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1 Navier-Stokes Equation

Acoustics concerns itself with the study of small oscillations in fluids (liq-
uids and gases). The traditional study of acoustics concerns itself with the
linearized equations of fluid mechanics, however, the topic of this lecture con-
cerns itself with fluctuations that violate the assumptions of linearity. The
fundamental equations of Nonlinear Acoustics are those of fluid dynamics,
a mathematical description of which begins with continuity equations. As
these equations have been treated several times in the past, they will be
covered briefly.

1.1 Continuity Equation (of Mass)

The total mass flowing out of a volume V per unit time is∮
∂V

ρv · ds. (1)

The rate of change of the mass of fluid in V is

− ∂

∂t

∫
ρ dV (2)

These two expressions must be equal,

∂

∂t

∫
ρ dV =

∮
ρv · ds. (3)

Green’s theorem may be used to convert the surface integral into a volume
integral. ∮

ρv · ds =

∫
∇ · (ρv) ds (4)

Therefore, ∫ [
∂ρ

∂t
+∇ · (ρv)

]
dV = 0 (5)

Since this equation is valid for any volume, the integrand must vanish.

∂ρ

∂t
+∇ · (ρv) (6)

Alternately,
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Theorem 1 Equation of Continuity

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0 (7)

1.2 Euler’s Equation

The total force acting on a volume of fluid is

−
∮

∂V

p ds, (8)

which, after application of Green’s theorem, becomes

−
∮

∂V

p ds = −
∫

V

∇p dV. (9)

The equation of motion of a volume element in the fluid is

ρ
dv

dt
= −∇p. (10)

This equation is the fluid equivalent of Newton’s Third Law. Before it may be
used in fluid mechanics, it must be transformed from a Lagrangian (moving
with fluid) coordinate system to an Eulerian (stationary) system. The change
in velocity if a volume element has two parts: the change in velocity at that
point in space, and the change due to any gradient in the velocity field.

dv =

(
∂v

∂t

)
dt + (dr · ∇)v (11)

Dividing by dt give an equation that relates the Lagrangian coordinate ve-
locities to the Eulerian coordinate velocities.

dv

dt
=

∂v

∂t
+ (v · ∇)v (12)

The equation of motion thus becomes

Theorem 2 Euler’s Equation

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p. (13)
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1.3 Momentum Equation

Euler’s equation does not take into account any dissipation that may occur
due to viscosity or thermal conduction. In order to generalize the treatment
to encompass these effects, it is necessary to consider momentum as well. For
the moment, dissipative effects are still neglected. Tensor notation is used
for simplicity.

The rate of change of momentum of a fluid volume is

∂

∂t
(ρvi) = ρ

∂vi

∂t
+

∂ρ

∂t
vi (14)

The time derivative of density is given by the equation of continuity,

∂ρ

∂t
= −∂ (ρvk)

∂xk

, (15)

which in conjunction with Euler’s equation,

∂vi

∂t
= −vk

∂vi

∂xk

− 1

ρ

∂ρ

∂xi

, (16)

results in

∂

∂t
= −ρvk

∂vi

∂xk

− ∂p

∂xi

− vi
∂ (ρvk)

∂xk

= − ∂p

∂xi

− ∂

∂xk

(ρvivk) .

(17)

By writing
∂p

∂xi

= δik
∂p

∂xk

, (18)

the result is the momentum flux equation.

Theorem 3 Euler’s Equation in terms of Momentum Flux

∂

∂t
(ρvi) = −∂Πik

∂xk

Πik = pδik + ρvivk

(19)
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1.4 Navier-Stokes Equation

In order to include viscosity, the momentum flux tensor is modified to account
for viscous stresses.

Πik = pδik + ρvivk − σ′
ik

= −σik + ρvivk

(20)

The tensor
σik = −pδik + σ′

ik (21)

is the stress tensor, while σ′
ik is the viscous stress tensor.

The most general rank-two tensor incorporating viscosity must satisfy
certain conditions to be physically realistic. It must vanish when the velocity
is constant, and it must vanish when the fluid is in uniform rotation. It may
be shown that the most general linear function incorporating derivatives
∂vi/∂xk is

σ′
ik = η

(
∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)
+ ζδik

∂vl

∂xl

, (22)

where the first and second viscosity coefficients are both positive

η > 0, ζ > 0. (23)

Viscosity may be included in the equations of motion by adding ∂σ′
ik/∂xk

to the right side of Euler’s equation

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

= − ∂p

∂xi

)
. (24)

The result is

ρ

(
∂vi

∂t
+ vk

∂vi

∂xk

)
= − ∂p

∂xi

+
∂

∂xk

[
η

(
∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)]
+

∂

∂xi

(
ζ
∂vl

∂xl

)
.

(25)
If the viscosity coefficients may be considered constant, the result is the

so-called Navier-Stokes Equation

Theorem 4 Navier-Stokes Equation

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + η∇2v +

(
ζ +

1

3
η

)
∇∇ · v (26)
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1.5 Approximations in Sound Propagation

Acoustics concerns itself with small fluctuations in pressure and density about
an equilibrium state.

p = p0 + p′, ρ = ρ0 + ρ′ (27)

Neglecting quantities of second order (terms with products of small fluc-
tuations), the continuity equation becomes,

∂ρ′

∂t
+ ρ0∇v = 0, (28)

and Euler’s equation,

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p, (29)

becomes
∂v

∂t
+

(
1

ρ0

)
∇p′ = 0. (30)

The fluctuations in pressure and density may be approximated by a linear
relationship for isentropic flow,

p′ =

(
∂p

∂ρ0

)
s

ρ′, (31)

resulting in an equation in terms of only p′ and v.

∂p′

∂t
+ ρ0

(
∂p

∂ρ0

)
s

∇v = 0 (32)

The two variables may be related using a scalar potential v = ∇φ so that

p′ = −ρ0
∂φ

∂t
. (33)

Substitution into the previous equation results in the scalar wave equation

∂2φ

∂t2
− c2∇2φ = 0; (34)

where

c =

√(
∂p

∂ρ

)
s

. (35)
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2 Absorption in Fluids

There are many mechanisms for the absorption of sound including ther-
mal conduction, viscosity, structural changes in molecules, cavitation, and
scattering. The particular mechanism that will be examined here is second
viscosity, which can qualitatively explain the bulk of the frequency effects
encountered in absorption. In particular, chemical relaxation processes, such
as the presence of salt in sea water, will be considered.

Consider some physical quantity ξ with an equilibrium value ξ0 in a mix-
ture. To first order, small changes perturbations in ξ relax to equilibrium
values with some time constant τ .

∂ξ

∂t
= −ξ − ξ0

τ
(36)

A small periodic compression and expansion is applied to the fluid with
a time variation e−iωt. Thus, the equilibrium value of the parameter also
changes as a function of time,

ξ0 = ξ00 + ξ′0. (37)

The value of ξ will have some time-varying form,

ξ = ξ00 + ξ′. (38)

In terms of frequency, the relaxation equation is written

−iωξ′ = −ξ′ − ξ′0
τ

, (39)

so that ξ′ is also a periodic function of time, related to ξ′0 by

ξ′ =
ξ′0

1− iωτ
. (40)

The state of the fluid is a function of the pressure, density, entropy, and
ξ, so the isentropic rate of change of pressure with density is given by

∂p

∂ρ
=

(
∂p

∂ρ

)
ξ

+

(
∂p

∂ξ

)
ρ

∂ξ

∂ρ
. (41)

The derivative of ξ with respect to density is just

∂ξ

∂ρ
=

∂ξ′

∂ρ
=

1

1− iωτ

∂ξ′0
∂ρ

=
1

1− iωτ

∂ξ0

∂ρ
, (42)
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so that

∂p

∂ρ
=

1

1− iωτ

[(
∂p

∂ρ

)
ξ

+

(
∂p

∂ξ

)
ρ

∂ξ0

∂ρ
− iωτ

(
∂p

∂ρ

)
ξ

]
. (43)

This rate may be compared to that for a very slow change where ξ is effec-
tively at equilibrium.

∂p

∂ρ
=

1

1− iωτ

[(
∂p

∂ρ

)
eq

− iωτ

(
∂p

∂ρ

)
ξ

]
. (44)

If the pressure is perturbed from thermodynamic equilibrium by an adia-
batic change in density, the over-pressure, or excess pressure above its equi-
librium value, is given by

p− p0 =

[(
∂p

∂ρ

)
−

(
∂p

∂ρ

)
eq

]
δρ =

iωτ

1− iωτ

[(
∂p

∂ρ

)
eq

−
(

∂p

∂ρ

)
ξ

]
δρ (45)

To find the density changes due to motion in the fluids, we use the equa-
tion of continuity in terms of total time derivatives,

dρ

dt
+ ρ∇ · v = 0, (46)

which in terms of frequency becomes

iωδρ + ρ∇ · v = 0. (47)

The change in density is just

δρ =
ρ

iω
∇ · v. (48)

Substituting the change in density into the over-pressure formula,

p− p0 =
τρ

1− iωτ

(
c2
0 − c2

∞
)
∇ · v (49)

where

c2
0 =

(
∂p

∂ρ

)
eq

, c2
∞ =

(
∂p

∂ρ

)
ξ

. (50)

The meanings of these quantities will soon become apparent.
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The stress tensor σik may be modified by the following viscous term

−(p− p0)δik =
τρ

1− iωτ

(
c2
∞ − c2

0

)
δik

∂vl

xl

. (51)

By comparing this modification with the general form for the viscous stress
tensor, we find that the relaxation process is equivalent to the presence of a
second viscosity

ζ =
τρ

1− iωτ

(
c2
∞ − c2

0

)
(52)

The next goal is to find out how the presence of a relaxation process
affects the propagation of sound in a fluid. The basic equations for sound
propagation may be kept if certain generalizations may be made. The wave
number and frequency are still related by

k =
ω

c
, c =

√
∂p

∂ρ
, (53)

where ∂p/∂ρ has been calculated above. The quantity c becomes complex,
resulting in a complex wave number,

k = ω

√
1− iωτ

c2
0 − c2

∞iωτ
(54)

The low frequency limit is

k =
ω

c0

+
iω2τ

2c3
o

(
c2
∞ − c2

0

)
, ωτ � 1, (55)

while the high frequency limit is

k =
ω

c∞
+ i

c2
∞ − c2

0

2τc3
∞

, ωτ � 1. (56)

By separating the real and imaginary parts of k,

k = k1 + ik2 (57)
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and taking their ratio k2/k1, we find the absorption per unit wavelength.
Note that in both limiting cases, the absorption is small. The absorption per
wavelength is maximum at an intermediate frequency

ω∗ =
1

τ

√
c0

c∞
. (58)

Since the second viscosity, ζ is greater than zero, it may be seen that

c∞ > c0. (59)

If multiple relaxation processes are present, quantities may be defined
that are independent of one another such that

∂ξn

∂t
= −ξn − ξn0

τn

. (60)

By proceeding as before,

c2 = c2
∞ +

∑
n

an

1− iωτn

(61)

where

c2
∞ =

(
∂p

∂ρ

)
ξ

, an =

(
∂p

∂ξn

) (
∂ξn

∂ρ

)
eq

. (62)

Figure 1 shows the frequency dependent absorption in seawater due to the
presence of boric acid and magnesium sulfate. The data was parametrically
fit to a plot in Kinsler et. al.

3 A Nonlinear Wave Equation

3.1 Absorption of Sound

At high frequencies, the absorption of sound due to viscosity and thermal
conductivity is proportional to the square of frequency.

γ =
ω2

2ρc3

[(
4

3
η + ζ

)
+ κ

(
1

cv

− 1

cp

)]
≡ aω2

(63)
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Our goal is to include this absorption into the equation for a wave moving
in the negative x-direction,

p′ = p′(x + ct)

∂p′

∂x
=

1

c

∂p′

∂t
.

(64)

The true wave complex wave number is

k =
ω

c
+ iaω2, (65)

so to capture this absorption, the wave equation may be modified as follows

p′ ∼ eikx−ωt

∂p′

∂t
− c

∂p′

∂x
= ac3∂2p′

∂x2
.

(66)

This may be checked in the frequency domain. Note that this is one of many
possible modifications to account for the dispersion. Another frequent one
involves the second time-derivative of p.

3.2 Nonlinearity in Sound

Through a short derivation, it may be shown that acoustic nonlinearities may
be accounted for by the addition of another term

∂p′

∂t
− c

∂p′

∂x
− αpp

′∂p′

∂x
= ac3∂2p′

∂x2
. (67)

The derivation is included here for completeness. The exact equations for
one-dimensional gas flow without dissipation are

∂v

∂t
+ v

∂v

∂x
= −1

ρ

∂p

∂x
,

∂ρ

∂t
+

∂

∂x
(ρv) = 0. (68)

These terms may be expanded to second order to capture small nonlinear
effects,

p = p0 + p′, ρ = ρ0 +
p′

c2
+

1

2
p′2

(
∂2ρ

∂p2

)
s

. (69)

Note that
∂

∂t
= c

∂

∂x
, v = − p′

cρ0

, (70)
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so that the equations for one-dimensional flow become

∂v

∂t
+

1

ρ

∂p′

∂x
= 0, (71)

and
∂v

∂x
+

1

ρc2

∂p′

∂t
= cρ

(
∂2V

∂p2

)
s

p′
∂p′

∂x
, (72)

where V = 1/ρ and the following relation has been used:(
∂2ρ

∂p2

)
s

=
2

ρc4
− ρ2

(
deV

∂p2

)
s

. (73)

Differentiating (71) by x and (72) by t, followed by subtraction gives(
1

c

∂

∂t
− ∂

∂x

) (
1

c

∂

∂t
+

∂

∂x

)
p′ = c2ρ2

(
deV

∂p2

)
s

∂

∂x

(
p′

∂p′

∂x

)
. (74)

To the same level of accuracy,

∂

∂x
+

1

c

∂

∂t
' 2

∂

∂x
, (75)

hence:

Theorem 5 Nonlinear Wave Equation

∂p′

∂t
− c

∂p′

∂x
− αpp

′∂p′

∂x
= ac3∂2p′

∂x2

αp =
1

2

(
c3

V 2

) (
∂2V

∂p2

)
s

(76)

A traveling wave solution to this equation is

p = 1/2(p1 + p2) + 1/2(p2 − p1) tanh
(p2 − p1)(x + v1t)

4ac3/αp

. (77)

It turns out that if the thickness of the shock based on this result is actually
calculated, it is on the order of the mean free path of the gas molecules.
The equations of fluid mechanics are not sufficient to investigate the internal
structure of shocks.
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4 The Parametric Array

4.1 What is a parametric array?

The Parametric End Fire Array is a term coined by Westervelt because of
its resemblance to the corresponding sonar array in underwater acoustics.
Westervelt noted that the nonlinear interactions between two intense beams
act as a distribution of sources.

In general, if a slight nonlinearity is introduced into a linear system con-
taining two different frequencies, there will be radiation at those frequencies,
as well as the sum and difference of those frequencies.

For example, we may have a system that performs the following:

p(ω1) + p(ω2) −→p(ω1) + p(ω2)

+ εp(ω1 + ω2) + εp(ω1 − ω2)
(78)

Here is the key aspect of a parametric array: in air, or in water there is
absorption. If the absorption coefficient is assumed to be a constant, α, the
decay will be proportional to the number of wavelengths distance through
which the signal has passed. If ω1 and ω2 are high, but close together, their
signals will decay very rapidly, but their difference frequency ω1 − ω2 will
propagate far.

4.2 Greens Functions and Retarded Potentials

Before asking how does a nonlinear source radiate, we must first understand
how any source radiates. The linear wave equation may be written as

22p = ∇2p− 1

c2

∂2p

∂t2
= 0 (79)

The box notation is used to draw the similarities between the wave equation
in higher dimensions and laplace’s equation. This is particularly useful in
fields like special relativity where time is treated on an equal footing to
space variables.

This similarity becomes particularly useful in the presence of sources.
From basic electromagnetics (for the electrical engineers), or elasticity (for
the mechanical engineers), we know that a source can be represented by a
delta function.

4u(r) = −δ(r′ − r) (80)
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The solution to this problem, or rather, the Green in three-dimensions is

u(r) = G(r, r′) =
1

4π |r′ − r|
(81)

This allows the general solution to an arbitrary source to be solved by con-
volution

4u(r) = −f(r) = −
∫

f(r′)δ(r′ − r) d3r′

u(r) =

∫
f(r′)G(r, r′) d3r′ =

1

4π

∫
f(r′)

1

|r′ − r|
d3r′

(82)

If the time variable is trivially included, the equation becomes

4u(r, t) = −δ(r′ − r) (83)

The green function may be defined as

G(r, t; r′, t′) =
δ(t′ − t)

4π |r′ − r|
(84)

so that with a distributed source,

4u(r, t) = −f(r, t)

= −
∫ ∫

f(r′, t′)δ(r′ − r)δ(t′ − t) d3r′ dt′

u(r, t) =

∫ ∫
f(r′, t′)G(r, t; r′, t′) d3r′ dt′

=
1

4π

∫ ∫
f(r′, t′)

δ(t′ − t)

|r′ − r|
d3r′ dt′

=
1

4π

∫
f(r′, t)

1

|r′ − r|
d3r′

(85)

which is just the formula obtained previously.
Similarly, there is a Green’s function for the wave equation. The full

derivation is peripheral to our goals, so I will just point out a few details
about its structure. As we have seen, information propagates through the
wave equation at a speed c. The Green’s function will be identical to that
for laplace’s equation, except that the integration will not be performed at a
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fixed time through space, but rather at a retarded time, i.e. the pressure at a
particular time is influenced by the pressure through space at times delayed
by the travel time for a signal from the space to the point in question.

G(r, t; r′, t′) =
δ
(
t′ −

[
t− |r′−r|

c

])
4π |r′ − r|

(86)

Note that this is only one of several possible Green functions. For exam-
ple, the wave equation remains the same if time is reversed, resulting in an
advanced Green function. The pressure for the retarded, or causal, Green
function is given by

22p(r, t) = −f(r, t)

p(r, t) =
1

4π

∫
f(r′, t−R/c)

1

|r′ − r|
d3r′

R = |r′ − r|

(87)

In acoustics, the conventional notation for an equation with a simple
source strength density is slightly different,

22p = −ρ0
∂q

∂t
, (88)

with the result that the frequency domain representation for the pressure
field is given by

p(r) = −iωρ

4π

∫
qeik|r−r′|

|r − r′|
d3r′ (89)

4.3 The Lighthill Equation

The next step is to determine how the nonlinear properties of sound may
be incorporated into an appropriate source term within the standard wave
equation. To do this, the same procedure is used as when deriving the wave
equation.

Begin with the continuity of mass and momentum-flux equations.

∂ρ

∂t
+∇ · (ρv) (90)
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∂

∂t
(ρvi) = −∂Πik

∂xk

(91)

Πik = pik + ρvivk (92)

Note that a pressure stress tensor has been used for convenience,

pik = −σik (93)

which will make the following analysis a little simpler.
To make the equations more like the standard wave equation, a new tensor

will be defined which represents the difference between the true momentum-
flux, and the acoustic momentum flux.

Tik = Πik − Π0
ik = pik − ρc2δik + ρvivk (94)

With this definition, the momentum-flux equation becomes

∂

∂t
(ρvi) + c2 ∂ρ

∂xi

= −∂Tik

∂xk

(95)

Differentiating by xi and substituting the mass continuity equation results
in the Lighthill equation.

∂2ρ

∂t2
− c2∇2ρ =

∂2Tik

∂xi∂xk

(96)

c222ρ = −Tik,ik (97)

4.4 Westervelt’s Approximation for Collinear Beams

Westervelt’s contribution was to find the corresponding equation for p, or
rather p’. The ’ symbol is implicitly present in every equation. His approxi-
mation keeps terms up to second order:

22p ≡ ∇2p− 1

c2

∂2p

∂t2

=
∂2

∂t2

(
ρ− p

c2

)
− ∂2

∂xixj

(ρvivj)
(98)
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The first term on the right may be evaluating by using the equation of
state for the gas. Note that the ’ symbol is shown for clarity.

p = p0 +

(
∂p

∂ρ

)
s,ρ=ρ0

ρ′ +
1

2

(
∂2p

∂ρ2

)
s,ρ=ρ0

ρ′2 + . . . (99)

Acousticians often introduce nonlinearity parameters for this equation.

p′ ≡ p− p0 = A
ρ′

ρ
+

1

2
B

(
ρ′

ρ

)2

A = c2ρ0 , B =

(
∂2p

∂ρ2

)
s,ρ=ρ0

ρ2

(100)

The B parameter is a key measure of the nonlinearity in the problem. With
these definitions, the first term on the right becomes

ρ− p

c2
' − 1

2c6

(
∂2p

∂ρ2

)
ρ=ρ0

p2

= − 1

2c4

B

A

(101)

The second term on the right may also be simplified. Since the only pres-
sure field of interest is the scattered wave, the contribution due to hydrostatic
pressure, p0, and the contribution due to the two collinear beams, p1 and p2

may be ignored.
p = p0 + p1 + p2 + ps (102)

The scattered sound field due to the two incident beams is therefore

22ps = − 1

2c4

B

A

∂2pi

∂t2
− ρ0∇2v2

i (103)

where the subscript i refers to the total primary beam. By substituting
the linear relation for vi,

∇2vi '
1

ρ0c2
∇2p2

i

=
1

ρ0c2
22p2

i +
1

ρ2c4

∂2p2
i

∂t2

' 1

ρ2c4

∂2p2
i

∂t2

(104)
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The Westervelt equation is then

22p = −ρ0
∂q

∂t

q =
1

ρ2
0c

4

(
1 +

B

2A

)
∂

∂t
p2

i

(105)

Where q is the simple source strength density resulting from the primary
waves pi.

4.5 Including absorption

Consider two primary beams,

P1 = P10e
−α1xcos(ω1t− k1x)

P2 = P20e
−α2xcos(ω2t− k2x)

ωs = ω1 − ω2,

(106)

The radiation pattern is

ps(r) = −iωsρ0

4π

∫
qeiks|r−r′|

|r − r′|
dV (107)

Since the sources are effectively distributed at the origin, the substitution
dV = Sdx may be made where S denotes the cross-sectional area of the
array. The far field radiation pattern given by

ps(r) = −iωsρ0S

4π

∫ ∞

0

qeiks|r−r′|

|r − r′|
dx (108)

As with the standard dipole approximation, in the far-field, in the numerator,
the approximation

|r − r′| ≈ r − x′ cos(θ) (109)

may be made, while in the denominator, we may just keep |r − r′| ≈ r term.
This integral is just one of constants and exponentials, but because of all the
variable substitutions, I will simply state the result. The radiated intensity
from two primary beams of equal strength at a distance R and angle θ from
the source.
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Figure 3: Beam pattern for downshift ratios of 10,30, 50, 70, 90 with a 1MHz
source.

Is =
|P |2

2ρ0c
=

ω4
sP

4
0 S2

(
1 + B

2A

)
2(8π)2ρ3

0c
9R2

1

α2 + k2
s sin4(θ/2)

(110)

The theoretical beam half-width is

θ1/2 ' 2 · 31/4

(
α

ks

)1/2

(111)

Which is about twice as wide as the experimental values. In air, with two
primary sources of 13 MHz and 14 MHz, the measured beam half-width is
approximately 2◦. Even better results may be achieved underwater. Note
that with a single primary beam, the array becomes an extremely directional
receiver for any sound traveling in the direction of the receiver, behaving as
a parametric amplifier. This technology is useful for constructing precision
depth-sounders.
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5 Shock Waves - Optional material

5.1 Characteristics of Burger’s Equation

Burgers’ Equation
ut + uux = εuxx (112)

Primitive form
ut + uux = 0 (113)

Conservation form
∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 (114)

Integral form ∫ xR

xL

[
∂u

∂t
+

∂

∂x

(
u2

2

)]
dt = 0 (115)

d

dt

∫ xR

xL

u dt = −
(

u2
R

2
− u2

L

2

)
(116)

Arbitrary path x(t) in x− t plane:

du

dt
=

∂u

∂x
+

∂u

∂x

dx

dt
(117)

dx

dt
= u =⇒ du

dt
= 0 =⇒ u = u0(constant) (118)

These lines are characteristics

5.2 Shock Formation

Consider the initial data

u(x, 0) =


1 if x < 0
1− x if 0 < x < 1
0 if x > 1

(119)

For x < t
dx

dt
= 1 → x = t + x0 → u(x, t) = 1. (120)
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For t < x < 1

dx

dt
= 1− x0 → x = (1− x0)t + x0 → u(x, t) =

1− x

1− t
. (121)

For x < t
dx

dt
= 0 → x = x0 → u(x, t) = 0. (122)

5.3 Shock Path

From the integral form,

d

dt

∫ xR

xL

u dt = −
(

u2
R

2
− u2

L

2

)
, (123)

and choosing xL and xR to be very close to the discontinuity, we find the
shock speed s to be given by the Rankine-Hugoniot jump condition:

−(uR − uL)s = −
(

u2
R

2
− u2

L

2

)
, (124)

or in a more simplified form,

s =
uL + uR

2
(125)

5.4 Non-uniqueness

Consider Burgers’ equation with a rarefaction,

u(x, 0) =

{
−1 if x < 0
1 if x > 0

(126)

One possible solution is a shock with speed

s =
uL + uR

2
= 0, (127)

while another is a rarefaction wave or expansion fan,

u(x, 0) =


−1 if x < −t
x/t if −t < x < t
1 if x > t

(128)
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Which one is the correct solution? Are there other solutions? Since both
solve Burgers’ equation, further physical arguments are required. It turns
out that the only solution satisfying a thermodynamic condition on entropy
is the expansion fan. It may be shown that the solution to Burgers’ equation
with viscosity reduces to this solution as the viscosity approaches zero. Try
verifying this yourself after working Problem 2.

6 References

• Fluid Mechanics -Landau and Lifshitz

– Basic acoustics

– Absorption and second viscosity

– Nonlinear waves and shocks

• Nonlinear Acoustics -Beyer

– Parametric arrays

• Fundamentals of Acoustics -Kinsler et al.

– Parameters for graphs

• MIT course notes - Numerical Methods for PDE’s

– Additional materials for shocks
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7 Problems

Problem 1 (Dispersion due to relaxation processes)

The derivative if p with respect to ρ was derived for a single relaxation
processes to be

∂p

∂ρ
=

1

1− iωτ

[
c2
0 − iωτc2

∞
]
. (129)

Show that for
k =

ω

c
, (130)

the dispersion formula

k = ω

√
1− iωτ

c2
0 − c2

∞iωτ
(131)

is obtained. Show that the low and high frequency limits are

k =
ω

c0

+
iω2τ

2c3
o

(
c2
∞ − c2

0

)
, ωτ � 1, (132)

k =
ω

c∞
+ i

c2
∞ − c2

0

2τc3
∞

, ωτ � 1. (133)

Qualitatively sketch a log-log plot of absorption in seawater as a func-
tion of frequency. Include two relaxation processes and the effects of second
viscosity.
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Problem 2 (Velocity of a shock)

The nonlinear wave equation for sound was shown to be

∂p′

∂t
− c

∂p′

∂x
− αpp

′∂p′

∂x
= ac3∂2p′

∂x2
. (134)

Find the velocity of a traveling wave solution of the form

p′(x, t) = p′(x + v1t) (135)

where the limiting pressures as x → ±∞ are p2 and p1 by the following
steps. Set p′ to be the change in pressure from the front of the shock, p1, i.e.
p = p1 + p′.

• Substitute the desired form for p′ into the nonlinear equation.

• Change all derivatives to derivatives in ξ = x + v1t.

• Integrate the equation with respect to ξ.

• Note that ∂p′/∂ξ is zero at ±∞. Use this and the limiting pressures to
find the velocity.

The resulting velocity,

v1 = c +
1

2
αp(p2 − p1), (136)

increases with the pressure difference, a fact which is crucial to shock forma-
tion. If one proceeded with the solution, the result would be

p =
1

2
(p1 + p2) + 1/2(p2 − p1) tanh

(p2 − p1)(x + v1t)

4ac3/αp

. (137)

Sketch this solution for an appropriate p1 and p2 at t = 0 and indicate
which way the wave is traveling. It turns out that the shock thickness is on
the order of the mean free path of the molecules; therefore, fluid mechanics
is not a valid approximation for the fine structure of the shock.
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Problem 3 (Radiation pattern of a parametric array)

The sound produced by a source volume distribution is given by:

22p = −ρ0
∂q

∂t
, (138)

p(r) = −iωρ

4π

∫
qeik|r−r′|

|r − r′|
d3r′ (139)

Westervelt’s equation gives the source density q.

q =
1

ρ2
0c

4

(
1 +

B

2A

)
∂

∂t
P 2

i (140)

Two beams of equal strength are used, and the effect of absorption results
in the following.

P1 = P0e
−αxcos(ω1t− k1x)

P2 = P0e
−αxcos(ω2t− k2x)

ωs = ω1 − ω2, ks = k1 − k2,

(141)

Given that the quadratic mixing produces a source proportional to the
mixed frequency, and ignoring time dependence,

q ∼ e−2αx′+iksx′
, (142)

show that the radiated field pattern in the far-field is given by

Is =
|ps|2

2ρ0c
=

const.

r2
×H(θ)2 (143)

where H(θ), the beam pattern, is given by

α/ks√
(α/ks)2 + sin4(θ/2)

. (144)

Do not bother to keep track of constants along the way. Note that, in the
far-field, an approximation of |r − r′| = r − x′cos(θ), and |r − r′| = r is
necessary. Sketch this solution as a function of frequency for a half-angle of
2-degrees and mention two benefits of these arrays over other transducers.


