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Abstract—An N -symbol discrete Fourier transform (IN-DFT)
processor based on analog CMOS current mirrors that operate
in the strong inversion region is presented. It is shown that tran-
sistor mismatch can be modeled as an input-referred noise source
that can be used in system-level studies. Simulations of a radix-2,
256-symbol fast Fourier transform (FFT) show that the model pro-
duces equivalent results to those of a model that incorporates a mis-
match term into each current mirror. It is shown that in general,
high-radix FFT structures and specifically the full-radix DFT have
reduced sensitivity to mismatch and a reduced number of current
mirrors compared to radix-2 structures and have some key advan-
tages in terms of transistor count with respect to comparable dig-
ital implementations. Simulations of an orthogonal frequency-di-
vision multiplexing system with forward error control coding, that
take into account current mirror nonidealities such as mismatch,
show that an analog DFT front end loses only 0.5 dB with respect
to an ideal circuit.

Index Terms—Analog circuits, current mirrors, fast Fourier
transform, mismatch, orthogonal frequency division multiplexing.

I. INTRODUCTION AND BASIC CIRCUIT

VER since the discovery of capacity approaching forward
E error control codes such as low-density parity-check
codes and turbo codes, and iterative decoding algorithms,
there has been considerable effort put into energy-efficient,
high-speed implementations of such decoders. Analog imple-
mentations of iterative decoders have been widely reported
[1]-[12], with promising results in terms of circuit complexity,
power, and speed. A natural extension of analog decoding
research is to attempt to integrate these decoders with other
analog front-end processing blocks. The target application of
this paper is a radio receiver and decoder that would operate
with extremely low power levels such that energy scavenging
methods [13] could provide sufficient power to operate the
entire receiver. Such an analog receiver might well find appli-
cation in ad hoc sensor networks or medical monitoring, where
extremely low power consuming communications devices will
be a necessity.
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Fig. 1. OFDM communication transceiver system model.

In recent years, orthogonal frequency-division multiplexing
(OFDM) has received considerable attention for high-speed
wireless communication systems due to its effective transmis-
sion capability and robustness to frequency-selective channels
when dealing with a wide range of channel impairments, such
as impulse noise and severe multi-path fading [14]-[16]. A
fast Fourier transform (FFT) processing block is required for
OFDM receivers [17], [18]. The communication system model
shown in Fig. 1, in which an OFDM transmission format is
used with differential binary phase-shift keying (DBPSK) mod-
ulation and forward error control, is used in this paper in order
to evaluate potential all-analog implementations of the FFT.

A. Analog Fourier Transform Circuits

Until now there has been limited research into analog imple-
mentations of the FFT. In [19], an analog FFT circuit topology
based on analog multipliers is reported. An analog current mode
FFT circuit is presented in [20] that uses switching current
delay flip-flop circuits that act as current memories. The analog
FFT and discrete Fourier transform (DFT) designs presented
in this work are based on analog current mirrors and hence the
circuit complexity is lower than that of the previously reported
circuits. The impact of transistor pair mismatch on system
performance is mathematically modeled as an input-referred
mismatch source. Compelling evidence is presented that higher
radix FFT structures such as the full-radix DFT are more
suitable for analog implementation than the regular radix-2
FFT. An earlier version of the circuits presented in this paper
was reported in [21], and an earlier chip implementation was
published in [22].

A DFT contains only two operations, namely, addition and
multiplication with constants, as expressed by the following
equation:

N-1 )
Sp=> wme ¥, 0<n<N-1 (1)
k=0
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Fig. 2. Radix-2, 8-FFT butterfly structure. Inputs and outputs are complex dif-
ferential values and Wg', Wg?, and W3? are complex constants representing
WFs. cpl and cp2 subscripts represent two copies of the input current.

where z, are complex inputs for different frequency channels in
an OFDM communication system, /V is the number of points in
the DFT, and n is the number of outputs. The ¢(127%)/(N) term
can be expressed as a real and an imaginary constant on the unit
circle as follows:

2rk

N

= COS

ok
+ jsin % = WF; + jWF,.
2

where WF; and WF', are weight factors (WFs) that are multi-
plied with the real and imaginary parts of the corresponding in-
puts z,. Considering differential signaling, all WFs have a value
between 0 and 1. Therefore, a DFT only requires summation and
scaling operations.

Digital designers typically implement the DFT using FFT
structures because of a decrease in complexity from O(N?) to
O(N log N). However, the radix-2 FFT structure is less prefer-
able in the analog case, as discussed later in this paper. One
advantage of using analog circuitry over comparable digital im-
plementations is that the summation of currents in the analog
domain is free; however, in the digital domain, addition requires
many logic gates and incurs delay. Also, in analog designs the
number of wires per input is only two; in digital implementa-
tions this number is dependent on quantization. In an analog
FFT circuit, symbols can be represented as currents; if differ-
ential signaling is chosen, then a difference of two currents is
proportional to the signal it represents.

B. Analog FFT Example

As mentioned earlier, the only required operations are addi-
tion and scaling, and these are achievable using current mirrors.
Consider the radix-2, 8-FFT shown in Fig. 2. In this diagram,
the white bubbles represent a duplication of inputs, the black
bubbles represent summation of inputs, the crossed bubbles rep-
resent scaling by a specified WF value, and the —1 bubbles rep-
resent interchanging the negative/positive input signals if using
differential signaling. All the bubbles can be implemented using
only current mirrors, as shown in Figs. 3 and 4. For white bub-
bles, the input is copied twice for the next addition step. For
black bubbles, the corresponding inputs are tied together, re-
lying on Kirchhoff’s current law for summation. For WFs, the
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Fig. 3. (a) Graphical illustration. (b) Actual implementation of copy bubbles
in the complex differential FFT butterfly structure using only analog current
mirrors. cpl and cp2 subscripts represent two copies of the input current, while
the 24, ¢—, g+, and ¢— subscripts represent the positive/negative and real/
imaginary part of the complex differential signals.
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Fig. 4. (a) Graphical illustration. (b) Actual implementation of summing bub-
bles in the complex differential FFT butterfly structure using only analog cur-
rent mirrors. cpl and cp2 subscripts represent two copies of the input current,
while the i+, :—, g+, and g— subscripts represent the positive/negative and
real/imaginary part of the complex differential signals.

(W) /(L) ratio of the output transistor of each mirror is chosen
to realize the required scaling factor. Each complex signal re-
quires four wires: two for the real part, represented using differ-
ential signaling where Re(z) = z;+ — x;_, and two for the
imaginary part, again represented using differential signaling
where Im(z) = 44 — z4—. The actual implementation of copy
and summing bubbles are shown in Figs. 3 and 4. The number
of transistors used in each FFT stage is explained in detail in
[23], and the results are summarized in Table 1.

C. Paper Organization

This paper: 1) demonstrates the feasibility of an analog DFT
processor; 2) analyzes its tolerance to current mirror nonlin-
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Fig. 5. I,.¢ versus I;, dc transfer characteristic of NMOS current mirror with PMOS load, showing three regions of operation. Circles represent dc circuit simu-

lation data points. Lower line represents ideal outputs.

TABLE I
NUMBER OF TRANSISTORS USED IN EACH RADIX-2 FFT

Radix-2 FFT Size | Number of Transistors

2-FFT 24

4-FFT 96

8-FFT 328

16-FFT 968

32-FFT 2520
64-FFT 6248
128-FFT 14952
256-FFT 34856

earities and mismatch in the context of an OFDM communi-
cation system with forward error control; and 3) demonstrates
the superiority of a full-radix DFT processor over small-radix
implementations, both in terms of implementation cost and tol-
erance to mismatch. The rest of the paper is organized as fol-
lows. In Section II, the nonidealities of current mirrors are mod-
eled. A mathematical input-referred mismatch model is derived
in Section III. In Section IV, results of a Monte Carlo simula-
tion study that incorporates the mismatch model are presented.
Finally, Section V concludes this paper.

II. CURRENT MIRROR FFT BUILDING BLOCK

This section investigates the nonideal behavior of the current
mirror, which is the basic building block in analog DFT proces-
SOrS.

A. Current Mirror Model

The proposed analog FFT uses both NMOS and PMOS
current mirrors. A current mirror’s transfer characteristic is
dependent on the value of drain-to-source voltage Vg, at the
output. To find the actual output of each mirror, an NMOS

mirror with a PMOS diode-connected load and a PMOS mirror
with an NMOS diode-connected load are simulated using
BSIM3v3 models in a typical 180-nm CMOS technology. Such
a model can be used since there is a diode-connected load
as a next stage everywhere in the FFT. The I, versus I;,
dc transfer characteristic of the NMOS current mirror with a
PMOS load is shown in Fig. 5. By increasing the input current,
Vs decreases and Vg increases, and the current mirror goes
through three different operating regions.

From Fig. 5, the actual mirror’s outputs are slightly larger
than its inputs. This is mostly due to different values of Vi
on each branch. In order to use the results in the system-level
Matlab simulation of analog FFTs in Section IV, a linear curve
was fitted to the circuit simulation values. The line for the PMOS
mirror is slightly closer to the ideal mirror since a PMOS tran-
sistor has smaller mobility that causes less difference in the
values of V4, on the mirror branches.

B. Current Scaling

Since currents are copied and then summed at each FFT
stage, the total current is doubled every time. This results in in-
creased power consumption and nonlinearity. To cancel this the
(W) /(L) ratios of the output transistors of each current mirror
participating in summation in every stage of FFT are scaled by
a factor of 1/2, resulting in the same input/output current range
at each stage. The current range can then be chosen to operate
the transistors in the selected region of operation.

C. Temperature Effects

The behavior of a current mirror is largely insensitive to tem-
perature, as long as both transistors operate at the same tempera-
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ture. Differences in temperature can be modeled as a mismatch
term. Since Section III discusses the impact of transistor mis-
match in analog FFTs, the topic of temperature sensitivity is not
further discussed in this paper.

III. N-FFT MISMATCH MODEL

There are many considerations to take into account in
analog design, such as device mismatch, body effect, and
channel-length modulation. However, most of the error due
to channel-length modulation and body effect is common
mode. Thus, by using a fully differential circuit, these errors
can be eliminated and only differential errors remain. Device
mismatch is one such source of error. Since the FFT structure is
based on current mirrors, mismatch is an important impairment
that needs to be modeled.

As described shortly, mismatch in threshold voltage V;y, is
modeled as an additive white Gaussian random variable. Also,
to analyze the impact of mismatch over an entire N-FFT block,
the mismatch due to all interior current mirror nodes in the
block is modeled as a signal-dependent additive input-referred
mismatch source. The per-mirror model and the input-referred
model produce comparable bit-error-rate (BER) simulation per-
formance, as discussed later in Section IV.

A. Transistor Mismatch Model

This section explains the mismatch model for strong and
weak inversion modes of operation. We note that the impact
of mismatch is between the input and output transistors of a
single current mirror; in other words a current mirror transfer
function relies on having equal V;;, values. The PMOS load
acts as an input node into a separate current mirror, whose
mismatch can be evaluated separately. The PMOS load does
not require matched W/ L or V4, with the output of the previous
current mirror. A separate issue is the one of finite impedances
(channel-length modulation) of multiple current mirror outputs
driving the same load. This can be accounted for in the sizing
of transistors.

1) Mismatch for Strong Inversion: Vi, variation is the
dominant source of mismatch, compared to other sources like
(W)/(L) or pnCox [24]. Vin variation can be modeled as a
normally distributed random variable with zero mean and a
unitless variance of 63 [25]. Assuming a variation AV, tran-
sistor current Ip in saturated strong inversion can be expressed
as

_ WO W
T2 L

Ip (Vs — Vi — AV 3)

The square term can be expanded, producing

C'ox w w
= b 9 T(Vgs - V:ch)z - Ncoxf(vgs - ‘/th)AVYth

pCox W
2 L

Ip

+ AVZ. @)

The first term is the ideal current, and the second term is the
dominant mismatch term since the last term can be ignored
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due to small variance of AV,?. Equation (4) can be rewritten
as follows:

(&)

2AVip
Ip = Ligeal (1 - i > .

‘/gs - ‘/th

AV, can be represented as Vi,e where € is a normal distributed
random variable e : N (0, §2). Therefore (5) becomes

ID = Iidoal(l + Cstre) (6)

where (4, is a normalizing factor in strong inversion equal to
(2Vin)/(Vgs — Vin). Therefore, a normally distributed additive
mismatch term for Ip is obtained.

A numerical example is now provided to highlight the im-
pact of threshold voltage variance 63 on Ip. For Vi, = 450 mV
in a 180-nm CMOS process technology, a reasonable threshold
voltage variation value AV;y, of £45 mV is chosen, which cor-
responds to 10% of V;y, [26]. For a normal distribution, since
97% of outcomes fall within three standard deviations, it can be
assumed that the maximum variation of ¢ is equal to 36.. There-
fore, the 6. is (10%)/(3) = 0.033 and 62 is 0.001. The overall
Ip variance is equal to (Iiqea18=Cstr)*- By choosing Vs = 2V;p
the normalizing factor becomes 2 and (%, = 4. Hence, the
worst-case Ip variation due to the threshold voltage mismatch
is equal t0 0.004 x I,

2) Mismatch for Weak Inversion: For a transistor operating in
weak inversion [27] with a threshold variation AV;y,, the drain
current Ip is

—AVin

ID = Iideale nVr (7)

where Vr is the thermal voltage equal to (k7")/(q), and n is
the threshold slope. Since AVyy, is a normal distributed random
variable, eSveak'€ ig a log-normal random variable, where (yweak,
the subthreshold normalizing factor, is equal to (V;y,)/(Vr) for
n = 1. For Vi, = 450 mV and Vr = 25 mV, (yeak is about
an order of magnitude higher than (.. Hence, it makes weak
inversion operation much more sensitive to mismatch. This ob-
servation is confirmed in Section IV, where an N-FFT that uses
weak-inversion current mirrors with V;}, mismatch is simulated
and is found to incur too much of a performance loss to be con-
sidered feasible.

B. N-FFT Input-Referred Mismatch Model

To model the mismatch due to interior current mirror nodes of
the N-FFT block as an additive input-referred mismatch source,
the first step is to derive the output currents of the two-FFT block
with mismatch shown in Fig. 6. For example, I5,y¢1 is found to
be equal to

Ioout1 = Tin21(1 + €211) + Lin22(1 + €212)
= Iin21 + Iino2 + Lin21€211 + Tin22€212 ()

with similar equations for the other outputs, and € subscripts are
according to a stage number, copy number, and input. The FFT
mismatch at each output can be modeled as an external additive
term. The above equation can be seen as an ideal FFT output
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Fig. 6. Analysis of mismatch for the two-FFT block. White nodes are current
mirrors, each of which has its £..; where s indicates the stage, and ¢ is either 1
or 2 representing the first or second copy of an input :.
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Fig. 7. Analysis of mismatch for the radix-2, 4-FFT block. White nodes are
current mirrors, each of which has its £,; where s indicates the stage, and ¢ is
either 1 or 2 representing the first or second copy of an input ¢.

plus an external mismatch term with double mismatch variance.

Similarly, the mismatch in the four-FFT pictured in Fig. 7
can be derived. The following equation is obtained, which has
the same form as (8)

Lioutr = Tinar (1 + €411)(1 + €211)
+ Lina2(1 4+ €412)(1 + €212)
+ Tinasz(1 4 €413)(1 4+ €211)
+ Linaa(1 4+ €414)(1 + €212)
= Lina1 (1 + o41) + Lina2 (1 + a42)
+ Tinas(1 4+ cug) + Linaa(1 + aaq) ©)]

where « is in general in the form of € + &’ + e¢’. The mis-
match model for the four-FFT thus has the same structure as for
the two-FFT, and the only differences are the coefficients in the
model.

The input-referred mismatch variance for the 4-FFT can now
be derived from the above equations. In general, for any I4out—x
there are four I;,_;(1 + «;) terms added together, which have
the same mean and variance. Since the input signals are roughly
in the same range, the total variance should be 4 times the vari-
ance of a.. Also « itself has roughly twice the variance of each
individual transistor, since the term ¢ - &’ is negligible. Thus the
input variance of the mismatch model for the 4-FFT is roughly
8 times that of each transistor pair. This procedure can be re-
peated to find the overall variance of any larger FFT, as shown
in Table. II.

The input-referred mismatch variance for an V-FFT can be
expressed as follows:

8% = (Nm)3(3uwr) ™62 (10)
where m is the number of stages in the butterfly structure, the
first three is the average input factor for a current stage due to
WFs used in eight-FFT and larger FFTs, the second factor 3 is
the average input factor for previous stages due to WFs. The
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TABLE II
INPUT-REFERRED MISMATCH VARIANCE FOR RADIX-2 N-FFT FROM 2-FFT
UP TO 256-FFT

5f\, Input Mismatch Variance

I (2-1)-62 =202

52 (4-2)-62 =852

X E (8-3)-3-02 = 7252

6% ¢ (16-4)-3-(3-0.7) - 62 = 403.267

A (32-5)-3-(3-0.7)Z-62 =2.1-(103) - 62

65,: | (64-6)-3-(3-0.7)3-62=10.7-(103) - 62
820 (128-7)-3-(3-0.7)%- 62 = 52.3- (107) - 62
856 (256 -8) - 3-(3-0.7)° - 62 = 251 - (10°) - 62

£:N(0,82)
Ideal N
Inputs N-FFT \JOutputs

Fig. 8. Input-referred mismatch model for the V-FFT block.

TABLE III
COMPARISON OF THE INPUT-REFERRED MISMATCH VARIANCES FOR DIFFERENT
RADIX STRUCTURES

256-FFT Type Input Mismatch Variance
Radix-2 (28-8)-3-2.1°-62 = 251 - (10°) - &2
Radix-4 (4%-4)-3-2.1% .52 = 28.4- (103) - 52
Radix-16 (162-2)-3.2.12. 62 =6.76 - (10%) - 62
DFT (2561 -1)-3-2.1-42 = 1.61 - (10%) - §2

constant uywr is the average value of WFs in every stage, which
isequal to 0.7. For m less than 4 the 1m —3 term should be 1 since
there is no previous stage having WFs. Therefore, the mismatch
of an entire /NV-FFT can be modeled as a signal-dependent input-
referred mismatch source, as shown in Fig. 8, which is a random
vector with this equivalent variance. This input-referred noise
vector is multiplied by the inputs and then added at the output of
the ideal FFT without mismatch to provide the same output as an
FFT having mismatch at each current mirror. Simulation results
using both models (per-mirror and input-referred) are presented
in Section IV.

From Table II, the input-referred mismatch variance is highly
dependent on the number of stages and, e.g., for the 256-FFT
the variance is in order of 10° times the variance of a single
transistor pair. To make the N-FFT less sensitive to transistor
mismatch, one idea is to decrease the number of stages in the
FFT butterfly structure.

A higher radix FFT structure could be the solution. For
instance, in a radix-4 FFT, four currents are summed at each
stage rather than two. This change in the FFT diagram reduces
the number of stages in half, meaning that only four stages are
required for the 256-FFT. Also, a radix-16 FFT only needs
two stages; perhaps the 256-FFT could even be realized in one
single (full-radix) step, which essentially implements a full
DFT. The input-referred mismatch variance for the radix-4
FFT, the radix-16 FFT, and full-radix DFT are provided in
Table III.

It is clear that the DFT has the least variance, and its imple-
mentation is less sensitive to mismatch compared to other FFT
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TABLE IV
COMPARISON OF THE NUMBER OF CURRENT MIRRORS IN THE 256-FFT FOR
DIFFERENT RADIX STRUCTURES

256-FFT Type Number of Current Mirrors per Output
Radix-2 2-(1+2+4+8+16+ 32+ 64+ 128) =510
Radix-4 4-(1+4+16+64) = 340
Radix-16 16 - (14 16) = 272
DFT 256 - (1) = 256

structures. Using a DFT results in about 100 times less input-re-
ferred mismatch variance, the impact of which is discussed in
Section IV. Also, from Table IV, the number of current mirrors
decreases as the radix of the 256-FFT increases. Thus, there is
a win-win scenario in terms of the circuit complexity and the
mismatch sensitivity to implement an analog DFT processor.

C. Analog/Digital FFT Design Tradeoffs

The ease of implementation of a full-radix DFT using analog
circuitry is due to the different cost structure for analog cir-
cuits than for digital ones. In a digital implementation, additions
are costly. By sorting the inputs and using several stages the
total number of additions can be minimized, thus obtaining the
FFT structure. Increasing the number of stages does not increase
the cost of copying signals in digital implementation, since bits
are represented as voltages, and these can be tapped as many
times as necessary. However in an analog FFT implementation,
copying current signals is costly since the required current mir-
rors may incur losses due to mismatch. Furthermore, there is no
cost for summations in analog design. Therefore, it is preferable
to decrease the number of stages in order to decrease the number
of current mirrors as well as the impact of corresponding mis-
match. Clearly the low-radix FFT structure is not an ideal way
to perform the DFT using analog circuitry.

Due to the large number of wires summing at one node, high-
radix FFT structures may have design limitations due to large
capacitances and finite output impedances. However, the critical
path delay of the receiver is most likely due to the error control
decoder due to its iterative structure, hence the FFT is not the
main area of concern. Also, a proper output impedance can be
obtained by sizing the load transistors at each FFT stage.

To mitigate the mismatch sensitivity of an analog FFT pro-
cessor, one idea is to increase the Vj of transistors to decrease
the normalizing factor (s, which is equal to (2Vip, / Vs — Vin).
For fixed values of W/ L, increasing Vj, incurs extra power con-
sumption.

D. Power Consumption

Using a 180-nm CMOS technology, the power consumption
of the analog FFT for the worst-case, radix-2, 256-FFT, for bias
currents equal to 100 nA in strong inversion with 1% mismatch,
and 0.5 dB loss in BER performance for a coded system, is about
16 mW [23], which is still remarkably less than that of a com-
parable digital FFT implementation, which is about 340 mW
in [28]. For higher radix FFT structures, the power consump-
tion decreases even further. For instance, the power consump-
tion of the full-radix analog 256-DFT is about 1.6 mW, which
is more than an order of magnitude less compared to that of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 9, SEPTEMBER 2009

10
107"
2 107
©
i
s
|
& 10°
. || = B = Iias:100pA oy
107 - » = |pias:10nA ﬁ
= © = |bias:100nA \®
Uncoded Differential BPSK (Theoretical) |- - - : ; .
10‘5 i i i i i i i i i

0 1 2 3 4 5 6 7 8 9 10
SNR = Eb/NO (dB)

Fig. 9. Monte Carlo simulation of radix-2, 256-FFT having the nonideal cur-
rent mirror model for different bias currents. The higher the bias current, the
better the system performance.

the radix-2, 256-FFT above [23]. A digital implementation of a
radix-4, 1024-FFT presented in [29] consumes 2.3 mW/MHz.

IV. SIMULATIONS AND SYSTEM PERFORMANCE

This section presents simulation results of the OFDM com-
munication system model with forward error control shown
in Fig. 1, using Matlab and C programs to characterize the
FFT/DFT blocks. Monte Carlo simulations were run over
an additive white Gaussian noise channel, measuring the
BER performance of the system versus signal-to-noise ratio
(SNR) = (E3)/(No). Unless otherwise specified, each data
point was generated using 106 bits.

A. Current Mirror Model for 256-FFT Simulations

The performance of the 256-FFT using the current mirror
linear curve model provided in Section II-A is presented in
Fig. 9. This model is used at each current mirror, and the sta-
tistical simulation was run for different bias currents. The bias
current range was varied from 100 pA to 100 nA based on the
model shown in Fig. 5. As it is clear in this figure, performance
improves with increased bias current values. We also simulated
bias currents up to 100 pA, but the results were nearly ideal
and were not plotted for the sake of clarity.

B. Mismatch Model Simulations

Both mismatch models provided in Section III are now sim-
ulated for a radix-2, 256-FFT, to show that the simulation re-
sults match. The first model is the FFT that has a mismatch
component at each current mirror, the per-mirror model, and
its results are shown as solid lines in Fig. 10. The other model
is the input-referred mismatch model shown as dashed lines in
Fig. 10. This model has the input-referred noise vector with an
equivalent variance defined in (10), which is multiplied by the
inputs and then added at the output of the ideal FFT. The simula-
tion results show that the output of the input-referred mismatch
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Fig. 10. Mismatch simulation for radix-2 FFT structures with varying num-
bers of symbols N and with 1% mismatch. The input-referred mismatch model
matches the per-mirror mismatch model.
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Fig. 11. Strong inversion and weak inversion mismatch simulation comparison
for a radix-2, 8-FFT. Weak inversion operation is much more sensitive to mis-
match compared to strong inversion operation.

model matches that of the FFT having mismatch at every cur-
rent mirror.

C. Strong and Weak Inversion Mismatch Sensitivity

As shown in Fig. 11, an eight-FFT operating in strong inver-
sion (normal distribution of current outputs) with 1% mismatch
does not lose significant BER performance; however, for weak
inversion (log-normal distribution of current outputs) operation,
the BER curve with only 0.2% mismatch is about 10~! at an
SNR value of 10 dB, which means that weak inversion opera-
tion is too sensitive to mismatch for proper operation and thus
it will not be further considered in this paper.
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Fig. 12. Mismatch simulations for the 256-FFT with radix-2, radix-4, radix-16,
and full-radix structures, with 2% mismatch. The higher the radix, the better the
system performance due to reduced mismatch.

D. High-Radix FFT Simulations

Fig. 10 shows that the radix-2, 256-FFT is very sensitive to
mismatch, losing about 4 dB at 10~2 BER for 1% mismatch. To
mitigate the impact of mismatch, a higher radix structure should
be used to reduce the number of stages. Fig. 12 shows simulation
results of radix-2, radix-4, radix-16 and full-radix structures.
The simulation assumes 2% mismatch for every current mirror
in each version of the 256-FFT. For the radix-2, 256-FFT sim-
ulation the performance degradation is unacceptable; however
the radix-4 structure performance is far better, with a loss of 2
dB at 102 BER; the full-radix DFT only loses 0.5 dB at BER of
under 10~*. As shown in Table 111, for a 256-FFT the ratio of the
input-referred mismatch variance for the radix-2 and full-radix
structures is equal to (251)/(1.61) = 156, which is more than
two orders of magnitude. Based on the numerical example of
(6) provided earlier, the square root of mismatch variance can be
considered as a mismatch percentage. Therefore, for a 256-FFT,
aradix-2 structure, and a full-radix structure with v/156 = 12.5
times the mismatch percentage of the radix-2 structure should
have equivalent performance.

Fig. 13 presents BER versus transistor pair mismatch sim-
ulations for the 256-FFT with radix-2, radix-4, radix-16, and
full-radix structures, at fixed SNR = 5 dB, for different mis-
match values from 0% to 10%. This curve illustrates how system
performance degrades with small increases in the transistor pair
mismatch. Again we notice that the higher the radix, the better
the system performance due to reduced overall mismatch.

E. Coded System Performance

Fig. 14 presents the simulation of a 256-DFT with 5% mis-
match concatenated with a (16, 11)? turbo product code (TPC)
as a forward error control mechanism and using BPSK modula-
tion. Each data point was generated using 107 bits. The decoder
mitigates the mismatch loss compared to the performance of the
uncoded system. The system only loses about 0.5 dB at a BER
of 1075, which can be reasonably considered as a system noise
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Fig. 13. BER versus transistor pair mismatch simulations for the 256-FFT with
radix-2, radix-4, radix-16, and full-radix structures, at fixed SNR = 5 dB. The
higher the radix, the smaller the difference between the system performance and
theoretical reference line due to reduced overall mismatch.

Bit Error Rate

=4 |deal 256-DFT
=—8— 5% Mismatch 256-DFT :
= = = BPSK Lower Bound of TPC |-
-6 i i i i i i
0 0.5 1 15 2 2.5 3
SNR = Eb/NO (dB)

Fig. 14. Mismatch simulation results for a coded system using a (16,11)2
TPC. The decoder mitigates the mismatch loss, which is about 0.5 dB at a BER
of 1075 for 5% mismatch at every current mirror.

component in an analog OFDM receiver. It is generally recog-
nized in the literature that 5%—10% mismatch is fairly straight-
forward to realize [24]-[26].

V. CONCLUSION

A novel analog N-FFT processor has been proposed, along
with a mathematical model of its mismatch as an input-referred
noise source. The mismatch model output closely matches the
output of an N-FFT having mismatch at each current mirror.
It was shown that an analog front end operating in strong in-
version significantly outperforms one operating in weak inver-
sion. It was demonstrated that the higher the radix of N-FFT,
the lower its sensitivity is to mismatch. Therefore, the full-radix
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DFT is more appropriate than the radix-2 FFT for analog de-
sign. Finally, simulations demonstrated that for a receiver for
an OFDM communication system concatenated with a forward
error control code, an analog 256-DFT with 5% mismatch at
each current mirror can be used, with a total system loss of only
0.5 dB at a BER of 1075, The fact that 5% mismatch is easily
achievable demonstrates that such an analog receiver system is
feasible.

Future work will include the design, fabrication, and testing
of a full system, and a study comparing the performance and sil-
icon area of finite-precision digital implementations to analog
implementations with mismatch. We foresee that the regular
structure that consists only of current mirrors could make it fea-
sible to exploit design automation tools to generate a compact
layout.
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