PDP has enough resources to support higher
loads, a concurrent authorization process can be employed to fur-
ther reduce the response time in all cooperative scenarios.

4.2.2 Evaluating Effects of Policy Changes
To evaluate the design of the cache consistency mechanism, we

studied their behavior in the presence of policy changes. Since the
hit rate depends on the warmness of the SDPs’ caches, and a policy
change may result in flushing one or more responses from caches
before they expire, we expected that continual policy changes at
a constant rate would unavoidably result in a reduced hit rate; we
wanted to understand by how much.

To measure the hit rate at run-time, each request sent by the test
driver was associated with one of the two modes: warming and
testing, used for warming the SDP caches or testing the cumulative
hit rate, respectively. The test driver switched between these two
modes at predefined intervals. The overlap rate used was 100%.

The test driver maintained a separate thread responsible for firing
a policy change and sending the policy change message to the PDP
at pre-defined intervals, e.g., after every 100 requests.

We first studied how the hit rate was affected by an individual
policy change, i.e., the change of the security label for a single
subject or object. We expected that SAAM inference algorithms
were sufficiently robust that an individual change would result in
only minor degradation of the hit rate.

We used just one SDP for this experiment. The test driver sent
20,000 requests in total. A randomly generated policy change mes-
sage was sent to the PDP every 200 requests, and the hit rate was
measured just before and after each policy change.

Figure 5(a) shows how the hit rate drops with every policy
change. We measured the hit rate for both approximate recycling
(the top two curves) and precise recycling of authorizations by the
SDP. For both types of recycling, the figure shows the hit rate as
a function of the number of observed requests, with policy change
(lower curve) or without policy changes (upper curve). Because
the hit rate was measured just before and after each policy change,
every kink in the curve indicates a hit-rate drop caused by a policy
change.

Figure 5(a) indicates that the hit-rate drops are small for both the
approximate component and precise component. For the approxi-
mate component, the largest hit-rate drop is 5%, and most of other
drops are around 1%. After each drop, the curve climbs up again
because the cache size is increased with new requests.

It is also interesting to note that the curve for the approximate
recycling with policy change is more ragged than it is for precise
recycling. This result suggests, not surprisingly, that approximate
recycling is more sensitive to the policy change. The reason is that
approximate recycling employs a SAAM inference algorithm based
on a directed acyclic graph. A policy change could partition the
graph, resulting in a larger reduction in the hit rate.

Although the hit-rate drop for each policy change is small, we
can see that the cumulative effect of policy changes could be
large. As Figure 5(a) shows, the hit rate of approximate recycling
decreases about 20% in total when the request number reaches
20,000. This result leads to another interesting question: Will the
hit rate finally stabilize at some point or will it continue to drop?

To answer this question, we ran another experiment to study how
the hit rate varies with continuous policy changes over a longer
term. We used a larger number of requests (60,000), and measured
the hit rate after every 1,000 requests. We varied the frequency of
policy changes from 50 to 500 requests per change.

Figure 5(b) shows the hit rates as functions of the number of ob-
served requests, with each curve corresponding to a different fre-
quency of random policy changes. Because of the continuous pol-
icy change, we do not see a perfect asymptote of curves. However,
the curves indicate that the hit rates stabilize after 20,000 requests.
We can thus calculate the averages of the hit rates after 20,000 re-
quests and use them to represent the eventual stabilized hit rate. As
we expected, the more frequent the policy changes, the lower the
stabilized hit rates are, since the responses are removed from the
SDP caches more frequently.

Figure 5(b) also shows that each curve has a knee. The steep in-
crease in the hit rate before the knee implies that increased requests
improve the hit rate dramatically in this period. Once the number
of requests passes the knee, the benefit brought by caching further
requests reaches the plateau of diminishing returns.

Finally, we studied how the cooperation between SDPs could
benefit the hit rate under continuous policy changes. In the exper-
iments, we varied the number of SDPs from 1 to 10. Figures 6(a)
and 6(b) show hit rates versus the number of requests observed

(a) Hit rate as a function of number of re-
quests observed when policy changes ev-
ery 100 requests.

(b) Hit rate as a function of number of re-
quests observed when policy changes ev-
ery 50 requests.

(c) Comparison of stabilized hit rates.

Figure 6: The impact of SDP cooperation on hit rate when policy changes.

when the policy changes at the rate of 50 and 100 requests per
change. Figure 6(c) compares the eventual stabilized hit rate for
the two frequencies of policy changes. As we expected, coopera-
tion between SDPs improves the hit rate.

It is interesting to note that when the number of SDPs increases,
the curves after the knee become smoother. This trend is a direct
reflection of the impact of cooperation on the hit rate: the cooper-
ation between SDPs compensates for the hit-rate drops caused by
the policy changes at each SDP.

5. RELATED WORK
CSAR is related to several research areas, including authoriza-

tion caching, collaborative security, and cooperative caching. This
section reviews the work in each field and compare it to CSAR.

To improve the performance and availability of access control
systems, caching authorization decisions has been employed in a
number of commercial systems [15, 10, 18] as well as several aca-
demic distributed access control systems [1, 4]. None of these sys-
tems involves cooperation between cache servers, and most of them
adopt the solution similar to TTL for cache consistency.

To further improve the performance and availability of access
control systems, Beznosov [3] introduces the concept of recycling
approximate authorizations, which extends the precise caching
mechanism. Crampton et al. [8] develop SAAM by introducing
SDP and adding inference of “approximate” authorizations. CSAR
builds on SAAM and extends it by enabling applications to share
authorization responses. To the best of our knowledge, no previ-
ous research has proposed such cooperative recycling for autho-
rizations.

A number of research projects propose cooperative access con-
trol frameworks that involve multiple, cooperative PDPs that re-
solve authorization requests. In Stowe’s scheme [23], a PDP that
receives an authorization request from PEP forwards the request to
other collaborating PDPs and combines their responses later. Each
PDP maintains a list of other trusted PDPs to which it forwards the
request. Mazzuca [17] extends Stowe’s scheme. Besides issuing re-
quests to other PDPs, each PDP can also retrieve policy from other
PDPs and make decisions locally. These two schemes both assume
that each PDP maintains different policies and that a request needs
to be authorized by different parties. CSAR, on the other hand, fo-
cuses on the collaboration of PEPs and assumes that they enforce
the same policy. This is why we consider Stowe’s and Mazzuca’s
schemes to be orthogonal to ours.

Our research can be considered a particular case of a more gen-
eral research direction, known as collaborative security. This re-
search aims at improving security of a large distributed system

through the collaboration of its components. A representative ex-
ample of collaborative security is Vigilante [7], which enables col-
laborative worm detection at end hosts, but does not require hosts
to trust each other. Another example is application communi-
ties [16], in which members collaborate to identify previously un-
known flaws and attacks and notify other members. Our research
can also be viewed as a collaborative security mechanism because
different SDPs collaborate with each other to resolve authorization
requests and mask PDP failures or slow performance.

Another related research area, albeit outside of the security do-
main, is cooperative web caching. Web caching is a widely used
technique for reducing the latency observed by Web browsers, de-
creasing the aggregate bandwidth consumption of an organization
network, and reducing the load on Web servers. Several projects
have investigated decentralized, cooperative web caching [25]. Our
approach is different from them in the following two aspects: first,
unlike Web documents, an authorization usually cannot be directly
shared among users; second, approximate authorizations cannot be
pre-cached, which our discovery service needs to take into account.

6. SUMMARY
As distributed systems scale up and become increasingly com-

plex, their access control infrastructures are facing new challenges.
Conventional request-response authorization architectures become
fragile and scale poorly to massive scale. Caching authorization
decisions has long been used to improve access control infrastruc-
ture availability and performance. In this paper, we have built on
this idea and on the idea of inferring approximate authorization de-
cisions at intermediary control points, and have proposed a coop-
erative approach to further improve the availability of access con-
trol solutions. Our cooperative secondary authorization recycling
approach exploits the potential of an increased hit rate offered by
a larger, distributed cooperative cache of access control decisions.
We believe that this solution is especially practical in the distributed
systems involving cooperating parties or replicated services, be-
cause of the overlap in their user and resource spaces and the need
for consistent policy enforcement.

We have defined CSAR system requirements and presented a de-
tailed design that meets these requirements. We have introduced a
response verification mechanism that does not require cooperating
SDPs to trust each other. Responses are verified by tracing back
to a trusted primary source, the PDP. Cache consistency is man-
aged by dividing all of the policy changes into three categories and
employing efficient consistency techniques for each type.

We have evaluated CSAR through both simulations and a pro-
totype implementation. Our results suggest that even with small

caches (or low cache warmness), our cooperative authorization so-
lution can offer significant benefits. Specifically, by recycling sec-
ondary authorizations between SDPs, the hit rate can reach 70%
even when only 10% of all possible authorization decisions are
cached at each SDP. This high hit rate results in more requests being
resolved by the local and cooperating SDPs, thus increasing avail-
ability of the authorization infrastructure and reducing the load on
the authorization server. In addition, depending on the deployment
scenario, request processing time is improved by up to 30%.

Acknowledgements
The authors would like to thank the anonymous reviewers for their
constructive comments on this paper, Wing Leung for designing the
SAAM evaluation algorithms, Kyle Zeeuwen for the initial devel-
opment of the SAAM simulation framework, and Craig Wilson for
improving the readability of this paper.

7. REFERENCES
[1] L. Bauer, S. Garriss, and M. K. Reiter. Distributed proving in

access-control systems. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pages 81–95, Oakland,
CA, 2005.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations. Technical Report
ESD-TR-74-244, MITRE, March 1973.

[3] K. Beznosov. Flooding and recycling authorizations. In
Proceedings of the New Security Paradigms Workshop
(NSPW), pages 67–72, Lake Arrowhead, CA, USA, 20-23
September 2005.

[4] K. Borders, X. Zhao, and A. Prakash. CPOL:
high-performance policy evaluation. In CCS ’05:
Proceedings of the 12th ACM conference on Computer and
communications security, pages 147–157, New York, NY,
USA, 2005. ACM Press.

[5] E. A. Brewer. Towards robust distributed systems. In (Invited
Talk) Principles of Distributed Computing, Portland, Oregon,
2000.

[6] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the Seventh
Symposium on Operating System Design and
Implementation, pages 335–350, Seattle, WA, USA,
November 6-8 2006.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of Internet worms. In Proceedings of 20th ACM Symposium
on Operating Systems Principles (SOSP 2005), Brighton,
UK, 2005.

[8] J. Crampton, W. Leung, and K. Beznosov. Secondary and
approximate authorizations model and its application to
Bell-LaPadula policies. In Proceedings of the Symposium on
Access Control Models and Technologies (SACMAT), pages
111–120, Lake Tahoe, California, USA, June 7–9 2006.
ACM, ACM Press.

[9] L. G. DeMichiel, L. Ü. Yalçinalp, and S. Krishnan.
Enterprise JavaBeans Specification, Version 2.0. Sun
Microsystems, 2001.

[10] Entrust. getaccess design and administration guide.
Technical report, Entrust, September 20 1999.

[11] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy
Squid. In Proceedings of the 1998 Workshop on Internet
Server Performance, pages 129–136, June 1998.

[12] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, 2002.

[13] B. W. Johnson. Fault-tolerant Computer System Design,
chapter An introduction to the design and analysis of
fault-tolerant systems, pages 1–87. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996.

[14] Z. Kalbarczyk, R. K. Lyer, and L. Wang. Application fault
tolerance with Armor middleware. IEEE Internet
Computing, 9(2):28–38, 2005.

[15] G. Karjoth. Access control with IBM Tivoli Access Manager.
ACM Transactions on Information and Systems Security,
6(2):232–57, 2003.

[16] M. Locasto, S. Sidiroglou, and A. D. Keromytis. Software
self-healing using collaborative application communities. In
Proceedings of the Internet Society (ISOC) Symposium on
Network and Distributed Systems Security (NDSS 2006),
pages 95–106, San Diego, CA, 2006.

[17] P. J. Mazzuca. Access control in a distributed decentralized
network: an XML approach to network security using
XACML and SAML. Technical report, Dartmouth College,
Computer Science, Spring 2004.

[18] Netegrity. Siteminder concepts guide. Technical report,
Netegrity, 2000.

[19] V. Nicomette and Y. Deswarte. An authorization scheme for
distributed object systems. In Proceedings of the 1997 IEEE
Symposium on Security and Privacy, pages 21–30, Oakland,
CA, 1997.

[20] OMG. CORBAservices: Common object services
specification, security service specification v1.8, 2002.

[21] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location, and routing for large-scale
peer-to-peer systems. In Middleware ’01: Proceedings of the
IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, pages 329–350, London, UK, 2001.
Springer-Verlag.

[22] Securant. Unified access management: A model for
integrated web security. Technical report, Securant
Technologies, June 25 1999.

[23] G. H. Stowe. A secure network node approach to the policy
decision point in distributed access controlw. Technical
report, Dartmouth College, Computer Science, June 2004.

[24] W. Vogels. How wrong can you be? Getting lost on the road
to massive scalability. In Middleware Conference, Toronto,
October 20 2004.

[25] J. Wang. A survey of web caching schemes for the internet.
SIGCOMM Comput. Commun. Rev., 29(5):36–46, 1999.

[26] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan,
K. Czajkowski, J. Gawor, C. Kesselman, S. Meder,
L. Pearlman, and S. Tuecke. Security for grid services. In
HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing
(HPDC’03), page 48, Washington, DC, USA, 2003. IEEE
Computer Society.

[27] XACML-TC. OASIS eXtensible Access Control Markup
Language (XACML) version 1.0. OASIS Standard, 18
February 2003.

