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ABSTRACT
Identifying quality issues in software is a crucial but expensive
task for developers to take on. To help developers identify quality
issues, Automated Bug Detection (ABD) is widely used in practice.
While existing ABD systems are useful, creating a bug detector is a
time consuming and highly manual process. Bug detectors must be
precisely specified to ensure low rates of false positives and upon
identification of a bug, a repair action must be proposed to the de-
veloper. To address the high cost of developing static bug detectors,
we propose a new deep learning approach to building ABD systems
that (1) automatically learns bug detector rules and (2) generates
patch suggestions using examples of correct and incorrect code
mined from open source JavaScript projects. As a proof of concept,
we use our approach to find and suggest repairs for a common
JavaScript API misuse bug in the jQuery.ajax API. Applying our
approach to a corpus of 27,000 instances shows promising results.
On an evaluation of real-world bugs, our bug detection model had
a low false positive count with 60% precision and 86% recall. Cor-
rect repair patches were generated for most bug instances. With a
BLEU score of 84.0, the patches were also similar to human-written
patches. Our findings can be applied to existing tools to prevent
common bugs from being introduced into code bases and used to
streamline the development process by providing developers with
actionable fixes.

CCS CONCEPTS
• Software and its engineering→ Empirical software validation;
Automated static analysis;

KEYWORDS
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1 INTRODUCTION
Software bugs are a costly problem that continue to drive up de-
velopment costs and plague businesses. A recent study conducted
by Tricentis, an Australian firm, shows that bugs cost software
companies up to 1.1 trillion dollars annually [1].

To reduce costs many companies use Automated Bug Detec-
tion (ABD) techniques. The most popular technique used is Static
Analysis (SA) which searches source code for known bug pattern
instances. Traditionally, SA tools are offered as frameworks, with
an extendable set of rules which detect bug pattern instances [2, 3].
SA is able to catch common bug patterns, however, many bug pat-
terns still pass through undetected due to the non trivial and highly
manual process of creating bug detectors. In addition, bug detectors

need to be manually tuned to decrease the reported number of false
positives to provide value to developers.

The rise of richly interactive web applications, as well as the
advent of Node.js as a backend runtime, has drawn developers
toward using JavaScript making it a popular language for client and
server side applications. However, with JavaScript being dynamic
and asynchronous, it is both time consuming and difficult to detect
quality issues making the language especially vulnerable to bugs.

To address these challenges with existing ABD tools we pro-
pose an approach for automatically learning bug detection rules
and repairs using JavaScript code examples. Leveraging deep learn-
ing techniques we learn structural and semantic information from
code. Structural and semantic information are highly useful since
knowing the location(structure) and context(semantics) of an error
allows for more accurate bug predictions and repair suggestions. A
sequence to sequence model approach is used to model the sequen-
tial structure of code and an encoder decoder architecture used
to learn features that distinguish between correct and incorrect
sequences of code.

As a proof of concept, we evaluated or approach for detecting and
suggesting repairs for a common API missuse of the jQuery.ajax
API shown in Listing 1. We mined open source repositories for
incorrect and correct usages of the jQuery.ajax API. During train-
ing, these incorrect inputs and correct outputs were provided to
help the model learn the repair, shown in Listing 2. To evaluate our
tool, real-world bugs were fed into the model and the outputted
repair sequence was manually checked for correctness. Training on
24,706 examples, our model achieved a BLEU score of 84.0, precision
of 60% and recall of 86%.

The contributions of this thesis are:

(1) A novel technique for automatically learning bug detection
and repair rules from real life examples.

(2) A proof-of-concept implementation targeting a common
jQuery.ajax API bug pattern (see Listing 1).

(3) An evaluation of the technique on real bugs mined from
open source repositories.

2 BACKGROUND AND MOTIVATION
Static Analysis (SA) tools arewidely used in industry for discovering
defects early in the development process [4]. They find defects by
searching through source code for violations of rules that have been
pre-defined by Static Analysis authors. Specifying these rules is a
highly manual and time consuming process, because static analysis
authors must ensure that their tools (1) have a low false positive
rate and (2) produce actionable alerts [10, 11].

One of the most challenging aspects of specifying defect de-
tection rules is ensuring a low proportion of false positives. False



positives occur when the defects detected by the rule are not per-
ceived as bugs by the user. To limit false positives, bug detection
rules must be precisely specified, which often includes context from
actual use cases after the static analysis tool starts being used [18].

Another challenge to Static Analysis development is ensuring
that developers can understand the alerts generated by the tool
and create a fix [10]. One way static analysis tools can solve this
problem is by suggesting quick fixes that assist developers by giving
them the option to apply a pre-computed patch. However, creating
automated patches, especially ones that are similar to ones that
developers may create, is difficult. Repairs depend heavily on both
the type of bug and its context within the surrounding code.

2.1 JavaScript Static Analysis
Programs written in JavaScript are particularly difficult for static
analysis tools because of JavaScript’s dynamic nature. Loose typing,
asynchrony and unnamed, variadic parameters make JavaScript
especially vulnerable to bugs and create unique challenges for static
analysis.

Consider the following example of a bug pattern which is unique
to JavaScript. jQuery’s $.ajax API method is frequently used for
client and server side communication and documented well. How-
ever, many developers still have trouble using this API feature cor-
rectly. One common issue developers run into is shown in Listing 1,
this is a real bug pattern mined from an open source repository [8].
In this case, a developer wants to post JSON content to a server. The
arguments for the call are specified through a JavaScript object, as
is common with JavaScript APIs. The developer correctly specifies
the contentType as application/json, however, the developer
incorrectly specifies data as an object literal. The object literal
must first be serialized with a function such as JSON.Stringify,
as shown in Listing 2.

Listing 1: Ajax Post Bug Pattern
1 $.ajax({

2 url: `/' + $scope.project.name + `/

branches/',

3 type: `PUT ',

4 data: { branches: list },

5 contentType: `application/json ',

6 dataType: `json ',

7 success: function(res , ts, xhr) {

8 $scope.success(res.message , true ,

false)

9 },

10 error: function(xhr , ts, e) {

11 if (xhr && xhr.responseText) {

12 var data = $.parseJSON(xhr.

responseText)

13 $scope.error(`Error adding branch:

' + data.errors [0], true)

14 } else {

15 $scope.error(`Error adding branch:

' + e, true)

16 }

17 }

18 })

Listing 2: Ajax Post Bug Fix
1 $.ajax({

2 url: '/' + $scope.project.name + '/

branches/',

3 type: 'PUT ',

4 data: JSON.stringify ({ branches: list

}),

5 contentType: 'application/json ',

6 dataType: 'json ',

7 success: function(res , ts, xhr) {

8 $scope.success(res.message , true ,

false)

9 },

10 error: function(xhr , ts, e) {

11 if (xhr && xhr.responseText) {

12 var data = $.parseJSON(xhr.

responseText)

13 $scope.error('Error adding branch:

' + data.errors [0], true)

14 } else {

15 $scope.error("Error adding branch:

" + e, true)

16 }

17 }

18 })

Exisiting Static Analysis tools struggle to detect bug patterns that
require context understanding, when elements are dependent on or
affected by other elements in source code, the relationship between
data and contentType in Listing 2 is an example of this depen-
dency. Existing tools are unable to map dependencies therefore they
expect developers to explicitly specify rules (eg. regex of patterns,
string sequences) that are allowed and disallowed which are then
asserted on a program’s AST nodes. Writing a checker for the pat-
tern in Listing 1 is non trivial and time consuming. First listeners
must be registered to detect nodes that invoke the $.ajax function
and the type of operation is verified to be POST. From there the
contentType is then checked, if it is type is application/json
the data field is asserted to begin with JSON.stringify. A lot
time and manual work was needed to specify this rule; data:
JSON.stringify(...) given contentType: application/json
and $.ajax POST.

2.2 Automating Rule Specification
Due to the difficulties faced by static analysis authors, it is desirable
to remove the manual process of specifying bug detection rules. Our
insight is that by using techniques pioneered by natural language
translation, we can automatically learn bug detection rules from
examples and assist developers by automatically suggesting fixes.

Software code is an artificial language with a set of rules and
constraints, it shares many characteristics with text found in natural
languages, a code token can be thought of as analogous to a word
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in text. This allows us to leverage language understanding and
machine translation techniques, and apply it to our task of defect
prediction and repair suggestion. Some interesting characteristics
of code are:

(1) Repetitive Sequences: Certain code constructs occur very
often. Single control flow tokens like if, else, while and
sequences of tokens like for(var i; i < n; i++) or
console.log(...) are commonly found in source code.

(2) Structural Information: Code has explicit structural informa-
tion, these can be complex hierarchies like nested control
loops or deep function call stacks. Structure is also implicit
in a token sequence, the specific order of tokens matter.

(3) Context: Long term dependencies exist in code, a code token
may depend on or impact other code tokens which are not
immediately preceding or succeeding it. Code constructs
that come in dependent pairs such as, try and catch, or if and
else, can be spaced arbitrarily far apart from one another in
code.

Applying these observations we can treat the bug pattern shown
in Listing 1 as a “token paragraph", context can be learned by
modelling the relationships between “token sentences", specifically,
the relationships between $.ajax, contentType, data elements.

3 APPROACH
This section presents the process for automatically creating bug
detectors and generating repair suggestions through deep learning.
The high level idea is to learn the features that distinguish between
common bug patterns and their corresponding fixes.

Our approach extracts bug pattern instances from a corpus of
source code, processes the instances into token sequences, and then
generates datasets that consist of token sequences to help train the
deep learning model. The proposed approach consists of several
steps and is illustrated in Figure 3.

(1) Mine code corpus: Extract examples of bug patterns and their
respective fixes from open source repositories.

(2) Create vocabulary: Map code constructs to tokens and build
vocabulary from token set.

(3) Abstract code: Use vocabulary list to abstract function, iden-
tifier and literal names.

(4) Train Encoder Decoder Train encoder decoder on datasets to
learn bug pattern features.

3.1 Mine Code Corpus
Code examples are mined from commits in open source repositories.
A commit is a transformation on the current state of code, a change
pair captures the before and after state of the commit. There are
three types of change pairs:

(1) Repair: Indicates that the before sequence is different than
the after sequence. For our purposes the before is considered
buggy and the after sequence correct. These are real code
examples mined from repositories.

(2) Mutant Repair: Similar to repair however mutant repairs are
generated repairs where correct code is mutated into a bug.
This is done to create more training examples for the model.

(3) Nominal: Indicates that there is no change between the
before and after sequences. This is used to train model to
prevent it from modifying correct code.

We extract pairs by using an AST diff utility on the before and
after state of a change pair to extract differences between code
examples. Consider the example in Listing 3, where a call is made to
a method which expects three arguments. Calling this method with
less arguments will result in incorrect behaviour and is considered
a bug, an example of which is shown in Listing 4. Converting the
code to its AST representation, shown in Figure 1, and finding the
difference between the buggy AST in Figure 1a and the correct
AST in Figure 1b reveals that the correct AST has an additional
argument c.

Listing 3: Correct Method Invocation
1 result = method(a, b, c)

Listing 4: Incorrect Method Invocation
1 result = method(a, b)

3.2 Create Vocabulary
Developers are free to express their creativity when coding, this
leads to variability in function names, identifiers, and literals in
source code, it also creates an interesting challenge, namely it is im-
possible to cover the entire scope of developer defined names. A data
processing step helps the model figure out which defined names
are relevant and important to preserve, it ensures that variables
are standardized. The top N names, calculated by usage frequency,
are tracked and form the vocabulary list. Commonly used control
statements, punctuation and API functions are captured within
the vocabulary list while a developer’s stylistic statements are not
captured. The vocabulary list is provided to the encoder decoder
model as a list of recognized tokens.

3.3 Abstract Code
3.3.1 Abstract Functions. To deal with the issue of nested func-

tion definitions, which can manifest as extremely long token se-
quences, they are abstracted. Take for example a nested function
call shown in Listing 5, this is abstracted into Listing 6. Functions
are replaced with a special abstract token, function(). This is done
using structural information obtained from the sequence’s AST.

Listing 5: Original Nested Function
1 result = function1(

2 statement1

3 statement2

4 function2 ();

5 );

Listing 6: Abstracted Nested Function
1 result = function(function ());

3



Variable Declaration

result Call Expression

method arguments

a b

(a) result = method(a, b)

Variable Declaration

result Call Expression

method arguments

a b c

(b) result = method(a, b, c)

Figure 1: ASTs of a correct and incorrect method invocation, the difference in ASTs reveals the repair, where parameter C
needs to be provided.

3.3.2 Abstract Identifiers and Literals. In order to standardize
the names of identifiers and literals used across projects each token
sequence is processed against the vocabulary list. If a token is in the
vocabulary list it is preserved, if not, it is replaced with a custom
abstract token, mapping rules are shown in Table 1. The type of a
token, extracted from a sequence’s AST, is used to determine the
abstract token mapping.

Token Mapping
Type Custom Token
Identifier @name
String @string
Number @num
Function @function()

Table 1: Table of Token Mapping Rules

3.4 Recurrent Neural Networks
A RNN is a probabilistic model that captures the context of sequen-
tial data. RNNs are successful at modeling long term dependencies
because every computation of state depends on the previous value
of state. Our approach uses the encoder decoder architecture [5, 22]
to translate between buggy and correct code, both the encoder and
decoder modules are special forms of RNNs known as Long Short
Term Memory (LSTM) Networks. This approach has many key ben-
efits, the model is trained directly on real life examples of code and
able to handle variable length input and output code sequences.

3.4.1 LSTM Networks. LSTM Networks are, a special form of
RNNs comprised of chained LSTM units. Each LSTM unit passes
state information to its successor allowing information to persist
and long term dependencies to be learned. Figure 2 shows a typical
LSTM unit. Each unit is responsible for determining what state to
forget, update and output [19]. The forget gate, ft, uses the previous
state ht-1 and current code token xt to output a number between
0 and 1. A value of 1 indicates that the previous state is preserved
completely while a 0 indicates that everything is forgotten. The

update operation is performed by combining the input gate it and
candidate values Ct. Finally the output gate ot determines what
state to pass onto the next unit by looking at the previous state ht-1
and current code token xt.

3.4.2 Encoder. The encoder is a LSTM network responsible for
reading in tokens from a code sequence and encoding a vector
representation. The vector representation represents the context
and meaning of the code sequence.

3.4.3 Decoder. The decoder is a LSTM Network responsible for
using encoded state vectors, created by the encoder, to generate the
correct repair sequence. It does this by predicting the next token
given the current tokens seen.

Figure 2: LSTM Unit[6].
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3.5 Training Encoder Decoder
Training helps the model learn semantic features that distinguish
between buggy and correct sequences of code. To train an effec-
tive model many hyper parameters need to be tuned manually.
Heuristics from existing work that leverage LSTM networks for
NLP and code understanding tasks [7, 12, 15] show that the model
is particularly sensitive to these hyper parameters:

(1) Number of Layers
(2) Number of Units
(3) Regularization
(4) Number of Training Steps

During training, source and target sequences are fed to the en-
coder and decoder. The source is a buggy token sequence and the
target is the expected correct token sequence. The encoder gen-
erates a state vector (se) that captures the semantics of the buggy
sequence. The initial state of the decoder is set to (se), the decoder
then generates the correct token sequence one token at a time.

The decoder generates a token, for a given time step, by selecting
the most likely token to appear from the defined vocabulary set. The
probability of a token (Pi) is computed at each time step based on the
context of past tokens (token1:t-1) where token1:t-1 = (token1, token2
... tokent-1). This is illustrated in Equation 1, V is the vocabulary
set and Pi ∈ RV . This probability vector is created for every token
in the vocabulary.

Pi (tokent |token1:t-1) (1)

The Cross Entropy Loss shown in Equation 2 is computed on
each token in the sequence to determine if the right token was
selected for that time step. For individual token loss, a loss of 1
indicates a mismatch, a loss of 0 indicates the right selection. The
individual token losses are summed to produce the overall loss for
the sequence.

− logP (y1, . . . ,ym ) = −

n∑
i=1

log Pi [yi ] (2)

Backpropagation through time (BPTT) is used to update the
weights and parameters of the RNN. The goal of BPTT is to reduce
the training loss of the model. The Adaptive Gradient Optimizer
(Adam) is used to update the weights of the model.

3.6 Defect Prediction and Repair Suggestion
Once a model is trained it can detect bugs in input sequences and
output repair suggestions. Consider the bug in Listing 1, a bug exists
since contentType: application/json and data has not been
serialized with JSON.stringify. The model uses its learned depen-
dencies between contentType, data to identify that this sequence
contains a bug. It then suggests a repair by inserting tokens that dif-
ferentiate the buggy from correct code. For this specific bug pattern,
the suggested repair will contain data: JSON.stringify(<data>)
in its sequence, where JSON.stringify has been inserted by the
model.

4 EVALUATION
We evaluate the model by testing it on a large corpus of JavaScript
code mined from open source repositories, over 269K lines of code.
The experiments are run on a 2.5GHz machine with 62G RAM.

4.1 Research Questions
By addressing the following research questions we investigate how
effective the deep learning model is at identifying bugs and offer-
ing repair suggestions. Figure 4 is an overview of our evaluation
process.
RQ1 How long does it take to train a model and what hyper pa-
rameter values maximize the BLEU score?
RQ2 Is the approach able to learn the differences between buggy
and correct code?
RQ3 How helpful are the fix suggestions?

4.2 Datasets
Open source repositories were mined for the $.ajax bug pattern,
shown in Listing 1, along with its corresponding fix. Change pairs
were then formed and processed using the method mentioned in
section 3.

The train and development set consist of nominal (3) and mu-
tant repair (2) change types, the test set consists of nominal and
repair(1) change types. Change pairs associated to a given project
are grouped to the same data set. For example, if change pairs 1, 2,
3 belong to Project A then all three changes will be found in the
train, development or test set. A breakdown of the distribution of
change types in each set is shown in Table 2.

Dataset Stats
Name Nominal Repair Mutant

Repair
Train 23153 0 1553
Development 2547 0 182
Test 62 42 11

Table 2: Dataset Change Type Statistics

4.3 RQ1: Hyperparameter Tuning
Hyperparameter tuning is crucial for achieving a high performance
encoder decoder model. Hyperparameters affect the model’s ability
to learn the features that distinguish between buggy and correct
code. The number of hidden layers and units per hidden layer
are adjusted simultaneously. For the number of hidden layers we
experimented with small discrete values; 2,3,4. For each hidden
layer configuration we adjusted the number of units in each layer
to 64, 128 and 256. We found that a model with 128 units, 2 layers,
5000 training iterations and a learning rate of 0.001 with the Adam
optimizer resulted in a high BLUE score for the development set
(92.3) while keeping the training time low. The dropout value, which
prevents overfitting, was kept constant at 0.2. Training this model
took about one hour.
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(a) Mine Change Pairs (b) Build Vocabulary (c) Abstract Out Tokens (d) Produce Repair Suggestion

Figure 3: Overview of proposed Encoder Decoder approach for repair suggestion.

4.4 RQ2: Bug Detection Accuracy
To measure bug detection quality we use three metrics: Precision
(Equation 3), Recall (Equation 4) and F1Measure (Equation 5), which
are widely used in the field of software defect detection [9, 21].
The precision metric shows us how many of the identified bugs
were actually bugs. The recall metric shows us how many bugs
the model was able to discover from the actual set of bugs. The F1
measure is a combination of both the precision and recall metrics. To
measure repair suggestion quality we use the Bilingual Evaluation
Understudy (BLEU) score which is shown to be correlated with
human judgement [16]. The BLEU score is a value between 0-100,
the higher the score, the more the useful the generated repair is for
developers.

A True Positive (TP) occurs when the inputted sequence should
be formatted as a JSON object and the model correctly inserts
JSON.stringify around the data field. A False Positive (FP) occurs
when the inputted sequence is not defective and the model outputs
a changed sequence (e.g drastic change; change in operation, incor-
rect insertion of JSON.stringify). A True Negative (TN) occurs
when the inputted sequence is not defective and the model does
not make any changes to the code. A False Negative (FN) occurs
when the inputted sequence should be formatted as a JSON object
and the model does not insert JSON.stringify around the data
field.

Precision =
True Positive

True Positive + False Positive
(3)

Recall =
True Positive

True Positive + False Neдative
(4)

F1 = 2 ∗
2 × Precision × Recall

Precision + Recall
(5)

The encoder decoder model is trained on the train dataset and
evaluated on the test dataset. During evaluation, Precision, Recall,
F1 Measure and BLEU score metrics are recorded, Table 3 shows
the performance of the model.

4.4.1 Precision. The precision metric, calcualted using Equa-
tion 3, shows us how many of the reported bugs were actual bugs.
Table 4 summarizes our findings. High precision scores indicate that
most bug alerts are actual bugs and helps with developer adoption
since less false alarms will be raised. A high precision for nominal
tells us that the model will preserve correct code.

Performance Statistics
Type TP FP TN FN
Repair 6 3 31 2
Mutant 5 3 3 0
Nominal 1 2 59 0
All 12 8 93 2

Table 3: Performance of model on datasets

Precision Scores
Type Precision
Repair 0.67
Mutant 0.63
Nominal 0.97
All 0.6

Table 4: Precision Scores

4.4.2 Recall. The recall metric, calcuated using Equation 4, shows
us howmany bugs were identified from the total set of bugs. Table 5
summarizes our findings. High recall scores indicate that the model
is able to identify most bugs. The model has higher mutant and
nominal recall scores since the training set consists of these change
types. Improving recall for real repairs requires a tradeoff in terms
of precision, more alerts can be broadcasted but it may result in
more false alarms.

Recall Scores
Type Recall
Repair 0.75
Mutant 1
Nominal 1
All 0.86

Table 5: Recall Scores

4.4.3 F1 Measure. F1, calcuated using Equation 5, measures the
accuracy of our bug detection by combining precision and recall
scores. Table 6 summarizes our findings.

6



F1 Measure Scores
Type F1 Measure
Repair 0.71
Mutant 0.77
Nominal 0.98
All 0.71
Table 6: F1 Measure Scores

4.4.4 BLEU Score. The BLEU score measures how close the
generated repairs are to actual repairs, scores closer to 100 correlate
more to a human suggestion. Table 7 summarizes our findings. High
BLEU scores on both the development and test set indicate that the
model’s repair suggestions are close developer repair suggestions.

BLEU Scores
Dataset BLEU Score
Development 92.3
Test 84.0

Table 7: BLEU Scores

4.5 RQ3: Repair Accuracy
The BLEU score is a good heuristic to measure repair suggestion
quality but not adequate for our process. Abstracting input se-
quences (Section 3.3) increases the degree of token mismatch since
tokens that exist in the actual correct sequence may not be in the
vocabulary list generated. The model is not able to output the exact
value for these tokens but rather it is abstracted type (Table 1) or the
<unk> token. The BLEU score penalizes suggestions that contain
abstract types even if they are semantically correct.

Take 7, and 8 where the parameter c has been abstracted into
<abstractToken>, a abstract token type (Table 1). The two se-
quences have different string literals but the exact same semantic
meaning, we consider the sequences equal. To validate the sugges-
tion quality, taking semantic equivalence into account, our model’s
repair suggestions are classified manually before computing the
precision and recall scores.

Listing 7: Actual Correct Code
1 result = method(a, b, c)

Listing 8: Inferred Correct Code
1 result = method(a, b, <unk >)

2 result = method(a, b, <abstractToken >)

We refer to Table 3 for quality metrics. 6 out of 8 bug instances
had the correct repair suggestion and only 3 out of 42 examples had
JSON.stringify incorrectly inserted. 31 of the repair examples
did not specify application/json as the contentType and there-
fore were unchanged by the model, this shows us that the model
was able to learn the relationship between contentType and data.
These observations give us confidence in the model’s effectiveness
to detect the majority of bugs, recognize correct code and offer
suggestions at a low false postive count.

5 DISCUSSION
This section will discuss the implications, limitations, and threats to
validity of the results. It also outlines suggestions for future work.

5.1 Implications
5.1.1 Developers. Our approach helps JavaScript developers

write clean code quickly by providing them with early and action-
able alerts. The low false positive count, good precision and high
recall in Section 4.4 and 4.5 shows developers that the model’s alerts
can be trusted.

5.1.2 Companies. Companies can integrate this tool into the
developer workflow at the code check in stage as a preventative
measure to prevent common bug patterns from entering their code
bases. Companies can also take counteractive measures by fixing
existing buggy code by automatically inserting suggested repairs
on source files.

5.1.3 Automating Software Engineering Tasks. Application of
our code learning approach is not restricted to only code repair.
Contextual understanding of software code supports many other
important software engineering tasks such as code suggestion, code
search and test case generation which can be explored.

5.2 Limitations
The language model we use abstracts code details such as nested
function context and identifier names, therefore some language
constructs are not modeled and reamin unlearned. The model will
not be able to provide useful repair suggestions when it encounters
an unknown language construct. A better languagemodel with finer
granularity, one that models nested function context or preserves
the developer specified identifier name, may be able to detect more
bug patterns and offer more detailed repair suggestions. However,
we believe our model includes the most prevalent and relevant
JavaScript constructs which give us enough context to offer useful
suggestions.

Our approach requires massive amounts of training data to rec-
ognize repairs for bug patterns, we assume we can mine a large
number of bug patterns and fixes from open source repositories.
Although additional examples can be generated through mutat-
ing correct code, training on common and actual bugs produced
by developers is preferred. Another concern is the integrity of the
mined examples, our approach relies on random developers to write
correct code. We assume that the after sequence in a change pair is
always correct, however, this is not always the case. Referring to
Table 3 there is an interesting observation for the Nominal change
type, it has one TP. Further analysis on this example shows that
the after sequence was incorrect, however, given the buggy input
the model was able to produce a useful repair suggestion. It is in-
teresting to note that the model was able to fix incorrect examples
in the dataset.

5.3 Threats to Validity
Internal Validity Our model was not trained on real repairs but
rather mutant repairs, real repairs were used to evaluate the repair
suggestion quality, it is possible that we may acheive better results
by training on real repairs. However, Table 6 shows that mutant
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(a) Create Datasets (b) Train and Tune Model

(c) Evaluate Bug Detection Accuracy and Repair Quality

Figure 4: Overview of our approach for evaluating our bug detection and repair model.

repairs are a good substitute for real repairs, the similar scores
between mutant repairs and real repairs indicates that generated
bug examples are a good representation of the actual bugs found in
the real world for this specific pattern.
External Validity An advantage to mining open source JavaScript
repositories is that we’re able to capture a variety of different pro-
gramming styles (eg. ES6, ES7, Vanilla JS). It is unknown how effec-
tive the model is on a closed source repository that may contain
company specific rules, technologies and styles. Examples of com-
pany specific rules need to be mined or manually added to the train
dataset. It is also unclear how the model will perform on different
languages as code structure and AST tokens vary from language to
langauge.

5.4 Future Work
Additional bug patterns can be provided to evaluate the model’s
generizability and ability to suggest repairs for multiple bug pat-
terns. Some things to explore are whether or not the model is (1)
able to differentiate and repair bug patterns from different APIs
(2) transfer learned patterns between functions that have similar
context. For example, are the rules learned for $.ajax POST on
[contentType, data] applied to $.ajax PUT given that they have
similar context.

It is also interesting to see if the model can prioritize and select
from similar bug patterns. Let’s imaginewe’re looking at the $.ajax
PUT and $.ajax POST functions. If there are two functions with
similar syntax but slightly different semantic meanings is the model
able to learn the relationships that differentate the two? Can the
model learn that for $.ajax PUT the tokens [url, contentType,
data] have a relationship where the object identifier needs to be
specificed in the url field?

Another idea to explore is vocabulary embeddings (similar to
word2vec) that better encode JavaScript language features like re-
served words and code conventions. An embedding model encodes
words into vectors such that words with similar semantic meaning
end up closer to one another in vector space. This could help the
model learn similarities between code tokens with similar semantic
meaning (e.g while, for). Following this line of thought it might be
useful to explore using different neural network structures that can
better utilize structural information. For example, Tree Structured
LSTMs [20] learn the relationships between parent and child nodes

within a tree which can be applied to a program’s AST to provide a
better structural encoding.

6 CONCLUSIONS
In this thesis we propose a deep learning, sequence to sequence,
based approach for automatically learning bug pattern rules and
suggesting repairs for JavaScript code. Our approach captures struc-
tural and semantic information from a program’s AST, processes
the ASTs into code token sequences and then feeds these sequences
into our encoder decoder model. Our experimental results show
a BLEU score of 84.0, precision of 60% and recall of 86% which
indicate that the proposed approach detects bugs accurately and
provides useful repair suggestions to developers. Our work demon-
strates the effectiveness of deep learning in defect detection and
repair suggestion, it is one step closer towards automatic defect
repair.
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