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ABSTRACT

We present details of a coupled Schrödinger-Poisson
solver for modeling quantum transport effects in carbon
nanotube field-effect transistors. The Poisson solution
is effected using a two-dimensional finite difference al-
gorithm in a coaxial structure with azimuthal symme-
try. The Schrödinger solution is implemented by the
scattering matrix method, and the resultant, spatially
unbounded wavefunctions, defined on the nanotube sur-
face, are normalized to the flux computed by the Lan-
dauer formula. The solver illustrates the need for de-
tailed modeling of the nanotube due to the impact of
interference effects and evanescent modes on the carrier
profiles. Non-equilibrium carrier distributions are pre-
sented for particular cases.
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1 INTRODUCTION

Carbon nanotubes [1] are attracting great interest for
their use in nanoscale electronic devices. Recent mod-
eling efforts of carbon nanotube field-effect transistors
(CNFETs) have been successful in examining the sub-
threshold behaviour of these devices through a simple
solution to Laplace’s equation [2], [3], while the above-
threshold behaviour has been modeled using bulk device
concepts [4], [5]. Accurate CNFET modeling requires a
self-consistent solution of the charge and local electro-
static potential. In order to properly treat such quan-
tum phenomena as tunneling and resonance, the charge
is computed via Schrödinger’s equation. Owing to the
presence of metal-semiconductor interfaces, we also ac-
count for the penetration of evanescent wavefunctions
from the metal into the energy gap of the nanotube.

We deal specifically with the coaxial geometry of the
CNFET shown in Fig. 1. The device consists of a semi-
conducting carbon nanotube surrounded by insulating
material (relative permittivity εins) and a cylindrical,
wrap-around gate contact. The source and drain con-
tacts terminate the ends of the device. The device di-
mensions of note are the gate radius, Rg, the nanotube
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radius, Rt, the insulator thickness tins = Rg − Rt, and
the device length, Lt.

Figure 1: Coaxial CNFET model geometry.

In this closed, metallic cylinder system, Poisson’s
equation, restricted to just two dimensions by azimuthal
symmetry, is
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where V (ρ, z) is the potential within the outer cylinder,
and Q is the charge density. It must be noted that, al-
though the solution of Eq. (1) encompasses the entire
volume of the device, we are primarily concerned with
the longitudinal potential profile along the surface of the
tube, hereafter labeled VCS(z) ≡ V (Rt, z), since knowl-
edge of this potential is required for carrier transport
calculations.

We treat the nanotube as a quasi-one-dimensional
conductor, and the linear carrier density is then com-
puted via the time-independent Schrödinger equation
given by

∂2Ψ
∂z2
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~2
(E − U)Ψ , (2)

where Ψ(z,E) is the wavefunction of a carrier with total
energy E and effective mass m, traveling in a region
with local effective potential U(z). While Q may include
sources such as trapped charge within the dielectric, we
neglect any charge other than that of electrons and holes
on the nanotube.

2 SOLUTION METHOD

We require a solution to Eq. (1) with Q = Q(V ).
Convergence for this non-linear system is achieved with



the Picard iterative scheme, whereby iteration k + 1 is
given by

Vk+1 = Vk − αL−1rk ,

rk = LVk + Q(Vk) ,

where rk is the residual of the k-th iteration, 0 < α ≤ 1
is a damping parameter, and L represents the linear,
differential operator allowing Eq. (1) to be written as
LV = −Q.

2.1 Potential

The boundary conditions for V are given by

V (Rg, z) = VGS − φG/q , (3)

V (ρ, 0) = −φS/q , (4)

V (ρ, Lt) = VDS − φD/q , (5)
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where φG,S,D represent the work functions of the gate-,
source-, and drain-metallizations, respectively, and VGS

and VDS are the gate- and drain-source voltages. Due
to the discontinuity in ε across the nanotube surface, we
must also apply the usual matching condition
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where p and n are the one-dimensional hole and electron
carrier densities.

The solution to Eq. (1) was obtained via the finite
difference technique, implemented by discretizing the
spatial domain and using central differencing to gen-
erate a linear system of equations, for some known Q,
and subject to the boundary conditions specified by Eqs.
(3)–(6). Finite differencing was chosen over an FFT-
Green’s function approach due to its flexibility in mod-
eling more complex structures. The singularity at ρ = 0
was addressed by applying l’Hôpital’s Rule to the of-
fending term, yielding

1
ρ
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∂ρ2
.

The amount of energy band bending in the vacuum
level, along the length of the nanotube, is given by
Evac(z) = −qVCS(z), since we assume that the local
electrostatic potential rigidly shifts the nanotube band
structure. The potential energies seen by electrons and
holes in the nanotube are

Ue(z) = Evac(z)− χCN , (7)

Uh(z) = −Ue(z) + Eg , (8)

where Eg and χCN are, respectively, the nanotube band-
gap and electron affinity.

2.2 Charge

Having established a solution for the potential and its
relation to the energy band structure, we now determine
the carrier concentration. In our system, the charge
density is given by

Q =
q(p− n)

2πRt

δ(ρ−Rt)
ρ

,

where δ(·)/ρ is the Dirac delta function in cylindrical co-
ordinates, and n(z) and p(z) are computed via Eq. (2),
where the nanotube effective mass is obtained from the
tight-binding approximation of the band structure, and
is the same for both electrons and holes due to sym-
metry [1]. Only the first, doubly-degenerate band is
included in the calculations presented herein. The po-
tential energy, U , for each carrier type is specified by
Eqs. (7)–(8), given a potential profile VCS(z).

We solve Eq. (2) using the scattering-matrix method
in which a numerical solution is propagated by cascading
2×2 matrices [6]. We find that the use of piecewise con-
stant potentials (plane-wave solutions) are preferable to
piecewise linear potentials (Airy function solutions) due
to the considerable reduction of simulation time with-
out an appreciable increase in the error. Matching of
the wavefunction and its derivative on the boundary be-
tween intervals n and n+1, assuming a constant effective
mass, is performed via the usual relations

Ψn = Ψn+1 ,

∂Ψn

∂z
=
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∂z
.

In order to completely specify the wavefunction, we
require two boundary conditions. In the contacts, the
wavefunction at a given energy is of the form

Ψ =
{

AeikSz + Be−ikSz , z < 0 ,
CeikDz + De−ikDz , z > Lt ,

where kS and kD are the wavevectors in the source and
drain contacts, respectively, and A, B, C, and D are
constants. As an example, noting that an analogous
calculation may be performed for the drain by exchange
of variables, we now illustrate source injection. For this
case, D = 0 for all energies. In addition, we expect
that the Landauer equation [7] will hold for the flux,
and must be equal to the probability current. For the
transmitted wave, this yields

2q

π~
fST =

q~
m

kD|C|2 , (9)

where the pre-factor of 2 accounts for the aforemen-
tioned band degeneracy, fS is the Fermi-Dirac carrier
distribution in the source, and T is the transmission
probability specified by

T =
kD|C|2
kS |A|2 .
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Simple manipulation yields the normalization condition

|A|2 =
2m

π~2

fS

kS
. (10)

At any given energy, multiplication of the unnormalized
wavefunction by a constant satisfies Eq. (10).

Including source and drain injection components, the
normalized wavefunctions yield the total carrier densi-
ties in the system,

n(z) =
∫ ∞

Ee

( |Ψe,S |2 + |Ψe,D|2
)

dE ,

p(z) =
∫ ∞
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( |Ψh,S |2 + |Ψh,D|2
)

dE ,

where Ee,h is taken to be the bottom of the band, for
either electrons or holes, in the appropriate metallic con-
tact, and corresponds to the bottom of the band in the
metal. In practice, the integrals are performed using
adaptive Romberg integration, where repeated Richard-
son extrapolations are performed until a predefined tol-
erance is reached [8]. We find that an adaptive integra-
tion method is a necessity for convergence, in order to
properly capture Ψ, which is typically highly-peaked in
energy for propagating modes. Alternatively, one could
employ a very fine discretization in energy, however the
Romberg method allows for the mesh size to change
based on the requirements of the integrand, and results
in a much improved simulation time.

3 RESULTS

We now present results for a CNFET with a (16, 0)
nanotube (Rt ≈ 0.63 nm; Eg ≈ 0.62 eV), Lt = 20 nm,
tins = 2.5 nm, and εins = 25. All work functions are
taken to be 4.5 eV unless otherwise noted, and χCN =
4.2 eV. The nanotube is presumed to have a free-space
relative permittivity εt = 1 [9], and E was taken to
be 5.5 eV below the metal Fermi level, as a rough es-
timate [10].

In equilibrium, i.e., for VDS = 0, we obtain rea-
sonable agreement for the carrier concentrations away
from the contacts with that computed using equilib-
rium statistics [2]. Out of equilibrium, however, interfer-
ence effects influence the carrier distributions through-
out the device. Fig. 2 shows the carrier distributions
for VGS = 0.5V as a function of position and VDS , and
Fig. 3 shows the corresponding conduction band edges
for VDS = 0 and 0.4V.

Under a positive gate bias, the band bending results
in an increase in the electron concentration throughout
the device as more propagating modes are allowed in the
channel. As VDS is increased, this concentration is con-
siderably reduced in the mid-length region. Evanescent
modes dominate the carrier concentrations near the end
contacts, thus impacting on the local potential. Due to

Figure 2: Net carrier density, p(z)−n(z), for the model
device as a function of position and VDS .
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Figure 3: Conduction band edges for the model device
with VGS = 0.5V, and VDS = 0 (dashed) and 0.4 V
(solid). Energies are with respect to the source Fermi
level.

the exponential dependence of the transmission prob-
ability on the barrier shapes, the flux is significantly
modified if these modes are neglected.

We note, also, that it is important to allow for the
full inclusion of quantum mechanical reflection for the
thermionic component of the flux. Often, carriers above
the barrier are assumed to have a transmission proba-
bility near unity. However, this approximation does not
hold in general, as Fig. 4 shows, wherein the significant
reflection is due to E being much lower than the con-
duction band edge. The effect is most important for
devices where the metal-nanotube work function differ-



ence yields a negative barrier, shown in Fig. 4(a). Here,
a classical treatment would considerably overestimate
the Landauer flux, a function of T , for energies in the
vicinity of the Fermi level.
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Figure 4: Conduction band edges and transmission
probabilities for electrons at VGS = 0.5V and VDS =
0.4 V: (a) φS = φD = 3.9 eV and (b) φS = φD = 4.5 eV.
Energies are with respect to the source Fermi level.

Finally, the present Schrödinger-Poisson method al-
lows for explicit calculation of the carrier distribution
functions, as shown in Fig. 5. The result is in marked
contrast to a previous self-consistent model [5] that uti-
lized quasi-equilibrium distribution functions to calcu-
late the non-equilibrium carrier concentrations. More-
over, while the model provided in Ref. [4] yields more
appropriate non-equilibrium carrier distributions, it is
not equipped to account for the resonant peaks illus-
trated here.

4 CONCLUSIONS

From this work on the modeling of CNFETs with a
coupled Schrödinger-Poisson solver, we conclude that:

1. equilibrium statistics are not adequate in describ-
ing the carrier distributions in energy;

2. consideration of the evanescent modes is crucial for
the accurate simulation of devices where transport
is dominated by tunneling through the interfacial
barriers;
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Figure 5: Source-originated electron concentration at
Lt/2, normalized to its maximum value. VGS = 0.5V,
VDS = 0.4V, and φS = φD = 3.9 eV. Energies are with
respect to the source Fermi level.

3. for devices dominated by thermionic emission, a
full solution of Schrödinger’s equation is still re-
quired in order to account for significant reflection
above the barriers.
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